
Efficient Traitor Tracing Algorithms using List

Decoding

Alice Silverberg1?, Jessica Staddon2??, and Judy L. Walker3? ? ?

1 Department of Mathematics
Ohio State University
Columbus, OH, USA

silver@math.ohio-state.edu

2 Xerox PARC
Palo Alto, CA, USA

jstaddon@parc.xerox.com

3 Department of Mathematics and Statistics
University of Nebraska

Lincoln, NE, USA
jwalker@math.unl.edu

Abstract. We use powerful new techniques for list decoding error-
correcting codes to efficiently trace traitors. Although much work has
focused on constructing traceability schemes, the complexity of the trac-
ing algorithm has received little attention. Because the TA tracing al-
gorithm has a runtime of O(N) in general, where N is the number of
users, it is inefficient for large populations. We produce schemes for which
the TA algorithm is very fast. The IPP tracing algorithm, though less
efficient, can list all coalitions capable of constructing a given pirate.
We give evidence that when using an algebraic structure, the ability
to trace with the IPP algorithm implies the ability to trace with the
TA algorithm. We also construct schemes with an algorithm that finds
all possible traitor coalitions faster than the IPP algorithm. Finally, we
suggest uses for other decoding techniques in the presence of additional
information about traitor behavior.

1 Introduction

Traceability schemes are introduced in [9] and have been extensively studied in
the intervening years for use as a piracy deterrent. We focus on one of the few
aspects of this area of work that has received little attention: the complexity

? Silverberg would like to thank MSRI, Bell Labs Research Silicon Valley, NSA, and
NSF.

?? Much of this work was completed while Staddon was employed by Bell Labs Research
Silicon Valley.

? ? ? Walker is partially supported by NSF grants DMS-0071008 and DMS-0071011.



Efficient Traitor Tracing Algorithms using List Decoding 177

of the traitor tracing algorithms. We show that powerful new techniques for
the list decoding of error-correcting codes enable us to construct traceability
schemes with very fast traitor tracing algorithms. Further, we use list decoding
to give new algorithms for producing a list of all coalitions capable of creating
a given pirate. In addition, we discuss potential applications of other decoding
methods to the problem of tracing traitors, suggest alternative approaches when
additional information is known about the way the traitors are operating, and
examine the relationship between two important tracing algorithms.

In a popular model for traceability schemes a unique set (possibly ordered)
of r symbols is associated with each user. For example, the set may be associ-
ated with a user’s software CD, or contained in a smartcard the user has for
the purpose of viewing encrypted pay-TV programs (in the latter case, the set
corresponds to a set of keys). When a coalition forms to commit piracy, it must
construct a set to associate with the pirate object. In the case of unordered sets,
this pirate set consists of r symbols, each of which belongs to at least one coali-
tion member’s set. If the sets are ordered, the coalition members must form an
ordered pirate set in which the symbol in each position is identical to the symbol
in the same position in the ordered set of some coalition member. In either sce-
nario a traitor tracing algorithm is applied to the pirate, and identifies an actual
traitor or traitors. The approach we take here is to use error-correcting codes
to construct traceability schemes in which the sets are ordered. The ordered
(as opposed to the unordered) set scenario yields naturally to coding theoretic
techniques and has many practical applications ([10, 7]).

We first focus on the TA traitor tracing algorithm (following the terminology
in [40]), that identifies as traitors all users who share the most with the pirate.
In general the TA algorithm runs in O(N) time, where N is the number of
users. However, this paper shows that for suitable constructions based on error-
correcting codes, tracing can be accomplished in time polynomial in c logN ,
where c is the maximum coalition size. This is a significant improvement, as we
expect c to be much smaller than N . The constructions in this paper match the
best previously known schemes in this model in terms of the alphabet size that
is required to achieve a certain level of traceability for a given codeword length,
and exceed all earlier schemes in the speed with which they trace (at least) one
traitor.

We also consider the IPP tracing algorithm (following the terminology in [23]).
The IPP algorithm identifies all coalitions capable of making a pirate and looks
for a common member(s) amongst these coalitions. Hence, the IPP property
seems to be a more fundamental traceability property. In general this algorithm
runs in time O(crN c), where r is the length of each codeword, and hence is even
less efficient than the TA algorithm. However, there are two good reasons to
be interested in IPP codes. First, the extra computational burden of the IPP
algorithm has led to the question (see [37]) of whether IPP schemes may beat
TA schemes in other respects, namely, in terms of the number of codewords for a
fixed set of parameters. We provide evidence that for schemes with enough struc-
ture to enable efficient tracing algorithms, increasing the number of codewords
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causes tracing to fail with both the TA and IPP algorithms. Hence, IPP codes
do not appear to yield efficiency improvements in this respect. Secondly, as part
of the IPP tracing process, additional valuable piracy information is amassed,
namely, a list of all coalitions capable of creating the pirate in question. Such
a list is not a by-product of the TA algorithm, but is a useful part of a secu-
rity audit. We show that when error-correcting codes are used to construct TA
traceability codes (which are also IPP codes, by a result in [37]), list decoding
techniques can be used to construct new algorithms for finding all such coali-
tions. We give an algorithm that is more efficient than the brute force approach
of the IPP algorithm of evaluating each coalition for its ability to create the
pirate, thereby answering an open question in [37].

This paper gives the first applications of list decoding to the traitor trac-
ing problem in the above model, although Zane [48] uses such techniques to
address the related problem of watermark detection. (See Section 1.1 below for
a discussion of this, and other, related work.) These list decoding techniques
are receiving wide attention in the coding theory community, and improvements
and generalizations are being rapidly produced. We believe that in this paper
we have merely scratched the surface of the potential applications of decoding
techniques to traceability. In the last section we discuss the use of other decoding
methods when additional information is known about the traitors or how they
operate, giving directions for future work in this area.

Overview. Section 1.1 covers related work on traceability and broadcast en-
cryption and Section 2 covers the necessary background on traceability and cod-
ing theory. Section 3 describes how to construct efficient traceability schemes.
Section 4 considers the relationship between TA and IPP traceability schemes,
providing justification for our restriction to the TA case, and raising some ques-
tions concerning the relationship between TA and IPP for linear codes. Section 5
shows how codes of sufficiently large minimum distance enable a more efficient
algorithm for finding all coalitions of traitors. A discussion of other potential
applications of coding theoretic ideas and techniques to traceability questions is
given in Section 6.

1.1 Related Work

The phrase traitor tracing is coined in [9] (see also the extended version [10]).
In traceability schemes, users are each given an ordered (as in [9, 7, 15, 37], for
example), or unordered (as in [40], for example) set of keys.

In [6] (see also the revised version [7]), methods for creating TA traceability
codes are given for the purpose of fingerprinting digital data. Lower bounds and
additional constructions of TA traceability schemes are given in [40], while lower
bounds are also proven in [27, 26]. In addition, [26] provides a tracing algorithm
for schemes in [27].

The problem of combining broadcast encryption and traceability is studied
in [41, 16, 29, 46].
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Variations on the models of [10, 7] have been studied in recent years. Dynamic
models (here we study a static model), in which it is possible to get additional
evidence of piracy in order to “test” traitor guesses, are studied in [15, 3, 33].
A public-key traitor tracing scheme is given in [5]. One of the nice properties
of the scheme in [5] is that it is possible to identify all traitors. We note that
although our algorithms in Sect. 3 can only guarantee the identification of one
traitor, they do so in significantly faster time (polynomial in c logN , versus
O(N log2N loglogN) in [5], with N the number of codewords and c the maximum
coalition size).

In [31, 11], ways in which accountability can be added to the model are dis-
cussed. For example, to improve upon the strength of the deterrent, in [11] com-
mitting piracy efficiently necessitates revealing sensitive information. In [17], a
system in which pirate pay-TV decoders can only work for short periods of time
is presented. As noted in [17], traceability can be a useful addition to a long-lived
broadcast encryption scheme. If keys are allocated to smartcards in such a way
as to ensure some traceability, it is possible to keep a list of traitor smartcards
over time. If the smartcard of one particular user appears on the list frequently
despite many smartcard refreshments (i.e., key changes) this mounting evidence
makes it increasingly likely that the user is actually guilty, and not simply a
victim of smartcard theft. Hence, as long as traceability schemes are efficient,
they can quickly yield useful information during system audits.

Recently, the identifiable parent property (IPP) tracing algorithm has gar-
nered attention [23, 2, 37] (also, very similar ideas are studied in [39]). In [23],
a combinatorial characterization of 2-IPP schemes is presented. Additional con-
structions of and bounds for IPP schemes appear in [2, 37].

A coding theoretic approach is taken in [25] to study the related problem
of blacklisting users in a broadcast encryption scheme, but that paper does not
address the question of tracing.

Our approach takes advantage of recent powerful list decoding methods,
which originated with the work of Sudan [42]. In list decoding the input is a
received word and the output is the list of all codewords within a given Ham-
ming distance of the received word. Sudan’s results by themselves are not strong
enough to be applicable in the setting in which the TA algorithm succeeds in
finding traitors (as opposed to identifying probable traitors), since the decoding
procedure in [42] is not capable of correcting enough errors in the code. However,
Sudan’s work has recently been extended to enable it to efficiently correct more
errors; i.e., it extends the radius of the Hamming ball around the received word
in which it can find all the codewords in time polynomial in the length of the
codewords. The improvements in [19] are precisely sufficient to be applicable to
the setting where the TA algorithm succeeds. An additional advantage of this
method is that it gives a list containing one or more traitors, rather than only
one. Efficient list decoding algorithms now exist for Reed-Solomon codes, more
general algebraic geometry codes, and some concatenated codes.

List decoding techniques are applied to the problem of watermarking in [48].
Whereas in traceability schemes each user has a unique codeword, in the wa-
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termarking scenario each user needs to be given the same “document” V , taken
in [48] to be a vector of real numbers between 0 and 1. To prevent users from
distributing pirated copies of V , each user is given a distinct, slightly modified
“watermarked” version of V . The CKLS media watermarking scheme [8] is mod-
ified in [48] so that the watermarks are chosen from a set of randomly generated
CKLS codes according to a Reed-Solomon code. Given a suspected pirate copy
of V , the results of [42] on list decoding can then be used to identify one or more
traitors.

Here, we consider the related question of traceability schemes, and we apply
list decoding results for algebraic geometry codes and certain concatenated codes
in addition to Reed-Solomon codes. In [48], Reed-Solomon codes are used to
obtain vectors of real numbers between 0 and 1 to serve as a watermark, while
here the error-correcting codes themselves are the traceability schemes.

We note that algebraic geometry codes appear to have been under-utilized
in cryptological applications. For example, the results of [34] can be used to give
better explicit examples of c-frameproof codes than those obtained in [7]. The
codes constructed in [34] are concatenated codes (see below) where the outer
code is an algebraic geometry code coming from a Hermitian curve, while those
used in [7] come from pseudo-random graphs (see [1]).

2 Background on Codes and Traceability

In this section we give definitions, notation, and background on codes, traceabil-
ity, and the decoding techniques that form the basis for our tracing algorithms.

2.1 Definitions and Notation

A code C of length r is a subset of Qr, where Q is a finite alphabet. The elements
of C are called codewords; each codeword has the form x = (x1, · · · , xr), where
xi ∈ Q for 1 ≤ i ≤ r. Subsets of C will be called coalitions.

For any coalition C0 ⊆ C, we define the set of descendants of C0, denoted
desc(C0) by

desc(C0) = {w ∈ Qr : wi ∈ {xi : x ∈ C0}, for all 1 ≤ i ≤ r} .

The set desc(C0) consists of the r-tuples that could be produced by the coalition
C0.

We define descc(C) to be the set of all x ∈ Qr for which there exists a
coalition C0 of size at most c such that x ∈ desc(C0). In other words, descc(C)
consists of the r-tuples that could be produced by a coalition of size at most c.

For x, y ∈ Qr, let I(x, y) = {i : xi = yi}.

Definition 1. A code C is a c-TA (traceability) code if for all coalitions Ci of
size at most c, if w ∈ desc(Ci) then there exists x ∈ Ci such that |I(x,w)| >
|I(z, w)| for all z ∈ C − Ci.
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In other words, C is a c-TA code if, whenever a coalition of size at most c
produces a pirate word w, there is an element of the coalition which is closer to
w than any codeword not in the coalition.

Codes with the identifiable parent property (IPP) are another type of trace-
ability code.

Definition 2. A code C is a c-IPP code if for all w ∈ descc(C), the intersection
of the coalitions Ci of size at most c such that w ∈ desc(Ci) is nonempty.

Suppose C is a code of length r. The (Hamming) distance between two ele-
ments x and y of Qr is r− |I(x, y)|. The minimum distance of the code C is the
smallest distance between distinct codewords of C.

If C is a c-IPP code and w ∈ descc(C), then the traitors that can produce
the pirate w are the codewords that lie in all coalitions Ci of size at most c such
that w ∈ desc(Ci).

When implementing one of the traceability codes just described, one ran-
domly chooses a set of symbols {s(i,y)} with i ∈ {1, . . . , r} and y in the al-
phabet Q, and the collection of symbols corresponding to a given user is deter-
mined by the codeword associated with that user. For example, if the codeword
x = (x1, . . . , xr) is associated with user u, then the set of symbols associated
with user u is Su = {s(1,x1), . . . , s(r,xr)}. It is Su, not x, that the user stores (e.g.,
Su is embedded in the user’s CD or smartcard). The encryption step makes the
model of pirate behavior that we consider reasonable. Since the symbols are
generated randomly it is essentially impossible to guess a symbol, and hence a
coalition is only able to form a pirate out of its pooled collection of symbols. In
other words, moving from codewords to symbols thwarts algebraic attacks (such
as, for example, the attack on [27] found in [41, 5]). Although a coalition may
be able to write down any codeword (this information may be public), it can
only generate the symbol associated with an entry in the codeword if there is a
coalition member that agrees with the codeword in that position.

2.2 Background Traceability Results

The following result, which is Lemma 1.3 of [37], is very useful for showing that
a code is c-IPP.

Lemma 1. ([37], Lemma 1.3) Every c-TA code is a c-IPP code.

As shown in [37], there are c-IPP codes that are not c-TA. We give a simple
example of a 2-IPP code that is not 2-TA.

Example 1. Let u1 = (0, 0, 1), u2 = (1, 0, 0), and u3 = (2, 0, 0). The code
{u1, u2, u3} is clearly 2-IPP, since the first entry of a pirate determines a traitor.
The coalition {u1, u2} can produce the pirate w = (0, 0, 0). However, |I(u1, w)| =
|I(u2, w)| = |I(u3, w)| = 2, so the code is not 2-TA.
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Note that for c-IPP codes, traitor tracing is roughly an O(
(

N
c

)

) process, where
N is the total number of codewords in the code. A traitor tracing algorithm for
a c-TA code takes as input a w ∈ descc(C) and outputs a codeword x such that
|I(x,w)| is largest. Hence for c-TA codes, tracing is an O(N) process, in general.

The next result, which is proved in [37] (see Theorem 4.4 of that paper; see
also [9] and [10]), shows that for codes with large enough minimum distance the
TA algorithm suffices, and consists of finding codewords within distance r − r

c
from the pirate. Further, all codewords within this distance will be traitors.

Theorem 1. ([37], Theorem 4.4) Suppose C is a code of length r, c is a positive
integer, and the minimum distance d of C satisfies d > r − r

c2 . Then

(i) C is a c-TA code;
(ii) if C0 is a coalition of size at most c, and w ∈ desc(C0), then:

(a) there exists an element of C0 within distance r − r
c of w, and

(b) every codeword within distance r − r
c of w is in the coalition C0.

2.3 Linear Codes

Linear codes are a very important class of codes. We will say that a code of
length r is linear, or linear over Fq, if the alphabet is a finite field Fq and the
code is a linear subspace of the vector space F r

q . The dimension of the code is its
dimension as a vector space. If C is a linear code over Fq of dimension k, then
|C| = qk.
Reed-Solomon codes are among the most widely-used linear codes, with many

useful applications (e.g., compact disks). To obtain a Reed-Solomon code of
length r and dimension k over the finite field Fq, fix r distinct elements α1, . . . , αr

of Fq. The codewords are exactly the r-tuples (f(α1), . . . , f(αr)) as f runs over
(the zero polynomial and) all polynomials of degree less than k in Fq[x]. Note
that a basis for the code over Fq is

{(1, . . . , 1), (α1, . . . , αr), (α
2
1, . . . , α

2
r), . . . , (α

k−1
1 , . . . , αk−1

r )} .

Since two distinct polynomials of degree less than k agree on at most k − 1
points, the minimum distance of the code is r − k + 1.

A useful generalization of Reed-Solomon codes are algebraic geometry (AG)
codes (see, for example, [18, 38, 44]). The linear codes with the “best” known
parameters asymptotically are AG codes [45]. One advantage of AG codes is
that they are not, in general, bound by the restriction that r ≤ q, as was the
case for the Reed-Solomon codes above. Being freed of this constraint allows us
to have a smaller alphabet (and in applications, fewer keys), for given choices
of the other parameters. Hermitian codes, coming from Hermitian curves, are
examples of AG codes that have nice properties and can be defined explicitly. For
those familiar with the below terminology (such knowledge is not essential for
appreciating the results of this paper), we note that for our purposes it suffices
to consider the one-point codes CX(P, `P0) which can be defined as follows.
Start with a smooth, absolutely irreducible curve X of genus g defined over a
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finite field Fq, a set P = {P1, . . . , Pr} of r distinct Fq-rational points on X,
another Fq-rational point P0 on X which is not in the set P, and an integer `.
The codewords are then the r-tuples (f(P1), . . . , f(Pr)), where f runs over the
rational functions on X whose only pole is P0, where the multiplicity is at most
`. If 2g − 2 < ` < r, this code has dimension ` + 1 − g and minimum distance
at least r − `. Reed-Solomon codes can be viewed as algebraic geometry codes
by taking X to be the projective line, P to be the set of points corresponding
to the r chosen field elements, P0 to be the point at infinity, and ` = k − 1.
Concatenated codes are codes which are “concatenated” from two other codes.

When two linear codes are concatenated, the product of their lengths (resp., di-
mensions, resp., minimum distances) is the length (resp., dimension, resp., mini-
mum distance) of the (linear) concatenated code. There are linear concatenated
codes for small alphabets which have good list decoding capabilities, i.e., a small
list of possible codewords can be recovered even when a large percentage of the
symbols are in error or have been erased [20].

We refer the reader to [18, 28, 38, 44] for more information on coding theory.

2.4 Decoding

In the theory of error-correcting codes, a codeword is transmitted through a
noisy channel and an element of Qr (i.e., a word) is received. The receiver (or
decoder) then tries to determine as accurately as possible which codeword was
transmitted.

If d is the minimum distance of the code, then the receiver can “correct”
t = bd−1

2 c errors; i.e., there is at most one codeword within distance t of the
received word. The radius t is called the error-correction bound or the packing
radius. Minimum-distance (or nearest-neighbor) decoding finds the closest code-
word to the received word. In practice, minimum-distance decoding is very slow.
In bounded-distance decoding, the decoder finds a codeword within a specified
distance of the received word, if one exists. In the bounded-distance decoding
decision problem, the inputs are a linear code over a given finite field, a received
word, and a specified distance t, and the output is a yes or no answer to the
question of whether there is a codeword within distance t of the received word.
This decision problem is known to be NP-complete [4].

In list decoding, the goal is to output the list of all codewords within a spec-
ified distance of the received word. In [42] and [43], Sudan gave the first effi-
cient methods for list decoding that run in time polynomial in the length of
the codewords. Since then, Sudan’s list decoding technique has been improved,
generalized, and refined [35, 36, 19–22, 24, 30, 32, 47, 12, 13]. The runtimes for the
steps of the algorithm have been improved, the number of errors that can be
“corrected” has been increased, and the technique has been shown to be appli-
cable to a larger class of codes. Sudan’s original algorithm is for Reed-Solomon
codes. Other codes for which the techniques have been shown to apply include
AG codes (for which the focus has been on Hermitian codes) and certain con-
catenated codes (see [20], where the “outer code” is a Reed-Solomon or AG code
and the “inner code” is a Hadamard code).
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In erasure decoding, some positions of the received word are garbled or
“erased”, and cannot be identified. In this case the decoder knows that errors
occurred in those positions. In erasure-and-error decoding, the decoder receives a
word with some erasures and some errors, and determines the transmitted word,
or a list of possible transmitted words (given some appropriate bounds on the
numbers of errors and erasures).

In soft-decision decoding, instead of receiving a (hard-decision) word, the
decoder receives a reliability matrix that states the probability that any given
element of the alphabet was sent in any given position. Using this “soft” infor-
mation, a soft-decision decoder outputs the most likely transmitted codeword(s).

3 Efficient Tracing Algorithms via List Decoding

In this section we show how the efficiency of the TA tracing algorithm can
be greatly improved when the traceability scheme is based on certain error-
correcting codes, and the tracing algorithm uses fast list decoding methods.
What is an O(N) process in general becomes a process that runs in time poly-
nomial in c logN . These constructions match the best previously known trace-
ability schemes in this model in terms of the alphabet size that is required to
support a given level of traceability and codeword length (roughly speaking, the

alphabet size is O(N
c
2

r )). The following theorem describes constructions based
on Reed-Solomon, algebraic geometry, and concatenated codes. One advantage
of considering all three types of codes is that the appropriate code choice for the
traceability scheme depends on the desired parameters.

Theorem 2. (i) Let C be a Reed-Solomon code of length r and dimension k
over a finite field Fq of size at most 2

r. If c is an integer, c ≥ 2, and
r > c2(k− 1), then C is a c-TA code and there is a traitor tracing algorithm
that runs in time O(r15). If r = (1 + δ)c2(k − 1) then the algorithm runs in

time O( r
3

δ6 ). For r = Θ(c2k), the runtime is O(c30 log15
q N).

(ii) Let X be a nonsingular plane curve of genus g defined over a finite field Fq,
P a set of r distinct Fq-rational points on X, P0 an Fq-rational point on X
which is not in P, and k an integer such that k > g − 1. Let c be an integer
such that c ≥ 2 and r > c2(k + g − 1), assume that q ≤ 2r, and assume the
pre-processing described in [19] has occurred. Then the one-point AG code
CX(P, (k + g − 1)P0) is a c-TA code with a traitor tracing algorithm that
runs in time polynomial in r.

(iii) If k and c are positive integers, q is a prime power, q > c2 ≥ 4, and δ

is a real number such that 0 < δ ≤ q/c2−1
q−1 , then there exists an explicit

linear c-TA code over the field Fq of length r = O( k2

δ3 log(1/δ) ) (or length

r = O( k
δ2 log2(1/δ)

)) and dimension k with a polynomial (in r) traitor tracing

algorithm.
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Proof. (i) Since C is a Reed-Solomon code, the minimum distance d satisfies
d = r−k+1. The condition r > c2(k−1) is then equivalent to the condition
d > r − r/c2. By Theorem 1, C is a c-TA code and traitor tracing amounts
to finding a codeword within distance r − r/c of the pirate. Theorem 12
and Corollary 13 of [19] imply that if t >

√

(k − 1)r then all codewords
within distance r − t of a given word can be listed in time O(r15), and if

t2 = (1 + δ)(k − 1)r then the runtime is O( r
3

δ6 ). Taking t = r/c gives the
desired results. (Note that k = logq N .)

(ii) The minimum distance d of the code satisfies d ≥ r − k − g + 1 (see, for
example, Theorem 10.6.3 of [28]). By our choice of c we have d ≥ r−k−g+1 >
r − r/c2 and r − r/c < r −

√

r(k + g − 1). By Theorem 27 of [19], there
exists an algorithm that runs in time polynomial in r that outputs the list of
codewords of distance less than r −

√

r(k + g − 1) from a given word. Now
apply Theorem 1.

(iii) Theorems 7 and 8 and Corollaries 2 and 3 of [20] imply that there exists
an explicit concatenated code over Fq of the correct length r and dimension
k, with minimum distance d ≥ (1 − 1

q )(1 − δ)r, with a polynomial time list

decoding algorithm for e errors, as long as e < (1 −
√

δ)(q − 1)r/q. The

condition δ ≤ q/c2−1
q−1 implies that d > r− r/c2 and that the upper bound on

the number of errors is satisfied when e ≤ r − r/c. The result now follows
from Theorem 1. ut

We emphasize that further improvements in the runtime of list decoding
algorithms are being rapidly produced. It seems that some of these results will
bring the runtime down to O(r log3 r) for Reed-Solomon codes, at least in certain
cases (see [12]). The list decoding algorithm in [19] for AG codes was improved
in [47] (see Theorems 3.4 and 4.1), where an explicit runtime was also given.

4 Comparative Analysis of TA and IPP Traceability

The results in this section justify a focus on TA (as opposed to IPP) schemes. In
this paper we have been using the additional structure provided by linear codes
to construct schemes for which the TA tracing algorithm is efficient. We know by
Lemma 1 that c-TA codes are also c-IPP codes. However the converse fails ([37];
see also Example 1 above). If constructions of schemes for which the IPP tracing
algorithm is efficient (i.e., significantly reduced from O(

(

N
c

)

) time) are possible,
it is reasonable to expect this to be accomplished by introducing an algebraic
structure. Here we give evidence that doing so may enable the inherently more
efficient TA algorithm to be used to identify traitors. Hence, it is unclear that
c-IPP schemes yield any advantage over c-TA schemes in finding a traitor.

First, we prove a necessary condition on Reed-Solomon codes, under which
they yield c-TA set systems. This condition is that the minimum distance is
greater than r−r/c2, where r is the length of the codewords. This result suggests
a potential method for generating examples of schemes that are c-IPP but not
c-TA, namely, decreasing the minimum distance. Next we demonstrate through
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a family of counterexamples that in fact this approach does not work in general;
when the minimum distance is r−r/c2 it is possible to find Reed-Solomon codes
for which both the IPP and TA tracing algorithms fail.

We recall that there is a natural way to produce unordered sets from the
ordered sets that constitute the code: to a codeword x = (x1, . . . , xr), associate
the set x′ = {(1, x1), . . . , (r, xr)}. We define TA and IPP set systems (as opposed
to TA and IPP codes) in the natural way, with the noteworthy difference that a
pirate unordered set consists of r elements such that each element is a member
of some coalition member’s set. This is a generalization of our earlier definition
because it is not necessary to have one element of the form (i, yi) for each i =
1, . . . , r.

The following theorem is a partial converse of Theorem 1.

Theorem 3. If c ≥ 2 is an integer and C is a Reed-Solomon code of length r
with minimum distance d ≤ r − r

c2 , then the set system corresponding to C is
not a c-TA set system.

Proof. As above, if u ∈ C, write u′ = {(1, u1), . . . , (r, ur)} for the associated
element of the set system. Choose a codeword v = (v1, . . . , vr) in C. We will
show that a coalition of size at most c exists which does not contain v′, but
which can implicate v′. In other words, we will construct a pirate set w which
can be created by a coalition {u′1, . . . , u′b} with b ≤ c that does not contain v′,
but which satisfies |v′ ∩w| ≥ |u′i ∩w| for every i. Let δ = r− d = k− 1, where k
is the dimension of the code C. By assumption, δ ≥ r/c2.

First, assume cδ ≤ r. For i = 1, . . . , c, choose ui ∈ C, distinct from v, which
agrees with v on the δ positions (i− 1)δ + 1, . . . , iδ. (To do this, simply find a
polynomial hi of degree δ which vanishes on the δ field elements corresponding
to these δ positions, and let ui be the codeword corresponding to the polynomial
f − hi, where f is the polynomial corresponding to v.) Notice that, since two
distinct codewords can agree on at most δ positions, each u′i contains at least
r − cδ elements which are not in v′ or in u′j for any j 6= i. Since r − cδ ≥ 0 and

c ≥ 2, we have r − cδ ≥ d r−cδ
c e = d rc e − δ. We can therefore form a pirate set w

so that for every i, |ui ∩w| ≤ δ+ (d rc e − δ) = d rc e and |v′ ∩w| = cδ ≥ d rc e. Thus
the TA algorithm will mark v′ as a traitor.

If on the other hand cδ > r, simply choose u1, . . . , uj as above, where j =
b rδ c < c, and choose uj+1 6= v to agree with v on the last r − jδ positions. The
coalition {u′1, . . . , u′j+1} can create v′ as a pirate set. ut

The previous theorem leaves open the question of whether Reed-Solomon
codes with minimum distance at most r − r

c2 might still have traceability when
the IPP algorithm is used even though the TA algorithm may no longer correctly
identify traitors. The following family of counterexamples illustrates that this is
not generally the case. It gives examples of Reed-Solomon codes of length r and
minimum distance r − r/c2 which are not c-IPP.

Theorem 4. Let s and c be positive integers with c ≥ 2, and let p be a prime
number greater than c2. For i = 1, . . . , c, let ai = (i− 1)c. For i = 1, . . . , c, if s
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is not divisible by p, let gi(x) = xs − i; otherwise let gi(x) = xs + x − i. Let T
be the set of roots of all the c2 polynomials gi − aj. Let q be a sufficiently high
power of p so that T is a subset of the finite field Fq. Then T consists of c2s
distinct elements of Fq. Let C be the Reed-Solomon code in which the codewords
are the evaluations at the elements of T of all polynomials over Fq of degree at
most s. Then the dimension of the code C is s+1, the length r of the codewords
is r = c2s, the minimum distance of C is r − r/c2, and C is not c-IPP.

Proof. We first show that T consists of c2s distinct elements. Let hij = gi − aj .
Then hij(x)−hmn(x) = −i−(j−1)c+m+(n−1)c. If hij(x)−hmn(x) = 0, then
m− i is divisible by c. Since m and i are both in the range 1, . . . , c, they must be
equal. Thus (j − 1)c = (n − 1)c, and so j = n. Therefore the set {hij} consists
of c2 distinct polynomials of degree s, any two of which differ by a non-zero
constant. Therefore no two can have a root in common. Further, the derivative
of hij is sxs−1 if s is not divisible by p, and is 1 otherwise. In both cases this
derivative is relatively prime to hij (in the first case, note that hij is always of
the form xs+(a non-zero constant), so it never has 0 as a root). Therefore all the
roots of hij are simple. So T consists of c2s distinct elements, and it makes sense
to consider the Reed-Solomon code defined by evaluating polynomials of degree
at most s at the elements of T . The code clearly has the stated parameters.
The two coalitions corresponding to the polynomials in the sets {a1, . . . , ac} and
{g1, . . . , gc} are disjoint, and each coalition can produce the pirate word defined
as follows: for each β in T , the β-th entry of the pirate word is gi(β) = aj , for
the unique i and j such that the equality holds. It follows that the code is not
c-IPP. ut

By evaluating the polynomials at subsets of T of size at least s+1 (to ensure
that k ≤ r), we can take the length r to be anything between s+1 and c2s. The
resulting minimum distance r − s is then at most r − r/c2.

We remark that if s is not divisible by p, then we can always find a q that
works which is a divisor of ps.

The results in this section lead to the following questions which, while pe-
ripheral to the traitor tracing problem, are of independent interest. Is it the case
that all Reed-Solomon codes of length r with minimum distance d ≤ r − r/c2

are not c-IPP? It is easy to see that this is false for linear codes in general.
For example, one-dimensional linear codes are always both c-IPP and c-TA, but
can have d ≤ r − r/c2 if they are not Reed-Solomon codes (for one-dimensional
codes, the minimum distance d is the number of non-zero entries in the non-zero
codewords; the codewords of distance less than d from the pirate lie in every
coalition that can create the pirate). If the answer to the above question were
yes, combining it with Theorem 1 would imply that all Reed-Solomon c-IPP
codes are c-TA. We raise as an open question whether all linear c-IPP codes are
c-TA.
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5 Finding All Possible Coalitions

In this section, we describe how a coding theoretic approach can be used to
amass additional piracy information: a list of all coalitions that are capable of
creating a given pirate. Such information is useful in two respects. It clears all
codewords not appearing in any of these coalitions of involvement in constructing
the pirate word, and it constitutes useful audit information that may be helpful
in the prosecution of a traitor later on. The two algorithms of this section require
only that the code have minimum distance greater than r − r

c2 , and therefore
are applicable to the codes in Theorem 2. The algorithms are fast when fast list
decoding techniques exist. In addition, we note that for every code meeting this
minimum distance requirement and having fast list decoding, the algorithms
enable the IPP traitor tracing algorithm [23, 2, 37] to run more efficiently (as
that algorithm works by intersecting all coalitions that are capable of creating a
given pirate word).

At a high level, the first algorithm builds a “tree” from which all c-coalitions
capable of constructing a pirate w can be extracted. At the root of the tree
lie all codewords that we know must be in every such coalition. The children
are then candidate codewords for the next member of the coalition. Branches of
the tree are extended until the current coalition “covers” w (i.e., is capable of
constructing w), or until it becomes clear that this is impossible (e.g., because
the coalition is already of size c and still cannot create w). In the latter case that
“dead-end” coalition is discarded and other branches of the tree are explored.
Before describing the algorithm in more detail, we introduce some of the ideas
used. If S is a subset of {1, . . . , r} and s = |S|, define a map fS : F r

q → F r−s
q

by “forgetting” the entries in positions corresponding to elements of S. If C is a
code, then the image code fS(C) is the punctured code, where we view the code
C as having been punctured at the positions corresponding to the elements of
S. If u is in fS(C), any codeword v such that fS(v) = u is called a lift of u to C.

We say that U is a minimal c-coalition for w if |U | ≤ c, w ∈ desc(U), but w
is not in desc(V ) for any proper subset V of U . To obtain all coalitions of size
at most c that can create w from the minimal ones, append arbitrary elements
of the code.

Algorithm Sketch:

Input: Integer c > 1, code C of length r and minimum distance greater than
r − r

c2 , pirate word w ∈ descc(C).

Output: A list of coalitions of size at most c that can create w, including all
minimal c-coalitions for w.

The basic steps of the algorithm are as follows:

(i) Use list decoding to find all codewords u1, . . . , ua ∈ C (a ≤ c) within distance
r−r/c of w. Let S be the subset of {1, . . . , r} on which w agrees with at least
one of {u1, . . . , ua}, and let s = |S|. Let r1 = r − s, c1 = c− a, C1 = fS(C),
and w1 = fS(w). (Thus C1 is the punctured code, r1 is its length, w1 is the
word which is the image of the pirate word under the puncturing map, and
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c1 is the number of coalition members still to be found.) If r1 = 0, quit and
output {u1, . . . , ua}. Set i = 1.

(ii) Use list decoding to find all codewords vi1, . . . , vibi
∈ Ci (bi ≤ ci) within

distance ri−ri/ci of wi. (Note that the first time this is executed, the output
is non-empty.) If this outputs the empty-set, exit to Step (iii). Otherwise, let
Si be the subset of {1, . . . , ri} on which wi agrees with vibi

, and let si = |Si|.
Let ri+1 = ri − si, ci+1 = ci − 1, Ci+1 = fSi

(Ci), and wi+1 = fSi
(wi).

(iii) To create the coalitions to output, always start with u1, . . . , ua. Then add
(a lift to C of) v1b1 , v2b2 , and so on. Continue until the list of codewords
“covers” the pirate w. When this process succeeds or dead-ends (i.e., the
current list does not yet cover w, but either we cannot find any codewords
within the required distance ri− ri/ci of wi, or we already have c codewords
in our list), then move up the “tree” of vij ’s (i.e., move back through the
vij ’s) to find the first unexplored branch and continue from there (repeating
Step (ii) with a different vij in place of vibi

). The algorithm terminates when
all branches have been explored.

Analysis of the Algorithm:

The algorithm is correct because the output is clearly a list of coalitions of size
at most c that can create the pirate, and includes each minimal c-coalition at
least once. (In fact, it may list a coalition more than once.) Note that in Step
(iii), all lifts of each vij should be considered. By Theorem 1, u1, . . . , ua are in
every coalition that can create w. In Step (ii), if di > ri − ri/c

2
i where di is

the minimum distance of the punctured code Ci, then every coalition that can
produce the original pirate w will contain some lift to the original code of some
vij . Moreover, if a lift to C of vij is in some coalition that can create the original
pirate w, then there exists a codeword within ri− ri/ci of vij (by the pigeonhole
principle), and the algorithm will proceed. If Step (ii) returns the empty-set, then
the current path is a dead-end. Note that list decoding a punctured code and
then lifting accomplishes the same thing as erasure-and-error decoding. When
C satisfies any of the sets of conditions in Theorem 2, then Step (i) can be done
efficiently (time polynomial in r).

Note that the brute force method for finding all coalitions runs in time
O(crN c), where N is the total number of codewords in the code (for each of
the at most N c coalitions of size at most c, compare each of the r entries of the
pirate to the corresponding entry of each member of the coalition). For Reed-
Solomon codes with r = Θ(c2k), this gives a runtime of O(c3N c logN).

Our second algorithm is to list decode to find all codewords u1, . . . , ua (1 ≤
a ≤ c) within distance r − r/c of the pirate (as in Step (i) above), and then use
brute force to determine the remaining (at most) c−a members of the coalitions.
When C is a Reed-Solomon code satisfying the conditions in Theorem 2(i) with
r = Θ(c2k), the dominant term in the runtime is O(c3N c−a logN). This is clearly
an improvement over brute force alone, since a ≥ 1.
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6 Future Directions: Tracing with Extra Information

In this section, we describe how other coding theoretic techniques may be ap-
plied to the traitor tracing problem when additional information about traitor
behavior is available.

One possible approach to tracing traitors is to try to second-guess their strat-
egy. For example, if you believe that one traitor has contributed more than the
other members of the coalition to the pirate, you can apply bounded-distance
decoding up to the error-correction bound to find such traitors very quickly. This
might involve a “ringleader” or “scapegoat” scenario. If on the other hand you
believe that all traitors contributed roughly equal amounts, then list decoding
should be tried first. Traitors can be searched for in sequences of expanding
Hamming balls around the pirate. These searches can be run in parallel or se-
quentially. The runtime of bounded-distance decoding up to the error-correction
bound for Reed-Solomon codes is at most quadratic in the length of the code-
words. Note that [32] gives a fast algorithm for list decoding Reed-Solomon codes
beyond the error-correction bound (also quadratic in the codeword length), but
does not go as far as the Guruswami-Sudan algorithm. It therefore will not be
guaranteed to find a traitor, but would quickly find a ringleader.

In [19], list decoding is considered not just in the case of errors, but also
in the case of erasures and errors (and another potentially useful case that is
referred to as “decoding with uncertain receptions”). For concatenated codes,
[20] also deals with the problem of decoding from errors and erasures. Building on
[19], [24] presents a high-performance soft-decision list decoding algorithm. We
believe that these results also have potential for use in traitor tracing problems,
in cases where some additional information is known about the traitors or how
they are operating.

If one has information about the traitors or their modes of operation, one
can build that information into a reliability matrix, and apply soft-decision de-
coding algorithms to trace. For example, suppose we know that a traitor who
contributed the first entry to the pirate contributed at least r/c entries to the
pirate. One can use this information to construct a skewed reliability matrix. If
the underlying code is a Reed-Solomon code over a finite field of size q, one can
then apply the soft-decision algorithm in [24] to find such a “dominant” traitor.
The channel that models this situation is a q-ary symmetric channel. The first
column of the reliability matrix will have a 1 in the entry corresponding to the
field element that occurs in the first position of the pirate, and 0’s elsewhere.
For j > 1, the jth column of the reliability matrix will have 1 − ε in the entry
corresponding to the field element in the jth entry of the pirate, and the other
entries will all be ε

q−1 , where ε < q−1
q is chosen so as to optimize the soft-decision

decoding algorithm in [24]. If one does not know which entry was contributed by
the traitor who contributed the most, one possible search method is to choose
entries at random from the pirate and apply the above strategy to search for
traitors that contributed that entry.

Erasure-and-error decoding may be useful in fingerprinting or watermarking
scenarios, such as those presented in [6, 7, 15]. In one model, a coalition creates
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a pirate copy of the digital content by leaving fixed all codeword entries where
they all agree, and choosing the values of the remaining positions from Q∪ {?},
where Q is the alphabet. The ?’s can be viewed as erasures.

7 Conclusion

We have demonstrated that traitor tracing algorithms can be quite efficient
when the construction of the traceability scheme is based on error-correcting
codes and the method of tracing is based on fast list decoding algorithms. For
the TA algorithm, traitors can be identified in time polynomial in r, where r
is roughly c2 logq N , rather than in time O(N). In addition, list decoding on
successive punctured codes gives a method for identifying all possible traitor
coalitions of size at most c more efficiently than a brute force search. This is
quite useful because of the additional piracy information it represents, as well
as for the efficiency improvements that it enables for another traitor tracing
algorithm that has garnered interest recently, the IPP algorithm. We also give
evidence for a close relationship between the TA and IPP properties, for linear
codes. Finally, we suggest avenues for future research, including explorations of
applications of soft-decision and erasure decoding techniques to traitor tracing
in scenarios where additional information has been obtained about the traitors
or their mode of operation.
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