
Cryptanalysis of the NTRU Signature Scheme
(NSS) from Eurocrypt 2001

Craig Gentry1, Jakob Jonsson2, Jacques Stern3?, and Michael Szydlo2

1 DoCoMo Communications Laboratories USA, Inc.
cgentry@dcl.docomo-usa.com

2 RSA Laboratories, 20 Crosby Drive, Bedford, MA 01730, USA
{jjonsson,mszydlo}@rsasecurity.com

3 Dépt d’Informatique, Ecole normale Supérieure, Paris, France
Jacques.Stern@ens.fr

Abstract. In 1996, a new cryptosystem called NTRU was introduced,
related to the hardness of finding short vectors in specific lattices. At Eu-
rocrypt 2001, the NTRU Signature Scheme (NSS), a signature scheme
apparently related to the same hard problem, was proposed. In this pa-
per, we show that the problem on which NSS relies is much easier than
anticipated, and we describe an attack that allows efficient forgery of a
signature on any message. Additionally, we demonstrate that a transcript
of signatures leaks information about the secret key: using a correlation
attack, it is possible to recover the key from a few tens of thousands of
signatures. The attacks apply to the recently proposed parameter sets
NSS251-3-SHA1-1, NSS347-3-SHA1-1, and NSS503-3-SHA1-1 in [2]. Fol-
lowing the attacks, NTRU researchers have investigated enhanced encod-
ing/verification methods in [11].

Keywords: NSS, NTRU, Signature Scheme, Forgery, Transcript Analysis,
Lattice, Cryptanalysis, Key Recovery, Cyclotomic Integer.

1 Introduction

Recently, Hoffstein, Pipher, and Silverman introduced a public-key signature
scheme called NSS (the “NTRU Signature Scheme”) [9]. This scheme is related to
the NTRU cryptosystem, which was first introduced at the CRYPTO ‘96 rump
session. An attack on NTRU was quickly found by Coppersmith and Shamir
(see [4]), which led the authors to adopt larger parameters, and reformulate the
underlying hard problem as a lattice problem. The current version of NTRU,
as published in [6], remains unbroken. NSS is also related to the problem of
finding short vectors in certain lattices, and is an improvement over an early
version [7] presented at the CRYPTO 2000 rump session. This version proved
to be insecure, which the designers observed at an early stage. Ilya Mironov

? This work has been partially supported by the French Ministry of Research under
the RNRT Project “Turbo-Signatures”

2 Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo

[14] made the same observation independently a few months later. Basically, it
appeared that signatures leaked information about the private key, which allowed
for statistical attacks.
To eliminate the disclosed weaknesses, certain adaptations were made, yield-

ing the scheme described in [9] and [8]. Unfortunately, these signatures still leak
information about the private key. More precisely, it turns out that correlations
between certain coefficients in the signature and the private key are sufficient to
recover the entire public key.
Moreover, and even more dramatic, is a direct forgery attack which enables

an adversary to sign arbitrary messages without any knowledge of the private
key. While the flaw does not rule out potentially secure future revisions, our
analysis shows that the scheme as presented in [9], [8] and [2] is completely
insecure.
This paper is organized as follows. In section 2 we provide background and

describe NSS in more detail. In section 3 we describe the efficient forgery proce-
dure. Next, in section 4 we explain how to recover the key by examining valid
signatures. In section 5 we discuss some revisions suggested by the authors of
NSS to repair the signature scheme.

2 Description of NSS

Here we review some mathematics that underlie NSS, and give a brief description
of the scheme. We refer readers to [9] and [8] for more detailed information.

2.1 Background Mathematics

The key underlying mathematical structure of the scheme is the polynomial ring

R = Zq[X]/(X
N − 1) (1)

where N and q are integers. In practice, N is prime (e.g., 251) and q is a power
of 2 (e.g., 128). Elements in R are polynomials of degree (at most) N − 1 and
with coefficients in the range (−q/2, q/2].
Multiplication in this ring is like ordinary polynomial multiplication, but

subject to the relations XN+k = Xk for any k ≥ 0. This means that the co-
efficient of Xk in the product a ∗ b of a = a0 + a1X + . . . + aN−1X

N−1 and
b = b0 + b1X + . . .+ bN−1X

N−1 is

(a ∗ b)k =
∑

i+j=k mod N

aibj . (2)

The multiplication of two polynomials in R is also called the convolution product

of the two polynomials. For any polynomial a ∈ R, it is also convenient to intro-
duce the convolution matrix of a as follows: LetMa be the N×N matrix indexed
by {0, . . . , N − 1}, where the element on position (i, j) is equal to a(j−i) mod N .
With this representation, the product of a and b can be also expressed as the

Cryptanalysis of the NTRU Signature Scheme (NSS) from Eurocrypt 2001 3

product of the row vector (a0, . . . , aN−1) with the matrix Mb. From now on, we
will freely identify any polynomial with its corresponding row vector.

While the ring (1) may seem unnatural at first, it is directly related to the
ring of integers in the cyclotomic field

Q(ζN) = Q[X]/(XN−1 + ...+X + 1). (3)

This field Q(ζN) is a field extention of the rational numbers Q, and has a subring
of Algebraic Integers, Z(ζN), analogous to the ordinary integers Z ⊂ Q. In fact,
the set of polynomials p ∈ R with p(1) = 1 is isomorphic to the integers Z(ζN) ⊂
Q(ζN), and the convolution product described above in (2) is simply the ordinary
multiplication operation in this field.

This field has been extensively studied and has been proposed for use in
other cryptographic applications such as factoring and as basis for a public key
cryptosystem (e.g. [17]), and is likely to appear in further analysis of NTRU
related cryptosystems. However, further familiarity with this field is not required
for the rest of this paper.

2.2 The NSS Signature Scheme

The public key of NSS consists of a polynomial h of degree N−1, and the private
key of the scheme consists of two polynomials f and g with “small coefficients”
such that f ∗h = g, where the polynomials are elements of R = Zq[X]/(X

N −1),
and q and N are typically 128 and 251.

In order to describe the scheme further, additional parameters are needed.
These parameters include the integer p, which is typically chosen to be 3, and the
integers df , dg and dm, whose suggested values are respectively 70, 40 and 32.
The latter parameters are used to define several families of polynomials denoted
by L(d1, d2), a notation that refers to the set of polynomials of degree at most
N − 1 with d1 coefficients 1, d2 coefficients −1 and all other coefficients 0.

Key generation: Two polynomials f and g are defined as

f = f0 + pf1

g = g0 + pg1

where f0 and g0 are publicly known small polynomials (typically f0 = 1 and
g0 = 1 − 2X). The polynomial f1 is randomly chosen from L(df , df) and sim-
ilarly g1 is randomly chosen from L(dg, dg). It is required that f be invertible
(i.e., there exists some f−1 with f ∗ f−1 = 1 mod q). This is true with very
high probability; in any case the preceding step may be repeated by choosing a
different polynomial f1.

4 Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo

Signature generation: To sign a message, one transforms the message to be
signed into a message representative according to a hash function-based proce-
dure such as that described in [2]. This message representative is a polynomial
in L(dm, dm). The signer first computes

w = m+ w1 + pw2

where w1, w2 are two polynomials with small coefficients generated at random
in a rather complex manner that is described in Appendix B. The signer next
computes the convolution

s = f ∗ w mod q

and outputs the pair (m, s) as the signature of m.

Signature verification: A signature (m, s) consists of the message m together
with the polynomial s of degree N−1, with coefficients reduced modulo q. Signa-
ture verification depends on two further parameters Dmin and Dmax (paper [9]
suggests Dmin = 55 and Dmax = 87, together with the parameters suggested
above), and upon the concept of Deviation. Given two polynomials, A and B
of degree N − 1, the deviation Dev(A,B) is the function that counts the num-
ber of coefficients where (A mod q) mod p and (B mod q) mod p differ. Here,
modular reduction computes the coefficients in the interval (−q/2, q/2] (resp.
(−p/2, p/2]). If A and B are two random polynomials in the ring Zq[X]/(X

N−1)
and p equals 3, we would expect Dev(A,B) to be about 2

3N ≈ 167, since the
probability that Ai and Bi differ modulo 3 is about

2
3 .

To verify a signature, first it is checked that s 6= 0. Then the polynomial
t = s ∗ h (mod q) is computed, and the two conditions

Dmin ≤ Dev(s, f0 ∗m) ≤ Dmax

Dmin ≤ Dev(t, g0 ∗m) ≤ Dmax

are checked. If both conditions hold, the signature is accepted as valid.
The soundness of the scheme follows from technical estimates, which we omit.

It should be noted that signature generation does not necessarily produce valid
signatures. With the above parameters, signature verification fails in twenty
percent of the cases and, when this happens, the signer has to create another
signature.

3 Forgery Attacks

Paper [9] claims that a signature essentially proves possession of the secret trap-
door. Further, it envisions several potential attacks and concludes that the se-
curity of the system, with the above parameters, is comparable to RSA with
1024 bit moduli. We show that an attacker can generate forgeries (with slightly
fewer than Dmax = 87 deviations) almost as quickly as the signer can generate
signatures, without any knowledge of the private key. Furthermore, the attacker
can generate forgeries with substantially fewer than Dmax deviations by using
lattice reduction.

Cryptanalysis of the NTRU Signature Scheme (NSS) from Eurocrypt 2001 5

3.1 Basic Forgery Attack: The Principle

In [9] and [8], NSS and NTRU are described as being based on essentially the
same hard lattice problem. In fact, the problem underlying NSS is more of an
error correction problem and, as demonstrated in many papers (see e.g. [16]),
such problems take much larger dimensions to become hard.
The attack is very simple, once the perspective has been changed, as just

indicated. The attacker’s task is to find a pair of polynomials (s, t) that satisfy
t = s ∗ h (mod q), as well as the deviation requirements:

55 ≤ Dev(s, f0 ∗m) ≤ 87;

55 ≤ Dev(t, g0 ∗m) ≤ 87.

Since s and t have 2N coefficients altogether, and the equation t = s∗h (mod q)
imposes N linear constraints, the attacker has N degrees of freedom remaining
in s and t with which he can try to satisfy the deviation requirements. With
these N degrees of freedom, he sets

si ≡ (f0 ∗m)i mod p

and

tj ≡ (g0 ∗m)j mod p

for bN/2c coefficients of s and dN/2e coefficients of t — i.e., he chooses about
half the coefficients of s and half of t to be non-deviating. The remaining halves
of s and t are left to chance. Since the chosen half of s (resp. t) has no deviations,
and the remaining half will probabilistically deviate in about 2

3 of the positions,
overall about 1

3 of the coefficients of s (resp. t) will deviate. Since
1
3N ≈ 84 ≤

Dmax for (N,Dmax) = (251, 87), this process will usually generate a valid forgery
after only a few iterations. In general, if p = 3 and Dmax ≥

1
3N , then this attack

will generate forgeries regardless of the size of N .

3.2 Basic Forgery Attack: The Details

In practice, the attack is slightly more complicated than the above, because it
is possible that the constraints on s and t are incompatible. In this case, we
say the attacker is unlucky. To avoid being unlucky, the attacker constrains only
k < N/2 coefficients each of s and t. By setting up linear equations based on
the constraints on t, we obtain a system of k linear equations modulo q over the
(N − k) free unknowns. The coefficients of the unknowns in this system form a
k × (N − k) submatrix M of Mh whose coefficients are modulo q integers. We
make the heuristic assumption that these coefficients are independent random
bits, when reduced modulo 2.

Lemma 1. Based on the heuristic assumption, the attacker is unlucky with

probability at most ε = 1
2N−2k

6 Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo

Proof of lemma: We show that, with probability at least 1 − ε, the columns
of M mod 2 generate the entire k-dimensional space over the two-element field.
If this holds, the system has rank k and it has solutions modulo 2 and modulo
q as well, since q is a power of 2. Now, for every k-bit vector x, a column
vector v is such that the inner product (v, x) is zero with probability 1/2. Since
there are N − k independent columns, x is orthogonal to all column vectors
with probability 1

2N−k . Since there are 2
k possible values for x, we get that, with

probability at least 1− 1
2N−2k , there is no vector orthogonal to all column vectors

of M mod 2. This means that these column vectors span the entire space. ut

Setting k = 121, the attacker will be lucky with probability at least 1− 2−9.
Assuming he is lucky, the attack now amounts to solving a system of 121 equa-
tions with 130 unknowns. However, a closer look shows that the matrix corre-
sponding to this system does not depend on m, provided the attacker keeps the
same selection of coordinates for his constraints; only the “righthand side” of
the linear system does. This makes possible standard preprocessing of the linear
system. To keep things simple, assume that, by suitably reindexing coefficients,
one has brought the constrained coefficients of s in front and made the con-
strained coefficients of t the trailing block. Then, the matrix M of the system
that the attacker has to solve is at the right bottom corner of Mh, defined by
the last k rows of Mh and its last N − k columns. Further relabeling makes the
last k columns ofM an invertible submatrix U . Again U lies at the bottom right
corner ofMh. Thus, once the attacker precomputes the inverse U

−1 of U , he may
thereafter generate solutions to the linear system by choosing the N − 2k = 9
middle coordinates of s arbitrarily and obtaining the k last ones by a single mul-
tiplication by U−1. For k = 121, one readily checks that the obtained solution
will satisfy the deviations requirement with probability ≥ 1/4, so the attacker
can expect to obtain the desired forgery after only 4 such multiplications. This
makes forgery almost as fast as regular signature generation.

Alternatively, the attacker may search for a solution whose number of devia-
tions lies closer to the middle of the interval (Dmin, Dmax), simply by searching
through the 1289 solutions to his linear equations. In a relatively short time, he
can expect to find a solution (s, t) for which s and t have, for example, only 75
deviations.

A computer program written in C confirms the above analysis. Specifically,
we have carried out the following two experiments:

1. The first with a public key that we manufactured, corresponding to the
parameters from [9].

2. The second with a public key coming from one challenge from the NTRU
web site. This challenge is for the encryption scheme. Unfortunately, there is
no challenge for the signature scheme, but we wished to make it clear that we
were working without the secret key. The challenge uses N = 263 instead of
N = 251. We left the other parameters unchanged and observe that raising
N only makes the forgery slightly more difficult.

Cryptanalysis of the NTRU Signature Scheme (NSS) from Eurocrypt 2001 7

We found forgeries whose distance pairs are respectively (75, 74) and (79, 79),
close to the middle of the interval (Dmin, Dmax).

3.3 Forgery Attack with Lattice Reduction

In this section we make use of lattice reduction, a technique to find useful Z bases
of lattices (discrete subgroups of Rn). The celebrated LLL algorithm [13] is one
of a family of algorithms that find bases containing short vectors in a lattice,
and has found many uses in cryptology. The contemporary survey [15] provides
an overview of lattice techniques and [1] provides detailed descriptions of many
forms of the LLL reduction algorithm. In this paper, we use LLL as a black box
algorithm to find a vector of short Euclidean norm in a lattice defined by the Z
span of the rows of a matrix.
We can strengthen the basic forgery attack described above by supplementing

it with a lattice reduction technique. We exploit the fact that we have consider-
able freedom when choosing the constrained coefficients of s and t and make the
observation that all possible simple forgeries differ from a given one by a 2N -
dimensional vector from an easily defined lattice. In other words, the idea here
is (1) to generate an initial (s′′, t′′) using the basic forgery attack, and then (2)
to correct some of the initial signature’s deviations using lattice reduction. This
hybrid approach allows us to generate forgeries averaging about 56 deviations in
a few minutes.
Let (s′′, t′′) be the initial signature obtained using the basic forgery attack.

Since t′′ = s′′ ∗ h (mod q), the vector (s′′, t′′) is in the lattice generated by the
rows of the following matrix 1:

LCS =

[

I(N) Mh

0 qI(N)

]

,

where I(N) denotes the N -dimensional identity matrix. In the basic forgery at-
tack, to describe it in a slightly different fashion than previously, we found an
invertible k × k submatrix U of Mh and then reordered the rows and columns
of LCS to obtain

LCS,2 =

I(N−k) 0 R S
0 I(k) T U
0 0 qI(N−k) 0
0 0 0 qI(k)

,

where the invertibility of U made it easy to set the first k (actually, first N − k)
and last k columns to whatever values we desired, modulo q. So, without loss of
generality, we assume that in our initial signature (s′′, t′′), the first k coefficients
of s′′ and last k coefficients of t′′ are chosen to be non-deviating (understanding

1 Coppersmith and Shamir introduced this lattice in their attack on NTRU [4]. Since
that time, the inventors of NTRU have hypothesized that the security of NTRU and
NSS is related to the apparently hard problem of finding short vectors in this lattice.

8 Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo

that since the rows and columns of LCS were reordered, s
′′ and t′′ have been

relabeled).
The attacker now would like to find some way of correcting theN−k deviating

coefficients of s′′ (resp. t′′) without touching the k non-deviating coefficients of
s′′ (resp. t′′). To this end, the attacker would like to find a set of harmless row
vectors in the lattice generated by LCS,2 that contain zeros in the first k and last
k positions, so that, for any vector (vs, vt) in this set, the pair (s

′′ + vs, t
′′ + vt)

will still be non-deviating in its first k and last k coefficients, while possibly
having fewer deviations in its other positions.
We obtain the set of harmless vectors by making a slight modification to

LCS,2, obtaining a different lattice basis for the same lattice:

LCS,3 =

I(N−k) −V R− V T 0
0 I(k) T U
0 qI(k) 0 0
0 0 qI(N−k) 0
0 0 0 qI(k)

,

where V = SU−1 (mod q). To check that both generated lattices are indeed the
same, one simply considers a linear combination of the first N rows of LCS,2, cor-
responding to the sequence of coefficients (α1, · · · , αN). Writing the coefficients
blockwise as (A1, A2), we see that exactly the same vector modulo q is obtained
from the rows of LCS,3 by a linear combination corresponding to (A1, A2+V A1).
The result follows. Notice that the rows k + 1 to N − k and rows N + 1 to 2N
of LCS,3 have no nonzero coefficients in the first k or last k positions. We let
Lharmless be the lattice generated by these (2N − 2k) harmless vectors. These
vectors are clearly linearly independent, so we conclude that the dimension of
Lharmless is exactly (2N − 2k).
Now, how do we use the lattice of harmless vectors to improve upon (s′′, t′′)?

We will construct a lattice in which short vectors correspond to vectors with
small deviations. Then we can search for a harmless vector, which, when added
to (s′′, t′′) is a very short vector. This problem is an example of a closest vector
lattice problem (CVP), related to the shortest vector lattice problem (SVP). See
[15] for some comments on the relationship of the CVP to the SVP. To this end,
we consider the lattice

Lpq =

[

pLharmless

(s′, t′)

]

,

where (s′, t′) is the row vector with coefficients modulo pq satisfying s′ ≡ s′′ mod
q and t′ ≡ t′′ mod q, as well as s′ ≡ (f0 ∗ m) mod p and t′ ≡ (g0 ∗ m) mod p
(again, and hereafter, keeping the relabeling in mind). For any row vector (vs, vt)
in this lattice, vs ∗ h = vt (mod q). Moreover, vs and vt will satisfy one of three
equations modulo p, depending on the value of the scalar coefficient of (s′, t′):

vs ≡ vt ≡ 0 mod p, or

vs ≡ (f0 ∗m) mod p and vt ≡ (g0 ∗m) mod p, or

Cryptanalysis of the NTRU Signature Scheme (NSS) from Eurocrypt 2001 9

−vs ≡ (f0 ∗m) mod p and − vt ≡ (g0 ∗m) mod p .

If we could find a (vs, vt) with small coefficients — for example, in the range
(−q/2, q/2] — that does not satisfy the first condition2 vs ≡ vt ≡ 0 mod p, then
either (vs, vt) or (−vs,−vt) would be a valid forgery having zero deviations.
Unfortunately, finding a short (vs, vt) appears to be a hard lattice problem that
cannot be solved in any reasonable time for lattices as large as Lpq.
So, instead of attempting to reduce Lpq, we select c columns of Lpq, corre-

sponding to unchosen coefficients of (s′′, t′′), and define Lfinal to be the sub-
matrix of Lpq consisting of these c columns. The lattice generated by Lfinal

is only c-dimensional. We then apply lattice reduction to Lfinal, obtaining a
c-dimensional output vector. Every coefficient of the output vector that falls in
the interval (−q/2, q/2] is now non-deviating. In general, the expected number
of deviations for s (resp. t) after this process is (2N − 2k − c)/3 +∆/2, where
∆ is the expected number of coefficients of the c-dimensional output vector that
are outside the interval (−q/2, q/2].
For concreteness, when attacking the “practical implementation of NSS,” the

attacker might set k to be 95 and c to be 150 and reduce the resulting lattice using
a blocksize of 20. The lattice reduction algorithm is completed a few minutes,
and empirically, the resulting s and t typically each deviate in about 56 positions.
For NSS to be secure, Dmax would, of course, have to be set much lower than 56
to ensure that the hybrid forgery attack fails with high probability.

4 Transcript Attacks

4.1 Description of the Attack

In this section we show how to recover the private keys f and g by examining
a transcript of signatures. A transcript consists of some number of pairs (m, s)
of messages with valid signatures created by the NSS signature algorithm. We
also obtain t for each message via the relation t = s ∗ h (mod q). The basis of
the attack is to examine the distributions of the s or t coefficients for a subset of
messages m. By setting one coefficient of m to a fixed value, the distributions of
the coefficients of s and t converge to a limiting distribution which depends on a
chosen coefficient of the secret key f or g. Thus we compare sample distributions
of s or t to precomputed estimations of the limiting distribution for each possible
value of f or g’s coefficient.
As mentioned above, both the NTRU corporation research team and Mironov

observed that if the averages of these distributions were dependent on the key
coefficients, the private keys would be extremely rapidly recovered by essentially
averaging the signatures. This problem was quickly corrected in the following
version of NSS [8], by altering the signature algorithm to guarantee that the
average of these distributions would be indeed independent of the private key

2 We observe in practice that this first condition may be avoided empirically with high
probability via a small modifications of the lattice Lpq.

10 Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo

coefficients. However certain s and t distributions do depend on the possible f
and g coefficient values and are still quite distinct from one another. Comparing
these distributions to one another or to a precomputed distribution leads to
an exposure of the private key. One interpretation of the attack is that it is an
exploitation of information leaked through the higher moments of the signatures.

The signature of a message s is obtained via an algorithm which chooses w1

and w2 according to an intricate algorithm (see [8]), and sets

s = f ∗ (m+ w1 + pw2).

This algorithm to choose w1 and w2 is described in Appendix B and it is easily
observed to be constructed so as to avoid the simple averaging attack.

All of our experiments have used the suggested parameters q = 128, p = 3,
and N = 251, although the technique is generally applicable. For this parameter
set, the polynomials w1 and w2 have approximately 25 and 64 nonzero entries
each, and m is set to have 32 coefficients equal to 1 and 32 equal to −1. The
coefficients of s thus depend on the private key f , the message m and the ran-
domly generated polynomials w1 and w2. The situation is entirely similar with
g and t since

t = g ∗ (m+ w1 + pw2).

In order to obtain the coefficient fk, we fix indices i0 and j0 with i0 =
j0 + k mod N , and examine the distribution of si0 over a transcript of messages
with mj0=1. Unraveling the convolution arithmetic, we have

si0 =
∑

j+k=i0

fk(mj + w1,j + pw2,j).

We note that the quantityWj = mj+w1,j+pw2,j is nearly (but not exactly, due
to a quirk of the w1 generation) identically distributed for each index j, when
the distribution is taken over random values of m. We consider si0 to be the sum
of the random variablesWj , and because f has exactly 140 nonzero entries, si0 is
nearly a sum of 140 identically distributed random variables drawn from a fixed
distribution. However, requiring that mj0 = 1 (or 0 or −1) distinguishes the
random variable Wj0 from the others. Our observation is that the term fkWj0

in the sum defining si0 will contribute differently depending on the value of fk.

Since an explicit calculation of the distribution of si would necessarily rely
on the complex formulas for w1 and w2, we tested the heuristic reasoning above
with several numerical experiments. There are many possible variants of this
approach. For example, one could also set mj = 0 or mj = −1 for the appro-
priate coefficient, and thereby extract additional information from a given size
transcript. We mention here only one key optimization. Although we fixed the
index i0 above, in fact every coefficient of m may be potentially used to obtain
information about each coefficient of f . Namely, for a single message-signature
pair, examining si for all indices i such that mj = 1 and i + j = k speeds up
the convergence by a factor of 32, since m has 32 coefficients equal to 1. Thus

Cryptanalysis of the NTRU Signature Scheme (NSS) from Eurocrypt 2001 11

we essentially examine the distribution

si,j =
∑

j+k=i,mj=1

fk(mj + w1,j + pw2,j)

over a large set of transcripts. We performed several computer experiments which
implemented the above optimized statistical analysis. Our programs, written in
C, were able to recover the private key with a very high degree of accuracy.

4.2 Efficiency of the Attack

To create the estimated background limiting distribution, we simply created
several million messages, each signed by a different private key, and calculated
the distributions of sk conditional on mj = 1, and fk assuming a particular
value in the set {−3, 0, 3}. These statistics were gathered individually for each
coefficient of fk, but for simplicity of exposition we combine them, and define
the three probability distributions F0, F3, F−3, to be the limiting distributions
of si given mj = 1, and the prescribed fk value.
Given a valid transcript of signed messages, for each coefficient index i, the

sample distribution of si is formed, and denoted Si. Next Si is compared to each
of the distributions F0, F3, F−3, according to some distribution comparison
method. To do this, we define Si(x) be the probability that si = x for some
x mod q. Similarly define F0,i(x), F3,i(x), and F−3,i(x) to be the respective
probabilities that si = x (conditional on the prescribed value of fk and mj = 1
for i = j + k). One simple, effective measure useful for distinguishing these
distributions is defined as

∆i(v) =
∑

x

(Fv,i(x)−Ai(x))(Si(x)−Ai(x)),

where Ai(x) is the average of the frequencies (F0,i(x), F3,i(x), and F−3,i(x)).
Thus for each coefficient i of f , we calculate ∆i(v) for vε{−3, 0, 3}. Next, we
ordered the values ∆i(3) and ∆i(−3) and select the smallest 70 values to identify
the coefficients with f = 3, and f = −3 respectively.
There are clearly many other ways in which the distributions could be com-

pared, for example with the L2 norm. The convergence obtained with the above
metric efficiently recovered the key coefficients, and alternative measures were
only used in subsequent confirming experiments. We briefly note that the first
coefficient of f has a slightly different distribution than the other indices, but
this may be easily adjusted for, and is of minimal importance as it is just a single
index.
After predicting the private key, we compared it to the actual private key,

and checked our results. Here we summarize the number of mistakes made for
several applications of this technique to transcripts of different lengths.

Signatures Trials Average Errors
100,000 31 7.3
300,000 16 2.6
400,000 5 1.2

12 Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo

The incorrectly predicted coefficients all correspond to indices which were
near the end of the 70 minimal values in the orderings of ∆i(3) and ∆i(−3).
In fact, in each trial, we identified a subset of 40 such ‘dubious’ indices before
comparing to the private key, and verified that all of the errors were located at
such indices. Given this localization of the errors, we conclude that it is feasible
via direct search to obtain the exact private key given our estimated private key.
Depending upon the size of the index subset to examine, we estimate that

it is possible to obtain the exact key via direct search, even if the guess has up
to 10 errors 3 Thus with our method of examining the s distribution, the key
f may be completely deduced with as little as 100,000 signatures. We note also
that significant partial information about a key’s values may be used to greatly
speed up certain lattice attacks, and in particular lattice reduction techniques
may also be used to correct the estimated keys with a larger error tolerance than
the brute force search method described above. These optimization techniques
are not described further in this paper.
We note that it is likely that examining t rather than s would yield improved

convergence rates. This conjecture is based on the fact that g is defined to have
80 nonzero entries rather than 140. We did not test this hypothesis directly in
the above situation, but rather in the subsequent statistical attack on an NSS
variant which we now describe.

4.3 An NSS Variant

Although the NSS version published in [8] was the subject of our first analysis,
several variants proposed for the recent EESS standard [2] use a different pri-
vate key structure. These key structures were proposed to increase the signing
efficiency. Recall that the key space notation L(d, d) indicates a polynomial with
d coefficients equal to 1 and d coefficients equal to −1. In the original version f
was chosen to be f = 1+ 3f1 where f1 ∈ L(70, 70), and g = 1− 2x+ 3g1 where
g1 ∈ L(40, 40).
The optimized key space is formed as follows. f = 1 + 3f1 ∗ f2 and g =

1+2x+3g1 ∗ g2, where f1 ∈ L(7, 7), f2 ∈ L(5, 5), g1 ∈ L(5, 5), and g2 ∈ L(4, 4).
Because of cancelation or correlation in the product, f and g typically contain

fewer nonzero elements and contain several coefficients equal to 6 or −6. Thus
while the original scheme has private keys with a known number of coefficients
that assume values in the set {3, 0,−3}, the new key have differing numbers of
coefficients which typically assume values in the set {6, 3, 0,−3,−6}. (We ignore
the first few indices of f and g for simplicity).
At first glance this appears to make the creation of the precomputed limiting

distributions difficult. However, there are actually very few possible cases to
consider. For example, a typical g has 62 coefficients equal to 3 or −3 and 5
equal to 6 or −6. The various other possibilities may be tried sequentially, in
order of probability. Alternatively, we note that it is also true that the limiting

3 Assuming the 10 errors are so localized, an upper bound on the number of potential
corrections to f is equal to the binomial coefficient (40, 10), or less than 229.

Cryptanalysis of the NTRU Signature Scheme (NSS) from Eurocrypt 2001 13

distributions of s and t distinguish between the key structures with fewer or
greater numbers of 6 and −6 coefficients very rapidly, without a need to fix
values of mj .
We found that the new private key structures led to even faster convergence.

Several factors were changed simultaneously in the following experiment. First,
we analyzed the distribution of t instead of that of s. Secondly, we assumed the
number of coefficients in 6,−6 and 3,−3 was known, and did not attempt to
deduce it. Thirdly, we used the L2 norm to compare the distributions. Finally,
a two-stage algorithm first found the 6 and −6 coefficients (very easily), and
the remaining indices were ordered by the L2 distances to the precomputed
distributions. The values of fk were predicted according to this order. We found
few errors in these predictions, with a smaller number of signatures.

Signatures Trials Average Errors
30,000 10 5.6
50,000 10 4.8
100,000 5 1.8
200,000 5 1.0

As with the standard keys, it is possible to identify a subset of questionable
indices for which the guess may be in error. Therefore even a direct search is
feasible to obtain the exact private key. Thus we conclude that this last technique
would find the exact private key with a transcript of size 30,000.
Further optimizations are possible. For example, for a hybrid attack one may

estimate both keys f and g via a method described above, and then assign
confidence measures to each index. We then assume that the N/2 coefficients
of f and N/2 coefficients of g that have the highest confidence measures are in
fact correctly chosen. The remaining coefficients are determined by the relation
g = f ∗h as in section 3, and finally we check that the deduced key pair (f, g) is
correct. Only enough signatures needed to provide half of each of f and g would
be needed to obtain the exact key. Another promising optimization would be to
use the value of the message coefficients mj to make an educated guess to the
values ofmj before they were reduced modulo q, and compare these distributions.
Refinements of this strategy might reduce the number of signatures to ten or
twenty thousand. However, in light of our efficient forgery and the fact that the
NSS scheme has recently been replaced with a revised version, such optimizations
are not pursued further in this paper.

5 Countermeasures

Subsequent to the discovery of these attacks, the authors of NSS began searching
for a secure revision of the NSS signature scheme. Jeffrey Hoffstein outlined
several techniques to alter the scheme at Eurocrypt 2001. These modifications
were formalized shortly thereafter in a technical note on the NTRU web site [11],
with further improvements in the second draft [12].

14 Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo

Shortly after this paper was initially submitted, the authors of NSS settled on
a revision of NSS, complete with suggested parameter choices. The precise defi-
nition of the revised scheme may be found in a preliminary standards document
[2]. Currently, the third draft of this standard is available at the Consortium for
Efficient Embedded Security web page [3].
The revised scheme does indeed appear to resist the attacks described in this

paper. We do not rigorously define the new scheme here, but only mention the
revised scheme’s salient features and how they obviate the above attacks. Further
details may currently be found in technical notes, a preprint, and a standards
document [11, 12, 10, 3].
The following is a partial list of the modifications.

1. Private Key Generation: In the version of NSS attacked in this paper,
f = f0+pf1 and g = g0+pg1 where f0 and g0 are public parameters. In the
revised scheme, f = u+ pf1 and g = u+ pg1 where u is kept private.

2. Verification Criteria: Verification is no longer based on the single criterion
of deviations, but on multiple tests.
– Norm Conditions: Verify that |p−1(s−m) mod q| < B and |p−1(t−m) mod
q| < B, where B is some bound on the centered norms [11].
– Coefficient Distribution Checks: Perform a battery of specific checks (in
[3]) on the distributions of the coefficients of s and t.
– Moment Balancing: Optionally, use an alternate method of w1 and w2

creation, which alters the coefficients to include higher moment balancing.

These alterations were made to avoid the attacks presented in this paper, and
therefore seem rather ad hoc. In particular, the verification protocol is strikingly
lengthy [3], consisting of 17 steps! However the new key component u, norm
conditions, and distributional criteria do appear to improve the security.
First, we discuss the new key component u. This is a very clever method of

masking the combination of m coefficients which determine the distribution of
w0 values. Without the tool of controlling this distribution via selecting subsets
of the messages, (say with mj = 1) our transcript analysis can not effectively
directly obtain distributions which are sensitive to the private key coefficient
values. Adding u appears to make the distributions very close, even given mil-
lions of signatures. This renders the key recovery attack much less effective.
Alternatively, the moment balancing techniques may also be used to make the
distributions very close to one another.
Although the new verification protocol is a much less elegant revision than

the use of u, it appears to serve its purpose of making forgery more difficult.
The norm conditions relate the forgery problem of revised NSS to a (presum-
ably hard) closest vector problem; the deviations criterion did not accomplish
this. Also, the distribution checks appear to screen out forgeries generated by
the forgery attacks above. However, it is unclear whether these new verification
criteria are sufficient. It is likely that an attacker could already satisfy the norm
conditions by simply using our (unmodified) forgery attack with the lattice re-
duction. Further cryptanalysis may show that it is possible to refine our attack
to satisfy the distribution checks, as well.

Cryptanalysis of the NTRU Signature Scheme (NSS) from Eurocrypt 2001 15

The authors of NSS give some interesting analysis on how well the new scheme
resists the attacks presented here [10]. They include a description of the new
verification checks, a careful distributional analysis of the coefficients of the
signatures in the new scheme, and a heuristic argument that signature forgery is
as hard as a closest vector problem, assuming the adversary is given no transcript
of previous signatures.
The new scheme is expected to receive renewed scrutiny, and since the key

generation, signing and verification processes differ substantially, both forgery
and key recovery techniques should be re-evaluated.

6 Conclusion

We wish to mention that our attack does not endanger the NTRU encryption
scheme. On the other hand, we think that it shows the benefits of the prov-

able security approach taken by cryptographic research in the last few years.
NSS had no security proof at all, not even relative to a precisely described lat-
tice problem of some form. Lacking such proof, one could not easily argue that
NSS was immune to potential simple attacks, as demonstrated by the present
work. Following the attack, NTRU researchers have investigated enhanced en-
coding/verification methods in [11]. It appears that such methods can offer a
form of provable security by reducing forgery to solving a well defined lattice
attack. This rules out the method of section 3. However, such a reduction would
not apply to an attacker who takes advantage of transcripts of previously ob-
tained signatures, as in section 4. We believe that the heuristic approach taken
by NSS designers makes it extremely difficult to prevent such transcript attacks.

7 Acknowledgments

The authors would like to thank Julien P. Stern for help with a C-program
and discussions, Philip Hirschhorn for providing real signature transcripts, Burt
Kaliski, Phong Nguyen and Yiqun Lisa Yin for helpful discussions, and lastly
Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman who, after their conception
of NSS, were also supportive of cryptanalysis research efforts.

References

1. H. Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics, 138. Springer, 1993.

2. Consortium for Efficient Embedded Security. Efficient Embedded
Security Standard (EESS) # 1: Draft 1.0. Previously posted on
http://www.ceesstandards.org.

3. Consortium for Efficient Embedded Security. Efficient Embedded Security Stan-
dard (EESS) # 1: Draft 3.0. Available from http://www.ceesstandards.org.

4. D. Coppersmith and A. Shamir. Lattice Attacks on NTRU. In Proc. of Eurocrypt
’97, LNCS 1233, pages 52–61. Springer-Verlag, 1997.

16 Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo

5. G. H. Hardy, E. M. Wright. An Introduction to the Theory of Numbers, 5th edition.
Oxford University Press, 1979.

6. J. Hoffstein, J. Pipher and J.H. Silverman. NTRU: A New High Speed Public Key
Cryptosystem. In Proc. of Algorithm Number Theory (ANTS III), LNCS 1423,
pages 267–288. Springer-Verlag, 1998.

7. J. Hoffstein, J.H. Silverman. NSS: The NTRU Signature Scheme. Preliminary ver-
sion, August 2000.

8. J. Hoffstein, J. Pipher, J.H. Silverman. NSS: The NTRU Signature Scheme.
Preprint, November 2000. Available from http://www.ntru.com.

9. J. Hoffstein, J. Pipher, J.H. Silverman. NSS: The NTRU Signature Scheme. In
Proc. of Eurocrypt ’01, LNCS 2045, pages 211–228. Springer-Verlag, 2001.

10. J. Hoffstein, J. Pipher, J.H. Silverman. NSS: The NTRU Signature Scheme: Theory
and Practice. Preprint, 2001. Available from http://www.ntru.com.

11. J. Hoffstein, J. Pipher, J.H. Silverman. Enhanced encoding and verification meth-
ods for the NTRU signature scheme. Previously posted on
http://www.ntru.com/technology/tech.technical.htm.

12. J. Hoffstein, J. Pipher, J.H. Silverman. Enhanced encoding and verification meth-
ods for the NTRU signature scheme (ver. 2). May 30, 2001. Available from
http://www.ntru.com/technology/tech.technical.htm.

13. A. Lenstra, H. Lenstra, and L. Lovasz. Factoring polynomials with rational coeffi-
cients. Math. Ann. 261, pages 515–534, 1982.

14. I. Mironov. A Note on Cryptanalysis of the Preliminary Version of
the NTRU Signature Scheme. Preprint, January 2001. Available at
http://eprint.iacr.org/2001/005/.

15. P. Nguyen and J. Stern. Lattice Reduction in Cryptology: An Update. In Proc.
of Algorithm Number Theory (ANTS IV), LNCS 1838, pages 85–112. Springer-
Verlag, 2000.

16. J. Stern. A method for finding codewords of small weight. Coding Theory and
applications, LNCS 388, pages 106–113. Springer-Verlag, 1989.

17. R. Scheidler and H. C. Williams. A public-key cryptosystem utilizing cyclotomic
fields. Designs, Codes and Cryptography 6, pages 117–131, 1995.

A An Example of Signature Forgery

Here we give an example of how to forge signatures using the public key. Let
parameters be as defined in NSS251-3-SHA1-1 [2]; N = 251, p = 3, q = 128,
Vm = 32, Dev

i
min = 55, Dev

i
max = 87, f0 = 1, g0 = 1 − 2X. Let the public key

h = f−1 ∗ g (mod q) be

0 1 2 3 4 5 6 7 8 9 a b c d e f

--

0 : 1 21 -59 -54 1 -33 -13 -11 -21 11 -30 31 -7 18 -61 85

1 : 3 41 52 -39 -30 4 -36 41 -11 56 46 -7 -7 7 -8 16

2 : -58 -5 32 -3 -29 59 54 -25 53 48 47 32 -5 28 -9 -9

3 : 37 24 -50 17 -26 -58 10 39 4 -23 -55 -63 -29 -19 0 31

4 : 10 16 -25 28 29 -62 24 27 57 31 62 -61 35 39 -27 5

5 : 17 -22 22 28 32 41 14 -62 -18 -58 15 61 25 9 63 -9

6 : 47 30 0 58 58 -60 13 55 4 9 -62 11 58 -34 -39 13

7 : 40 27 36 -15 24 -31 37 23 31 55 -12 -20 43 -61 1 27

Cryptanalysis of the NTRU Signature Scheme (NSS) from Eurocrypt 2001 17

8 : -44 -10 11 58 -63 -51 -46 -21 -6 -28 -17 -58 -28 6 21 -58

9 : 58 -3 10 -8 -26 48 12 64 2 14 -55 -20 -33 -24 -40 6

a : -13 42 56 -23 -63 26 -52 -29 -4 35 12 -19 -24 47 -21 60

b : -15 -17 63 62 55 17 -61 5 30 24 -32 -44 17 29 -63 57

c : 60 -25 -47 -51 2 11 -35 -44 -15 -5 7 -9 43 36 -18 -60

d : -53 -2 -44 33 -27 -35 -17 5 -17 14 0 2 -6 49 29 -48

e : -31 64 -8 64 -46 12 36 -57 23 -9 39 45 19 54 -21 49

f : -7 -43 40 60 -45 20 -50 5 54 -13 -45

Let the message to be signed be

0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5 6 7 8 9 a b c d e f

--

0: 0 0 0 0 0 0 0 0 1 0 0 0 - 0 0 1 0 0 0 0 0 0 0 - 1 1 0 0 0 0 - -

2: 0 0 0 0 0 0 0 - 0 0 0 1 0 1 0 0 0 0 0 0 - 0 0 0 0 1 0 - - 0 0 -

4: 0 0 0 - - - 0 0 - 0 0 0 0 1 0 0 0 0 - - 1 0 1 0 0 0 0 0 1 0 0 0

6: 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 - 1 0 0 0 0 - 0 0 0 1 0 0 - 0 0 0

8: 0 0 1 0 - 0 0 - 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 - 0

a: 0 0 1 - - 0 0 0 0 0 0 - - - 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 - 0 0

c: 0 0 0 0 0 - 0 0 0 0 0 0 0 0 1 1 0 1 - 0 - 0 0 0 - 0 0 1 0 0 0 0

e: 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 - 0 0 0 1 0 0 0 0 0 1

(− denotes the integer −1). We now find an initial signature (s”, t”) by imposing
k = 95 constraints on both s and t. For clarity in this example, we impose these
constraints on the first 95 coefficients of s” and last 95 coefficients of t”. Then,
from the many possible (s”, t”), we may get s” equal to

0 1 2 3 4 5 6 7 8 9 a b c d e f

--

0 : 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 1

1 : 0 0 0 0 0 0 0 -1 1 1 0 0 0 0 -1 -1

2 : 0 0 0 0 0 0 0 -1 0 0 0 1 0 1 0 0

3 : 0 0 0 0 -1 0 0 0 0 1 0 -1 -1 0 0 -1

4 : 0 0 0 -1 -1 -1 0 0 -1 0 0 0 0 1 0 0

5 : 0 0 -1 -1 1 0 1 0 0 0 0 0 1 0 56 0

6 : -2 38 32 -41 -32 38 -4 -21 -4 8 -47 -57 -40 27 3 39

7 : -44 14 33 52 -5 34 57 4 16 -4 -45 -18 -23 -58 -22 6

8 : 56 59 5 -57 -33 -55 19 -41 52 26 50 -54 2 57 -27 -30

9 : 47 9 36 -42 -17 -50 -7 -44 -55 -47 -30 -45 -39 34 36 7

a : -32 -19 4 23 -43 -40 -3 59 22 -52 46 42 24 -12 -19 7

b : 24 -43 64 -41 54 -31 -13 -31 -49 -55 57 -54 -56 -60 -48 -20

c : -36 26 4 18 16 -61 33 45 -16 53 59 64 -60 -13 35 -47

d : -23 50 45 44 -52 53 49 -29 -52 35 54 53 -15 50 -18 26

e : -7 -1 30 -50 -17 -14 -54 31 -59 35 -21 -44 -14 62 -15 -5

f : 36 27 -6 6 36 29 -12 1 58 19 21

and t” equal to

0 1 2 3 4 5 6 7 8 9 a b c d e f

--

0 : 25 -30 15 62 49 -24 -24 -12 15 -17 33 24 -61 64 -16 -57

18 Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo

1 : -31 18 23 -29 27 39 -20 -35 -13 2 -54 39 36 -33 16 -13

2 : -20 -45 -20 -3 25 10 54 -37 -33 41 -41 -47 -31 -15 31 -14

3 : -52 16 -45 -10 -56 -22 -42 52 8 -20 55 13 30 32 -28 41

4 : -57 25 49 -14 52 -38 -41 -35 22 -36 -27 -13 36 35 45 -10

5 : 54 -31 -9 3 -57 -37 9 -9 -16 -60 -59 14 18 26 -45 25

6 : 12 -40 11 31 41 5 -37 9 12 -21 -45 4 42 -18 -2 -29

7 : -52 4 19 54 57 52 -23 -34 -31 -63 -60 -51 -14 42 2 13

8 : 56 -16 30 44 14 -37 -8 51 33 26 9 -12 -62 47 14 3

9 : -50 18 -10 -33 24 -48 -4 60 -50 26 60 26 0 0 -1 -1

a : 0 0 1 0 1 -1 0 0 0 0 0 -1 1 1 -1 0

b : 0 1 1 0 0 1 1 0 0 0 1 -1 1 -1 -1 0

c : 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 1 -1

d : 1 1 0 -1 -1 -1 0 0 -1 -1 0 1 1 0 0 0

e : 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

f : 0 -1 0 0 1 1 0 0 0 0 1

The pattern of deviations between s” and (f0 ∗ m) looks as follows (each star
denotes a deviation):

..

..............................*.*******.**..*.**.*.***.***..***.

.****.*...**..******...*****...*.*********.***.*********.*

.**.*...****.**.****.***.*.*.*.***.***.***.***..*...**.****

For t” and (g0 ∗m) the pattern is:

...**...*....****.**..***.*...***.*.**..***.**.***.**..**..**.*.

****..****.*.***.***.****.****.*.******.***....**.*..******.****

****..****..***.***...*.**.*....................................

...

At this point s” and t” have 108 and 98 deviations, respectively. We now apply
lattice reduction to coefficient positions 95 through 169 in s” and 81 through
155 in t” (the 75 leftmost coefficients in s” and 75 rightmost coefficients in t”
that have not yet been constrained, for a total of 150 columns). For s, we get:

0 1 2 3 4 5 6 7 8 9 a b c d e f

--

0 : 0 0 0 0 0 0 0 0 4 0 0 0 -4 0 0 4

1 : 0 0 0 0 0 0 0 -4 4 4 0 0 0 0 -4 -4

2 : 0 0 0 0 0 0 0 -4 0 0 0 4 0 4 0 0

3 : 0 0 0 0 -4 0 0 0 0 4 0 -4 -4 0 0 -4

4 : 0 0 0 -4 -4 -4 0 0 -4 0 0 0 0 4 0 0

5 : 0 0 -4 -4 4 0 4 0 0 0 0 0 4 0 -30 0

6 : 9 -26 21 -54 39 33 21 -6 -47 9 43 -42 12 33 -50 -49

7 : 13 -24 3 6 -63 -19 12 33 6 7 -30 -36 -28 -12 -12 0

8 : 9 57 28 24 -52 12 18 20 6 -33 15 51 9 -33 -3 -9

9 : -30 -17 -27 -21 6 9 -27 0 -36 -18 -42 -9 57 3 38 36

a : 36 -18 -47 35 47 -15 27 63 3 -12 -30 -22 -56 -40 10 57

b : -49 -16 58 20 -53 -26 -19 29 -46 51 0 -49 -36 -29 15 -47

c : -42 12 -52 51 40 47 42 -30 51 -53 -11 6 -39 51 13 -9

d : -40 -51 -29 26 -32 44 3 27 -35 -9 55 -58 -60 0 -62 -17

Cryptanalysis of the NTRU Signature Scheme (NSS) from Eurocrypt 2001 19

e : 51 -26 30 -43 -50 7 -10 -8 -29 5 36 18 -30 -46 -21 42

f : 61 25 39 56 5 27 56 29 51 19 59

For t we get:

0 1 2 3 4 5 6 7 8 9 a b c d e f

--

0 : -37 41 -52 21 57 -57 -56 -63 -53 -2 5 40 -38 57 -62 18

1 : 7 57 -61 -32 18 -6 32 33 37 -30 36 62 -27 -15 54 -4

2 : -34 -31 -51 24 -25 -8 62 57 38 28 -1 25 -50 -63 -63 -12

3 : 18 -10 -6 2 -39 -29 54 -13 -62 55 34 -35 -28 -60 -26 39

4 : -2 -17 -44 -53 -38 -63 1 -19 -54 52 53 -61 50 10 -36 33

5 : -27 -21 53 19 3 40 25 31 -33 -12 -54 -27 58 4 36 -15

6 : 21 -20 -5 -48 36 21 -30 42 4 -5 16 -56 0 -33 -41 -21

7 : -39 1 30 18 -6 11 -43 6 -27 64 4 -6 -10 2 59 -3

8 : 30 -6 -8 -20 -31 20 3 17 -43 -15 -6 -15 15 -9 30 -3

9 : -36 52 19 -3 -12 -9 -48 -48 27 -18 12 15 0 0 -4 -4

a : 0 0 4 0 4 -4 0 0 0 0 0 -4 4 4 -4 0

b : 0 4 4 0 0 4 4 0 0 0 4 -4 4 -4 -4 0

c : 0 0 0 0 0 -4 -4 0 0 0 0 0 0 0 4 -4

d : 4 4 0 -4 -4 -4 0 0 -4 -4 0 4 4 0 0 0

e : 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 4

f : 0 -4 0 0 4 4 0 0 0 0 4

The deviation pattern for s is:

..

..

..*.*.*****.***.**.*.*

..*.*....**....*******..*.**..**...*******...*.***.**.**.**

The deviation pattern for t is:

...*...***..**..******..**.*..****.**..**..*.***.**..*****

****.********.*...*.

..

...

Thus, we have produced an s and t that have 47 and 54 deviations from (f0 ∗m)
and (g0 ∗ m) respectively. These values are indeed even below the suggested
parameter value of Devi

min = 55, which shows that our forgeries would pass even
stricter deviation requirements.

Obviously the s and t of this example have highly unusual coefficient distri-
butions modulo q, which the verifier could easily detect, but this need not be the
case in general. We can make the coefficient distribution of s and t more ordinary
by 1) constraining random coefficient positions and 2) distributing the values of
the constrained coefficients of s” and t” more randomly modulo q, rather than
setting them all equal to −1, 0 or 1.

20 Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo

B Determination of w1 and w2

The following pseudocode may also be found the appendix of [8]

let w2 have 32 +1’s and 32 -1’s

set w1[] to 0

compute s = f * (mes + 3 w2)

compute t = g * (mes + 3 w2)

reduce s and t modulo q

reduce s and t modulo p

//create w1, first try

for(i=0;i<N;i++)

if(s[i] != mes[i] AND t[i] != mes[i] AND s[i] == t[i])

w1[i] = (mes[i] - s[i]) mod p

if(s[i] != mes[i] AND t[i] != mes[i] AND s[i] != t[i])

w1[i] = 1 or -1 with 50% probability

loop

//create w1, second try

for(i=0;i<N;i++)

if(s[i] != mes[i] AND t[i] == mes[i])

w1[i] = (mes[i] - s[i]) mod p with 1/4 probability

if(s[i] == mes[i] AND t[i] != mes[i])

w1[i] = (mes[i] - t[i]) mod p with 1/4 probability

if(w1 has more than 25 nonzero coefficients)

break out of the loop

loop

// modify w2 to prevent averaging attack

for(i=0;i<N;i++)

with probability 1/p, w2[i] = w2[i] - (mes[i] + w1[i])

w = w1 + 3 w2

