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Abstract. At Crypto ’88, Matsumoto, Kato and Imai proposed a pro-
tocol, known as RSA-S1, in which a smart card computes an RSA signa-
ture, with the help of an untrusted powerful server. There exist two kinds
of attacks against such protocols: passive attacks (where the server does
not deviate from the protocol) and active attacks (where the server may
return false values). Pfitzmann and Waidner presented at Eurocrypt ’92
a passive meet-in-the-middle attack and a few active attacks on RSA-
S1. They discussed two simple countermeasures to thwart such attacks:
renewing the decomposition of the RSA private exponent, and checking
the signature (in which case a small public exponent must be used). We
present a new lattice-based provable passive attack on RSA-S1 which
recovers the factorization of the RSA modulus when a very small public
exponent is used, for many choices of the parameters. The first counter-
measure does not prevent this attack because the attack is a one-round
attack, that is, only a single execution of the protocol is required. In-
terestingly, Merkle and Werchner recently provided a security proof of
RSA-S1 against one-round passive attacks in some generic model, even
for parameters to which our attack provably applies. Thus, our result
throws doubt on the real significance of security proofs in the generic
model, at least for server-aided RSA protocols. We also present a simple
analysis of a multi-round lattice-based passive attack proposed last year
by Merkle.

Keywords: Cryptanalysis, RSA signature, Server-aided protocol, Lat-
tices.

1 Introduction

Small units like chip cards or smart cards have the possibility of computing,
storing and protecting data. Today, many of these cards include fast and se-
cure coprocessors allowing to quickly perform the expensive operations needed
? Work supported in part by the RNRT “Turbo-signatures” project of the French
Ministry of Research.
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by public key cryptosystems. However, a large proportion of the cards consists
of cheap cards with too limited computing power for such tasks. To overcome
this problem, extensive research has been conducted under the generic name
“server-aided secret computations” (SASC). In the SASC protocol, the client
(the smart card) wants to perform a secret computation (for example, RSA sig-
nature generation) by borrowing the computing power of an untrusted powerful
server without revealing its secret information. One distinguishes two kinds of
attacks against such protocols: attacks where the server follows rigorously the
protocol are called passive attacks, while attacks where the server may return
false computations are called active attacks. Attacks are called multi-round when
they require several executions of the protocol between the same parties.

Most of the SASC protocols proposed for RSA signatures have been shown
to be either inefficient or insecure (see for instance the two recent examples [13,
10]), which explains why, to our knowledge, none of these protocols has ever been
used in practice. Many of these protocols are variants of the protocols RSA-S1
and RSA-S2 proposed by Matsumoto, Kato and Imai [8] at Crypto ’88, which use
a random linear decomposition of the RSA private exponent. At Eurocrypt ’92,
Pfitzmann and Waidner [15] presented several natural meet-in-the-middle pas-
sive attacks and some efficient active attacks against RSA-S1 and RSA-S2. To
prevent such attacks, they discussed two countermeasures which should be used
together: one is to renew the decomposition of the private exponent at each sig-
nature, the other is to check the signature before the end of the protocol, which
is a well-known countermeasure but requires a very small public exponent since
the check is performed by the card.

The first countermeasure was effective against the original active attacks
of [15], but Merkle [10] showed last year at ACM CCS ’00 that the resulting
scheme was still insecure. Indeed, he presented an efficient lattice-based multi-
round passive attack, which was successful (in practice) against many choices of
the parameters. Merkle’s paper [10] included an analysis of the attack, inspired
by well-known lattice-based methods [5] to solve the subset sum problem. How-
ever, the analysis was rather technical and not exactly correct (it assumed a
distribution of the parameters which was not the one induced by the protocol).
We present a simple analysis of a slight variant of Merkle’s attack, which en-
ables to explain experimental results, and to provide provable results for certain
choices of the parameters.

The main contribution of this paper is a new lattice-based passive attack
which recovers the private exponent (like Merkle’s attack), but only in the case
a very small public exponent is used (which is the second countermeasure). In-
terestingly, this attack is only one-round in the sense that a single execution
of the protocol is sufficient, whereas Merkle’s attack is multi-round, requiring
many signatures produced by the card with the help of the same server. Conse-
quently, the first countermeasure has no impact on this new attack. And these
results point out the limits of the generic model, as applied to the security anal-
ysis of server-aided RSA protocols. Indeed, Merkle and Werchner [11] proved at
PKC ’98 that the RSA-S1 protocol was secure against one-round passive attacks
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in the generic model, in the sense that all generic attacks have complexity at
least that of a square-root attack (better than the meet-in-the-middle attack
presented by Pfitzmann and Waidner [15]). Roughly speaking, in this context,
generic attacks (see [11] for a precise definition) do not take advantage of special
properties of the group used. However, our attack shows that the RSA-S1 scheme
is not even secure against one-round passive attacks in the standard model of
computation. In particular, the attack provably works against certain choices of
the parameters to which the square-root attack cannot apply. Thus, contrary to
what Merkle and Werchner claimed in [11], the generic model is not appropriate
for investigating the security of server-aided RSA protocols.

The rest of the paper is organized as follows. In Section 2, we make a short
description of the RSA-S1 server-aided protocol and review some useful back-
ground. We refer to [8, 15] for more details. In Section 3, we present our variant of
Merkle’s lattice-based attack, together with an analysis. In Section 4, we present
our new lattice-based attack on low-exponent RSA-S1.

2 Background

2.1 The RSA-S1 Server-Aided Protocol

Let N be an RSA-modulus and let ϕ denote the Euler function. Let e and d be
respectively the RSA public and private exponents:

ed ≡ 1 (mod ϕ(N)).

For an integer s we denote by [s] the set of integers of the interval [0, s− 1] and
by [s]± the set of integers of the interval [−s+ 1, s− 1].

Let k, ` and m be positive integers and let Bk,`,m be the set of vectors

f = (f1, . . . , fm) ∈
[

2`
]m

with gcd (f1, . . . , fm, ϕ(N)) = 1 and with

m
∑

i=1

wt(fi) = k, (1)

where wt(f) denotes the Hamming weight, that is, the sum of binary digits of
an integer f ≥ 0.

The RSA-S1 server-aided protocol from [8] computes an RSA signature xd

(mod N) with the help of an (untrusted) server in the following way:

The RSA-S1 Protocol.

Step 1 The card selects a vector f = (f1, . . . , fm) ∈ Bk,`,m at random accord-
ingly to any fixed probability distribution.
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Step 2 The card sends a vector d = (d1, . . . , dm) ∈ [ϕ(N)]
m

chosen uniformly
at random from the set of vectors satisfying the congruence

m
∑

i=1

fidi ≡ d (mod ϕ(N)), (2)

if possible. Otherwise the card returns to Step 1.
Step 3 The card asks the server to compute and return zi ≡ xdi (mod N),

i = 1, . . . ,m.
Step 4 The card computes

xd ≡
m
∏

i=1

zfi

i (mod N).

Our description follows the presentation of [10] rather than the one of the original
paper [8]. For instance, [8] asks that

∑m
i=1 wt(fi) ≤ k instead of (1) but this

difference is marginal as all our results can easily be adapted to this case.
For Step 4, the card mainly has two possibilities, due to memory restrictions.

One is the square-and-multiply method, which requires at most k` modular
multiplications and very little memory. The other is the algorithm of [4], which

enables to compute
∏m

i=1 z
fi

i (mod N) efficiently but requires more memory than
the square-and-multiply method. When using this algorithm, to optimize the
choice of the parameters, one should remove the restriction (1) and replace the
choice fi ∈

[

2`
]

by fi ∈ [h] where h is some small integer, not necessarily a power
of 2. The algorithm then requires at most m+h−3 modular multiplications, and
the temporary storage of either m or h − 1 elements, according to whether the
card stores all the m elements z1, . . . , zm, or the h − 1 elements tj =

∏

fi=j zi,
1 ≤ j < h (which must be computed upon reception of the zi’s). Other known
tricks to speed-up the computation of products of exponentiations (see [6] and [9,
Sect. 14.6]) do not seem to be useful in this context.

The protocol requires the transfer of approximately 2m logN bits. Since the
bandwidth of a cheap smartcard is typically 9600 bauds, this means that m
must be restricted to low values. For instance, with a 1024-bit modulus, the
value m = 50 already represents 10.7 seconds.

2.2 Passive attacks on RSA-S1

Notice that the protocol is broken as soon as the fi’s are disclosed. Indeed, the
integer

∑m
i=1 fidi is congruent to the RSA private exponent modulo ϕ(N), and

therefore enables to sign any message (and this can be checked thanks to the
public exponent e). And, of course, one may further recover the factorization
of N in randomized polynomial time, from e

∑m
i=1 fidi − 1 which is a non-zero

multiple of ϕ(N) (see for instance [9, Section 8.2.2]).
The authors of [8] claimed that the only possible passive attack was to ex-

haustive search the fi’s, which requires roughly C operations where:

C =

(

m`
k

)

.
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But obviously, one can devise simple meet-in-the-middle passive attacks. Pfitz-
mann and Waidner [15] noticed that one could split (f1, . . . , fm) as (g1, . . . , gm)+
(h1, . . . , hm) where

∑

wt(gi) ≤
∑

wt(hi) = dk/2e, and deduced an attack with
time and space complexity roughly:

(

m`
dk/2e

)

.

The attack of [15] is however not optimal: the complexity can easily be improved
using a trick used by Coppersmith [18] in a meet-in-the-middle attack against
the discrete logarithm problem with low Hamming weight. By choosing random
subsets of cardinality dm`/2e inside {1, . . . ,m`}, one obtains a randomized meet-
in-middle-attack with time and space complexity roughly:

√
k

(

dm`/2e
dk/2e

)

.

Thus, we obtain an attack of complexity roughly the square root
√
C of that of

exhaustive search. Therefore in our numerical experiments we mainly consider
sets of parameters for which C ≥ 2120. Note however that even with C ≈ 2100,
the square-root attack is not much practical, due to memory constraints.

In [11], Merkle and Werchner proposed an adaptation of generic algorithms
(see [17]) to server-aided RSA protocols, and showed that any one-round passive
generic attack on RSA-S1 had complexity at least Ω(

√
C).

In [15], Pfitzmann and Waidner also presented a few active attacks which
cannot be avoided by increasing the parameters contrary to the passive attacks
mentioned previously. They discussed two countermeasures to prevent their own
active attacks:

• Renewing the decomposition of the private exponent d at each execution of
the protocol, as described in Steps 1 and 2.

• Verifying the signature xd (mod N) before releasing it, by computing (xd)e

(mod N) and checking that it is equal to x. This countermeasure is well-
known and requires a very small public exponent e (otherwise there is no
computational advantage in using the server to compute xd (mod N)).

The second countermeasure seems necessary but is not sufficient to prevent one
of the active attacks of [15], and it creates the attack of Section 4. The first
countermeasure prevents all the active attacks of [15], but creates the passive
attack of Merkle [10], which we analyze in Section 3. Interestingly, it seems that
the attacks of Section 3 and 4 do not apply to the RSA-S2 protocol, which is
a CRT variant of RSA-S1 (see [8, 15]). The situation is reminiscent of that of
RSA with small private exponent, in which the best attack known [3] fails if the
private exponent is small modulo both p− 1 and q − 1.

2.3 Lattices

Our attacks are based on lattice basis reduction, a familiar tool in public-key
cryptanalysis. We give a brief overview of lattice theory (see the survey [14] for a
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list of references). In this paper, we call a lattice any subgroup of (Zn,+): in the
literature, these are called integer lattices. For any set of vectors b1, . . . ,bd ∈ Z

n,
we define the set of all integral linear combinations:

L(b1, . . . ,bd) =

{

d
∑

i=1

nibi : ni ∈ Z

}

.

By definition, L(b1, . . . ,bd) is a lattice, called the lattice spanned by the vectors
b1, . . . ,bd. A basis of a lattice L is a set of linearly independent vectors b1, . . . ,bd

such that:
L = L(b1, . . . ,bd).

In any lattice, there is always at least one basis, and in general, there are in
fact infinitely many lattice bases. But all the bases of a lattice L have the same
number of elements, called the rank or dimension of the lattice. All the bases also
have the same d-dimensional volume, which is by definition the square root of the
determinant det1≤i,j≤d〈bi,bj〉, where 〈, 〉 denotes the Euclidean inner product.
This volume vol(L) is called the volume or determinant of the lattice. When the
lattice dimension d is equal to the space dimension n, this volume is simply the
absolute value of the determinant of any lattice basis.

For a vector a, we denote by ‖a‖ its Euclidean norm. A basic problem in
lattice theory is the shortest vector problem (SVP): given a basis of a lattice L,
find a non-zero vector v ∈ L such that ‖v‖ is minimal among all non-zero lattice
vectors. Any such vector is called a shortest lattice vector. It is well-known that
the Euclidean norm of a shortest lattice vector is always less than

√
dvol(L)1/d,

d denoting the lattice dimension. In “usual” lattices, one does not expect the
norm of a shortest lattice vector to be much less than this upper bound.

Many attacks in public-key cryptanalysis work by reduction to SVP, or to
approximating SVP (see the survey [14]). The shortest vector problem was re-
cently shown to be NP-hard under randomized reductions [1], and therefore,
it is now widely believed that there is no polynomial-time algorithm to solve
SVP. However, there exist polynomial-time algorithms which can provably ap-
proximate SVP. The first algorithm of that kind was the celebrated LLL lattice
basis reduction algorithm of Lenstra, Lenstra and Lovász [7]. We use the best
deterministic polynomial-time algorithm currently known to approximate SVP,
which is due to Schnorr [16] and is based on LLL:

Lemma 1. There exists a deterministic polynomial time algorithm which, given

as input a basis of an s-dimensional lattice L, outputs a non-zero lattice vector

u ∈ L such that:

‖u‖ ≤ 2O(s log2 log s/ log s) min {‖z‖ : z ∈ L, z 6= 0} .

Recently, Ajtai et al. [2] discovered a randomized algorithm which slightly im-

proves the approximation factor 2O(s log2 log s/ log s) to 2O(s log log s/ log s). In prac-
tice, the best algorithm to approximate SVP is a heuristic variant of Schnorr’s
algorithm [16]. Interestingly, these algorithms typically perform much better
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than theoretically expected: they often return a shortest lattice vector, provided
that the lattice dimension is not too large. Hence, it is useful to predict what
can be achieved efficiently if an SVP-oracle (that is, an algorithm which solves
SVP) is available. For instance, this was done for the subset sum problem [5].
However, unless the lattice dimension is extremely small, it is hard to predict
beforehand whether an SVP-instance is solvable in practice, which means that
experiments are always necessary in this case.

3 An Analysis of Merkle’s Multi-round Attack

3.1 Merkle’s Attack

The attack of Merkle [10] is based on the following observation: Because for each
f = (f1, . . . , fm) ∈ Bk,`,m and d = (d1, . . . , dm) ∈ [ϕ(N)]

m

0 <
m
∑

i=1

fidi < k2
`ϕ(N)

we have
m
∑

i=1

fidi ≡ d+ jϕ(N)

with j ∈
[

k2`
]

, that is, j cannot take too many distinct values.
It is shown in [10] that regardless of the distribution of the vectors f ∈ Bk,`,m

with probability at least 1/k2` for two pairs f1 = (f1, . . . , fm), d1 = (d1, . . . , dm),
and f2 = (fm+1, . . . , f2m), d2 = (dm+1, . . . , d2m) of vectors produced by the
above protocol we have the following equation (over the integers rather than
modulo N):

m
∑

i=1

fidi =

2m
∑

i=m+1

fidi. (3)

In fact, any rule to select the above vectors gives rise to a collision after at most
k2` executions of the protocol. Besides, the “birthday paradox” suggests that a
collision is likely to happen after roughly k1/22`/2 executions of the protocol.

The linear equation (3) is unusual because each fi is small (compared to the
di’s), and this can be interpreted in terms of lattices. More precisely, it is argued
in [10] that (f1, f2) is the shortest vector in a particular lattice related to the
homogeneous equation (3) and the congruences

m
∑

i=1

fidi ≡
2m
∑

i=m+1

fidi ≡ d (mod ϕ(N)). (4)

However, the analysis presented by Merkle is not sufficient, because it assumes
a distribution of the parameters which is not the one of the protocol (see [10,
Theorem 2.1]). And no result is proposed without SVP-oracles. Hence, Merkle’s
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attack, as presented in [10], is not a proved attack, even under the assumption
of an SVP-oracle, which is not so unusual for a lattice-based attack. Neverthe-
less, the experiments conducted by Merkle (see [10]) showed that the attack
was successful in practice against many choices of the parameters. Thus, it was
interesting to see whether Merkle’s attack could be proved, with or without
SVP-oracles. Here, we provide a proof, for a slight variant of Merkle’s attack.
The analysis we present can in fact be extended to the original attack, but our
variant is slightly simpler to describe and to analyze, while the difference of
efficiency between the two attacks is marginal.

3.2 A Variant of Merkle’s Attack

We work directly with the lattice corresponding to (3): Let L (d1,d2) be the
(2m− 1)-dimensional lattice formed by all vectors z ∈ Z

2m with

m
∑

i=1

zidi =

2m
∑

i=m+1

zidi.

This lattice is the simplest case of an orthogonal lattice (as introduced in [12]),
and one can compute a basis of such lattices in polynomial time. It can easily
be showed that the volume of the lattice is given by:

vol(L (d1,d2)) =

(

d21 + . . .+ d
2
2m

)1/2

gcd(d1, . . . , d2m)
.

Thus, one would expect its shortest non-zero vector to have a norm around:

(2m− 1)1/2vol (L (d1,d2))
1/(2m−1) ≈ (2m− 1)1/2ϕ(N)1/(2m−1).

On the other hand, the vector f = (f1, . . . , f2m) belongs to this lattice, and
has a norm of at most k1/22`. Hence, if k1/22` is much smaller than (2m −
1)1/2ϕ(N)1/(2m−1), we expect f to be the shortest vector of L (d1,d2), and if it
is smaller enough, then the gap between f and the other lattice vectors guarantees
that the algorithm of Lemma 1 will find it. Once f is known, one can derive the
value

∑m
i=1 fidi, which is congruent to the RSA private exponent modulo ϕ(N),

and therefore enables to sign any message. And one may further recover the
factorization of N in randomized polynomial time, from e

∑m
i=1 fidi − 1 which

is a non-zero multiple of ϕ(N) (see for instance [9, Section 8.2.2]).

In [10], the original attack of Merkle worked with a slight variant of the lattice
L (d1,d2), to take advantage of the fact that fi ∈

[

2`
]

and not fi ∈
[

2`
]

±
. Such

a trick was used for the subset sum problem [5]. However, this trick is not as
useful here, because the distributions are different. This means that the difference
between our variant and the original attack is marginal.
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3.3 Theoretical results

The previous reasoning can in fact be made rigorous by a tight analysis, which
gives rise to the following result:

Theorem 1. There is a deterministic algorithm A which, given as input an

RSA modulus N , together with a public exponent e, and a set D of k2` vectors

d ∈ [ϕ(N)]
m

corresponding to a certain set F of vectors f ∈ Bk,`,m generated by

k2` independent executions of RSA-S1, outputs a value A(D) in time polynomial

in k, 2`,m, logN such that:

Pr
D

[A(D) ≡ d (mod ϕ(N))] ≥ 1− k
m+222`(m+2)+O(m2 log2 log m/ log m)

ϕ(N)

where the probability is taken over all random choices of D for the given F .

Proof. Given a set D of k2` vectors d associated with the protocol RSA-S1,
which corresponds to a certain set F of k2` (unknown) vectors f ∈ Bk,`,m, the
algorithm A selects all possible pairs of such vectors d1 and d2 and uses the
algorithm of Lemma 1 to find a short vector u in the (2m − 1)-dimensional
lattice L (d1,d2) formed by all vectors z ∈ Z

2m such that

m
∑

i=1

zidi =
2m
∑

i=m+1

zidi.

We know that there is at least one pair (d1,d2) such that the equation (3) holds.
Notice that for any f ∈ Bk,`,m, we have

‖f‖2 =

m
∑

i=1

f2
i < 2`

m
∑

i=1

fi ≤ k22`. (5)

Thus, if we apply the algorithm of Lemma 1 to L (d1,d2), we obtain a vector
u = (u1, . . . , u2m) such that:

‖u‖2 ≤ 2O(m log2 log m/ log m) min
{

‖z‖2, z ∈ L (d1,d2)
}

≤ 2O(m log2 log m/ log m)
(

‖f1‖2 + ‖f2‖2
)

≤ k22`+O(m log2 log m/ log m).

Therefore, there exists some integer U = k1/22`+O(m log2 log m/ log m) such that
|ui| < U for i = 1, . . . , 2m, that is, u ∈ [U ]

2m
± .

We write u = (u1,u2) where u1,u2 ∈ [U ]
m
± and say that u is similar to the

concatenation (f1, f2) if either u1 is non-zero and parallel to f1, or u2 is non-zero
and parallel to f2. Notice that if one knows a vector u 6= 0 similar to f1, f2, one
obtains at most 2` possible values for either f1 or f2. And if f1 or f2 is correct,
then 〈f1,d1〉 or 〈f2,d2〉 is congruent to d modulo ϕ(N), which can be checked
by signing a message. Hence it is enough to show that with probability at least
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1 − km+222`(m+2)+O(m2 log2 log m/ log m)ϕ(N)−1 the vector u = (u1,u2) returned
by the algorithm of Lemma 1 is similar to (f1, f2).

First for f1, f2 ∈ Bk,`,m we estimate the size of the set E (f1, f2) of pairs of

vectors d1,d2 ∈ [ϕ(N)]
m

such that for some u = (u1,u2) ∈ [U ]
2m
± which is not

similar to (f1, f2) we have the equation

m
∑

i=1

uidi =

2m
∑

i=m+1

uidi. (6)

Let us fix a nonzero vector u = (u1,u2) ∈ [U ]
2m
± and a vector (f1, f2) ∈ Bk,`,m

which are not similar. Without loss of generality we may assume that u2 6= 0 and
is not parallel to f2 and that f2m 6= 0. Then excluding d2m from (6) using (3),
we obtain an equation

m
∑

i=1

cidi =

2m−1
∑

i=m+1

cidi (7)

with ci = ui−fiu2m/f2m, i = 1, . . . , 2m−1. By our assumption, for at least one
i ≥ m+1, the coefficient ci 6= 0. Without loss of generality we may assume that
c2m−1 6= 0. Then the first congruence in (4) gives us at most 2`ϕ(N)m−1 possible
values for d1 = (d1, . . . , dm). Indeed, assuming that fm 6= 0 and selecting the
integers d1, . . . , dm−1 ∈ [ϕ(N)] arbitrarily, we obtain a congruence of the form
fmdm ≡ D (mod ϕ(N)) which has at most gcd(fm, ϕ(N)) ≤ fm < 2` solutions
dm ∈ [ϕ(N)]. Finally, for any of ϕ(N)m−2 possible choices of dm+1, . . . , d2m−2 ∈
[ϕ(N)]

m−2
the equation (7) gives at most one value for dm−1 and then the second

congruence in (4) gives us at most gcd(f2m, ϕ(N)) ≤ f2m < 2` possible values
for d2m. So the total number of solutions for such u is at most 22`ϕ(N)2m−3.
The total number of such vectors is at most U 2m. Thus we finally derive

#E (f1, f2) ≤ (2U)2m22`ϕ(N)2m−3

≤ km22`(m+1)+O(m2 log2 log m/ log m)ϕ(N)2m−3.

For each vector f ∈ Bk,`,m there are exactly ϕ(N)m−1 vectors d ∈ [ϕ(N)]
m

satisfying the congruence (2). Therefore, the probability that there is a pair
of vectors f1, f2 ∈ F such that the corresponding vectors d1,d2 ∈ D satisfy
d1,d2 ∈ E (f1, f2) is at most

(#F)2km22`(m+1)+O(m2 log2 log m/ log m)ϕ(N)2m−3

ϕ(N)2m−2

= km+222`(m+2)+O(m2 log2 log m/ log m)ϕ(N)−1,

and the result follows. ut

Assuming that an SVP-oracle is available, we derive much stronger estimates.

Theorem 2. There is a deterministic algorithm A which, given an access to an

SVP-oracle and as input an RSA modulus N , together with a public exponent e,
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a set D of k2` vectors d ∈ [ϕ(N)]
m

corresponding to a certain set F of vectors

f ∈ Bk,`,m generated by k2` independent executions of RSA-S1, outputs a value

A(D) in time polynomial in k, 2`,m, logN such that:

Pr
D

[A(D) ≡ d (mod ϕ(N))] ≥ 1− k
m+222(`m+2`+m)

ϕ(N)

where the probability is taken over all random choices of D for the given F .

As in [10], instead of waiting for k2` executions of RSA-S1 one may also
restrict to only two executions, which yields the following version of Theorems 1
and 2:

Theorem 3. There is a deterministic algorithm A which, given as input an

RSA modulus N , together with a public exponent e, a pair of vectors d1,d2 ∈
[ϕ(N)]

m
corresponding to a pair of vectors f1, f2 ∈ Bk,`,m generated by two in-

dependent executions of RSA-S1, outputs a value A(d1,d2) in time polynomial

in k, 2`,m, logN such that:

Pr
d1,d2

[A(d1,d2) ≡ d (mod ϕ(N))] ≥ 1

k2`
− k

m22`(m+1)+O(m2 log2 log m/ log m)

ϕ(N)

where the probability is taken over all random choices of d1,d2 for the given

f1, f2.

Theorem 4. There is a deterministic algorithm A which, given access to an

SVP-oracle and as input an RSA modulus N , together with a public exponent e, a

pair of vectors d1,d2 ∈ [ϕ(N)]
m

corresponding to a pair of vectors f1, f2 ∈ Bk,`,m

generated by two independent executions of RSA-S1, makes a single call to the

SVP-oracle with the lattice L (d1,d2) and outputs a value A(d1,d2) in time

polynomial in k, 2`,m, logN such that:

Pr
d1,d2

[A(d1,d2) ≡ d (mod ϕ(N))] ≥ 1

k2`
− k

m22(`m+`+m)

ϕ(N)

where the probability is taken over all random choices of d1,d2 for the given

f1, f2.

Notice that unless k (and thus ` ≥ k/m) is exponentially large compared to
m, which is completely impractical, the terms km+2 and km in the bounds of
Theorems 1 and 3 respectively, can be included in the term 2O(m2 log2 log m/ log m).

3.4 Experiments

In practice, the attack is as efficient as Merkle’s original attack, due to the
fact that strong lattice basis reduction algorithms behave like oracles for the
shortest vector problem up to moderate dimension. In [10], Merkle reported the
experimental results presented in Table 1. Notice however that none of the sets
of parameters of Table 1 leads to an efficient protocol (for the card).
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Table 1. Experiments with Merkle’s attack

m k ` Success (%) Complexity of the sqrt attack

25 28 11 100 262

32 26 10 100 262

38 26 9 100 263

42 26 8 100 263

48 26 7 70 263

56 26 6 10 263

4 A New One-Round Attack on Low Exponent RSA-S1

4.1 Description of the Attack

We now assume that a very small public exponent e is used. We also assume
that the secret primes p and q defining N = pq have approximately the same
length. Let s = p+ q = O(N1/2). We have ϕ(N) = N − s+1. When the RSA-S1
protocol is performed once, we have:

m
∑

i=1

fidi ≡ d (mod ϕ(N)),

and therefore,
m
∑

i=1

fiedi ≡ 1 (mod ϕ(N)).

From (5) we see that there exists r ∈
[

k2`e
]

such that

m
∑

i=1

fiedi = 1 + rϕ(N) = 1 + r(N − s+ 1).

Hence
m
∑

i=1

fiedi = 1 + r − rs (mod N), (8)

where |1 + r − rs| = O(k2`eN1/2). We thus obtain a linear equation modulo N
where the unknown coefficients fi and 1 + r − rs are all relatively small. This
suggests to define the (m+1)-dimensional lattice Le,N (d) spanned by the rows
of the following matrix:

















N 0 0 . . . 0
ed1 eR 0 . . . 0

ed2 0 eR
. . .

...
...

...
. . .

. . . 0
edm 0 . . . 0 eR
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where R =
⌊

N1/2
⌋

. Obviously, the volume of this lattice is vol(Le,N (d)) =

emNRm/2. Therefore, one would expect its shortest vector to be of norm roughly
(m+ 1)1/2em/(m+1)N (m+2)/(2m+2). On the other hand, the lattice contains the
target vector

t = (1 + r − rs, f1eR, . . . , fmeR),

whose norm is ‖t‖ = O
(

k2`eN1/2
)

because of (5). Hence, the target vector is

likely to be the shortest vector in this lattice if ke1/(m+1)2` is much smaller
than m1/2N1/(2m+2). Note that this condition is satisfied for sufficiently large N
and that it is very similar to the heuristic condition we obtained in Section 3.2,
which suggests that the efficiency of the attacks of Section 4 and 3 should be
comparable. In case the target vector is really much smaller than the other
lattice vectors, then the algorithm of Lemma 1 finds it. Once the target vector is
known, we can recover a private exponent equivalent to d thanks to

∑m
i=1 fidi,

which enables to sign any message, as in Merkle’s attack. Again, one may further
derive a not too large multiple of ϕ(N), which yields the factorization of N in
randomized polynomial time.

4.2 Theoretical results

The previous attack can be proved, using the same counting arguments of the
proof of Theorem 1:

Theorem 5. There is a deterministic algorithm A which, given as input an

RSA modulus N = pq such that p + q = O(N 1/2), together with a public expo-

nent e, and a vector d ∈ [ϕ(N)]
m

corresponding to a certain vector f ∈ Bk,`,m

generated by RSA-S1, outputs a value A(d) in time polynomial in k, 2`,m, logN
such that:

Pr
d

[A(d) ≡ d (mod ϕ(N))] ≥ 1− k
m+1em+12`(m+1)+O(m2 log2 log m/ log m)

N1/2

where the probability is taken over all random choices of d for the given f .

Proof. The algorithm A starts by applying the algorithm of Lemma 1 to find
a short vector w 6= 0 in the (m + 1)-dimensional lattice Le,N (d). Since t is a
lattice vector and because p+ q = O(N 1/2), we have:

‖w‖ ≤ 2O(m log2 log m/ log m)‖t‖ = ke2`+O(m log2 log m/ log m)N1/2.

By definition of the lattice, w is of the form:

w = (u0N +

m
∑

i=1

ediui, u1eR, . . . , umeR),

where each ui is an integer.
Therefore, there exists some integer U = ke2`+O(m log2 log m/ log m) such that

|ui| < U for i = 1, . . . , 2m. Thus u = (u1, . . . , um) ∈ [U ]
m
± . We may assume
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that ‖w‖ < N otherwise the right hand side of the inequality of the theorem is
negative, making the bound trivial. Then necessarily u 6= 0. We also have

m
∑

i=1

ediui ≡ w0 (mod N) (9)

for some w0 ∈ [W ]± where W = O
(

ke2`+O(m log2 log m/ log m)N1/2
)

.

Clearly, we may assume that 2` ≤ min{p, q} otherwise the result is trivial.
Thus for any i = 1, . . . ,m with fi 6= 0 we have gcd(fi, N) = 1. As before we
see that for each w0 and for each u ∈ [U ]

m
± not parallel to f there are at most

ϕ(N)m−2 vectors d ∈ [ϕ(N)]
m

satisfying both (8) and (9). Therefore the total
number of vectors d ∈ [ϕ(N)]

m
which satisfy (8) and at least one congruence (9),

for some w0 ∈ [W ]± and some nonzero vector u ∈ [U ]
m
± not parallel to f , is at

most

2m+1WUmϕ(N)m−2 = km+1em+12`(m+1)+O(m2 log2 log m/ log m)N1/2ϕ(N)m−2.

Taking into account that ϕ(N) ≥ N/2 we obtain the desired result. ut
Of course, the same proof provides a stronger result if an SVP-oracle is available:

Theorem 6. There is a deterministic algorithm A which, given access to an

SVP-oracle and as input an RSA modulus N = pq such that p + q = O(N 1/2),
together with a public exponent e, vector d ∈ [ϕ(N)]

m
corresponding to a cer-

tain vector f ∈ Bk,`,m generated by RSA-S1, makes a single call to the SVP-

oracle with the lattice Le,N (d) and outputs a value A(d) in time polynomial in

k, 2`,m, logN such that:

Pr
d

[A(d) ≡ d (mod ϕ(N))] ≥ 1− k
m+1em+12`(m+1)+O(m)

N1/2

where the probability is taken over all random choices of d for the given f .

Certainly one can obtain similar results when the primes p and q are not
balanced, although the probability of success decreases.

4.3 Experiments

We made a few experiments with a (balanced) 1024-bit RSA modulus and a
public exponent e = 3, using Victor Shoup’s NTL library [19]. The experiments
have confirmed the heuristic condition. By applying standard floating point LLL
reduction, and improved reduction if necessary, we have been able to recover
the private exponent for all the parameters considered by Merkle in his own
experiments [10] (see Table 1). The success rate has been 100%, except with the
case (m, k, `) = (56, 26, 6) where it is 65% (for this case, Merkle only achieved
a 10% success rate). We also made some experiments on other (more realistic)
sets of parameters. For instance, over 100 samples, we have always been able
to recover the factorization with (m, k, `) = (60, 30, 3), (70, 30, 2) and (80, 40, 1).
The attack takes at most a couple of minutes, as the lattice dimension is only
m+1. These results show that no set of parameters for RSA-S1 provides sufficient
security without being impractical for the card.
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