
Responsive Round Complexity and Concurrent

Zero-Knowledge

Tzafrir Cohen1, Joe Kilian2, and Erez Petrank1

1 Dept. of Computer Science, Technion - Israel Institute of Technology, Haifa 32000,
Israel, {tzafrir|erez}@cs.technion.ac.il

2 Yianilos Labs, joe@pnylab.com

Abstract. The number of communication rounds is a classic complexity
measure for protocols; reducing round complexity is a major goal in pro-
tocol design. However, when the communication time is inconstant, and
in particular, when one of the parties intentionally delays its messages,
the round complexity measure may become meaningless. For example,
if one of the rounds takes longer than the rest of the protocol, then it
does not matter if the round complexity is bounded by a constant or
by a polynomial. In this paper, we propose a complexity measure called
responsive round complexity. Loosely speaking, a protocol has responsive
round complexity m with respect to Party A, if it makes the following
guarantee. If A’s longest delay in responding to a message in a run of the
protocol is t, then, in that run, the overall communication time is at most
m · t. The logic behind this definition is that if a party responds quickly
to a message, whether it has a good connection or it just chooses not
to delay its messages, then this party deserves to get an overall quicker
running time. Responsive round complexity is particularly interesting in
a setting where a party may gain something by delaying its messages. In
this case, the delaying party does not deserve the same response time as
another party that behaves nicely.

We demonstrate the significance of responsive round complexity by pre-
senting a new protocol for concurrent zero-knowledge. The new proto-
col is a black-box concurrent zero knowledge proof for all languages in
NP with round complexity Õ(log2 n) but responsive round complexity
Õ(logn). While the round complexity of the new protocol is similar to
what is known from previous works, its responsive round complexity is
a significant improvement: all known concurrent zero-knowledge proto-
cols require Õ(log2 n) rounds. Furthermore, in light of the known lower
bounds, the responsive round complexity of this protocol is basically
optimal.

Keywords: Zero-knowledge, concurrent zero-knowledge, cryptographic pro-
tocols.

424 Tzafrir Cohen, Joe Kilian, and Erez Petrank

1 Introduction

In this work, we study a new measure related to the round complexity of proto-
cols. We propose a notion of responsive round complexity that properly relates
the running time of the protocol with the response time of each of the parties.
Finally, we show how to improve state-of-the-art concurrent zero-knowledge pro-
tocols with respect to their responsive round complexity, and obtain an (almost)
optimal protocol with respect to its responsive round complexity.

1.1 Round complexity

The number of rounds in a run of a protocol can be a major time-consuming
component. Therefore, round complexity is one of the important complexity
measures of protocols. However, a protocol’s round complexity is not always
directly proportional to its time complexity. The reason is that communication
rounds do not always have the same length. Thus, for example, if the length of
one of the rounds exceeds the accumulative length of all the other rounds, the
round complexity does not tell us anything about the time complexity.

The difference in the length of communication rounds may be a result of two
different reasons. One is that the network is unstable and communication times
vary during the run of the protocol. The second possible reason is that one of
the parties may delay its messages. It is sometimes useful for a party to delay
its answer in the protocol until something happens. For example, it may delay
its answer until it obtains information from another source, or it may try to foil
timing assumptions made by other parties in the protocol.

We propose a new complexity measure called responsive round complexity.
Our intention is to relate the overall running time of a party to its response time.
By this measure, each party gets a guarantee on the overall communication time,
which relates to the longest delay it imposes on the run of the protocol. A party
that always responds quickly gets a good guarantee on the overall communication
time, and a party that sometimes responds slowly gets a poor guarantee on the
overall communication time.

In this extended abstract we concentrate on the two-party case. An extension
of the definition to multi-party protocols is straightforward.

Definition 1.1. Response time: We say that the response time of a party A
in round i of a specific run σ of a protocol Π is t, if Π in run σ tells A to send
a message in round i, and t is the length of the time interval starting from the
time B sent its message in round i − 1 and ending at the time B received A’s
response of round i. (If A is not supposed to send a message in round i, then its
response time is 0 for round i.) The response time of A in run σ of protocol Π
is the maximum over all rounds i of A’s response time in round i.

Definition 1.2. Responsive time complexity:We say that a protocol Π has
responsive round complexity m with respect to Party A, if for any possible run
σ of Protocol Π, the overall communication time does not exceed t ·m where t
is A’s response time in Run σ of Protocol Π.

Responsive Round Complexity and Concurrent Zero-Knowledge 425

Note that if all rounds are equally long in all runs of the protocol, then the
responsive round complexity measure with respect to each of the two parties
equals the (standard) round complexity measure1.

Our primary interest in this notion is for cases when a party actually delays its
messages to gain something; our goal is to develop protocols in which purposeful
delays merely punishes the delayer. However, we note that the guarantee of our
protocol also holds for networks with unstable or heterogeneous communication
links. Parties will be (unfairly) punished for network delays beyond their control,
but this punishment will be roughly proportional to the inherent delays. Thus,
someone with a slow connection will obtain slow service, but will not be starved,
as would be the case if a protocol simply timed-out on slow participants.

We demonstrate the usefulness of the new notion by using it for analyzing
concurrent zero-knowledge protocols and constructing a new protocol with an
(almost) optimal responsive round complexity.

1.2 Concurrent zero knowledge

Zero-knowledge interactive proofs as presented by Goldwasser, Micali, and Rack-
off [16] are proofs that yield no knowledge but the validity of the proven assertion.
These proof systems have proven important tools for a variety of cryptographic
applications. However, the original definition of zero-knowledge considers secu-
rity only in a restricted scenario in which the prover and the verifier execute the
proof disconnected from the rest of the computing environment.

In recent years, several papers have studied the affect of a modern computing
environment on the security of zero-knowledge. In particular, many computers
today are connected through networks in which connections are maintained in
parallel asynchronous sessions. It would be common to find several connections
(such as FTP, Telnet, an internet browser, etc.) running together on a single
workstation. Can zero-knowledge protocols be trusted in such an environment?

Zero-knowledge in a concurrent environment was first explored by Feige [12],
and by Dwork, Naor, and Sahai [10]. Dwork, Naor and Sahai denoted zero-
knowledge protocols that are robust to asynchronous composition concurrent
zero-knowledge protocols. They observed that several known zero-knowledge
proofs, with a straightforward adaptation of their original simulation to the
asynchronous environment, may cause the simulator to work exponential time.
Thus, it seems that the zero-knowledge property does not necessarily carry over
to the asynchronous setting.

Kilian, Petrank, and Rackoff [19] gave the first lower bound for concurrent
zero-knowledge, showing that any language that has a 4-round black-box con-
current zero-knowledge interactive proof or argument is in BPP. Thus, a large
class of known zero-knowledge interactive proofs and arguments for non-trivial
languages do not remain zero-knowledge in an asynchronous environment. Rosen

1 Here, we adopt the measure by which a round consists of two messages: one from
Party A to Party B and the other is the response of B to A.

426 Tzafrir Cohen, Joe Kilian, and Erez Petrank

[25] has improved this lower bound from from 4 rounds to 7. Canetti, Kilian, Pe-
trank and Rosen [5] have substantially improved the lower bound to Ω̃(log k).2

The parameter k is the security parameter. A polynomial in k bounds the length
of the inputs, the number of proofs that may start concurrently, and the time
complexity that the parties spend in the protocol.

On the other hand, Richardson and Kilian [24] exhibited a concurrent zero-
knowledge proof for any language in NP. Their protocol requires polynomially
many rounds in k. Kilian and Petrank [18] substantially narrow the gap between
the upper bound and the lower bounds. Using a different simulator, they provide
a tighter security analysis for the Richardson-Kilian protocol, and show that it
remains concurrent zero knowledge when run with only ω(log2 k) rounds.

How do these results translate to responsive round complexity? Zero-know-
ledge is about providing security to the prover. Thus, we expect the prover to
follow the protocol and not delay its answers. The verifier is the bad guy, who
may choose to deviate from what the protocol dictates in order to get knowledge
from the prover. Thus, the verifier may delay its answers, and we would like to
investigate how protocols behave in this case. It seems fair to provide quicker
service (overall communication time) to verifiers that respond quickly and do
not delay their answers. Verifiers that do delay their answers may get an overall
slower run of the protocol. Responsive round complexity guarantees that the
overall communication time is proportional to the longest delay of the verifier.

Looking at the best known upper bound protocol in [18], it is easy to see
that the responsive round complexity with respect to the verifier is equivalent
to its round complexity in stable networks. The verifier may simply keep its
response time steady, and then the two measures equate. This is the best known
protocol with respect to responsive time complexity, and it has responsive time
complexity of any function m satisfying m = ω(log2 k).

If we look at the best known lower bound in [5], it provides a specific schedule
such that if the protocol does not have enough rounds, no black box simulator
can simulate it in this schedule. In the demonstrated schedule each verifier has
its own response time, but each of the verifiers does not change its response
time during the proof. Thus, the lower bound holds also for responsive round
complexity, and we cannot do better than Ω̃(log k).

In this paper we present a new concurrent zero-knowledge proof for all
languages in NP that has responsive round complexity m for any function
m = ω(log k). Namely, the responsive round complexity of this protocol can
be set to any function asymptotically larger than log k. Thus, we get an algo-
rithm whose responsive round complexity is almost optimal (up to a factor of at
most O(log2 log k)). Thus, any verifier that does not delay its messages (or even
just does not change the delay from round to round) is guaranteed a round com-
plexity of Õ(log k). Verifiers that do delay their messages get a protocol whose
running time is at most Õ(log k) times the longest delay they choose to use.

2 The “twiddle” notation neglects multiplicative factors that are polylogarithmic in
the main term.

Responsive Round Complexity and Concurrent Zero-Knowledge 427

In a recent breakthrough work, Barak [1] gives a concurrent zero-knowledge
for NP which is not black-box and requires only a constant number of rounds.
A slight drawback of this protocol is that the maximum number k of concurrent
sessions tolerated must be predetermined in advance, and the communication
required by this protocol is proportional to the chosen polynomial. Our protocol,
like previous black-box protocols, is robust against any polynomial number of
concurrent sessions, and its overall communication is independent of the number
of sessions.

1.3 Techniques

One set of previous protocols [24,18] ignore the timing of the messages and con-
sider only their order; black-box simulatable protocols exist in the general model,
though with high round complexity. Another approach is taken by the protocols
of [10,11]. In this approach, strong restrictions are enforced (or assumed) on
the ratio between the slowest and longest response times, simplifying the task
of producing a simulation, and allowing for constant-round protocols. One in-
terpretation (and implementation) of this restriction is that verifiers with slow
response times are treated as malicious; their responses are rejected.

Our approach is intermediate between these two approaches. As with the
latter approach, we do take response times into consideration, but as with the
first approach we place no restriction on these delays. Instead, we monitor the
delays and “punish” verifiers with long delays, though in a proportionate fashion.
Each verifier has an associated response time that is doubled when the verifier
does not respond in time. Thus, there are O(log k) sets of verifiers, each set
containing verifiers responding at around the same time. The prover may delay
its answers to each verifier to match its delays with those of the verifier. For each
set, we use techniques similar to those in [10,11] to simulate the conversations
with verifiers in this set. We then show that simulating the O(log k) sets together
is still doable in polynomial time.

1.4 Contributions

The first contribution of this work is in proposing the notion of responsive round
complexity. We feel that this notion may be useful in settings when one of the
parties may gain something from delaying its responses. A guarantee on the
responsive round complexity provides a guarantee on the time complexity such
that each party “gets what it deserves”.

Our second contribution is in providing a concurrent black-box zero-knowledge
protocol with almost optimal responsive round complexity. Our design uses the
protocol of [24,18] as a subroutine; its main technical contribution is a method
for restarting this subroutine so as to obtain a better protocol in practice.

1.5 Related work

Our notion of responsive-round complexity is of course related to the vast lit-
erature on distributed algorithms, and continues the program of studying zero-

428 Tzafrir Cohen, Joe Kilian, and Erez Petrank

knowledge in distributed settings.3 We do point out the difference between our
notion and the most commonly used distributed model. In the standard dis-
tributed model, an adversary can speed up responses in worst case fashion; we
require that all parties give a “correct” output by the end of the protocol. In
our model, we impose additional requirement on when individual parties finish
(give a final output); parties whose responses have been sped up may have to
finish long before the end of the protocol as a whole. (Here, the “protocol” is
the collective set of interactive proofs)

Several recent works have overcome the difficulty of the asynchronous set-
ting by putting limits on the asynchronisity of the system (timing assumptions)
[10,11,6,9] or by making some set-up assumptions on the environment (such as
a public key infrastructure) [7,4].

1.6 Terminology

Some words on the terminology we are using. By zero-knowledge we mean
computational zero-knowledge, i.e., the distribution output by the simulation
is polynomial-time indistinguishable from the distribution of the views of the
verifier in the original interaction. Our proof is black-box zero-knowledge. The
proof will be perfectly sound, i.e., we will construct an interactive proof, yet it
will be possible to run the prover in polynomial time given a witness to the NP
assertion that the prover is making.

1.7 Guide to the paper

In Section 2 we go over the preliminaries. We state our main result in Sect. 3.
We provide an overview on the protocol and proof in Sect. 4. The protocol itself
is presented in Sect. 5, the simulator to the protocol is presented in Sect. 6, and
the analysis of the simulator is given in Sect. 7.

2 Preliminaries

2.1 Zero-knowledge proofs

Let us recall the concept of interactive proofs, as presented by [16]. For formal
definitions and motivating discussions the reader is referred to [16].

Definition 2.1. A protocol between a (computationally unbounded) prover P
and a (probabilistic polynomial-time) verifier V constitutes an interactive proof

for a language L if there exists a negligible function ε such that

– Completeness: If x ∈ L then Pr [(P, V)(x) accepts] ≥ 1− ε(|x|) .

3 Indeed, we would not be surprised if quite similar definitions have been proposed in
this literature.

Responsive Round Complexity and Concurrent Zero-Knowledge 429

– Soundness: If x 6∈ L then for any prover P ∗

Pr [(P ∗, V)(x) accepts] ≤ ε(|x|) .

Brassard, Chaum, and Crépeau [2] introduced a modification of interactive
proofs, called arguments, in which the prover is also polynomial time bounded.
Thus, the soundness property is modified to be guaranteed only for probabilistic
polynomial time provers P ∗.

Let (P, V)(x) denote the random variable that represents V ’s view of the
interaction with P on common input x. The view contains the verifier’s random
tape as well as the sequence of messages exchanged between the parties.

We briefly recall the definition of black-box zero-knowledge [16,23,15,17]. The
reader is referred to [17] for more details and motivation.

Definition 2.2. A protocol (P, V) is computational zero-knowledge (resp., sta-
tistical zero-knowledge) over a language L, if there exists an oracle polynomial
time machine S (simulator) such that for any polynomial time verifier V ∗ and
for every x ∈ L, the distribution of the random variable SV

∗

(x) is polynomially
indistinguishable from the distribution of the random variable (P, V ∗)(x) (resp.,
the statistical difference between M(x) and (P, V)(x) is a negligible function in
|x|).

In this paper, we concentrate on black-box computational zero-knowledge, and
use zero-knowledge as shorthand for black-box computational zero-knowledge.

2.2 Bit commitments

We include a short and informal presentation of commitment schemes. For more
details and motivation, see [22]. A commitment scheme involves two parties:
The sender and the receiver. These two parties are involved in a protocol which
contains two phases. In the first phase the sender commits to a bit, and in the
second phase it reveals it. A useful intuition to keep in mind is the “envelope
implementation” of bit commitment. In this implementation, the sender writes
a bit on a piece of paper, puts it in an envelope and gives the envelope to
the receiver. In a second (later) phase, the reveal phase, the receiver opens the
envelope to discover the bit that was committed on. In the actual digital protocol,
we cannot use envelopes, but the goal of the cryptographic machinery used, is
to simulate this process.

More formally, a commitment scheme consists of two phases. First comes
the commit phase and then we have the reveal phase. We make two security
requirements which (loosely speaking) are:

Secrecy: At the end of the commit phase, the receiver has no knowledge about
the value committed upon.

Binding property: It is infeasible for the sender to pass the commit phase suc-
cessfully and still have two different values which it may reveal successfully
in the reveal phase.

430 Tzafrir Cohen, Joe Kilian, and Erez Petrank

Various implementations of commitment schemes are known, each has its ad-
vantages in terms of security (i.e., binding for the receiver and secrecy for the
receiver), the assumed power of the two parties etc.

Two-round commitment schemes with perfect secrecy can be constructed
from any collection of claw-free permutations; see [22]. It is shown in [2] how
to commit to bits with statistical security, based on the intractability of cer-
tain number-theoretic problems. D̊amgard, Pedersen and Pfitzmann [8] give a
protocol for efficiently committing to and revealing strings of bits with statisti-
cal security, relying only on the existence of collision-intractable hash functions.
This scheme is quite practical and we adopt it for the verifiers in our protocol.
For the prover, we use a commitment scheme whose binding is information the-
oretic and security is computational. Such schemes can be constructed from any
one-way function, see [20]. For simplicity, we simply speak of committing to and
revealing bits when referring to the protocols of [8] for the verifier and [20] for
the prover. We will need to use the properties of the commitment schemes in
the concurrent setting.

Theorem 2.3. The security of the bit commitments in [20] and [21] holds also
in the concurrent setting.

Proof. By definition, the binding property must be robust to asynchronous com-
position. Otherwise, the committer may play a mental game in which his real
stand-alone commitment is part of an asynchronous game which he simulates,
and then defeat the binding property in the normal stand-alone world.

As for the secrecy, a similar argument may be more complicated, since the
receiver cannot simulate the behavior of the committer. Specifically, the com-
mitter has some information that the receiver does not have: the value of the
committed string, which may be used in the other commitments. However, in
our proof, the committer commits on uniformly chosen random strings. (And on
nothing else.) Thus, if the committer follows the protocol, then the receiver is
able to simulate the rest of the environment and the above argument holds for
secrecy as well. ut

2.3 Witness Indistinguishability

Witness indistinguishable proofs were presented in [13]. The motivation was to
provide a cryptographic mechanism whose notion of security is similar though
weaker than zero-knowledge, it is meaningful and useful for cryptographic pro-
tocols, and the security is preserved in an asynchronous composition. A witness
indistinguishable proof is a proof for a language in NP such that the prover is
using some witness to convince the verifier that the input is in the language,
yet, the view of the verifier in case the prover uses witness w1 or witness w2

is polynomial time indistinguishable. Thus, the verifier gets no knowledge on
which witness was used in the proof. The formal definition follows. For further
discussion and motivation the reader is referred to [13].

Responsive Round Complexity and Concurrent Zero-Knowledge 431

2.4 Black-box simulation

The initial definition of zero-knowledge [17] requires that for any probabilistic
polynomial time verifier V̂ , a simulator SV̂ exists that simulates V̂ ’s view. Oren
[23] proposes a seemingly stronger, “better behaved” notion of zero-knowledge,
known as black-box zero-knowledge. The basic idea behind black box zero-know-
ledge is that instead of having a new simulator SV̂ for each possible verifier, we
have a single probabilistic polynomial time simulator S that interacts with each
possible V̂ . Furthermore, S is not allowed to examine the internals of V̂ , but must
simply look at V̂ ’s input/output behavior. That is, it can have conversations
with V̂ and use these conversations to generate a simulation of V̂ ’s view that is
computationally indistinguishable from V̂ ’s view of its interaction with P .

For further definitions and motivations the reader is referred to [23]

2.5 Concurrent zero-knowledge

Following [10], we consider a setting in which a polynomial time adversary con-
trols many verifiers simultaneously. The adversary A takes as input a partial
conversation transcript of a prover interacting with several verifiers concurrently,
where the transcript includes the local times on the prover’s clock when each
message was sent or received by the prover. The output of A will be a tuples of
the form (V, α, t), indicating that P receives message α from a verifier V at time
t on P ′s local clock. The adversary may either output a new tuple as above, or
wait for P to output its next message to one of the verifiers. The time that is
written by the adversary in the tuple, must be greater than all times previously
used in the system (by messages sent to P or by P). The view of the adversary
on input x in such an interaction (including all messages and times, and the
verifiers random tapes) is denoted (P,A)(x).

Definition 2.4. We say that a proof or argument system (P, V) for a language
L is (computational) concurrent zero-knowledge if there exists a probabilistic poly-
nomial time oracle machine S (the simulator) such that for any probabilistic
polynomial time adversary A, the distributions (P,A)(x) and SA(x) are compu-
tational indistinguishable over the strings that belong to the language L.

In what follows, we will usually refer to the adversary A as the adversarial
verifier V ∗ or just the verifier V ∗. All these terms mean the same.

In our setting, the simulator will simulate a predetermined time interval
which is polynomial in k. We assume that while rewinding the verifier, the sim-
ulator may also set its clock to the required rewound time.

2.6 The complexity parameters

In this paper, we simplify the discussion by using a single security parameter
k. Our proof has (in worst case) ω(log2 k) rounds and it has responsive round
complexity ω(log k). The zero-knowledge simulation is guaranteed for a polyno-
mial (in k) number of concurrent proofs. Also, the running time of the protocol

432 Tzafrir Cohen, Joe Kilian, and Erez Petrank

is polynomial in k. We will measure time by the smallest time units that are
relevant in this setting. For example, one may think of the time unit as the
minimal time a round in the protocol may take. But we may also use a much
smaller time unit: the time of a computer cycle. In any of these time units, it
holds that the running time of the protocol is polynomial (in k).

3 Main result

Our main result is the existence of black-box concurrent zero-knowledge inter-
active proof for all languages in NP with responsive round complexity m for any
m satisfying m = ω(log k). We state this explicitly in the following theorem.

Theorem 3.1. Assume there exist secure two-round commitment schemes with
statistical secrecy and secure two-round commitment schemes with statistical
binding (such schemes follow from the existence of a family claw-free permu-
tation pairs). Let k be a complexity parameter bounding the size of the input.
The verifier is polynomial time in k, and the concurrent proof may contain a
polynomial (in k) number of proofs concurrently. Then there exists a black-box
concurrent zero-knowledge interactive proof for all languages in NP, with:

– responsive round complexity m(k), for any function m(k) satisfying m(k) =
ω(log k), and

– a worst case round complexity of m(k) · log k.

4 Overview of protocol and proof

We start with the protocol in [24,18]. We choose the following parameters for
this protocol: the preamble consists of m rounds for m = ω(log k) (recall that
a round consists of a message sent from the prover to the verifier followed by
a response of the verifier). The body of the proof consists of a low error, con-
stant round, auxiliary-input witness-indistinguishable interactive proof for NP
in which the prover can be efficient given the witness to the proven assertion.
The zero-knowledge protocol of [14] will do.

When a new copy of the protocol is initiated by the verifier, the verifier in the
new protocol is associated with a response time which is initially the minimal
possible response time, say the time of a computer cycle. When the verifier fails
to respond within this time, the time associated with this verifier is doubled
and the verifier is notified that it must start again with the doubled time. In
this case we say that the verifier has been reset and has gone one level up. This
may happen at most O(log k) times since at some such level the response time
becomes greater than the running time of the adversary, or bigger than the time
interval that has to be simulated. The verifiers may be viewed as working in
levels of responsiveness. Level i contains all verifiers with response time at most
βi = 2

i and greater than βi−1. The prover treats each verifier independently in
light of its associated response time or level. For each verifier, the prover delays
its answer according to its associated delay β in a manner yet to be discussed.

Responsive Round Complexity and Concurrent Zero-Knowledge 433

The completeness and soundness of the interactive proof hold as in [24,18].
The worst case number of rounds for this protocol happens when the verifier
goes through m steps in each level and then delays its last message and is reset
while going up to the next level. This yields m · O(log k) rounds in the worst
case. But since each level takes double the time of the previous level, the overall
interaction time is dominated by the time of the highest level interaction, and
is O(m).

It remains to prove that the interactive proof is zero-knowledge. The delays
imposed by the prover are similar to those suggested in [10]. Thus, simulating
all protocols at the same level becomes possible in a way similar to that in [10].
In fact, these verifiers may be viewed as adhering to timing constraints. The
delay imposed by the prover are not more than twice βi for a verifier in level i
and thus, do not increase the protocol time too much. It remains to show that
rewinding protocols at higher levels do not force too many rewinding at lower
levels. This is obtained with some care in the setting of the prover delays and
by the fact that there are at most a logarithmic number of levels.

The reason we need a logarithmic number of rounds and cannot do with a
constant number of rounds for each level as in [10] is the relation between the
various levels. We allow ourselves one rewind only to any interval we wish to
rewind. Any other constant will do, but rewinding a super-constant number of
times (or polynomial as in [10]) will make the overall simulation time super-
polynomial. Note also that this is an inherent problem since the lower bound
in [5] uses verifiers that in each specific copy of the proof do not modify their
response time. Thus the lower bound holds also for responsive round complexity
and we cannot do with asymptotically less than log k/ log log(k) responsive round
complexity.

5 The zero-knowledge protocol

We start by presenting the protocol. It consists of a preamble of m rounds
where m is any function satisfying m = ω(log k) and a body consisting of a (not
concurrent) constant round zero-knowledge proof. If this were the full picture,
we would get that the overall number of rounds is dominated by m and is thus
almost logarithmic. However, we sometimes let the prover say “RESET”. This
happens only during the preamble, and is caused by a long delay in the verifier
response. When such a delay occurs, the protocol starts from the beginning with
a delay parameter doubled. At this point we say the the proof has gone up one
level . Generally a proof is at level i if it has gone through i resets.

To see that the overall round complexity is m ·O(log k) it is enough to note
that the maximum number of resets is logarithmic. This is true since the delay
can only be doubled a logarithmic number of times. The logarithm is in the length
of the simulated period. We denote this length by ∆ and measure it in units of
β0, i.e., the time of a computer cycle. In Figure 1 we describe the protocol. This
is the protocol presented in [24,18] enhanced with time monitoring and possible

434 Tzafrir Cohen, Joe Kilian, and Erez Petrank

Step V-0: V →P: V Selects m strings, v1, . . . , vm ∈ {0, 1}
n uniformly and inde-

pendently at random, and send Commit (v1) , . . . ,Commit (vm) to the
prover.

Step P-1: P →V: Send Commit (p1) exactly T after the Step V-0 message was
sent.

Step V-1: V →P: Reveal v1.
...
Step P-j: P →V: If V’s message from Step V-(j − 1) was received more than T

time units after P’s message from Step P-(j − 1) was sent then goto
RESET. Else, send Commit (pj) exactly 2T time units after P’s round
(j − 1) message was sent.

Step V-j: V →P: Reveal vj .
...
Step P-m: V →P: If V’s message from Step V-(m − 1) was received more than T

time units after P’s message from Step P-(m − 1) was sent then goto
RESET. Else, send Commit (pj) exactly 2T time units after P’s round
(j − 1).

Step V-m: V →P: Reveal vm.
Proof body: P waits T time units and then proves to V in zero-knowledge that x ∈ L

or that ∃i, 1 ≤ i ≤ m, such that pi = vi.
(No delays or time monitoring is used during the course of this proof.)

End of proof

RESET:
P →V: A reset message with parameter 2T . Both P and V continue by setting

T = 2T and starting the protocol from Step V-0 again.

Fig. 1. The protocol

resets. All commitments from the verifier to the prover are statistically secret
and all commitments from the prover to the verifier are statistically binding.

Theorem 5.1. If the zero-knowledge proof used in the body of the protocol has
completeness error εc and soundness error εs then our interactive proof as in
Fig. 1 has completeness error εc and soundness error at most εs + ε for some
negligible fraction ε.

Proof. Clearly, the completeness error cannot increase. As for the soundness, the
prover may gain extra strength by managing to set pi = vi for some 1 ≤ i ≤ m.
However, since the verifier is using statistically hiding commitment scheme this
may happen with negligible probability only, and we are done. ut

Lemma 5.2. The protocol has responsive round complexity 5m.

Proof. We show that it holds for the preamble. The additional constant num-
ber of rounds in the body of the proof cannot increase the responsive round
complexity since the prover answers with no delays at that stage of the protocol.

Consider a proof that ended the preamble at level `, i.e., had ` resets. (We
will discuss later the case that the preamble has not ended at all within the time

Responsive Round Complexity and Concurrent Zero-Knowledge 435

∆.) If ` = 0 then the proof hadm rounds, the length of each equals the minimum
possible response time, that was actually matched by the verifier. Otherwise, we
have ` 6= 0. The proof was last reset at level `− 1 which means that the verifier
did not respond within time β`−1 = 2

`−1 = 1
2
β`. Thus the response-time of the

verifier is at least β`−1. We now compute the overall communication time and
show that it is smaller than 5m · β`−1.

At each of the levels i = 1, 2, . . . , ` − 1 the protocol ran for at most m
rounds. At level ` we assume it finished the preamble and thus had m rounds.
Summing over all the communication times during the preamble we get that the
communication time is bounded by

∑̀

i=1

m · βi = m ·
∑̀

i=1

2i ≤ m · 2i+1 = 4 ·m · β`−1 .

We bound the additional communication time of the proof body by mβ`−1. This
is correct for the constant round body if the verifier does not pose a delay longer
than β`−1; if it does, the responsive round complexity may only decrease.

Last, we deal with the case that the verifier does not finish. We assume that
the simulation time ∆ is much larger than the running time of the adversarial
verifier. Thus, a particular verifier that has not yet responded will never respond
and its responsive round complexity is much better than 5m. ut

We next show that the protocol is concurrent zero-knowledge, by presenting
a simulator for the concurrent interaction.

6 The simulator

We present a black box simulation of the above protocol. We assume the worst,
i.e., that there is one adversary that controls all verifiers (whose number is poly-
nomial in k). This adversary deviates from the protocol as it wishes and is
limited only by being a polynomial time machine. The simulator interacts with
this adversary (or with these verifiers) and its goal is to produce a transcript
distribution which is indistinguishable from the real interaction between the ad-
versary and the original prover P . Note that each message in the transcript is
associated with a time telling when it is produced after the beginning of the
interaction.

The simulator simulates the body of the proof simply by playing the real
prover. The reason it may do that is that it rewinds each of the verifiers so
that it manages to get a round i in which pi = vi. After that we say that this
particular copy of the proof has been “solved”, or that this particular verifier
has been neutralized. Our goal is to ensure that there will be enough rewinding
so that all proofs will be solved, while taking care that the rewinding does not
exceed polynomial time.

The difficulty in the construction and in describing the simulator lies in the
rewinding schedule. Other than that the operation of the simulator is quite
simple. The simulator runs the adversary on a randomly chosen random string

436 Tzafrir Cohen, Joe Kilian, and Erez Petrank

while performing all rewinds in the rewind schedule. The simulator breaks the
entire sequence of time steps into sections. Each section is simulated twice by
the simulator. The first run is used to obtain information, and the second run
is used to produce the actual output transcript. During simulation of each such
section, the simulator recursively divides it into smaller subsections.

During the first time a section is simulated, the simulator records the strings
revealed by the verifiers during this run. Then, while running the second run
of the rewind, the simulator solves all proofs that may be solved by setting pi
to equal vi for known values of vi’s. The second run of the section is used to
produce the transcript obtained thus far. When a body of a proof arrives, if the
proof has been solved, then the simulator acts as the prover while proving the
existence of i such that pi = vi (the simulator has a witness to this fact). If the
proof has not been solved, the simulation aborts and declares failure.

We will show that the probability that any of the proofs remains unsolved
is negligible. Thus, the simulator rarely fails. When it does not fail, its output
will be indistinguishable from the real interaction. One difference between the
simulated transcripts and the real ones is in the preambles: in the simulation
there is an i with pi = vi. But by the secrecy of the commitment schemes
this difference cannot be detected by a polynomial-time bounded machine. Note
that these strings are never revealed, avoiding difficulties arising when partial
subsets are revealed. The second difference is in the witness used in the bodies
of the proofs. However, a zero-knowledge proof is witness indistinguishable. This
property is preserved in a concurrent setting and is thus indistinguishable by a
polynomial time distinguisher.

It remains to show that there exists a rewinding schedule by which the sim-
ulator is efficient and still all proofs are solved with overwhelming probability.

6.1 The rewinding schedule

The schedule of the rewinds is given as a pseudo-code in Fig. 2 and is illustrated
in Fig. 3.

The X axis represents the time (as viewed by the verifiers or listed in the
output transcript produced by the simulator), and the numbers in the graph
represent the X coordinate (=the time) of an event. The Y axis represents the
order of events of the simulator itself. The advances of the simulation are shown
as thick arrows, whereas the rewinds are shown as thin backward arrow.

In the example of Fig. 3 the top-level run has exactly two recursive sections.
At the top level this is not always the case, but in any other level the recursion
is invoked exactly twice. The top level of this run is log∆ (all logarithms are
base 2), where ∆ is the length of the interval we simulate. In the example ∆ = 4
and the top level is 2. The first section starts at the beginning and ends when
the simulator advances from 1 to 2 after the after the seventh rewind (the second
(1← 3)). The second section begins in the advancement from 2 to 4 and ends
at the end of the simulation.

During the run of the top-level sections there are also rewinds of lower levels.
In this example there is only one lower level: level 1. For each rewind of level

Responsive Round Complexity and Concurrent Zero-Knowledge 437

0: // Recall that ∆ is the overall simulation time interval.
1: top level = log(∆)
2:
3: // This is a recursive algorithm. Top-level call follows:
4: simul(0, ∆, top level)
5: output transcript
6:
7: // Definition of recursive function:
8: simul(location, length, level)

9: β = 2level

10: if (level < 1)
11: // here comes the simulation of interaction with V ∗ for time interval length
12: return

13: else

14: // recursively run lower-level simulations

15: for i = 0 to length

β
- 1

16: simul(location + i·β, β,level-1)
17: simul(location + (i+1)·β, β,level-1)
18: rewind to location(location + i·β)
19: simul(location + i·β, β, level-1)
20: end for

21: end if

Fig. 2. Description of the Rewinding Schedule

` there are 6 rewinds of level ` − 1 (4 before the actual level-` rewind, and
two after it). Thus before the first level-2 rewind ((0← 4)) there are 4 level-1
rewinds ((0← 2), (1← 3), (2← 4) and (3← 5)) and more two after it ((0← 2)
and (1← 3)).

Note that the rewinding schedule does not depend on the schedule of proofs
as determined by the adversarial verifier. It may be the case that no proof ran
and the simulator would still behave the same. The rewinding schedule depends
on the time only.4

6.2 The effects of the rewinds

Each proof may start its i-th level run in an arbitrary point in time. However,
by the delay of βi imposed by the prover, they all have the same look during the
preamble: The prover sends a message, then the verifier responds within time
βi and then the prover sends its next message exactly 2βi time units after its

4 We remark that one may obtain better efficiency by checking if the rewind is helpful
to the simulation and avoid rewinding it it’s not. Even if one does not try to check
the messages, a scrutiny of the schedule may lead to other improvements. However
all we care about is that the simulation is polynomial time and this is guaranteed
by our simple non-optimized simulation procedure.

438 Tzafrir Cohen, Joe Kilian, and Erez Petrank

−−−−−→
(Time)

−−
−
−
−
−
−
−
−
−→

(S
im
u
la
tio
n
)

(0← 2)

(1← 3)

(2← 4)

(3← 5)

(0← 4)

(0← 2)

(1← 3)

(2← 4)

(3← 5)

(4← 6)

(5← 7)

(2← 6)

(2← 4)

(3← 5)

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0 1 2

0 1 2 3

1 2 3 4

2 3 4 5

3 4

0 1 2

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

5 6

2 3 4

2 3 4 5

3 4

section
1

level 2

section
2

level 2

∆ extra simulation

Fig. 3. The rewind schedule of two rounds of level 2

previous message. Thus, the time between two prover messages is always 2βi
and the response time of the verifier is less than βi.

A rewind operation at level i that makes the simulator run the interval (T, T+
2βi) twice is meant to solve all proofs of level i in which the verifier sent a
preamble message “Reveal v`” (for some 1 < ` ≤ m) in response to a prover
message that was sent in-between the times T and T + βi. Note that in this
case the verifier must respond before T + 2βi and thus simulator has learned
the value of v`. Since p` is still within the rewind. The simulator may modify
the commitment on p` in the second run of the rewind and commit on p` = v`.
For example, the rewind (0← 4) may solve proofs that run in the top level and
whose prover has sent a message between the times 0 and 2.

Had this always worked, we wouldn’t need so many preamble rounds. A
couple of them would have been enough. However, here is what may go wrong:
the verifier may delay its answer in the first run of the rewind interval, thus
getting a reset message from the prover (simulator), yet, in the second run,
provide an answer in time. In this case, the simulator would not know the value
of v` in the second run since it was not exposed in the first run. The second
run is the one that prevails and written to the final transcript. Thus, solving the
proof in this round of the preamble fails in this case. In Sect. 7 below, we argue
that this happens with constant probability in each round and with negligible

Responsive Round Complexity and Concurrent Zero-Knowledge 439

probability in all the m rounds of the preamble. Note that setting p` = v` in any
one of the rounds suffices to solve the proof.

It remains to analyze the probability that the simulator succeeds in solv-
ing each of the proofs (before getting to the proof body) and to verify that
the rewinding schedule results in a polynomial time simulator. This analysis is
provided in the following section.

7 Analysis of the Simulator

7.1 Efficiency

We start by showing that the rewinding schedule of Section 6.1 results in a
polynomial time simulator. Note that each step of the simulation, i.e., commit-
ting on strings, revealing them, and playing the prover in the proof-body are
all polynomial time. Thus, if the rewinding is polynomial time, we get that the
whole algorithm is efficient. We will actually show that the number of rewinds
is polynomial. Since each rewind time is polynomial this is enough.

Lemma 7.1. The overall number of rewinds during the simulation run on time
interval ∆ is at most ∆3.

Proof. We use the recursive description of the rewinding schedule as in Figure 2.
Consider a run of a time interval t at level `. Using the notation of Figure 2 this
is a run of simul(location, t, `). Note that the number of rewinds is independent
of the location. Thus, we denote the number of rewinds in this run by X(t, `).
In a run of t time units at level ` there are t

β`

iterations of the main loop of
the simul procedure. In each iteration there is a level-` rewind and 3 calls to
simul(·, β`, `− 1) are performed (recall that β` = 2

`). Thus,

X(t, `) ≤
t

β`
· (1 + 3 ·X (2β`−1, `− 1)) .

This recursion inequality gives the bound: X(t, `) ≤ t
β`

·7`−1. At the top level,
t = ∆, ` = log∆, and we obtain

t

β`
· 7`−1 =

∆

2log∆
· 7log∆ = 7log∆ ≤ ∆3 ,

as required. ut

7.2 Indistinguishability

We show that no polynomial-time algorithm can distinguish the output of the
simulator from V ∗’s view of its interaction with the original prover, P .

Assume, first, that the simulator always manages to solve all proofs before
getting to the bodies of the proofs. We show later that this assumption holds
with overwhelming probability.

440 Tzafrir Cohen, Joe Kilian, and Erez Petrank

We separate the discussion of the preambles and the proof bodies. The dif-
ference in the preambles is that in the simulation one or more of the rounds
has pi = vi. In the real interaction, this seldom happens. The difference in the
bodies is that the simulator always proves that “∃i such that pi = vi” whereas
the original prover (almost) always proves that x ∈ L.

The prover never opens its commitments on the pi’s. By the secrecy of the
commitment scheme, a polynomial time distinguisher cannot tell between pream-
bles generated by the simulators and real preambles. Since this is the case, the
adversarial verifier itself cannot distinguish between the first and the second runs
of a rewind. We will use this fact to show that the simulator solves all proofs
with high probability.

Finally, the proof bodies are witness indistinguishable. By [13] this property
holds also in the concurrent setting. Thus, an efficient distinguisher cannot tell
between using a witness to “∃i such that pi = vi” and using a witness to “x ∈ L”
and we are done.

It remains to show that the simulator may fail to solve one of the proofs
only with negligible probability. We first argue (in Claim 7.1) that for each
proof, each round of its preamble that appears in its final level is rewound.
We then argue (in Claim 7.2) that a rewind of such a round does not solve the
proof with probability at most 1/3. Since all rewinds are rewound independently,
and since solving the proof in one of them is enough, and since there are m =
ω(log k) such rewinds before the body of the proof, we get that the proof remains
unsolved with probability (1/3)m, which is negligible. Any of the proofs may be
run a polynomial number of times by the simulator (since intervals are rewound)
and there are a polynomial number of proofs. By the summation bound, the
probability that any of these proofs is not solved by the end of the preamble
remains negligible.

Claim 7.1. If a proof preamble terminates at level `, then each of its m rounds
at level ` is rewound.

Proof Sketch: By the delays posed by the prover, each round takes exactly 2β`
time units. For a rewind (T ← T + 2β`) to properly rewind a proof round, both
the prover’s message and the verifier’s message have to be within the interval
(T, T + 2β`).

By the requirement of the `-th level, the answer of the verifier must arrive
within β`. Thus if the prover has sent Commit(pi) at the interval (T, T + β`), it
is guaranteed that the verifier’s reply (Reveal vi) will arrive within the rewind
interval, and that the next prover message will be sent after the rewind interval
ends. Thus the round will be properly rewound by a rewind (T ← T + 2β`).

It remains to show that any message that the prover sends on level ` has an
associated level-` rewind. Details are omitted. ut

Claim 7.2. If in a proof Π at level ` the prover’s message for round i is sent
at time T , then a rewind (T ′ ← T ′ + 2β`), where 0 ≤ T ′ − T < β`, solves Π in
this rewind with probability at least 2/3.

Responsive Round Complexity and Concurrent Zero-Knowledge 441

Proof. If the verifier answers in time during both runs of the rewind then the
proof is solved: the first run reveals the value vj (for round j of the proof) and
in the second run of the rewind the prover may commit on a modified pj = vj .
Note that the verifier cannot modify vj , except with negligible probability, since
it is committed to this value as of the first round of the proof Π. If the verifier
does not answer in the second run of the rewind, then it is actually reset into
level ` + 1 and this proof does not need to be solved at level `. The only bad
case is when the verifier delays its answer in the first run, but does not delay it
in the second run of the rewind. In this case, the simulator does not learn the
value of vj in the first run and thus, cannot set pj = vj in the second run.

What is the probability of this bad incident? Since the prover commits to
pj , the verifier cannot tell if pj = vj , it cannot tell between the first and second
run, except with negligible probability in which the secrecy of the commitment
scheme fails. Suppose the verifier delays it’s message beyond β` with probability
p at the first run. It then delays its message with probability at least p − ε for
some negligible fraction ε in the second run. The probability that the simulator
does not solve the proof is thus at most p · (1− p+ ε) ≤ 1/4 + ε ≤ 1/3, and
we are done. ut

References

1. Boaz Barak: How to Go Beyond The Black-Box Simulation Barrier. To appear
in IEEE, Proceedings of the 41st Annual Symposium on Foundations of Computer
Science, October, 2001.

2. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
JCSS 37 (1988) 156–189

3. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge.
Record 99-22, Theory of Cryptography Library (1999) received October 25th, 1999.
Supercedes Theory of Cryptography Library Record 99-15.

4. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In ACM, ed.: Proceedings of the thirty second annual ACM
Symposium on Theory of Computing: Portland, Oregon, May 21–23, [2000], New
York, NY, USA, ACM Press (2000) 235–244 see also [3].

5. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Concurrent zero-knowledge requires
Ω̃(log n) rounds. In: Proceedings of the thirty third annual ACM Symposium on
Theory of Computing, ACM Press (2001)

6. Crescenzo, G.D., Ostrovsky, R.: On concurrent zero-knowledge with pre-
processing. In Wiener, M., ed.: Advances in Cryptology – CRYPTO ’ 99. Lecture
Notes in Computer Science, International Association for Cryptologic Research,
Springer-Verlag, Berlin Germany (1999) 485–502

7. Damg̊ard, I.B.: Efficient concurrent zero-knowledge in the auxiliary string model.
In Preneel, B., ed.: Advances in Cryptology – EUROCRYPT ’ 2000. Lecture Notes
in Computer Science, Brugge, Belgium, Springer-Verlag, Berlin Germany (2000)
418–430

8. Damg̊ard, Pedersen, T.P., Pfitzmann, B.: On the existence of statistically hiding
bit commitment schemes and fail-stop signatures. In Stinson, D.R., ed.: Proc.
CRYPTO 93, Springer (1994) 250–265 Lecture Notes in Computer Science No.
773.

442 Tzafrir Cohen, Joe Kilian, and Erez Petrank

9. Dwork, C., Naor, M.: Zaps and their applications. In IEEE, ed.: Proceedings of
the 41st Annual Symposium on Foundations of Computer Science: proceedings:
12–14 November, 2000, Redondo Beach, California, IEEE Computer Society Press
(2000) 283–293

10. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In ACM, ed.: Pro-
ceedings of the thirtieth annual ACM Symposium on Theory of Computing: Dallas,
Texas, May 23–26, 1998, New York, NY, USA, ACM Press (1998) 409–418

11. Dwork, C., Sahai, A.: Concurrent zero-knowledge: Reducing the need for timing
constraints. Lecture Notes in Computer Science 1462 (1998) 442–457

12. Feige, U.: Alternative models for zero knowledge interactive proofs. PhD thesis,
Weizmann Institute of science (1990)

13. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In
ACM, ed.: Proceedings of the twenty-second annual ACM Symposium on Theory
of Computing, Baltimore, Maryland, May 14–16, 1990, New York, NY, USA, ACM
Press (1990) 416–426

14. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. Journal of Cryptology: the journal of the International Association
for Cryptologic Research 9 (1996) 167–189

15. Goldreich, O., Krawczyk, H.: On the composition of Zero-Knowledge Proof sys-
tems. SICOMP 25 (1996) 169–192

16. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
systems. SIAM Journal of Computing 18 (1989) 186–208

17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: ACM Symposium on Theory of Computing (STOC ’85), Balti-
more, USA, ACM Press (1985) 291–304

18. Kilian, J., Petrank, E.: Concurrent zero-knowledge in poly-logarithmic rounds. In:
Proceedings of the thirty third annual ACM Symposium on Theory of Computing,
ACM Press (2001)

19. Kilian, J., Petrank, E., Rackoff, C.: Lower bounds for zero knowledge on the
Internet. In IEEE, ed.: 39th Annual Symposium on Foundations of Computer
Science: proceedings: November 8–11, 1998, Palo Alto, California, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, IEEE Computer Society Press
(1998) 484–492

20. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4

(1991) 151–158
21. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic

applications. In: 21th Annual Symposium on Theory of Computing (STOC), ACM
Press (1988) 33–43

22. Goldreich, O.: Foundation of cryptography — fragments of a book. Avail-
able from the Electronic Colloquium on Computational Complexity (ECCC)
http://www.eccc.uni-trier.de/eccc/, February 1995. (1995)

23. Oren, Y.: On the cunning powers of cheating verifiers: Some observations about
zero knowledge proofs. In Chandra, A.K., ed.: Proceedings of the 28th Annual
Symposium on Foundations of Computer Science, Los Angeles, CA, IEEE Com-
puter Society Press (1987) 462–471

24. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge
proofs. Lecture Notes in Computer Science 1592 (1999) 415–431

25. Rosen, A.: A note on the round-complexity of concurrent zero-knowledge. In:
CRYPTO: Proceedings of Crypto. (2000)

