
Self-Blindable Credential Certificates from the

Weil Pairing

Eric R. Verheul

PricewaterhouseCoopers, GRMS Crypto group, P.O. Box 85096, 3508 AB Utrecht,
The Netherlands, eric.verheul@[nl.pwcglobal.com, pobox.com]

Abstract. We describe two simple, efficient and effective credential pseudo-
nymous certificate systems, which also support anonymity without the
need for a trusted third party. The second system provides cryptographic
protection against the forgery and transfer of credentials. Both systems
are based on a new paradigm, called self-blindable certificates. Such cer-
tificates can be constructed using the Weil pairing in supersingular ellip-
tic curves.

1 Introduction

Credential pseudonymous certificates (CPCs) were introduced by David Chaum
[7] in 1985 to counter some of the privacy problems related to identity certificates.
One such problem is that service providers know exactly who they are servicing
when a user employs an identity certificate, which for some applications is not
required, acceptable or even permissible. Moreover, by combing their logs, service
providers can piece together a record of all the user’s activities.

A pseudonym is a unique identifier (string) by which a user is known by a cer-
tain party; typically each party knows the same user by a different pseudonym.
These pseudonyms can be references to a user’s identity known only by desig-
nated parties, or can be completely anonymous, (i.e., known only to the user).
Unlike Chaum [7], we do not limit a ‘physical’ user to only one pseudonym with
a given provider. We believe that for some types of providers, e.g., on-line, sub-
scription based, information providers, the use of many different pseudonyms for
one physical user, without the provider knowing, can be considered an important
feature. However, we do discuss how, if necessary, such unique pseudonyms can
be supported by our systems.

A pseudonymous certificate binds a user’s pseudonym to their public key, the
private key to which the user possesses. Such certificates are issued by a trust
provider. Identities, pseudonyms and public keys should be unique. A credential
is a trust provider’s statement about the user which is relied upon by other
parties, who we simply call service providers. Examples of such statements are
properties such as “lives in Amsterdam”, qualifications such as “has a PhD in
math”, or rights such as “can access this secure room”. A credential can be
single-use, such as a prescription, or multiple-use such as a driver’s license. In
this paper we focus on the latter type of credentials.

536 Eric R. Verheul

Finally, credential pseudonymous certificates (CPCs) are digital certificates
that bind credentials to users, known by a pseudonym. Proof of credential pos-
session is given by proving possession of the private key related to the public
key referenced in the certificate. Several credentials may be bound to a single
pseudonymous certificate and, thus, pseudonym.

In Chaum’s model, pseudonyms are unlinkable: parties that know a user
by different pseudonyms must not have the ability to combine their logs to
assemble a dossier on the user.1 Another requirement in Chaum’s model is that
CPCs must be translatable: a CPC issued under pseudonym A must be usable
under pseudonym B. For example, a user may be given a credential asserting his
good health from a doctor under pseudonym A, and show this to its insurance
company who knows it by pseudonym B. In addition to these two requirements,
the system should fulfill the following three basic security requirements:

Protection against pseudonym/credential forgery It should not be pos-
sible for outsiders, malicious users, or other parties involved to generate
(credential) pseudonymous certificates without the consent of the relevant
trust providers.

Protection against pseudonym/credential sharing A user could be tempted
to share its credentials (e.g., a season pass for public transport) with another
user. It should therefore be very difficult or awkward for a user to do so.2 One
potential solution to this problem would be to store credentials on tamper
resistant devices that are valuable to the user (e.g., smartcard based pass-
ports). A better solution would be an all-or-nothing concept for credentials:
sharing a credential effectively implies sharing a credential that is highly
valuable to the user, most notably one enabling him to take over the user’s
identity and digitally sign contracts that legally binds the user (cf., [6], [5]).

Revocation of pseudonymous certificates and credentials Under certain
circumstances, it should be possible for the user and trust providers to re-
voke pseudonymous certificates as well as credentials bound to them. This
could be case, for instance, if a user lost secret (key) information or changes
jobs.

CPCs such as those described above, counter the privacy problems of iden-
tity certificates to some extent, but not completely. Indeed, in that setting, all
user’s activities with a provider are related to a pseudonym, so that the provider
can link the user’s activities with the fixed pseudonym. If the user’s identity
is compromised, then so are its activities. To prevent this potential problem,

1 Unlinkability and pseudonymity of credentials are sometimes difficult to enforce
simultaneously in practice. Indeed, even if they are anonymous, credentials implicitly
narrow down the number of possible users possessing them. To illustrate, how many
people have both a degree in cryptography (credential number one) and Swedish
citizenship (credential number two)?

2 Perhaps complete eradication of credential sharing would be impossible in the vir-
tual world, as the end user might give away everything he knows (passwords) or has
(smartcards), leaving only the identification factor “what the user is”(e.g., biomet-
rics) to counter credential sharing.

Self-Blindable Credential Certificates from the Weil Pairing 537

a CPC system should preferably support that users can easily and regularly
change pseudonyms. A CPC system should also ensure that the translation of
credentials includes as few (trusted) parties as possible. In our CPC system,
users themselves can both change pseudonyms and translate their credentials.

We remark that, in the above text, we implicitly define the parties as users,
trust providers (providing credentials and pseudonyms to users) and service
providers (relying on credentials and pseudonyms), which we use in the remain-
der of this paper without further explanation.

The goal of this paper is to describe a very simple, effective and efficient CPC
system that meets the basic requirements of a CPC system and that is based on
the new paradigm of self-blindable certificates. With this type of certificates the
user can, e.g.:

– generate its own new pseudonymous certificates itself (to which it possesses
the private key) based on a valid pseudonymous certificate; and

– translate and combine CPCs issued under one pseudonym to another pseudo-
nym, including a one-time-use pseudonym.

Related Work

As we could probably write an entire paper just discussing and comparing all
of the CPC schemes that have been published, we will be brief. The first scheme
was introduced by Chaum and Evertse [10] and is based on having a semi-trusted
third party involved in all credential translations. Both from an efficiency and a
security point of view, this is undesirable. Chen’s scheme [12], envisions a trusted
party who, amongst other things, should be trusted to refrain from transferring
credentials between different users. Damg̊ard’s scheme [13], is based on general
complexity-theoretic primitives and is therefore not applicable for practical use.
The scheme developed by Lysyanskaya, Rivest, Sahai and Wolf [19] is based on
one-way functions and general zero-knowledge proofs which also makes it inap-
propriate for practical use. Our CPC system can be considered as the opposite
of the credential scheme [6] constructed by Camenisch and Lysyanskaya, which
in effect issues one secret CPC for each trust provider; the scheme’s properties
of anonymity and untraceablity arise from the zero-knowledge protocols that
confirm that a user indeed has such a certificate without revealing it. Although
the scheme [6] appears to be of practical use, it is based on rather complex
(zero-knowledge) protocols. Our scheme and the required proofs of knowledge
are basic (Schnorr and Okamoto). Finally, we mention the work of Brands [5],
which deals with the related subject of privacy protecting attribute certificates.
In our system, the user itself can translate or combine credentials received from
different trust providers without the interaction of any trusted party, generating
a new certificate. This is an important distinction from Brands’ scheme [5] when
applied to the special case of a credential certificate system. As a final note, we
remark that the privacy of our scheme can be further improved by the use of
“Wallet with Observer” techniques, cf., [5], [11].

538 Eric R. Verheul

Outline of the paper

– In Section 2, we describe a variant of the Chaum-Pedersen digital signature
scheme which is of crucial importance for our constructions of self-blindable
certificates.

– In Section 3, we provide a functional description of our model for CPSs.
– In Section 4.1, we present the first technical construction of our model, which
assumes that secret key information is stored on tamper-proof devices to
provide resistance to credential transfer.

– In Section 4.2, we present the second technical construction of our model,
which is more resistant to the transfer of credentials, without requiring the
use of tamper-proof devices. The transfer of any credential in this construc-
tion to another person will actually result in the transfer of a very valuable
signing key, e.g., one enabling the holder to sign legally binding contracts in
the user’s name.

– In Section 5, we summarize our results.

2 A proofless variant of the Chaum-Pedersen signature

scheme

A digital signature s formed by an entity is a data string, based on a private key
under control of the entity, that associates a messagem (in digital form) to enable
a proof that it originates from the entity and that it has not been changed. If the
actual message comprises a public key plus some optional additional attributes,
then (m, s) is called a certificate and the entity issuing it is called a Certification
Authority (CA).

In this section, we describe a digital signature scheme that enables a CA
to issue certificates that are “self-blindable”. This will be explained further in
Section 3. The digital signature scheme is based on the Chaum-Pedersen signa-
ture scheme (cf., [11]). The setting of our scheme is not standard but is based
on a group, G, of prime order q, with generator g, in which the Decision Diffie-
Hellman problem is simple, while the discrete logarithm and the Diffie-Hellman
problems are practically intractable. In the section below, we further explain
these notions and indicate how such groups can be constructed. In Section 2.2,
we describe our digital signature scheme and its properties.

2.1 Groups in which the DDH problem is simple and DH, DL are
hard

Recall, that the Diffie-Hellman (DH) problem with respect to a generator g
of a group G of (prime) order q, is the problem of computing the values of the
function DHg(g

x, gy) = gxy. Two other problems are related to the DH problem.
The first one is the Decision Diffie-Hellman (DDH) problem with respect to g:
given a, b, c ∈ G decide whether c = DHg(a, b) or not. An alternative formulation
of the Decision Diffie-Hellman problem is: given a quadruple g, gx, h, hy in the

Self-Blindable Credential Certificates from the Weil Pairing 539

group G decide whether x = y. The second problem related to the DH problem,
is the discrete logarithm (DL) problem in G with respect to g: given a = gx ∈ G,
with 0 ≤ x < q, find x = DL(α). The DL problem is at least as difficult as the DH
problem. It is widely assumed that if the DL problem G is hard, then so is the DH
problem. Currently, cf. [16], [27], [17], a large class of groups has been discovered
in which the DDH problem is simple, while the Diffie-Hellman and discrete
logarithm problems are presumably not. This class consists of certain groups of
points on supersingular elliptic curves in which setting the DDH problem can
be efficiently computed (in polynomial time i.e., in polynomial time and space
in length of input) by using the so-called Weil pairing.

As an illustration of such groups and techniques, consider the curve Ca :
y2 = x3 + a with p = 2 mod 3 and a any non-zero element in GF(p). Then,
the Frobenius trace over GF(p) is equal to 0 (hence the curve is supersingular)
and the number of points on the curve in GF(p) is equal to p + 1. Moreover,
as p = 2 mod 3, the equation x3 = 1 only has solutions in GF(p2) other than
x = 1; let ω be such a solution. Now, if 〈P 〉 is a group of points of (prime)
order q on the curve in GF(p) (i.e., q divides p + 1) and A,B,C is an instance
of the DDH problem with respect to P . Then C = DHP (A,B) if and only if
eq(A,D(B)) = eq(P,D(C)), where D(.) is the endomorphism (called a distortion
map in [27]) on Ca that maps a point (x, y) on the curve to the point (ω · x, y)
also on the curve (over GF(p2)) and where eq(., .) is the so-called Weil pairing.
See [1], [20] or [26]. As the Weil pairing is efficiently computable, the DDH
problem is also efficiently computable in this situation. It is well-known that the
DL problem in the group of points on the curve in GF(p) reduces to the DL
problem in a subgroup of order q in GF(p2)∗ (cf. [21]). That is, to make the
DH and DL problems practically intractable against attacks known today, the
length of the prime number q should be at least 160 bit and the length of the
prime number should be at least 512 bits.

A practical construction of a group in which the DDH problem is efficiently
computable and the DH and DL problems are presumably not, is as follows.
Choose a 512 bit prime number p of type p = 6q − 1 where q is also a prime
number and consider the curve C1 : y

2 = x3 + 1. Let P be any GF(p)-rational
point on the curve of order q. This construction is used in [2] in the setting of
an identity-based encryption scheme that is also based on the Weil pairing. This
paper also analyzes the work needed to solve the DDH problem in the group
〈P 〉, which amounts to a small number of multiplications on the curve.

These techniques generalize to groups of points on supersingular elliptic
curves over a finite field, say F , and the work required to compute the DDH
problem is asymptotically bounded by O(k3 log(‖F‖) bit operations, i.e., the
complexity of calculating a Weil pairing. The parameter k is the so-called MOV
degree (cf. [21]) and is equal to either 1, 2, 3, 4 or 6 in the setting of supersingular
curves.

We end this section with two remarks for later reference. A group of points,G,
on a supersingular elliptic curves has the property that there exists an efficiently
computable embedding, i.e., an injective homomorphism, of the group in a second

540 Eric R. Verheul

group G′ where all three of the DDH, DH and the DL problems are believed to
be hard. Indeed, this embedding is given by the MOV embedding (cf. [21]) and
the second group, G′, is a subgroup of the multiplicative group of a finite field.
It is shown in [27] that inverting such embeddings is hard; in fact, as hard as
the DH problem in the group G. Note that by using a specific choice of G, the
group G′ could be the XTR group. Compare [18] and [27]. A group of points on a
(supersingular) elliptic curve over a finite field used in cryptography is typically
chosen in such a way that its order is a prime number times a small number (e.g.,
6 in the example above). This means that choosing provable random elements in
the subgroup without knowledge of relative discrete logarithms is very simple,
e.g., by mapping a hash value into a point on the curve and then mapping it to
a point in the subgroup. See also [3].

2.2 The ‘proofless’ variant of the Chaum-Pedersen scheme

As explained in the previous section, we consider a group, G, of prime order q,
with generator g, in which the DDH problem is simple, while the discrete log-
arithm and the Diffie-Hellman problems are practically intractable. The public
key of a participant in the Chaum-Pedersen scheme takes the form y = gx where
0 ≤ x < q is the participant’s randomly chosen private key. A signature on a
message m ∈ G in the original Chaum-Pedersen scheme, consists of z = mx plus
a proof that logg(y) = logm(z). Resolving the latter problem is just an instance
of the Decision Diffie-Hellman (DDH) problem with respect to g. Indeed, one
can easily verify that logg(y) = logm(z) if and only if z = DHg(m, y). That is, if
one applies the Chaum-Pedersen scheme to the group G, one is not required to
send along an explicit proof that logg(y) = logm(z), as anyone can validate that
themselves. Or, in other words, the signature on a message m ∈ G only consists
of an element z = mx of the group G, without the additional proof of knowledge.
This is the variant of the Chaum-Pedersen scheme that we use in our schemes.
It follows that by choosing a group of points on a supersingular elliptic curve
of MOV degree 6 (cf. [21] and the previous section), the representation of the
element z requires only 1024/6 ≈ 171 bits to obtain a security level comparable
with 1024 bit RSA (with respect to attacks known today). See [3], where it is
also shown that the above digital signature scheme is secure in the random oracle
model.

An interesting property of this variant is that it is self-blindable: it enables
easy randomization without losing the verification property and without requir-
ing knowledge of the signing key z. Indeed, given the signed message m,mz,
then by choosing a randomizing factor, k, it can be transformed into mk,mkz.
This property becomes useful when the message m has a property that is inher-
ited by mk, e.g., knowledge of a certain discrete logarithm, and is explored in
the following sections. Another interesting property of this variant (as pointed
out to us by Stefan Brands), is its easy blinding property, cf. [7]. When a party
wants to obtain a blind signature on a message (typically a hash), M , from a
signing party with public key gx in our variant of the Chaum-Pedersen, it asks
the signing party to sign M r, for a random 0 ≤ r < q, resulting in M rx. The

Self-Blindable Credential Certificates from the Weil Pairing 541

user can deduce Mx from this using r and verify that it is a correct signature
on M , which is publicly verifiable. We will delve no further into this property in
this paper.

In the terminology we introduced above, we formulate the security assump-
tion that we require for our variant of the Chaum-Pedersen scheme (cf. [8], [9]).

Assumption 21 If the Diffie-Hellman problem with respect to g is hard, then
without knowledge of the private signing key z, the only forged message an at-
tacker can make on the basis of signed messages (m1,m

z
1), (m2,m

z
2), . . . , (mn,m

z
n)

with respect to the public key gz is of the form (gi0
∏n

j=1
min

n , (g
i0

∏n
j=1

min
n)

z),
for any integers i0, i1, . . . in, i.e., a power product of the signed messages.

3 Our functional model for CPCs

In this section, we describe our functional model for CPCs. To this end, we
first formulate the requirements for self-blindable pseudonymous certificates and
credentials based upon them. Then we explain how these elements can be used
to build a CPC system.

3.1 Self-blindable certificates

In this section we introduce the notion of self-blindable certificates, which is of
crucial importance for our schemes. Our introduction is somewhat informal, but
can be made formal without much effort.

We assume that one public key crypto system is employed by all users and
we denote the collection of all possible user public keys by U . We also assume
that one signing public key crypto system is employed by all trust providers for
certificate issuance. For simplicity’s sake, we also assume that certificate signing
is deterministic, i.e., there is only one possible valid certificate on a fixed public
key, plus optional fields. We let T denote the collection of possible verification
public keys of trust providers. Our description of a credential on a user public
key PU ∈ U from a trust provider with public verification key PT takes the form

{PU , Sig(PU , ST)},

where ST stands for the private signing key of the trust provider relating to PT .
This certificate is typically accompanied by a higher-level certificate

Cert(PU , “Trust statement”)

on the public verification key PT . We do not further elaborate on this, but this
certificate can be thought of as a standard X.509 certificate with the “Trust
statement” in one of its extension fields. We denote the collection of all possible
certificates by C.

The certificates are called self-blindable, provided there exists a set called
transformation factor space F and an efficiently computable transformation map
D : C × F → C with the following properties:

542 Eric R. Verheul

1. For any certificate C ∈ C and f ∈ F the certificate D(C, f) is signed with
the same trust provider public key as C.

2. Let C1, C2 be certificates and f ∈ F known. If C2 = D(C1, f) then one can
efficiently compute a transformation factor f ′ ∈ F such that C1 = D(C2, f

′).
3. If C1, C2 ∈ C are two different certificates on the same user public key, then
so areD(C1, f) andD(C2, f). That is, the mappingD(., .) induces a mapping
U ×F → U and although abusive, we also use the notation D(PU , f) for any
user public key PU and transformation factor f .

4. Let PU be a user public key and let f ∈ F be a known transformation
factor. Then, a user possesses the private key relating to PU if and only if it
possesses the private key relating to D(PU , f).

5. If the user’s public key PU ∈ U is fixed and if f ∈ F is a uniformly random
element in F , then D(PU , f) is a uniformly random element in U .

We briefly explain the rationale behind these properties. The first property
enables one to transform a user certificate into another one from the same cer-
tificate authority; the fourth property ensures that the user still has possession
of the private key referenced in the transformed certificate provided he knows
the transformation factor. The fifth property states that all user public keys are
equally possible in the transformed certificate. As we will explain below, a user
typically collects credentials on different certificates formed as transformations
of one fixed certificate. Now, the second property enables to invert transforma-
tions, allowing to translate all credentials to the fixed certificate and then to
other certificates. Finally, the third property is technical and in fact emerged
from our constructions. We have chosen it as part of our formal definition, as it
enables simple proofs and formulation of other properties, e.g., properties four
and five. More complicated requirements are possible to arrive at a more general
notion of self-blindable certificates, but we will not explore this.

3.2 A CPC system based on the building blocks

We use the terminology introduced above and we assume that the certificates are
self-blindable. Our notion of a pseudonymous credential is the simplest possible
and takes the form

{PU , [Sig(PU , SN), Cert(PN , “PP statement”)]},

where PU stands for the public key of the user (with related private key SU).
Moreover, Sig(PU , SN) is a signature on the user’s public key with a signing key
of the pseudonym provider (PP) and Cert(PN , “PP statement”) is a (conven-
tional) certificate on the public verification key of the pseudonym provider, with
a statement on its applicability included among the usual fields (e.g., expiration
date). For evident reasons, this PP certificate must be used by the pseudonym
provider for many users to prevent linkage of the issued pseudonymous certifi-
cate. Also note that the pseudonym of a user is in fact the user’s public key in its
certificate, which is reminiscent of the SPKI (Simple Public Key Infrastructure)
approach, cf. [24].

Self-Blindable Credential Certificates from the Weil Pairing 543

Note that the self-blinding properties of the certificates enable the users them-
selves to generate a new pseudonymous certificate validly signed by the same PP,
by choosing a (random) factor and transforming an initially issued pseudony-
mous certificate.

Our description of a CPC is based upon that of a pseudonymous credential,
say {PU , [Sig(PU , SN), Cert(PN , “PP statement”)]} and its simplest form is:

{PU , [Sig(PU , SN), Cert(PN , “PP statement”)],
[Sig(PU , SC), Cert(PC , “CP statement”)]}.

Here, [Sig(PU , SC), Cert(PC , “CP statement”)] is called the credential field. In
this, Sig(PU , SU) is a signature on the public key of the owner with a signing
key SC of the credential provider (CP). Also, Cert(PC , “CP statement”) is a
(conventional) certificate on the related credential provider’s public verification
key, that has a statement on its credential applicability, e.g., “the person having
possession of the private key is over 18 years old” included among the usual
fields (e.g., expiration date). In a natural fashion one can have several credential
fields attached to a pseudonymous credential in the above way, which is in fact
the general form of a CPC.

Based on the building blocks explained above, one can now construct a wide
variety of types of CPC systems. We provide a high-level description of one such
system on which many variations are possible (cf. Figure 1).

System description 31

Initial Registration The user registers, typically in a non-anonymous fashion,
with a pseudonym provider. After registration a First Pseudonymous Certifi-
cate (FPC) issuing protocol between the user and the pseudonym provider
is started. This protocol is system specific. The pseudonym provider puts
the FPC in a public directory. When unique pseudonyms are required, the
provider has the option to maintain a private list of physical persons that
were issued a pseudonymous certificate; this ensures that at most one such
certificate is issued to a physical person.

Credential Issuance By using a random transformation factor, the user trans-
forms its FPC into a random pseudonymous certificates (RPC). The user
securely stores the used transformation factor. Then the user registers with
a credential provider using this RPC which includes a proof of possession of
the private key referenced in the RPC. This registration need not be anony-
mous. The user does what is required to obtain a credential (e.g., takes a
driver’s exam, shows other credentials) and up-on succeeding, is issued a
credential on the RPC, that is the CPC. The pseudonym provider has the
option to put the CPC in a public directory.

Credential Use The user registers (typically anonymously) with a service pro-
vider using a new RPC, which includes a proof of possession of the private
key referenced in the new RPC. The user combines all of the CPCs relat-
ing to credentials required by the service provider into one CPC under the

544 Eric R. Verheul

registered pseudonym. This is possible by using the second property of self-
blinding certificates on the transformation factors related with the individ-
ual, original CPCs. That is, a CPC is first translated to the First Pseudonym
and then translated to the registered pseudonym (in our constructions these
two steps can be performed in one operation). This certificate is presented
to the service provider, together with a proof of possession of the private key
referenced in this CPC. Once the user is successful in doing so, he will be
serviced.
If the service provider wants to be certain that the user has not already been
issued another pseudonym, the service provider has the option to require
that the user contact a specific trust provider which we refer to as “unicity”
provider. The user sends this trust provider the transformation factor(s),
transforming the new RPC to the first issued pseudonymous certificate stored
in the pseudonym provider’s directory (i.e., the FPC). This trust provider
then validates that these factor(s) transform the RPC into a FPC on the PP’s
directory, and that this FPC was not registered before. The trusted party
then reports to the service provider that the user has not registered before.
Note that the PP directory does not specify user identities, only FPCs,
also note that the specific trust provider need not be the user’s pseudonym
provider.

In the system description above, we have used the FPC list of the pseudonym
provider as the reference data for all trust providers that need to verify that a
‘physical’ user cannot register twice (under different pseudonyms) with a service
provider. This means that if two such trust providers conspire, they can link
together the different pseudonyms of a user. One can prevent this linkage with a
flexible secret sharing technique as follows. During registration, the pseudonym
provider and the user, say U , exchange a secret, S. If a trust provider, say T ,
wants to provide assurance on unique pseudonyms, then provider A is provided
a list consisting of transformed FPCs, in such a way that:

– user U ’s FPC is transformed using a transformation factor based on a secure
hash of the name of the provider T and the secret S; and

– the order of the FPCs is randomly permuted.

If user U wants to assure the trust provider T that it is not registering twice
(under different pseudonyms) with a service provider via T , then it provides the
provider with the transform factor transforming the RPC (see above) into the
transformed FPC stored at the provider T . This technique can be iterated: user
U can (after proving possession of a transformed FPC at T) be issued another
secret by T , and the transformed FPC can be re-transformed by T and stored
at another trust provider T2, etc.. By combining transformation factors, user
U can employ provider T2’s service without any interference from provider T .
Moreover, in such a setting, linkage requires that all such trust providers and
the pseudonym provider conspire.

In Figure 1 we have depicted the (five) steps from pseudonym issuance to
CPC application in a sample voting application. The communication between

Self-Blindable Credential Certificates from the Weil Pairing 545

the “unicity” provider and the service provider (the voting application) is not
depicted.

Bob

Pseudonym
Provider

Public Key P

PP signature

FPC

TP1: National Government

Public Key P1

PP signature

CPC1

Has Dutch
nationality

TP1 signature

TP2: Local Government

Public Key P3

PP signature

CPC3
TP2 signature

Voting
Application

Has Dutch
nationality

TP1 signature

Public Key P2

PP signature

Lives in
Amsterdam

TP2 signature

CPC2Public Key P’

PP signature

FPC’
“Unicity”
Provider

R

?

1. 2.

2.

4.

3.

5.

Lives in
Amsterdam

for mayor

Mr. W. Kok

Mrs. M. v. Buuren

I vote:

Signature

Fig. 1. Overview of system description 31

3.3 Revocation of Certificate Bases

As users typically will not present the originally issued certificates to service
providers, certificates cannot be revoked in the conventional way. A primary
concern is that the revocation process should not make it possible to link cre-
dential use, except, possibly, by certain trusted parties.

There are several methods to address revocation in our model, but we out-
line only two. The first method is pro-active, and consists of letting the trust
providers employ signing keys with a short expiration time (e.g., a week). If a
pseudonymous certificate or a credential relating to such a certificate has not
been revoked, then the trust provider automatically updates the certificates or
credentials in its directory with newly signed ones. A user can collect the up-
dated pseudonymous certificates and credentials, preferably via an anonymous
channel to reduce the chances of linkage. To achieve this, the user can, for exam-
ple, collect many certificates, including the required ones. By revoking its FPC,
the user can effectively revoke all credentials based on it.

The second method for revocation we outline consists of sending along spe-
cific transformation factors with a (credential) pseudonymous certificate, to a

546 Eric R. Verheul

specific trust provider. This trust provider can then retrieve the original issued
(credential) pseudonymous certificates and find out if they have been revoked.
The trust provider then provides a statement on the status of the (credential)
pseudonymous certificate to the service provider. This functionality resembles
the use of an On-line Certificate Status Protocol (OCSP) request, commonly
used on the Internet (cf. [23]). Of course, the service provider still needs to
verify that the user is in possession of the private key referenced in the used
randomized CPC.

The second revocation technique can be supplemented with the flexible secret
sharing technique described at the end of the previous section.

4 Constructions for credential pseudonymous certificates

4.1 A simple Construction

In this section we describe an initial and very simple construction for self-
blindable certificates and thus CPCs. We describe this scheme merely for pur-
poses of illustration, as it has the serious inherent draw-back of not supporting
cryptographic protection against users sharing credentials. Therefore, to imple-
ment this construction one would need to trust devices resistant to user tamper
to prevent users from sharing credentials. As the construction in Section 4.2 pro-
vides cryptographic protection against users sharing credentials this construction
is favorable to the scheme presented in this section.

Let G = 〈g〉 be a group of prime order q in which the DDH problem is effi-
ciently computable, while the discrete logarithm and the Diffie-Hellman problems
are practically intractable. We also assume that the (provable) random genera-
tion of elements in G without knowing any relative discrete logarithms is also
possible (see the end of Section 2.1). The description of the group G, including
the g, q are considered as system parameters.

The set T of all trust provider’s public keys takes the form j, js where 0 ≤
s < q is the related private key and where j ∈ G \ {1}. We assume that each
trust provider’s public generator j is (provably) randomly chosen, e.g., it could
be based on the output of a secure hash algorithm with a fixed input. The set of
users public keys U consists of elements of the form gx where 0 < x < q are all
possible user’s private keys. There is a subtle reason why x = 0 is principally not
allowed, see below. Note that a user can prove possession of x in a zero-knowledge
fashion with the Schnorr identification protocol [25]. Moreover, several digital
signature systems can be based on the user public, private key pairs mentioned
above, e.g., DSA [15], ElGamal [14] and Schnorr [25]. Finally, a certificate issued
by a trust provider with public key h, hz on a user public key gx takes the form:

{gx, gxz}.

Note that the above certificate is based on the variant of the Chaum-Pedersen
signature (as outlined in Section 2) on gx with respect to the public key h, hz,
i.e., gxz. An important feature of this variant is that it is not required to add an

Self-Blindable Credential Certificates from the Weil Pairing 547

interactive proof that the second component indeed has the form gxz as the DDH
problem is assumed to be simple. Due to the restrictions on the first element in
the certificate, it cannot be equal to the unity element. If this condition is not
also checked by applications, then certificate forgery becomes simple.

The certificates C constructed in this way are self-blindable. To this end,
choose the transformation factor space F equal to GF(q)∗ and define the trans-
formation D : C × F → C as

({X,Y }, f)→ {Xf , Y f}.

That is, the certificate {gx, gxz} is transformed to the certificate {gxf , gxfz}
under factor f . It is a simple verification that D(., .) satisfies the five properties
of a transformation and, thus, that the certificates constructed in this way are
self-blindable.

Notice that the transfer of credentials is simple in this construction, if the
user is able to retrieve (and transfer) the private key related to the public key
of a (transformed) pseudonymous certificate. This problem can be controlled by
ensuring that all security operations with respect to credentials take place on
a tamper resistant signing device in such a way that private key information
of (transformed) certificates can be used (‘addressed’) but not retrieved. The
use of such devices needs to be addressed in the FPC issuing protocol for these
certificates, for instance as follows.

1. The user registers, typically in a non-anonymous fashion, with a pseudonym
provider.

2. The pseudonym provider generates a random 0 < x < q, and forms the
user public key gx and the certificate {gx, gxz}. All information is put on a
tamper resistant signing device, in such a way that private key information
of (transformed) certificates can be used but not retrieved.

3. The secure signing device is handed over to the user in a secure fashion.

Having filled in this issuing protocol, our CPC scheme now follows system
description 31. Protection against pseudonym/credential linking and pseudo-
nym/credential translation are obvious consequences of the properties of self-
blindable certificates. For the other two security properties (protection against
forgery and transfer), one needs to trust devices resistant to user tampering.

4.2 A more robust construction

This construction is based on the technique in Brands’ e-cash scheme to trace
double spenders (cf. from [4]). Just as in the previous section our construction
is based on the variant of the Chaum-Pedersen signature scheme as introduced
in Section 2. So, again, let G = 〈g〉 be a group of prime order q in which the
DDH problem is efficiently computable, while the discrete logarithm and the
Diffie-Hellman problems are practically intractable. We also assume that the
(provable) random generation of elements in G without knowing any relative
discrete logarithms is also possible. In addition to this, we assume that there

548 Eric R. Verheul

exists an efficiently computable embedding E(.) from G into a group G′ where
all three problems DDH, DH and DL are practically intractable. All these re-
quirements are met by suitable groups of points on supersingular elliptic curves,
cf. the end of Section 2.1. The description of the groups G, including the g, q,
the group G′ and the embedding are considered to be system parameters.

As before, the set of all trust providers’ public keys, T takes the form j, js

where 0 ≤ s < q is the related private key and where j ∈ G \ {1}. We assume
that each trust provider’s public generator j is (provably) randomly chosen, e.g.,
it could be based on the output of a secure hash algorithm with a fixed input.
In addition we assume that the pseudonym provider publishes a certified pair
(r, s) = (r, rf) where r, s ∈ G and for some 0 < f < q which is unknown by all
parties. Generation of such a pair consists of choosing two (provable) random
r, s which determines f . Alternatively, the pseudonym provider can choose the
element r in a provable random fashion and generate a random element 0 < f < q
and form s = rf . We prefer the first construction, for two reasons. First, it is
difficult for the pseudonym provider to convince others that f has been chosen
randomly and, second, it is good practice to have as few secret keys in a system
as possible.

The set of users public keys U consists of elements of the form g1, g2, g
x1

1
gx2

2
.

Here 0 ≤ x1, x2 < q is the related private key, g1 is a random generator and
logg1

(g2) = f . As in the previous scheme, we require that gx1

1
gx2

2
be unequal

to the unity element. Note that a participant can prove possession of x1, x2 in
a zero-knowledge fashion with the Okamoto variant of Schnorr’s identification
protocol [22]. In the same paper, a variant of Schnorr’s signature scheme is
described based on the user public, private key pairs mentioned above. Finally,
a certificate issued by a trust provider with public key h, hz on a user’s public
key g1, g2, g

x1

1
gx2

2
takes the form:

{g1, g2, g
x1

1
gx2

2
, (gx1

1
gx2

2
)z}.

Again, this is precisely the variant of the Chaum-Pedersen signature (as outlined
in Section 2) on the user’s public key with respect to the public key h, hz. As
the DDH problem is simple, on basis of the certified pair (r, rf), anyone can and
should verify that the first two parameters in the certificate are indeed correctly
formed, i.e., the second one is an f -th power of the first one (cf. the alternative
description of the DDH problem in Section 2.1). Due to the restrictions on the
three elements in the certificate, none of them can be equal to the unity element.
If this condition is not also checked by applications, then certificate forgery
becomes simple.

The certificates C constructed in this way are self-blindable. To this end,
define the transformation factor space by F = GF(q)∗ ×GF(q)∗ and the trans-
formation D : C × F → C as:

({X,Y,W,Z}, (k, l))→ {X l, Y l,W kl, Zkl}.

Self-Blindable Credential Certificates from the Weil Pairing 549

That is, the certificate {g1, g2, g
x1

1
gx2

2
, (gx1

1
gx2

2
)z} is transformed into the certifi-

cate

{gl
1, g

l
2, g

x1kl
1

gx2kl
2

, (gx1kl
1

gx2kl
2

)z}

under the transformation factor (k, l). It is a simple verification that D(., .)
satisfies the five properties of a transformation. Notice that two transformation
factors (k, l) are used to ensure that a randomly transformed public key is indeed
a random element in the user’s public key space.

The FPC issuing protocol for these certificates can be filled in as follows, but
many variations are possible; the pseudonym provider’s public key is denoted as
h, hz, where h ∈ G \ {1} is (provably) randomly chosen.

1. The user registers, typically in a non-anonymous fashion, with a pseudonym
provider.

2. The pseudonym provider generates a random pair (g1, g2) such that g2 = gf
1
,

by choosing a (provably) random power of the elements r, s. The pair (g1, g2)
is sent to the user, or to a party acting on its behalf (e.g., a smart card issuer).

3. The user (or a party acting on its behalf), generates a random private key
0 ≤ x < q and forms gx

2 . The user sends g
x
2 and proves possession of the

private key x (i.e., the discrete logarithm with respect to g2 of the first sent
public key), e.g., by using Schnorr’s protocol.

4. Based on the elements g1, g2 and g
x
2 , the pseudonym provider forms the pub-

lic key g1, g2, g1g
x
2 , checks to ensure that the last element is unequal to the

unity element and places a Chaum-Pedersen signature on it, i.e., (g1g
x
2)

z.
Moreover, the provider employs the embedding E : G→ G′ and determines
the elements E(g2), E(g

x
2) of the group G′ (in which the DDH, DH and

DL problems are hard). Next the provider determines a random power r
of these elements, i.e., E(g2)

r, E(gx
2)

r. The provider then forms a conven-
tional non-repudiation certificate (e.g., based on the US Digital Signature
Algorithm) on (E(g2)

r, E(gx
2)

r). The first pseudonymous certificate and the
non-repudiation certificate are issued to the user. Both are also stored in
separate directories.

Using the terminology of the above protocol; as the embedding E(.) is a
homomorphism it directly follows that the private non-repudiation signing key
is equal to x. We have used a non-repudiation signing key only as an example
of a private key that is highly important to a user. Many more examples exist
(e.g., the user’s signing key for financial transactions).

There are two reasons why the user’s non-repudiation key is embedded in
the group G′ in the specified way. First of all, using a group where all three of
the DDH, DH and DL problems are hard, seems appropriate for a conventional
signature scheme. Second, embedding the non-repudiation key in the specified
way, prevents linkage between the first pseudonymous certificate and the non-
repudiation certificate. Should a party have access to gr

2, g
xr
2 (whose E(.) images

appear in the non-repudiation key) then this party would be able to link this
to the pair g2, g

x
2 as the DDH problem in G is simple. However, inverting the

550 Eric R. Verheul

embedding E(.) is hard (cf. the remarks at the end of Section 2.1), so invert-
ing the values E(g2)

r, E(gx
2)

r (deducible from the non-repudiation certificate)
is not a practical possibility. Moreover, as the DDH problem is presumed to
be hard in G′ it would be impossible to relate E(g2), E(g

x
2) (deducible from

the first pseudonymous certificate) to E(g2)
r, E(gx

2)
r (deducible from the non-

repudiation certificate). Strictly speaking, such a linkage might not be an issue,
as users will typically employ transformed pseudonymous credentials. However
(cf. the generic description 31), this might become an issue should a service
provider want to be certain that the user has not already been issued another
pseudonym. Indeed, the user would then need to provide a trust provider with
the transformation factor from its registered pseudonymous certificate to the
First Pseudonymous Certificate. We finally note that, in the issuing protocol,
the pseudonym can alternatively first calculate random r-powers of the elements
g2, g

x
2 in the group G and then utilize the embedding E(.). For the same r, this

would give the same result as with the method described above.

Having filled in this issuing protocol, our CPC scheme now follows from
the system description 31. Protection against pseudonym/credential linking and
pseudonym/credential translation are obvious consequences of the properties of
self-blindable certificates. We discuss the two other security properties.

Protection against pseudonym/credential forgery
This protection is based on an all-or-nothing concept (see the introduction).
The private key in a transformed credential takes the form (k, k · x mod q) for
some 0 < k < q. Note that dividing the second part by the first part yields the
user’s non-repudiation key x. Hence, if the user transfers a credential, then it
also transfers a copy of its non-repudiation signing key. We think that this is a
sufficient deterrent to transferring credentials (which can be supplemented with
the physical security of a signing device).

Protection against pseudonym/credential forgery [Indication]
Under Assumption 21, we provide a sketched proof in the appendix that an
efficient pseudonym/credential forgery algorithm based on all issued certificates
and private keys, will in fact provide an algorithm determining hard discrete
logarithms with non-negligible probability.

5 Conclusion

We have described two simple, efficient and effective credential pseudonymous
certificate systems, which also support anonymity without the need for a trusted
third party. Both systems are based on a new paradigm, called self-blindable
certificates. Such certificates were constructed using the Weil pairing in super-
singular elliptic curves. The second system provides cryptographic protection
against the forgery and transfer of credentials.

Self-Blindable Credential Certificates from the Weil Pairing 551

6 Acknowledgments

We want to thank Stefan Brands and Berry Schoenmakers for stimulating dis-
cussions. Berry is specifically thanked for pointing us to the double spending
preventing technique from E-cash based on the Okamoto identification protocol
and Stefan is specifically thanked for providing us with the term “self-blinding
signatures and certificates”.

References

1. I.F. Blake, G. Seroussi, N.P. Smart, Elliptic Curves in Cryptography, Cambridge
University Press, 1999.

2. D. Boneh, M. Franklin, Identity-Based Encryption from the Weil Pairing, Proceed-
ings of Crypto 2001, LNCS 2139, Springer-Verlag 2001, 213-229.

3. D. Boneh, B. Lynn, H. Shacham Short Signatures from the Weil Pairing, these
proceedings.

4. S. Brands, Untraceable Off-line Cash in Wallet with Observers, Proceedings of
Crypto ’93, LNCS 911, Springer-Verlag 1994, 302-318.

5. S. Brands, Rethinking Public Key Infrastructures and Digital Signatures; Building
in Privacy, PhD Thesis, Eindhoven University of Technology, the Netherlands,
1999.

6. J. Camenisch, A. Lysyanskaya, An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation, Proceedings of Eurocrypt
2001, LNCS 2045, Springer-Verlag 2001, 93-118.

7. D. Chaum, Security Without Identification: Transaction Systems to Make Big
Brother Obsolete, Communications of the ACM, 1985, 28(10), 1035-1044. See also
Security Without Identification: Card Computers to Make Big Brother Obsolete,
available from www.chaum.com.

8. D. Chaum, Zero-knowledge Undeniable Signatures, Proceedings of Eurocrypt’90,
LNCS 473, Springer-Verlag 1991, 458-464.

9. D. Chaum, H. van Antwerpen, Undeniable Signatures, Proceedings of Crypto’89,
LNCS 435, Springer-Verlag 1990, 212-216.

10. D. Chaum, J.-H. Evertse, A Secure and Privacy-protecting Protocol for Trans-
mitting Personal Information between Organizations, Proceedings of Crypto ’86,
LNCS 263, Springer-Verlag 1987, 118-167.

11. D. Chaum, T.P. Pedersen, Wallet Databases with Observers, Proceedings of
Crypto’92, LNCS 740, Springer-Verlag 1993, 89-105.

12. L. Chen, Access with Pseudonyms, In Cryptography: Policy and Algorithms, LNCS
1029,Springer-Verlag 1995, 232-243.

13. I. Damg̊ard, Efficient Concurrent Zero-knowledge in the Auxiliary String Model,
Proceedings of Eurocrypt 2000, LNCS 1807, Springer-Verlag 2000, 431-444.

14. T. ElGamal A Public Key Cryptosystem and Signature System Based on Discrete
Logarithms, Proceedings of Crypto ’84, LNCS 196, Springer-Verlag 1985, 10-18.

15. FIPS 186, Digital Signature Standard, Federal Information Processing Standards
publication 186, U.S. Department of Commerce/NIST, 1994.

16. A. Joux, A One Round Protocol for Tripartite Diffie-Hellman, 4th International
Symposium, Proceedings of ANTS, LNCS 1838, Springer-Verlag, 2000, 385-394.

17. A. Joux, K. Nguyen, Seperating Decision Diffie-Hellman from Diffie-Hellman in
Cryptographic Groups, in preparation. Available from eprint.iacr.org.

552 Eric R. Verheul

18. A.K. Lenstra, E.R. Verheul, The XTR Public Key System, Proceedings of Crypto
2000, LNCS 1880, Springer-Verlag, 2000, 1-19; available from www.ecstr.com.

19. A. Lysyanskaya. R. Rivest, A. Sahai, S. Wolf, Pseudonym Systems, In Selected
Areas in Cryptography, LNCS 1758, Springer-Verlag 1999.

20. A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publish-
ers, Boston 1993.

21. A. Menezes, T. Okamoto, S.A. Vanstone Reducing Elliptic Curve Logarithms to a
Finite Field, IEEE Trans. Info. Theory, 39, 1639-1646, 1993.

22. T. Okamoto, Provable Secure and Practical Identifications and Corresponding Sig-
nature Schemes, Proceedings of Crypto’92, LNCS 740, Springer-Verlag 1993, 31-53.

23. RFC 2560, Online Certificate Status Protocol (OCSP), available from www.ietf.org.
24. RFC 2693, SPKI Certificate Theory, available from www.ietf.org.
25. C.P. Schnorr, Efficient Identification and Signatures for Smart Cards, Proceedings

of Crypto’89, LNCS 435, Springer-Verlag 1990, 239-252.
26. J. Silverman, The Arithmetic on Elliptic Curves, Springer-Verlag, New York, 1986.
27. E. Verheul, Evidence that XTR is More Secure than Supersingular Elliptic Curve

Cryptosystems, Proceedings of Eurocrypt 2001, LNCS 2045, Springer-Verlag 2001,
195-210.

A Appendix: forgery protection in the robust

construction

Suppose that a total of n-number of certificates under one trust provider are
issued, e.g., of type:

{g1,i, g2,i, g
x1,i

1,i g
x2,i

2,i , (g
x1,i

1,i g
x2,i

2
)z},

where the trust providers public key is of the form h, hz as usual. Also suppose
that a forger has access to all private keys x1,i and x2,i and is able to produce a
forged certificate, say

{h1, h2, h
y1

1
hy2

2
, (hy1

1
hy2

2
)z},

where 0 ≤ y1, y2 < q is known to the forger. Notice that (y1, y2) should not be
equal to (0, 0) as then the certificate contains the unity element. As the h2 should
be an f -th power of h1, it follows from Assumption 21 that h1 (resp. h2) is a
power product of the {g1,i} and r (resp. {g2,i} and s). Likewise, h

y1

1
hy2

2
is a power

product of all g
x1,i

1,i g
x2,i

2,i and h. By choosing the right transformation factors, we

may assume without loss of generality that h1 = rb
∏

i∈I g1,i, h2 = sb
∏

i∈I g2,i

and

hy1

1
hy2

2
= hc

∏

j∈J

g
x1,j

1,j g
x2,j

2,j , (1)

for some subsets I, J of {1, 2, . . . , n} and b, c ∈ {0, 1}.
We now sketch that we can rule out the possibility that either b, c is equal

to 1. To this end, suppose the probability that the event that c = 1 to be non-
negligible. Now, if one simulates f , then one can use the forgery algorithm to
determine logr(h). Indeed, by feeding the algorithm g1,i (resp. g2,i) that are of

Self-Blindable Credential Certificates from the Weil Pairing 553

form rti (resp. sti), where 0 ≤ ti < q known and random and by choosing the
0 ≤ x1,i, x2,i < q in a random way (i = 1, 2, . . . n). As this is ‘correct’ input, it
will lead to equalities of type (1). Now, if c = 1 in any of these equalities then
the algorithm has produced logr(h), which is assumed to be a hard problem.
Likewise, if the probability that b = 1 is non-negligible, then simulation of f the
forgery algorithm will also enable to determine discrete logarithms with respect
to r, by basing all g1,i, g2,i on random powers of an element z for which logr(z)
is required. Thus we conclude that b = c = 0 with overwhelming probability and
that actually the equations (1) are of type

hy1

1
hy2

2
=

∏

j∈J

g
x1,j

1,j g
x2,j

2,j , (2)

where h1 =
∏

i∈I g1,i, h2 =
∏

i∈I g2,i. Note that the sets I, J cannot be empty
as the unity element would then occur in the certificate. Moreover, if the set
I ∪ J does not contain at least two elements, then I = J is a singleton, and the
forgery algorithm has in fact produced a transformed user certificate, which is
not considered a forgery. Now, suppose that loga(b) is required for some a, b ∈ G,
then this can be determined with high probability, by basing ‘half’ the gi,i, g2,i

on random powers of a and the other half on random powers of b. With non-
negligible probability, the set I ∪ J will contain both a gi,i, g2,i based on a and
b, and will hence give a relation providing loga(b).

