
Practical Construction and Analysis of

Pseudo-randomness Primitives

Johan H̊astad?1 and Mats Näslund2

1 NADA
Royal Institute of Technology
SE-10044 Stockholm, Sweden

johanh@nada.kth.se
2 Communications Security Lab

Ericsson Research
SE-16480 Stockholm, Sweden

mats.naslund@era.ericsson.se

Abstract. We give a careful, fixed-size parameter analysis of a stan-
dard [1, 4] way to form a pseudorandom generator by iterating a one-way
function and then pseudo-random functions from said generator, [3]. We
improve known bounds also asymptotically when many bits are output
each iteration and we find all auxiliary parameters efficiently. The analy-
sis is effective even for security parameters of sizes supported by typical
block ciphers and hash functions. This enables us to construct very prac-
tical pseudorandom generators with strong properties based on plausible
assumptions.

1 Introduction

One of the most fundamental cryptographic primitives is the pseudo random gen-
erator, a deterministic algorithm that expands a few truly random bits to long
“random looking” strings. Having such implies (among other things) semanti-
cally secure crypto systems, [5], secure key-generation for asymmetric cryptog-
raphy etc.

A sound theory of pseudo randomness did not emerge until the seminal works
of Blum and Micali, [1], and Yao, [15]. Therefore, constructions in the early 80’s
were still “ad-hoc”, and many of them later turned out to be completely in-
secure. In a theoretical sense the area was closed when, in [6], it was shown
that necessary and sufficient conditions for the existence of a pseudo-random
generator is the existence of another fundamental primitive: the one-way func-
tion; a function easy to compute, but hard to invert. We do not know if such
functions exist, but many strong candidates exist, such as a good block cipher
(mapping keys to cipher-texts, keeping the plaintext fixed), hash functions, etc.
Still, the construction in [6] is complex, requiring key-sizes of millions of bits to

? Work partially supported by the Göran Gustafsson foundation and NSF grant CCR-
9987077.

444 Johan H̊astad and Mats Näslund

give reasonable security guarantees, and an “ad-hoc” approach is still therefore
often used in practice. Thus, a construction with provable properties, useful in
practice is highly desirable.

The reason for the ineffectiveness of the theoretical constructions is that one-
wayness is in itself not a strong property. A function may be hard to invert but
still have very undesirable properties. For instance, even if f is one-way, most
of x may still be easily deduced from f(x). Paradigms for generator construc-
tion typically iterate f , and one-wayness may be lost in this process, etc. Thus,
basing pseudo-randomness on one-wayness alone appears to require elaborate
constructions. However, if one assumes only a little more than one-wayness, e.g.
that the function f is also a permutation, the situation becomes much more
favorable and reasonably practical constructions can be found from the work
of Blum and Micali mentioned above, and later work by Goldreich and Levin
[4]. In [1] it is shown that if f is a permutation and has at least a single bit of
information, b(x), that does not leak via f(x), then a pseudo-random generator
can be built. In [4], then, it is shown that every one-way function, in particular
ones being permutations, have such a hard bit b(x). In this paper we make a
careful analysis of this transformation from a one-way function to a pseudoran-
dom generator, see Sect. 3. We add new elements of the analysis when we output
m > 1 bits for each iteration of f , significantly improving the dependence on m.
First, we (non-uniformly) reduce inversion of f to distinguishing the generator
from randomness, given some auxiliary parameters. We then give efficient sam-
pling procedures to determine the values of these parameters, giving a uniform
inversion algorithm, see Sect. 3.1. Values of the parameters that give almost as
strong results as the existential bounds can, for most parameter values, be found
in time less than the time needed for successive inversions.

A related primitive are the pseudo-random functions; functions that can not
be distinguished from random functions on the same domain/range. Goldreich,
Goldwasser, and Micali, [3], showed how such could be built from a pseudo ran-
dom generator. In Sect. 3.2, we apply the same kind of fixed parameter analysis
to their construction and use it to further enhance our generator.

Our explicit theorems allow us to construct a generator that is efficient in
practice based on the assumption that e.g. Rijndael (mapping keys to cipher-
texts, fixing a plaintext) remains hard to invert even when iterated, see Sect. 4.

2 Preliminaries

2.1 Notation

The length of binary string x is denoted |x|, and by {0, 1}n we denote the set of
x such that |x| = n. We write Un for the uniform distribution on {0, 1}n. Except
otherwise noted, log refers to logarithm in base 2.

Let G : {0, 1}n → {0, 1}L(n) and let A be an algorithm with binary output.
We say that A is a (L(n), T (n), δ(n))-distinguisher for G, if A runs in time
T (n) and |Prx∈Un

[A(G(x)) = 1] − Pry∈UL(n)
[A(y) = 1]| ≥ δ(n). (We call δ(n)

Practical Construction and Analysis of Pseudo-randomness Primitives 445

the advantage of A.) If no such A exists, G is called (L(n), T (n), δ(n))-secure.
Finally, recall that a function ν(n) is negligible if for all c, ν(n) ∈ o(n−c).

Our model of computation is slightly generous but realistic. We assume that
simple operations like arithmetical operations and exclusive-ors on small1 size
integers can be done in unit time.

2.2 Pseudo-random Generators from One-way Permutations

Suppose we have a one-way function, that in addition is a permutation. Further-
more, suppose that we have a family of 0/1-functions, B = {bi}, bi(x) ∈ {0, 1},
which are efficiently computable such that given f(x), bi(x) is computation-
ally indistinguishable from a random 0/1 coin toss. Note that one-wayness of
f is necessary since otherwise bi(x) can be computed by first inverting f . We
then say that B is a (family of) hard-core functions for f . The following con-
struction, due to Blum and Micali [1], now shows how to construct a pseudo-
random generator (PRG): choose x0 (the seed), let xi+1 = f(xi), then output
g(x0) = b1(x1), b2(x2), . . . as the generator output.

Theorem (Blum-Micali, ’84). Suppose there is an efficient algorithm D that
distinguishes (with non-negligible advantage) g(x) from a completely random
string. Then, there is an efficient algorithm P and an i such that given f(x), P
predicts bi(x) with non-negligible advantage.

Due to the iterative construction, f must not loose one-wayness under iteration.
This can be guaranteed if f is a permutation, or, heuristically if f is randomly
chosen, see Theorem 1. Assumptions along these lines have been proposed by
Levin in [8] and were in fact the first conditions to be proved to be both necessary
and sufficient for the existence of pseudorandom generators.

This leaves us with one question: which one-way functions (if any) have hard-
cores, and if so, what do these hard-cores look like?

2.3 A Hard-core for any One-way Function

A fixed 0/1-function, b, can never be a general hard-core that works for every
one-way function: given a one-way function f , the one-way function f ′(x) =
f(x), b(x) provides a counter example. In 1989, Goldreich and Levin [4] proved,
by introducing extra randomness, that any one-way function can be modified
to have hard-cores.2 Perhaps surprisingly, the hard-cores they found are also
extremely simple to describe. If r, x are binary strings of length n, let ri (and
xi) denote the ith bit of r (and x), fixing an order left-to-right, or right-to-left.
Let B , {br(x) | r ∈ {0, 1}

n} where

br(x) , 〈r, x〉2 = r1 · x1 + r2 · x2 + · · ·+ rn · xn mod 2,
1 We need words of size n where n is size of the input on which we apply our one-way
function, e.g. n = 128 or 256 for a typical block cipher.

2 We again stress that this does not automatically imply that a PRG can be built
from any one-way function, as the construction by Blum and Micali only works for
one-way permutations.

446 Johan H̊astad and Mats Näslund

that is, the inner product mod 2.

Theorem (Goldreich-Levin, ’89). Suppose there is an efficient algorithm A,
that given f ′(x) = f(x), r for randomly chosen r, x, distinguishes (with non-
negligible advantage) br(x) from a completely random bit. Then there exists an
efficient algorithm B, that inverts f(x) on random x with non-negligible proba-
bility.

If f is a one-way function, existence of such A would be contradictory.
As established already in [4], a way to improve efficiency in a PRG construc-

tion would be to extract more than one bit per iteration of f . It is possible to
output as many as m ∈ O(log n) (where n = |x|) bits, by multiplying the binary
vector x by a random m×n binary matrix, R. Denote the set of all such matrices
Mm, and our functions are {Bm

R (x) | R ∈Mm}. That is, B
m
R (x) , R · x mod 2.

The above thus leads to a general construction, given any one-way function.

3 The Construction and its Security

3.1 The Basic PRG

Definition 1. Let n, and m,L, λ be integers such that L = λm and let f :
{0, 1}n → {0, 1}n. The generator BMGLfn,m,L(x,R) stretches n + nm bits to
L bits as follows. The input is interpreted as x0 = x and R ∈ Mm. Let xi =
f(xi−1), i = 1, 2, . . . , λ and let the output be {Bm

R (xi)}
λ
i=1.

A proof of the practical security for a concrete f and fixed n,m, requires a very
exact analysis, and that analysis is the bulk of this paper. To begin with, we
would like to relate the difficulty of inverting an iterated function f to that of
distinguishing outputs of BMGLfn,m,L from random bits. This is is made difficult
by the fact that we no longer require f to be a permutation. However, under
one additional and natural assumption on the “behavior” of f , we can bring the
analysis one step further, relating the security of BMGLfn,m,L more directly to
the difficulty of inverting f itself. Our measure of success is as follows.

Definition 2. For a function f : {0, 1}n → {0, 1}n, let f (i)(x) denote f iterated
i times, f (i)(x) , f(f (i−1)(x)), f (0)(x) , x.
Let A be a probabilistic algorithm which takes an input from {0, 1}n and has

output in the same range. We then say that A is a (T, δ, i)-inverter for f if
when given y = f (i)(x) for an x chosen uniformly at random, in time T with
probability δ it produces z such that f(z) = y.

Note that the number z might be on the form f (i−1)(x′) but this is not required.
It is interesting to investigate what happens for a random function.

Theorem 1. Let A be an algorithm that tries to invert a black box function
f : {0, 1}n → {0, 1}n, and makes T calls to the oracle for f . If A is given
y = f (i)(x) for a random x, then the probability (over the choice of f and x)
that A finds a z such that f(z) = y is bounded by T (i + 1)2−n. On the other
hand, there is an algorithm that using at most T oracle calls outputs a correct z
except with probability at most (1− (i+ 1)2−n)T−i + i22−n.

Practical Construction and Analysis of Pseudo-randomness Primitives 447

Proof (sketch). For the lower bound on the required number of oracle calls,
consider the process of computing f (i)(x) and let W be the values occuring in
this process. If an inverter does not obtain any w ∈ W , there is no correlation
between the inverter and the evaluation process. If the inverter makes T calls to
the oracle, the probability of obtaining a w ∈W is at most (i+1)T2−n and this
can be formalized.

To construct an inverter, first assume that the i + 1 values seen under the
evaluation of f (i)(x) are distinct. This happens except with probability (over
random f)

(

i+1
2

)

2−n ≤ i22−n and if it does not happen we simply give up. Now

consider the following inverter. It is given y = f (i)(x). Start by setting x0 = 0n

and xj = f(xj−1) for j = 1, 2, Continue this process until either xj = y (and
it is done) or xj is a value it has seen previously. In the latter case it changes xj
to a random value it has not seen previously and continues. Each value it sees
is a random value and if it ever gets one of the i+ 1 values in W , it finds the y
within at most i additional evaluations of f . The probability of not finding such
a good value in the T − i first steps is at most (1− (i+ 1)2−n)T−i. ut

Consider for instance the block cipher Rijndael [13] as a one-way function (fixing
a message, mapping keys to cipher-texts). It is reasonable to expect that Rijndael
is almost as hard to invert as a random function, so that the best achievable time
over success ratio to invert it after being iterated i times would be, by the above,
not too much smaller than 2n/i. The security is now defined as follows.

Definition 3. A σ-secure one-way function is an efficiently computable function
f : {0, 1}n → {0, 1}n, such that the average time over success ratio for inverting
the ith iterate is at most σ2n/i. That is, f cannot be (T, δ, i)-inverted for any
T/δ < σ2n/i.
A block cipher, f(k, p), |p| = |k| = n, is called σ-secure if the function fp(k),

for fixed, known plaintext p, is a σ-secure one-way function of the key k.

Hence, for our “practical” choice, f = Rijndael, we expect it to be about 1-
secure in the above terminology. Note also that if f is a permutation, only the
case i = 1 is of interest and we have a standard notion of security.

Security of the Generator. Our objective is to show that if BMGLfn,m,L is
not (L, T, δ)-secure for “practical” values of L, T, δ, then there is also a practical
attack on the underlying one-way function f . In particular, we show the following
theorem:

Theorem 2. Suppose that G = BMGLfn,m,L is based on an n-bit function
f , computable by E operations, and that G produces L bits in time S. Sup-
pose that this generator can be (L, T, δ)-distinguished. Then, setting δ′ = δm

L ,

there exists integers i ≤ L/m , λ, 0 ≤ j ≤ 2 log δ′−1, such that for k =
max (m, 1 + log ((2n+ 1)δ′−2)− j), f can be (T ′, dj/2, i)-inverted, where dj is
given by (7) and (8), and T ′ equals

(1 + o(1))2m+k(2m+ k + 1 + T + S + E)(n+ 1).

448 Johan H̊astad and Mats Näslund

Values of i and j such that f can be ((8 + o(1))T ′, dj/16, i)-inverted can, with
probability at least 1/4, be found in time O(δ′−2(T + S)).

The time-success ratio for most ranges of δ and T is worst when the value of j is
small. For j ∈ O(1) and m, k,E ≤ S ≤ O(T) the ratio is O(n2L2δ−22mT). The
preprocessing time (to find i, j) is small compared to the running time except in
the cases when j is large. In those cases the time to find j is still smaller than
the running time of the inverter while the running time to find i might be larger
for some choices of the parameters.

A similar result could be obtained from the original works by Blum-Micali
and Goldreich-Levin, but we are interested in a tight result and hence we have to
be more careful than in [4] were, basically, any polynomial time reduction from
inverting f to distinguishing the generator would be enough. Optimizations of
the original proof also appeared in [9], but are not stated explicitly.

The proof of Theorem 2 has two main components. We first show (Lemma 1
below) that a distinguisher for BMGL can be turned into a distinguisher for
Bm
R (f (i−1)(x)), given R, f (i)(x), for some i. Then we show (Theorem 3) how this

latter distinguisher is converted to an inverter for f (i).
We thus start with the following lemma.

Lemma 1. Let L = λm. Suppose that BMGLfn,m,L runs in time S(L). If this

generator is not (L, T (L), δ)-secure, then there is an algorithm P (i), 1 ≤ i ≤
L/m that, using T (L) + S(L) operations, given f (i)(x), R, for random x ∈ Un,
R ∈Mm, distinguishes B

m
R (f (i−1)(x)) from Um with advantage δ

′ , δm
L .

P (i) depends on an integer i, and using c1δ
′−2(T (L)+S(L)) operations, where

c1 is the constant given by (5), a value of i achieving advantage δi ≥ δ′/2 can
be found with probability at least 1/2.

We conjecture that the time needed to find i is optimal up to the value of the
constant c1. Even if a good value i was found at no cost, the straightforward
way by sampling to verify that it actually is as good as claimed would take
time Ω(δ′−2(T (L) + S(L))). It is not difficult to see that the below proof can
be modified to find an i with δi arbitrarily close to δ′. The cost is simply an
increase in the constant c1.

Assuming for the moment the following Lemma (a proof is found in the
Appendix), we can use it to show Lemma 1.

Lemma 2. Let F be a function F : {0, 1}n ×Mm → ({0, 1}m)λ, computable in
time ≤ S. Let H i be the distribution on ({0, 1}m)λ induced by replacing the first
im bits of F (x,R) by random bits.
Suppose that H0 (= F (x,R)) and Hλ (= (Um)λ) are distinguishable with

advantage δ, by an algorithm D running in time T . Then, a value of i < λ for
which Hi, Hi+1 can be distinguished with advantage δ/(2λ), can with probability
at least 1

2 , be found in time c1δ
′−2(T + S) where c1 is an absolute constant.

For the moment, just note that the existence of such an i (and even slightly
better advantage) follows directly from the triangle inequality.

Practical Construction and Analysis of Pseudo-randomness Primitives 449

Proof. The proof uses the so called universality of the next-bit-test, by Yao [15],
see also [1].

We assume we know the good value of i as in Lemma 2. Let F (x,R) =

BMGLfn,m,λm(x,R). On input f (i)(x), R, γ, where γ is either random, or, equal

to Bm
R (f (i−1)(x)) we do as follows. We easily generate an element according to

distribution H i+1 as in Lemma 2, with the exception that the i+1st m-bit block
is assigned the value γ. We feed this value to D and answers as it does. We see
that precisely depending on whether γ is random or not, we run D on an input
from Hi, or, from Hi+1 and the lemma follows. ut

We now give the theorem of Goldreich and Levin [4] trying to be careful with
our estimates and construction. Apart from the value of the constants we have an
improvement over previous results in the dependence on the parameterm. While
previous constructions would yield a factor proportional to 22m we decrease this
to 2m. The improvement is due to the fact that we treat the case of general m
directly rather than reducing it to the case m = 1 (see later discussion).

The second main step towards Theorem 2 is:

Theorem 3. Fix x. Suppose there is an algorithm, P , using T operations, when
given random R distinguishes Bm

R (x) from random strings of length m with ad-
vantage at least ε where ε is given. Then, for k , max (m, log (ε−2(2n+ 1))), we
can in time

(1 + o(1))2m+k(2m+ k + 1 + T)(n+ 1)

produce a list of 2k+m(n + 1) values such that the probability that x appears in
this list is at least 1/2.

As we understand, a statement similar (upto a constant), for the special case of
m = 1, can be derived from [9]. In most application one hasm ≤ log(ε−2(2n+1))
and thus the latter value of k should be considered standard.

We now collect the last pieces for the proof of Theorem 2 by proving the
above Theorem 3 which, in turn, relies on the following prelimnaries.

Lemma 3. Fix any x ∈ {0, 1}n. For m < k, from m + k randomly chosen
a0, . . . , am−1 and b0, . . . , bk−1 ∈ {0, 1}

n, it is possible in time 2m2k + k2 +m+
4k to generate a set of 2k uniformly distributed, pairwise independent matrices

R1, . . . , R2k

∈ Mm. Furthermore, there is a collection of m× (m+ k) matrices

{Mj}
2k

j=1 and a vector z ∈ {0, 1}
m+k such Bm

Rj (x) = Mjz for all j.

The proof is given in the Appendix. The construction generalizes that of Rackoff
for the case m = 1, see [2]. If k < m, we use k′ = m above and then simply only
take the first 2k matrices.

Lemma 4. Let P be an algorithm, mapping pairs Mm × {0, 1}
m → {0, 1},

whose running time is T , let Rj ,Mj be the matrices generated as described in

Lemma 3 and let S = {Sj}
2k

j=1 be an arbitrary matrix set inMm.

In time 2m+k(2m+k+T) it is possible to compute 2m+k values, c1, . . . , c2m+k

such that for at least one l we have cl = Ej [P (Rj + Sj , B
m
Rj (x))]. The value of l

is independent of S.

450 Johan H̊astad and Mats Näslund

The role of the set S is explained shortly.

Proof. First run P on all the 2m+k possible inputs of form (Rj+Sj , r) and record
the answers: {P (Rj + Sj , r)}. A fixed value of l above corresponds to a value of
the m + k bits zl in Lemma 3. Let us assume that zl is the correct choice, i.e.
Bm
Rj (x) = Mjzl. We define

cl , 2−k
2k−1
∑

j=0

P (Rj + Sj ,Mjzl) = 2−k
2k−1
∑

j=0

2m−1
∑

r=0

P (Rj + Sj , r)∆(r,Mjzl), (1)

where ∆(r, r′) = 1 if r = r′ and 0 otherwise. The naive way to calculate this
number would require time 22k+m but we can do better using the Fast Fourier
transform. First note that ∆(r, r′) = 2−m

∑

α⊆[0..m−1](−1)
〈r⊕r′,α〉2 . This implies

that the sum (1) equals

cl = 2−(m+k)
∑

j,r,α

P (Rj + Sj , r)(−1)
〈r⊕Mjzl,α〉2

= 2−(m+k)
∑

j,α

(−1)〈Mjzl,α〉2
∑

r

P (Rj + Sj , r)(−1)
〈r,α〉2 .

Let Q(j, α) be the inner sum and fix a value of j. Notice that each α-value then
correspond to a Fourier transform and hence the 2m different numbers Q(j, α)
can be calculated in time m2m for this fixed j and hence all the numbers Q(j, α)
can be computed in time m2k+m. Finally we have

cl = 2−(m+k)
∑

j,α

(−1)〈Mjzl,α〉2Q(j, α) = 2−(m+k)
∑

j,α

(−1)〈zl,M
T
j α〉2Q(j, α),

where MT
j is the transpose. But this is just a rearrangement (induced by MT

j)

of the standard Fourier-transform of size 2k+m and can be computed with (k +
m)2k+m operations. The lemma follows. ut

We prove now that we can compute useful information about x.

Lemma 5. Let P, T, x and ε be as in Theorem 3. Then for any set of N vectors
{vi}

N
i=1 ⊂ {0, 1}

n and any k ≥ m we can in time (1 + o(1))2m+k(2m+ k + T +

1)(N + 1) produce a set of lists {b
(j)
i }

N
i=1, j = 1, 2, . . . , 2k+m(N + 1) such that

with probability 1/2 we have for at least one j, 〈x, vi〉2 = b
(j)
i , except for at most

N
ε22k−1 of the N possible values of i.

Proof. Start by randomly generating the 2k matrices {Rj} as shown in Lemma 3.
Now repeat the process below for each i = 1, . . . , N . Select 2k (pairwise) inde-
pendent random strings sij ∈ {0, 1}

m, and let Sij be the m × n matrix defined

by Sij , sij ⊗ vi (the outer product, i.e. (Sij)k,l = (sij)k · (vi)l). Notice that by
linearity

(Rj + Sij)x = Rjx+ sij〈vi, x〉2, (2)

Practical Construction and Analysis of Pseudo-randomness Primitives 451

which is Bm
Rj (x) if 〈vi, x〉2 = 0, and a random string otherwise.

As described in Lemma 4, we now compute the values {cil}.

cil = 2−k
2k−1
∑

j=0

P (Rj + Sij ,Mjzl).

Focus on the correct choice for l. If 〈vi, x〉2 = 0, then cil is the average of a
uniformly random, pairwise independent sample of the distinguisher P on inputs
of the form {P (R,Bm

R (x))}. On the other hand, if 〈vi, x〉2 = 1, it is a sample of
{P (R, u)} over random u.

Suppose pR is the probability that P outputs 1 when the m bits are picked as
Bm
R (x) and let pU be the same probability when the m bits are picked randomly.

Let p , (pR + pU)/2. Note that we do not know the value of p. We deal with
this problem later, so for the moment suppose we do.

We guess that 〈vi, x〉2 = 0 if cil ≥ p and 〈vi, x〉2 = 1 otherwise. The choice
is correct unless the average of 2k pairwise independent Boolean variables is at
least ε/2 away from its mean. By Chebychev’s inequality the probability that
this happens is bounded by 2−kε−2.

This implies that for the correct values of l and p, the expected number of
errors is 2−kε−2N , and by Markov’s inequality, with probability at least at 1/2
it is below 21−kε−2N . There are 2k+m possible values of l and once l is fixed
the only information on p needed is for which i ∈ [1..N] we have cil ≥ p (if any).
Thus, there are only N + 1 such choices.

The time needed to construct the matrices is negligible, computing the values
cil can be done it time 2k+m(2m + k + T)N , and at most time 2k+m(N + 1) is
needed to output the final lists. ut

We finally establish Theorem 3.

Proof (of Theorem 3). Set k = max (m, log (ε−2(2n+ 1))). We apply Lemma 5
with N = n, and let {vi}

n
i=1 be the unit vectors so that 〈vi, x〉2 gives the ith bit

of x. With probability 1/2 one list gives all inner-products correctly and hence
determine x. ut

We can now use Theorem 3 and Lemma 1 to establish Theorem 2, see the
Appendix.

Instead of applying Lemma 5 with the unit vectors we can, as suggested
in [2], use it with {vi} describing the words of an error correcting code, e.g. a
suitable Goppa-code, [10]. (Similar ideas appears in [8].) If we have code words
of length N , containing n information bits, and we are able to efficiently correct
e errors we get the following variant of Theorem 3:

Theorem 4. Fix x. Suppose there is an algorithm, P , that using T operations
given R distinguishes Bm

R (x) from random strings of length m with advantage
ε where ε is given. Suppose further we have a linear error correcting code, with
n information bits, N message bits that is able to correct e errors in time TC .
Then setting k = max (m, log (ε−2(2N + 1)/e)) we can in time

(1 + o(1))2m+k(2m+ k + 1 + T + TC)(N + 1)

452 Johan H̊astad and Mats Näslund

produce a list of 2k+m(N + 1) numbers such that the probability that x appears
in this list is at least 1/2.

Proof. We apply Lemma 5 with the given value of k and {vi}
N
i=1 given by the

row vectors of the generator matrix of the error correcting code. Running the
decoding algorithm on each obtained “codeword” gives a list as claimed. ut

Similar to Theorem 2, this translates to the quality of the inverter. We only state
the resulting algorithm in existential form using O-notation.

Theorem 5. Suppose we have a linear error correcting code with n information
bits, O(n) message bits that is able to correct Ω(n) errors in time TC and that

G = BMGLfn,m,L is based on an n-bit function f , computable by E operations,
and that G produces L bits in time S. If G can be (L, T, δ)-distinguished then,
with δ′ = δm

L , there is an i ≤ L/m , λ and 0 ≤ j ≤ 2 log δ′−1 such that for

k = max(m,O(1) + 2 log δ′−1 − j) such that f can be (T ′, Ω(2−j/2(j + 1)−2), i)-
inverted where T ′ equals

O(2k+m(k +m+ S + T + E + TC)n).

In particular, this implies that the asymptotic time-success ratio decreases by a
factor n for the parameters discussed after Theorem 2.

3.2 Applying the GGM construction

As shown, the BMGL generator can produce any number of output bits. We
here investigate an alternative way, inspired by a construction of pseudo random
functions due to Goldreich, Goldwasser, and Micali, [3]. It has the advantage
that we iterate f fewer times and hence the assumption needed for security is
weaker.

The construction can be based on any PRG, G : {0, 1}n → {0, 1}2n, though

we for concreteness think of G = G(x,R) = BMGLfn,m,2n(x,R) for some f .
For simplicity of notation, we shall exclude R from it, keeping in mind that
probabilities should be taken also over the choice of R. First, let us assume that
we know in advance how may output bits that are desired. We apply [3] to obtain
2dn output bits (where d is given) from n(m+ 1)-bits.

Definition 4. Fix n, d ∈ IN. Let G(x) be a generator, stretching n bits to 2n
bits, and let G0(x) (G1(x)) be the first (last) n bits of G(x). For x ∈ {0, 1}n,
s ∈ {0, 1}d put gx(s) , Gsd

(Gsd−1
(· · ·Gs2(Gs1(x)) · · ·)), and define GGM

G
d,n :

{0, 1}n → {0, 1}2
dn by

GGMG
d,n(x) , gx(00 . . . 0), gx(00 . . . 1), · · · , gx(11 . . . 1)

(the concatenation of gx applied to all d-bit inputs).

Practical Construction and Analysis of Pseudo-randomness Primitives 453

The construction can be pictured as a full binary tree T = (V,E) of depth
d. Associate v ∈ V with its breadth-first order number; the root is 1 and the
children of v are 2v, 2v + 1. Given x, the root is first labeled by L(1) = x.
For a non-leaf v labeled L(v) = y ∈ {0, 1}n, label its children by L(2v) =
G0(y), L(2v + 1) = G1(y), respectively. The output of GGMG

d,n is simply the
concatenation of all the “leaves” of the tree.

Notice an advantage of the above method in the case that G = BMGLfn,m,2n.

To produce L = 2dn bits, each application of G iterates f 2n/m times instead
of 2dn/m, which, in light of Theorem 1, retains more of the one-wayness of f .

Lemma 6. Suppose that D1 is a (2
dn, T, δ)-distinguisher for GGMG

d,n(x) where

G can be computed in time S. Then, there is an integer i ≤ 2d and algorithm Di

that is an (2n, T + 2dS, 2−dδ)-distinguisher for G.
Di depends on i, and a value of i achieving advantage δi ≥ 2−(d+1)δ can be

found with probability at least 1/2 in time c12
2dδ−2(T + 2dS) where c1 is the

constant given by (5).

Proof (sketch). Consider the binary tree T , describing a computation of GGMG
d,n

as above. The tree has depth d, 2d−1 internal vertices and 2d leaves. We construct

hybrid distributions H0, . . . , H2d−1 on the vertex-labels of such trees. Again,
associate each v ∈ V by its breadth-first order number. Then, H i is defined by
a simulation algorithm, GGM i(x), which on input x, assigns labels as follows.
Assign the root, v = 1, the label x. For v ∈ V , v = 1, 2, . . . , i, label v’s children
by letting L(2v),L(2v + 1) be independent, random n-bit strings. Then, for
v = i + 1, . . . , 2d − 1: L(2v) = G0(L(v)), L(2v + 1) = G1(L(v)). Finally return
the labels of the leaves in T .

Observe that H2d−1 gives the uniform distribution over the node labels (in
particular, over the leaves) andH0 labels the vertices exactly as GGMG

n,d does on

a random seed x. SinceD1 distinguishes GGM
G
d,n(x) from random 2dn-bit strings

with advantage δ, for some i ≤ 2d, it must be the case that D1 distinguishes
Hi, Hi+1 with advantage at least 2−dδ.

Finding i is now done in complete analogy with Lemma 2, letting the function
F there correspond to the node labeling.

We now construct Di: when Di gets input γ ∈ {0, 1}2n, it selects random x
and feeds D1 a value y, computed as GGM i+1(x) with the following exception:
i+1 is not assigned any label3, and the children of i+1 are assigned the left/right
n-bit half of γ respectively. It is not too hard to see that if γ is random, we giveD1

a value according to exactly the same distribution as H i+1, whereas if γ = G(x′),
D1 is given a value from the same distribution as GGM i(x), i.e. H i. Thus, by
returning D1’s answer to y, D

i’s advantage equals that of D1. ut

Unknown Output Length. If the length of the “stream” is unknown be-
forehand, we let the basic generator G expand n bits to 3n bits. Apply the

3 As the labels of non-leaves are never exposed, one can conceptually think of the
process as labeling i + 1 afterwards.

454 Johan H̊astad and Mats Näslund

tree-construction as above, labeling left/right children by the first, respectively
second n-bit substring of G’s output. The remaining n bits are used to pro-
duce an output at each vertex as we traverse the tree breadth-first. The analysis
is analogous. To save memory, the traversal can be implemented in iterative
depth-first fashion.

3.3 Concrete Examples

What does all this say? Suppose that we base the construction on Rijndael(x) ,

Rijndaelx(p) (for a fixed plaintext p) and that we want to generate L = 230 bits,
applying our construction with m = 32 (32 bits per iteration). One choice of
parameters gives the following corollary.

Corollary 1. Consider G = BMGL
Rijndael
256,32,230 (using key/block length 256) and

where Rijndael is computable by E operations, and assume that G runs in time
S. If G can be (230, T, 2−32)-distinguished, then there is i < 225, and 0 ≤ j ≤ 114
such that setting k = max (32, 123− j), Rijndael can be (T ′, dj , i)-inverted (dj
given by (7) and (8)) for T ′ = 241+k(65 + k + T + S + E).

Similarly, setting G′ = BMGL
Rijndael
256,32,512 and then using GGM

G′

22,256 (to gen-
erate the same length outputs), the result holds for some i < 16.

This is simply substituting the parameters and noting that the o(1) in Theorem 2
comes from disregarding the time to construct the matrices described in Lemma 3
and for the current choice of parameters using (1 + o(1))(n + 1) ≤ 29 is an
overestimate.

Assuming we have a simple statistical test such as Diehard tests, [11], or
those by Knuth, [7], it is reasonable to assume4 that 65 + k + T +E ≤ S. From
the first part of the corollary, then, the essential part of computing the generator
comes from the 225 computations of Rijndael and we end up with a time for the
inverter equivalent to at most 267+k Rijndael computations. The maximum of
2k(dj/2)

−1 is obtained for j = 5 in which case it equals 2124 · 7.5 ≤ 2127. We
conclude that in this case we get a time-success ratio that is equivalent to at
most 2194 computations of Rijndael and since i ≤ 225, Rijndael would not be
2−37-secure.

Alternatively, bootstrapping the BMGL construction by the GGM method,
we conclude from the second part of the corollary that such a test would mean
that Rijndael cannot be even 2−57-secure. Thus, though somewhat more cum-
bersome to implement, the GGM method is more security preserving.

If we want to find the values of i and j efficiently the ratio increases by a
factor 26. Note that for the case with small j the time needed to find i and j is
much smaller than the running time of the inverter.

4 Common “practical” tests are almost always much faster than the generator tested.

Practical Construction and Analysis of Pseudo-randomness Primitives 455

4 Discussion

4.1 Choice of f

To implement the generator in practice, we suggest to base the one-way function
on Rijndael. First of all it is widely believed to be secure and has shown to
be very efficient. (A trial implementation of BMGL gives speeds in the range
2 − 10Mb/s on a standard PC, depending on choice of m.) Secondly, as our
construction requires that the block size of the cipher is equal to the key size,
the fact that Rijndael supports both 128 and 256-bit block size is advantageous,
as it makes it possible to vary the security parameter (key size).

Again note that the one-way function we suggest to use is to fix a message,
p, let the input be the encryption key, x, and the output the cipher-text. To
obtain a permutation and at the same time increased speed, it might appear
to be better to have the mapping from clear-text to crypto-text and iterate
fx(p) rather than fp(x). The problem is that this is by definition not a one-way
function: anybody that can compute it can invert it. A possibility is also to use
an efficient cryptographic hash function as f .

4.2 Decreasing Seed Size

The impact on security of varying m is clearly visible in the above theorems.
Though increasing speed, a practical problem with a large m is the seed size; nm
bits specifies a matrix R. First note though, that the security does not depend
on the fact that R is secret; only that it is random.

It is possible to decrease the number of bits to only n by instead of binary
matrix multiplication, performing a multiplication by a random element in the
finite field IF2n , and selecting any fixed set of m bits of this, see [12]. A drawback
of this construction is that instead of the direct reduction from a distinguisher
for Bm

R (x) to a predictor for 〈vi, x〉2 (Lemma 5), the restricted sample-space
of elements makes us need to use the so called Computational XOR-Lemma,
[14]. Unfortunately, this reduces the initial δ-advantage of the distinguisher to a
2−mδ-advantage for the predictor for 〈vi, x〉2, and when the smoke clear we lose
a factor 2m in the running time of the inverter.

An alternative, suffering the same security drawback, is to pick R as a random
Toeplitz matrix, specified by n+m− 1 bits, [4].

5 Summary and Conclusions

We have given a careful security analysis of a very natural pseudorandom gen-
erator. Apart from optimizing known constructions and analysis we have intro-
duced a new analysis method when several bits are output for each iteration of
the one-way function.

Another common method to derive PRGs from a block cipher is to run it in
counter mode. Though addmitedly simpler, the proof of such constructions relies

456 Johan H̊astad and Mats Näslund

on the assumption that the core, f , is a pseudo-random function. The strictly
weaker type of security assumption we have proposed (a function being one-way
on its iterates), although it has been proposed before by Levin, is for the first
time made in a quantitative sense and we believe that this concept will be useful
for future study of one-way functions.

Acknowledgment. We thank Bernd Meyer, Gustav Hast, and anonymous re-
viewers of different versions of this paper for helpful comments.

References

1. M. Blum and S. Micali: How to Generate Cryptographically Strong Sequences of
Pseudo-random Bits. SIAM Journal on Computing, 13(4), 850–864, 1984.

2. O. Goldreich: Modern Cryptography, Probabilistic Proofs and Pseudo-randomness.
Springer-Verlag, 1999.

3. O. Goldreich, S. Goldwasser and S. Micali: How to Construct Random Functions.
J. ACM, 33(4), 792–807, 1986.

4. O. Goldreich and L. A. Levin: A Hard Core Predicate for any One Way Function.
Proceedings, 21st ACM STOC, 1989, pp. 25–32.

5. S. Goldwasser and S. Micali: Probabilistic encryption. J. Comput. Syst. Sci., 28(2),
270–299, 1984.

6. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby: Pseudo Random Number
Generators from any One-way Function. SIAM Journal on Computing, 28, 1364–
1396, 1999.

7. D. Knuth: Seminumerical algorithms, (2 ed.), Volume 2 of The art of computer
programming, Addison-Wesley, 1982.

8. L. Levin: One-way Functions and Pseudorandom Generators. Combinatorica 7,
357–363, 1987.

9. L. Levin: Randomness and Non-determinism. J. Symb. Logic, 58(3), 1102–1103,
1993.

10. F. J. MacWilliams and N. J. A. Sloane: The Theory of Error Correcting Codes.
North-Holland, 1977.

11. G. Marsaglia: The Diehard statistical Tests. http://stat.fsu.edu/˜geo/diehard.html
12. M. Näslund: Universal Hash Functions & Hard-Core Bits. Proceedings, Eurocrypt

’95, LNCS 921, pp. 356–366, Springer Verlag.
13. J. Daemen and V. Rijmen: AES Proposal: Rijndael. www.nist.gov/aes/
14. U. V. Vazirani and V. V. Vazirani: Efficient and Secure Pseudo-Random Number

Generation. Proceedings, 25th IEEE FOCS, 1984, pp. 458–463.
15. A. C. Yao: Theory and Applications of Trapdoor Functions. Proceedings, 23rd

IEEE FOCS, 1982, pp. 80–91.

A Additional Proofs

Proof (of Lemma 2). Let δi be D’s advantage on H i, Hi+1. The problem is that
even though Ei[δi] = δ/λ , δ′, there is a large number of possibilities for the
individual δi. Basically, these possibilities all lie between the two extreme cases:
(1) There are a few large δi, while most are close to 0. (2) All δi are about the

Practical Construction and Analysis of Pseudo-randomness Primitives 457

same, but none is very large. Suppose we try random i’s. In the first case, we
may need to try many i, but it can be done with a rather low sampling accuracy.
In the second case, we expect to find a fairly good i rather quickly, but we need a
higher precision in the sampling. The idea is therefore to divide the sampling into
a number stages, {S(j)}j≥0, each with different sampling accuracy. Stage S(j)
chooses some random i-values and samplesD on inputs generated fromH i, Hi+1.
As soon as a sufficiently “good” i is detected, the procedure terminates. Below
we quantify the needed accuracy and the criterion for selecting the good i.

For j ∈ {0, 1, . . . ,−2 log δ′} let aj be the fraction of i such that δi ≥ 2(j−1)/2δ′.
By the assumption of the lemma we have

a0 +

∞
∑

j=1

aj(2
(j−1)/2 − 2(j−2)/2) ≥ 1− 2−1/2. (3)

Define b0 to be d4(1− 2−1/2)−1e and

bj = d4(1− 2−1/2)−1(2(j−1)/2 − 2(j−2)/2)e = d2(j+3)/2e,

for j > 0. The bj-values, together with a parameter Tj now define the sampling
accuracy. Given these values, we determine i as follows.

In stage S(j), j = −2 log δ′,−2 log δ′ − 1, . . . , 0 choose bj different random
values of i and sample H i and Hi+1 each Tjδ

′−2 times and run D on each of
the samples. If the difference in the number of 1-outputs is at least (2(j−1)/2Tj−
√

Tj/2)δ
′−1 choose this i and halt. If no i is ever chosen halt with failure. We

need to analyze the procedure and determine Tj .
Suppose that at stage j an i is picked such that δi ≥ 2(j−1)/2δ′. We claim

that the algorithm halts with this i as output with probability at least 1/2. To
establish this first consider the following fact, the proof of which we leave to the
reader.

Fact. Let X be a random variable with mean µ and standard deviation σ. Then
we have

Pr[X ≤ µ− σ] ≤ 1/2.

From this, the above claim now follows since the expected difference in the
number of 1-outputs when δi ≥ 2(j−1)/2δ′ is at least 2(j−1)/2Tjδ

′−1 and the
standard deviation (being the sum of Tjδ

′−2 variables each being the difference of

two 0/1-valued variables) is at most δ′−1
√

Tj/2. This implies that the probability
that the algorithm halts for an individual iteration during stage j is at least aj/2.
The probability that algorithm will fail to output any number is thus bounded
by

∏

j

(1− aj/2)
bj ≤ e−

∑

j ajbj/2 ≤ e−2,

where the last inequality follows from (3) and the definition of bj .
We must bound the probability that algorithm terminates with an i such

that δi ≤ δ′/2. Let us analyze the probability that such an i would be output

458 Johan H̊astad and Mats Näslund

during an individual run of stage j provided that it is chosen as a candidate.
The expected difference of the number of 1-outputs in the two experiments is
at most Tjδ

′−1/2 and we have to estimate the probability that it is at least

(Tj2
(j−1)/2 −

√

Tj/2)δ
′−1. This is, provided

Tj(2
(j−1)/2 − 1/2)−

√

Tj/2 ≥ 0, (4)

by a simple invocation of Chernoff bounds, at most

e
− (Tj(2(j−1)/2

−1/2)−
√

Tj/2)2

2Tj .

Let us call this probability pj . The overall probability of ever outputting an i
with δi ≤ δ′/2 is bounded by

∑

j

bjpj .

We now define Tj to be the smallest number satisfying (4) such that pj <
2−(j+3)b−1

j and such that Tjδ
′−2 is an integer. We get that with this choice

the probability of outputting an i with δi ≤ δ′/2 is at most 1/4 and hence the
probability that we do get a good output is at least (1− e−2) 3

4 ≥ .64. The total
number of samples of the algorithm is bounded by c1δ

′−2, where

c1 , 2
∑

j

bjTj . (5)

Note that this sum converges since Tj ∈ O(j2−j) and bj ∈ O(2j/2). In fact,
it can numerically be calculated to be bounded by 5300. Moreover, the sum is
completely dominated by the first term which is over 4600, and the sum of all
but the first three terms is bounded by 250. Thus, a more careful analysis what
to do for small j could lead to considerable improvements in this constant. ut

Before we continue let us make some needed definitions. Let bin(i) be the
map that sends the integer i, 0 ≤ i < 2m to its binary representation as an
m-bit string. In the sequel, we perform some computations in IF2k , the finite
field of 2k elements, represented as ZZ2[t]/(q(t)) where q(t) is a polynomial of
degree k, irreducible over ZZ2. We assume that such q is available to us. If not,
it can be found in expected time at most k4 which is negligible compared to
our other running times considered. Viewing IF2k as a vector space over IF2, for
any γ =

∑k−1
i=0 γit

i ∈ IF2k , we let in the natural way bin(γ) denote the vector
(γ0, . . . , γk−1) corresponding to γ’s representation over the standard polynomial
basis. Note also that bin(γ) can be interpreted as a subset of [0..k − 1] in the
obvious way.

Proof (of Lemma 3). First choose randomly and independently m n-bit strings,
a0, . . . , am−1 and k strings b0, . . . , bk−1, each also of length n. The jth matrix,
Rj is now defined by {ai}, {bl}, and an element αj ∈ IF2k as follows. Its ith row,

Rj
i , 0 ≤ i < m, is defined by

Rj
i , ai ⊕

(

⊕l∈bin(αj ·ti)bl
)

,

Practical Construction and Analysis of Pseudo-randomness Primitives 459

where αj is the lexicographically jth element of IF2k (i.e. the lexicographically
jth binary string), and the multiplication, αj · t

i, is carried out in IF2k , and ⊕ is
bitwise addition mod 2.

Clearly the matrices are uniformly distributed, since the ai are chosen at
random. To show pairwise independence it suffices to show that an exclusive-or
of any subset of elements from any two matrices is unbiased. Since the columns
are independent, it is enough to show that the exclusive-or of any non-empty
set of rows from two distinct matrices Rj1 and Rj2 is unbiased. Take such a set
of rows, S1 ⊂ Rj1 , and S2 ⊂ Rj2 . We may actually assume that S1 = S2 = S,
say, since otherwise, the a-vectors makes the result uniformly distributed. In this
case the xor can be written as

⊕i∈S ⊕l∈bin((αj1
+αj2

)·ti) bl,

but this is the same as

⊕l∈bin((αj1
+αj2

)·(∑i∈S ti))bl,

which is unbiased if, and only if, bin((αj1 + αj2) · (
∑

i∈S t
i)) 6= 0. However,

∑

i∈S t
i 6= 0, and as αj1 6= αj2 , αj1 + αj2 6= 0 too, so we have two nonzero

elements and hence their product is nonzero.
Notice that if we know

∑

i alixi and
∑

i blixi mod 2 for all al, bl (a total
of m + k bits), then by the linearity of the above construction, we also know
the matrix-vector products Rjx for all j. To calculate all the matrices we first
compute the reduction of ti for all i = k+1, . . . , 2k in GF [2k]. Using an iterative
procedure this can be done with 3k operations on k bit words and since we only
care about k ≤ n these can be done in unit time. Now generate the vectors a and
b in time m+ k operations. Then we compute ⊕l∈bin(ti)bl for each i = 0, . . . , 2k
using k2 operations. By using a gray-code construction each row of a matrix can
now be generated with two operations and thus the total number of operations
is 2m2k + k2 +m+ 4k. ut

Proof (of Theorem 2). First we apply Lemma 1 to see that there is an i for which
we have an algorithm P (i) that when given f (i)(x) runs in time S(L)+T (L) and
distinguishes Bm

R (f (i−1)(x)) from random bits with advantage at least δ′′, where
δ′′ is δ′/2 or δ′ depending on whether we want to find i efficiently, or only show
existence (i.e. uniform/non-uniform algorithm). Since δ′′ is an average over all
x we need to do some work before we can apply Theorem 3.

For each x we have an advantage δx. Let aj be the fraction of x with δj ≥
2(j−1)/2δ′′. Since the expected value of δx is δ′′ we have

a0 +

∞
∑

j=1

aj(2
(j−1)/2 − 2(j−2)/2) ≥ 1− 2−1/2. (6)

Now define

d0 ,
1

2
(1− 2−1/2) (7)

460 Johan H̊astad and Mats Näslund

and

dj , (2j(j + 1)2(j−1)/2)−1 (8)

for j ≥ 1. Since

d0 +
∞
∑

j=1

dj(2
(j−1)/2 − 2(j−2)/2) = 1− 2−1/2, (9)

we must have aj ≥ dj for some j and this is our choice for j in the existential
part. We now apply Theorem 3 with ε = 2(j−1)/2δ′. To eliminate the list we
apply f to each element in it to see if it is a correct pre-image in which case it is
output. Since whenever δx ≥ ε we have a probability 1/2 of having f (i−1)(x) in
the list and hence the probability of being successful for a random x is at least
dj/2.

To get a uniform algorithm, we need to sample to find a suitable value of j.
Consider the following procedure for parameters d and Tj to be determined.

For j = −2 log δ′′,−2 log δ′′ − 1, . . . , 0 choose d(j + 3)d−1
j different random

values of x and run P (i), for each x, Tjδ
′′−2 each on the two distributions given by

choosing the m extra bits as Bm
R (f (i−1)(x)) or as random bits. If the difference

in the number of 1-outputs for the two distributions is at least (2(j−1)/2Tj −
√

Tj/2)δ
′′−1 for at least d(j + 3)/4 different values, choose this j and apply the

algorithm of Theorem 3 with ε = 2(j−2)/2δ′′ = 2(j−4)/2δ′.

First we analyze the probability that the algorithm outputs j if it ever gets
to a stage where aj ≥ dj . For each x chosen, the probability that it will satisfy
δx ≥ 2(j−1)/2δ′′ and yield the desired difference is by the choice of j and Fact A,
at least aj/2 ≥ dj/2. Thus, for sufficiently large d, with probability at least
1− 2−(j+3), this desirable distance will be detected d(j + 3)/4 times and j will
be output. Hence, except with this probability the algorithm will produce some
output and we have to analyze the probability that a worse j is output at an
earlier stage.

We claim that unless aj−1 ≥ dj/8, the probability of j being output is
2−(j+3). Suppose that aj−1 < dj/8 and consider an individual execution in stage
j. For a suitable choice of Tj we will prove that the probability that we observe

a difference greater than (2(j−1)/2Tj −
√

Tj/2)δ
′′−1 is bounded by dj/6. This is

sufficient, for large enough d, to establish the claim.

By assumption δx ≤ 2(j−2)/2δ′′ except with probability dj/8 and thus we
need to prove that given that this inequality is true, the probability to get the
desired difference is at most dj/24. By assumption the expected value of the
observed difference is 2(j−2)/2Tjδ

′′−1, and by applying Chernoff bounds it is
hence sufficient to choose Tj large enough so that

e
− (Tj(2(j−1)/2

−2(j−2)/2)−
√

Tj/2)2

2Tj ≤
dj
24
.

Practical Construction and Analysis of Pseudo-randomness Primitives 461

This can be done with Tj = O((j + 3)2−j). The expected number of samples
computed, given that j0 is the largest value such that aj0 ≥ dj0 , is at most

∞
∑

j=j0

d(j + 3)d−1
j Tjδ

′′−2 + 2−(j0+3)

j0−1
∑

j=0

d(j + 3)d−1
j Tjδ

′′−2,

which is O(j402
−j0/2δ′−2).

In the case where we efficiently find i and j, the final value of ε for which we
call upon Theorem 3 is a factor 2−3/2 smaller than in the existential case, and
hence the increase in the running time is increased by a factor 8+o(1), where the
o(1) comes from the increase in the additive term k. By the above argument the
guarantee for the fraction of the inputs for which the procedure has probability
at least 1/2 of finding the inverse image, is at least 1/8 of that in the existential
case. ut

