
How to Leak a Secret

Ronald L. Rivest1, Adi Shamir2, and Yael Tauman2

1 Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139, rivest@mit.edu

2 Computer Science department, The Weizmann Institute, Rehovot 76100, Israel.
{shamir,tauman}@wisdom.weizmann.ac.il

Abstract. In this paper we formalize the notion of a ring signature,
which makes it possible to specify a set of possible signers without re-
vealing which member actually produced the signature. Unlike group sig-
natures, ring signatures have no group managers, no setup procedures,
no revocation procedures, and no coordination: any user can choose any
set of possible signers that includes himself, and sign any message by
using his secret key and the others’ public keys, without getting their
approval or assistance. Ring signatures provide an elegant way to leak
authoritative secrets in an anonymous way, to sign casual email in a
way which can only be verified by its intended recipient, and to solve
other problems in multiparty computations. The main contribution of
this paper is a new construction of such signatures which is uncondi-
tionally signer-ambiguous, provably secure in the random oracle model,
and exceptionally efficient: adding each ring member increases the cost
of signing or verifying by a single modular multiplication and a single
symmetric encryption.

Keywords: signature scheme, ring signature scheme, signer-ambiguous sig-
nature scheme, group signature scheme, designated verifier signature scheme.

1 Introduction

The general notion of a group signature scheme was introduced in 1991 by
Chaum and van Heyst [2]. In such a scheme, a trusted group manager predefines
certain groups of users and distributes specially designed keys to their members.
Individual members can then use these keys to anonymously sign messages on
behalf of their group. The signatures produced by different group members look
indistinguishable to their verifiers, but not to the group manager who can revoke
the anonymity of misbehaving signers.
In this paper we formalize the related notion of ring signature schemes. These

are simplified group signature schemes which have only users and no managers
(we call such signatures “ring signatures” instead of “group signatures” since
rings are geometric regions with uniform periphery and no center). Group signa-
tures are useful when the members want to cooperate, while ring signatures are
useful when the members do not want to cooperate. Both group signatures and



How to Leak a Secret 555

ring signatures are signer-ambiguous, but in a ring signature scheme there are
no prearranged groups of users, there are no procedures for setting, changing, or
deleting groups, there is no way to distribute specialized keys, and there is no
way to revoke the anonymity of the actual signer (unless he decides to expose
himself). Our only assumption is that each member is already associated with
the public key of some standard signature scheme such as RSA. To produce a
ring signature, the actual signer declares an arbitrary set of possible signers that
includes himself, and computes the signature entirely by himself using only his
secret key and the others’ public keys. In particular, the other possible signers
could have chosen their RSA keys only in order to conduct e-commerce over the
internet, and may be completely unaware that their public keys are used by a
stranger to produce such a ring signature on a message they have never seen and
would not wish to sign.
The notion of ring signatures is not completely new, but previous references

do not crisply formalize the notion, and propose constructions that are less effi-
cient and/or that have different, albeit related, objectives. They tend to describe
this notion in the context of general group signatures or multiparty construc-
tions, which are quite inefficient. For example, Chaum et al. [2]’s schemes three
and four, and the two signature schemes in Definitions 2 and 3 of Camenisch’s
paper [1] can be viewed as ring signature schemes. However the former schemes
require zero-knowledge proofs with each signature, and the latter schemes require
as many modular exponentiations as there are members in the ring. Cramer et
al. [3] shows how to produce witness-indistinguishable interactive proofs. Such
proofs could be combined with the Fiat-Shamir technique to produce ring sig-
nature schemes. Similarly, DeSantis et al. [10] show that interactive SZK for
random self-reducible languages are closed under monotone boolean operations,
and show the applicability of this result to the construction of a ring signature
scheme (although they don’t use this terminology).
The direct construction of ring signatures proposed in this paper is based on

a completely different idea, and is exceptionally efficient for large rings (adding
only one modular multiplication and one symmetric encryption per ring mem-
ber both to generate and to verify such signatures). The resultant signatures
are unconditionally signer-ambiguous and provably secure in the random oracle
model.

2 Definitions and Applications

2.1 Ring signatures

Terminology:We call a set of possible signers a ring. We call the ring member
who produces the actual signature the signer and each of the other ring members
a non-signer.
We assume that each possible signer is associated (via a PKI directory or

certificate) with a public key Pk that defines his signature scheme and specifies
his verification key. The corresponding secret key (which is used to generate reg-
ular signatures) is denoted by Sk. The general notion of a ring signature scheme



556 Ronald L. Rivest, Adi Shamir, and Yael Tauman

does not require any special properties of these individual signing schemes, but
our simplest construction assumes that they use trapdoor one-way permutations
(such as the RSA functions) to generate and verify signatures.
A ring signature scheme is defined by two procedures:

– ring-sign(m,P1, P2, . . . , Pr, s, Ss) which produces a ring signature σ for the
message m, given the public keys P1, P2, . . . , Pr of the r ring members,
together with the secret key Ss of the s-th member (who is the actual signer).

– ring-verify(m,σ) which accepts a message m and a signature σ (which
includes the public keys of all the possible signers), and outputs either true
or false.

A ring signature scheme is set-up free: The signer does not need the knowl-
edge, consent, or assistance of the other ring members to put them in the ring
- all he needs is knowledge of their regular public keys. Different members can
use different independent public key signature schemes, with different key and
signature sizes. Verification must satisfy the usual soundness and completeness
conditions, but in addition we want the signatures to be signer-ambiguous in
the sense that the verifier should be unable to determine the identity of the
actual signer in a ring of size r with probability greater than 1/r. This limited
anonymity can be either computational or unconditional. Our main construction
provides unconditional anonymity in the sense that even an infinitely powerful
adversary with access to an unbounded number of chosen-message signatures
produced by the same ring member cannot guess his identity with any advan-
tage, and cannot link additional signatures to the same signer.

2.2 Leaking secrets

To motivate the title for this paper, suppose that Bob (also known as “Deep
Throat”) is a member of the cabinet of Lower Kryptonia, and that Bob wishes
to leak a juicy fact to a journalist about the escapades of the Prime Minister,
in such a way that Bob remains anonymous, yet such that the journalist is
convinced that the leak was indeed from a cabinet member.
Bob cannot send to the journalist a standard digitally signed message, since

such a message, although it convinces the journalist that it came from a cabinet
member, does so by directly revealing Bob’s identity.
It also doesn’t work for Bob to send the journalist a message through a

standard anonymizer, since the anonymizer strips off all source identification and
authentication: the journalist would have no reason to believe that the message
really came from a cabinet member at all.
A standard group signature scheme does not solve the problem, since it re-

quires the prior cooperation of the other group members to set up, and leaves
Bob vulnerable to later identification by the group manager, who may be con-
trolled by the Prime Minister.
The correct approach is for Bob to send the story to the journalist through

an anonymizer, signed with a ring signature scheme that names each cabinet



How to Leak a Secret 557

member (including himself) as a ring member. The journalist can verify the
ring signature on the message, and learn that it definitely came from a cabinet
member. He can even post the ring signature in his paper or web page, to prove to
his readers that the juicy story came from a reputable source. However, neither
he nor his readers can determine the actual source of the leak, and thus the
whistleblower has perfect protection even if the journalist is later forced by a
judge to reveal his “source” (the signed document).

2.3 Designated verifier signature schemes

A designated verifier signature scheme is a signature scheme in which signatures
can only be verified by a single “designated verifier” chosen by the signer. This
concept was first introduced by Jakobsson Sako and Impagliazzo at Eurocrypt 96
[6]. A typical application is to enable users to authenticate casual emails without
being legally bound to their contents. For example, two companies may exchange
drafts of proposed contracts. They wish to add to each email an authenticator,
but not a real signature which can be shown to a third party (immediately or
years later) as proof that a particular draft was proposed by the other company.
A designated verifier scheme can thus be viewed as a “light signature scheme”
which can authenticate messages to their intended recipients without having the
nonrepudiation property.

One approach would be to use zero knowledge interactive proofs, which can
only convince their verifiers. However, this requires interaction and is difficult
to integrate with standard email systems and anonymizers. We can use non-
interactive zero knowledge proofs, but then the authenticators become signatures
which can be shown to third parties. Another approach is to agree on a shared
secret symmetric key k, and to authenticate each contract draft by appending a
message authentication code (MAC) for the draft computed with key k. A third
party would have to be shown the secret key to validate a MAC, and even then
he wouldn’t know which of the two companies computed the MAC. However,
this requires an initial set-up procedure, in which we still face the problem of
authenticating the emailed choice of k without actually signing it.

A designated verifier scheme provides a simple solution to this problem: com-
pany A can sign each draft it sends, naming company B as the designated verifier.
This can be easily achieved by using a ring signature scheme with companies A
and B as the ring members. Just as with a MAC, company B knows that the
message came from company A (since no third party could have produced this
ring signature), but company B cannot prove to anyone else that the draft of the
contract was signed by company A, since company B could have produced this
draft by itself. Unlike the case of MAC’s, this scheme uses public key cryptogra-
phy, and thus A can send unsolicited email to B signed with the ring signature
without any preparations, interactions, or secret key exchanges. By using our
proposed ring signature scheme, we can turn standard signature schemes into
designated verifier schemes which can be added at almost no cost as an extra
option to any email system.



558 Ronald L. Rivest, Adi Shamir, and Yael Tauman

2.4 Efficiency of our ring signature scheme

When based on Rabin or RSA signatures, our ring signature scheme is particu-
larly efficient:

– signing requires one modular exponentiation, plus one or two modular mul-
tiplications for each non-signer.

– verification requires one or two modular multiplications for each ring mem-
ber.

In essence, generating or verifying a ring signature costs the same as generat-
ing or verifying a regular signature plus an extra multiplication or two for each
non-signer, and thus the scheme is truly practical even when the ring contains
hundreds of members. It is two to three orders of magnitude faster than Ca-
menisch’s scheme, whose claimed efficiency is based on the fact that it is 4 times
faster than earlier known schemes (see bottom of page 476 in his paper [1]).
In addition, a Camenisch-like scheme uses linear algebra in the exponents, and
thus requires all the members to use the same prime modulus p in their indi-
vidual signature schemes. One of our design criteria is that the signer should be
able to assemble an arbitrary ring without any coordination with the other ring
members. In reality, if one wants to use other users’ public keys, they are much
more likely to be RSA keys, and even if they are based on discrete logs, different
users are likely to have different moduli p. The only realistic way to arrange a
Camenisch-like signature scheme is thus to have a group of consenting parties.
Note that the size of any ring signature must grow linearly with the size of

the ring, since it must list the ring members; this is an inherent disadvantage of
ring signatures as compared to group signatures that use predefined groups.

3 The Proposed Ring Signature Scheme (RSA version)

Suppose that Alice wishes to sign a message m with a ring signature for the ring
of r individuals A1, A2, . . . , Ar, where the signer Alice is As, for some value of
s, 1 ≤ s ≤ r. To simplify the presentation and proof, we first describe a ring
signature scheme in which all the ring members use RSA [9] as their individual
signature schemes. The same construction can be used for any other trapdoor
one way permutation, but we have to modify it slightly in order to use trapdoor
one way functions (as in, for example, Rabin’s signature scheme [8]).

3.1 RSA trap-door permutations

Each ring member Ai has an RSA public key Pi = (ni, ei) which specifies the
trapdoor one-way permutation fi of Zni

:

fi(x) = xei (mod ni) .

We assume that only Ai knows how to compute the inverse permutation
f−1

i efficiently, using trap-door information; this is the original Diffie-Hellman
model [4] for public-key cryptography.



How to Leak a Secret 559

Extending trap-door permutations to a common domain

The trap-door RSA permutations of the various ring members will have do-
mains of different sizes (even if all the moduli ni have the same number of bits).
This makes it awkward to combine the individual signatures, and thus we extend
all the trap-door permutations to have as their common domain the same set
{0, 1}

b
, where 2b is some power of two which is larger than all the moduli ni’s.

For each trap-door permutation fi over Zni
, we define the extended trap-door

permutation gi over {0, 1}
b
in the following way. For any b-bit input m define

nonnegative integers qi and ri so that m = qini + ri and 0 ≤ ri < ni. Then

gi(m) =

{

qini + fi(ri) if (qi + 1)ni ≤ 2
b

m else.

Intuitively, gi is defined by using fi to operate on the low-order digit of the ni-ary
representation of m, leaving the higher order digits unchanged. The exception is
when this might cause a result larger than 2b−1, in which case m is unchanged.
If we choose a sufficiently large b (e.g. 160 bits larger than any of the ni), the
chance that a randomly chosen m is unchanged by the extended gi becomes
negligible. (A stonger but more expensive approach, which we don’t need, would
use instead of gi(m) the function g

′

i(m) = gi((2
b− 1)− gi(m)) which can modify

all its inputs). The function gi is clearly a permutation over {0, 1}
b
, and it is a

one-way trap-door permutation since only someone who knows how to invert fi

can invert gi efficiently on more than a negligible fraction of the possible inputs.

3.2 Symmetric encryption

We assume the existence of a publicly defined symmetric encryption algorithm
E such that for any key k of length l, the function Ek is a permutation over b-bit
strings. Here we use the random (permutation) oracle model which assumes that
all the parties have access to an oracle that provides truly random answers to new
queries of the form Ek(x) and E−1

k (y), provided only that they are consistent
with previous answers and with the requirement that Ek be a permutation (e.g.
see [7]).

3.3 Hash functions

We assume the existence of a publicly defined collision-resistant hash function h
that maps arbitrary inputs to strings of length l, which are used as keys for E.
We model h as a random oracle. (Since h need not be a permutation, different
queries may have the same answer, and we will disallow “h−1” queries.)

3.4 Combining functions

We define a family of keyed “combining functions” Ck,v(y1, y2, . . . , yr) which
take as input a key k, an initialization value v, and arbitrary values y1, y2, . . . ,
yr in {0, 1}

b
. Each such combining function uses Ek as a sub-procedure, and



560 Ronald L. Rivest, Adi Shamir, and Yael Tauman

produces as output a value z in {0, 1}
b
such that given any fixed values for k

and v, we have the following properties.

1. Permutation on each input: For each s, 1 ≤ s ≤ r, and for any fixed
values of all the other inputs yi, i 6= s, the function Ck,v is a one-to-one
mapping from ys to the output z.

2. Efficiently solvable for any single input: For each s, 1 ≤ s ≤ r, given a
b-bit value z and values for all inputs yi except ys, it is possible to efficiently
find a b-bit value for ys such that Ck,v(y1, y2, . . . , yr) = z.

3. Infeasible to solve verification equation for all inputs without trap-doors:

Given k, v, and z, it is infeasible for an adversary to solve the equation

Ck,v(g1(x1), g2(x2), . . . , gr(xr)) = z (1)

for x1, x2, . . . , xr, (given access to each gi, and to Ek) if the adversary can’t
invert any of the trap-door functions g1, g2, . . . , gr.

For example, the function

Ck,v(y1, y2, . . . , yr) = y1 ⊕ y2 ⊕ · · · ⊕ yr

(where ⊕ is the exclusive-or operation on b-bit words) satisfies the first two of the
above conditions, and can be kept in mind as a candidate combining function.
Indeed, it was the first one we tried. But it fails the third condition since for any
choice of trapdoor one-way permutations gi, it is possible to use linear algebra
when r is large enough to find a solution for x1, x2, . . . , xr without inverting any
of the gi’s. The basic idea of the attack is to choose a random value for each xi,
and to compute each yi = gi(xi) in the easy forward direction. If the number of
values r exceeds the number of bits b, we can find with high probability a subset
of the yi bit strings whose XOR is any desired b-bit target z. However, our goal
is to represent z as the XOR of all the values y1, y2, . . . , yr rather than as a XOR
of a random subset of these values. To overcome this problem, we choose for each
i two random values x′i and x′′i , and compute their corresponding y

′

i = gi(x
′

i)
and y′′i = gi(x

′′

i ). We then define for each i y
′′′

i = y′i ⊕ y′′i , and modify the target
value to z′ = z ⊕ y′1 ⊕ y′2, . . . ⊕ y′r. We use the previous algorithm to represent
z′ as a XOR of a random subset of y′′′i values. After simplification, we get a
representation of the original z as the XOR of a set of r values, with exactly
one value chosen from each pair (y′i, y

′′

i ). By choosing the corresponding value of
either x′i or x

′′

i , we can solve the verification equation without inverting any of
the trapdoor one-way permutations gi. (One approach to countering this attack,
which we don’t explore further here, is to let b grow with r.)
Even worse problems can be shown to exist in other natural combining func-

tions such as addition mod 2b. Assume that we use the RSA trapdoor func-
tions gi(xi) = x3

i (mod ni) where all the moduli ni have the same size b. It is
known [5] that any nonnegative integer z can be efficiently represented as the
sum of exactly nine nonnegative integer cubes x3

1 + x3
2 + . . .+ x3

9. If z is a b-bit
target value, we can expect each one of the x3

i to be slightly shorter than z,



How to Leak a Secret 561

and thus their values are not likely to be affected by reducing each x3
i modulo

the corresponding b-bit ni. Consequently, we can solve the verification equa-
tion (x3

1 mod n1) + (x
3
2 mod n2) . . . + (x

3
9 mod n9) = z(mod 2b) with nine RSA

permutations without inverting any one of them.
Our proposed combining function utilizes the symmetric encryption function

Ek as follows:

Ck,v(y1, y2, . . . , yr) = Ek(yr ⊕Ek(yr−1 ⊕Ek(yr−2 ⊕Ek(. . .⊕Ek(y1 ⊕ v) . . .)))) .

This function is applied to the sequence (y1, y2, . . . , yr), where yi = gi(xi), as
shown in Figure 1; the resulting function is provably secure in the random oracle
model.

   Ek    Ek    Ek... z

x

y

x

y

x1 2 r

r

v

1 x  )y  = g  (
   1 2 = g  (x2 2   )1      = g  (x        )

r r

Fig. 1. An illustration of the proposed combining function

It is clearly a permutation on each input, since the XOR, gi, and Ek functions
are permutations. In addition, it is efficiently solvable for any single input since
knowledge of k makes it possible to run the evaluation forwards from the initial
v and backwards from the final z in order to uniquely compute any missing value
yi. This function can be used to verify signatures by using a hashed version of
m to choose the symmetric key k, and forcing the output z to be equal to the
input v. This consistency condition Ck,v(y1, y2, . . . , yr) = v bends the line into
the ring shape shown in Fig. 2.
A slightly more compact ring signature variant can be obtained by always

selecting 0 as the “glue value” v. This variant is also secure, but we prefer the
total ring symmetry of our main proposal.
We now formally describe the signature generation and verification proce-

dures:

Generating a ring signature:

Given the message m to be signed, his secret key Ss, and the sequence of
public keys P1, P2, . . . , Pr of all the ring members, the signer computes a ring
signature as follows.

1. Choose a key: The signer first computes the symmetric key k as the hash
of the message m to be signed:

k = h(m)



562 Ronald L. Rivest, Adi Shamir, and Yael Tauman

   Ek

   Ek

   Ek

   Ek

z=v

... y 2      )
 2

 3

      )
1

y 1

 r r
= g     (x      ) y

= g      (xy 3

= g     (x  

= g     (x     1

  2

  r

        )     3

Fig. 2. Ring signatures

(a more complicated variant computes k as h(m,P1, . . . , Pr); however, the
simpler construction is also secure.)

2. Pick a random glue value: Second, the signer picks an initialization (or

“glue”) value v uniformly at random from {0, 1}
b
.

3. Pick random xi’s: Third, the signer picks random xi for all the other ring
members 1 ≤ i ≤ r, i 6= s uniformly and independently from {0, 1}

b
, and

computes
yi = gi(xi) .

4. Solve for ys: Fourth, the signer solves the following ring equation for ys:

Ck,v(y1, y2, . . . , yr) = v .

By assumption, given arbitrary values for the other inputs, there is a unique
value for ys satisfying the equation, which can be computed efficiently.

5. Invert the signer’s trap-door permutation: Fifth, the signer uses his knowl-
edge of his trapdoor in order to invert gs on ys to obtain xs:

xs = g−1
s (ys) .

6. Output the ring signature: The signature on the message m is defined to
be the (2r + 1)-tuple:

(P1, P2, . . . , Pr; v;x1, x2, . . . , xr) .

Verifying a ring signature:

A verifier can verify an alleged signature

(P1, P2, . . . , Pr; v;x1, x2, . . . , xr) .

on the message m as follows.



How to Leak a Secret 563

1. Apply the trap-door permutations: First, for i = 1, 2, . . . , r the verifier
computes

yi = gi(xi) .

2. Obtain k: Second, the verifier hashes the message to compute the encryption
key k:

k = h(m) .

3. Verify the ring equation: Finally, the verifier checks that the yi’s satisfy
the fundamental equation:

Ck,v(y1, y2, . . . , yr) = v . (2)

If the ring equation (2) is satisfied, the verifier accepts the signature as valid.
Otherwise the verifier rejects.

3.5 Security

The identity of the signer is unconditionally protected with our ring signature
scheme. To see this, note that for each k and v the ring equation has exactly
(2b)(r−1) solutions, and all of them can be chosen by the signature generation
procedure with equal probability, regardless of the signer’s identity. This ar-
gument does not depend on any complexity-theoretic assumptions or on the
randomness of the oracle.
The soundness of the ring signature scheme must be computational, since ring

signatures cannot be stronger than the individual signature scheme used by the
possible signers. Our goal now is to show that in the random oracle model, any
forging algorithm A which can generate with non-negligible probability a new
ring signature for m by analysing polynomially many ring signatures for other
chosen messages mj 6= m, can be turned into an algorithm B which inverts one
of the trapdoor one-way functions gi on random inputs y with non-negligible
probability.
Algorithm A accepts the public keys P1, P2, . . . , Pr (but not any of the

corresponding secret keys) and is given oracle access to h, E, E−1, and to a
ring signing oracle. It can work adaptively, querying the oracles at arguments
that may depend on previous answers. Eventually, it must produce a valid ring
signature on a new message that was not presented to the signing oracle, with a
non-negligible probability (over the random answers of the oracles and its own
random tape).
Algorithm B uses algorithm A as a black box, but has full control over its

oracles. A must query the oracle about all the symmetric encryptions along
the forged ring signature of m (otherwise the probability of satisfying the ring
equation becomes negligible). Without loss of generality, we can assume that each
one of these r symmetric encryptions is queried once either in the “clockwise” Ek

direction or in the “counterclockwise” E−1
k direction, but not in both directions

since this is redundant. When A makes its polynomially many querries of Ek and
E−1

k with various keys k = h(m), B can guess which k will be involved in the



564 Ronald L. Rivest, Adi Shamir, and Yael Tauman

actual forgery with non-negligible probability, but it cannot guess which subset
of r queries will be used in the final forgery and in which order they will occur
along the satisfied ring equation since there are too many possibilities.
Algorithm B can easily simulate the ring signing oracle for all the other

mj by providing random vectors (v, x1, x2, . . . , xr) as their ring signatures, and
adjusting the random answers for queries of the form Eh(mj) and E−1

h(mj)
to

support the correctness of the ring equation for these messages. Note that A
cannot ask relevant oracle questions which will limit B’s freedom of choice before
providing mj to the signing oracle since all the values along the actual ring
signature (including v) are chosen randomly by B when it provides the requested
signature, and cannot be guessed in advance by A. In addition, we use the
assumption that h is collision resistant to show that E and E−1 queries with
key kj = h(mj) will not constrain the answers to E and E−1 queries with key
k = h(m) which will be used in the final forgery, since they use different keys.
The goal of algorithm B is to compute for some i xi = g−1

i (y) for random
inputs y’s with non-negligible probability. This will reduce the security of the
ring signature to the security of the individual signature schemes. The basic idea
of the reduction is to slip this random y as the “gap” between the output and
input values of two cyclically consecutive E’s along the ring equation of the final
forgery, which forces A to close the gap by providing the corresponding xi in
the generated signature. Note that y is a random value which is known to B
but not to A, and thus A cannot “recognize the trap” and refuse to sign the
corresponding messages.
The main difficuly is that A can close gaps between E values not only by

inverting trapdoor one-way functions, but also by evaluating these functions in
the easy forward direction (as done by the real signer in the generation of ring
signatures). To overcome this difficulty, we note that in any valid ring signature
produced by A, there must be a gap somewhere between two cyclically consecu-
tive occurences of E in which the queries were computed in one of the following
three ways:

– The oracle for the i-th E was queried in the “clockwise” direction and the
oracle for the i+ 1-st E was queried in the “counterclockwise” direction.

– Both E’s were queried in the “clockwise” direction, but the i-th E was
queried after the i+ 1-st E.

– Both E’s were queried in the “counterclockwise” direction, but the i-th E
was queried before the i+ 1-st E.

In all these cases, B can provide a random answer to the later query which
is based on his knowledge of input and output of the earlier query in such a way
that the XOR of the values acros the gap is the desired y. This will force A to
compute the corresponding g−1

i (y) in order to fill in this gap in its final ring
signature.

B does not know which queries will be these cyclically consecutive queries in
the forged ring signature, and thus he has to guess their identity. However, he has
to make only two guesses and thus the probability of guessing correctly is 1/Q2



How to Leak a Secret 565

where Q is the total number of queries made by the forger A. Consequently, B
will manage to compute g−1

i (y) for a random y and some i with non-negligible
probability.
When the trapdoor one-way functions gi are RSA functions, we can slightly

strengthen the result. Since RSA is homomorphic, we can randomize y by com-
puting y′ = y ∗ tei(mod ni) for a randomly chosen t. By using y′ instead of y,
we can show that successful forgeries of ring signatures can be used to extract
modular roots from particular numbers such as y = 2, and not just from ran-
dom inputs y. This is not necessarily true for other trapdoor functions, since the
forger A can intentionally decide not to produce any forgeries in which one of
the gaps between cyclically consecutive E functions happens to be 2.

4 Our Ring Signature Scheme (Rabin version)

Rabin’s public-key cryptosystem [8] has more efficient signature verification than
RSA, since verification involves squaring rather than cubing, which reduces the
number of modular multiplications from 2 to 1. However, we need to deal with
the fact that the Rabin mapping fi(xi) = x2

i (mod ni) is not a permutation over
Z∗ni
, and thus only one quarter of the messages can be signed, and those which

can be signed have multiple signatures.
The operational fix is the natural one: when signing, change your last random

choice of xs−1 if g
−1
s (ys) is undefined. Since only one trapdoor one-way function

has to be inverted, the signer should expect on average to try four times before
succeeding in producing a ring signature. The complexity of this search is essen-
tially the same as in the case of regular Rabin signatures, regardless of the size
of the ring.
A more important difference is in the proof of unconditional anonymity, which

relied on the fact that all the mappings were permutations. When the gi are
not permutations, there can be noticable differences between the distribution of
randomly chosen and computed xi values in given ring signatures. This could
lead to the identification of the real signer among all the possible signers, and
can be demonstrated to be a real problem in many concrete types of trapdoor
one-way functions.
We overcome this difficulty in the case of Rabin signatures with the following

simple observation:

Theorem 1. Let S be a given finite set of “marbles” and let B1, B2, . . . , Bn

be disjoint subsets of S (called “buckets”) such that all non-empty buckets have
the same number of marbles, and every marble in S is in exactly one bucket.
Consider the following sampling procedure: pick a bucket at random until you
find a non-empty bucket, and then pick a marble at random from that bucket.
Then this procedure picks marbles from S with uniform probability distribution.

Proof. Trivial. ut
Rabin’s functions fi(xi) = x2

i (mod ni) are extended to functions gi(xi) over

{0, 1}
b
in the usual way. Both the marbles and the buckets are all the b-bit



566 Ronald L. Rivest, Adi Shamir, and Yael Tauman

numbers u = qini + ri in which ri ∈ Z
∗

ni
and (qi + 1)ni ≤ 2

b Each marble is
placed in the bucket to which it is mapped by the extended Rabin mapping gi. We
know that each bucket contains either zero or four marbles, and the lemma inplies
that the sampled distribution of the marbles xi is exactly the same regardless of
whether they were chosen at random or picked at random among the computed
inverses in a randomly chosen bucket. Consequently, even an infinitely powerful
adversary cannot distinguish between signers and nonsigners by analysing actual
ring signatures produced by one of the possible signers.

5 Generalizations and Special Cases

The notion of ring signatures has many interesting extensions and special cases.
In particular, ring signatures with r = 1 can be viewed as a randomized version
of Rabin’s signature scheme: As shown in Fig. 3, the verification condition can
be written as (x2 mod n) = v ⊕ E−1

h(m)(v). The right hand side is essentially a

hash of the message m, randomized by the choice of v.
Ring signatures with r = 2 have the ring equation:

Eh(m)(x
2
2 ⊕ Eh(m)(x

2
1 ⊕ v)) = v

(see Fig. 3). A simpler ring equation (which is not equivalent but has the same
security properties) is:

(x2
1 mod n1) = Eh(m)(x

2
2 mod n2)

where the modular squares are extended to {0, 1}
b
in the usual way. This is our

recommended method for implementing designated verifier signatures in email
systems, where n1 is the public key of the sender and n2 is the public key of the
recipient.

   Ek

z=v

z=v

   Ek

   Ek

y   (mod n)     

  

= x 

y =x

y = x2  2

 11

(mod n  )

(mod n  )
 1

 2

  2

 2

 2

Fig. 3. Rabin-based Ring Signatures with r = 1, 2

In regular ring signatures it is provably impossible for an adversary to expose
the signer’s identity. However, there may be cases in which the signer himself



How to Leak a Secret 567

wants to have the option of later proving his authorship of the anonymized
email (e.g., if he is successful in toppling the disgraced Prime Minister). Yet
another possibility is that the signer A wants to initially use {A,B,C} as the
list of possible signers, but later prove that C is not the real signer. There is
a simple way to implement these options, by choosing the xi values for the
nonsigners in a pseudorandom rather than truly random way. To show that C is
not the author, A publishes the seed which pseudorandomly generated the part
of the signature associated with C. To prove that A is the signer, A can reveal a
single seed which was used to generate all the nonsigners’ parts of the signature.
The signer A cannot misuse this technique to prove that he is not the signer
since his part is computed rather than generated, and is extremely unlikely to
have a corresponding seed. Note that these modified versions can guarantee only
computational anonymity, since a powerful adversary can search for such proofs
of nonauthorship and use them to expose the signer.

References

1. Jan Camenisch. Efficient and generalized group signatures. In Walter Fumy, editor,
Advances in Cryptology – Eurocrypt ’97, pages 465–479, Berlin, 1997. Springer.
Lecture Notes in Computer Science 1233.

2. David Chaum and Eugène Van Heyst. Group signatures. In D.W. Davies, editor,
Advances in Cryptology — Eurocrypt ’91, pages 257–265, Berlin, 1991. Springer-
Verlag. Lecture Notes in Computer Science No. 547.

3. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Yvo Desmedt, editor,
Advances in Cryptology – CRYPTO ’94, pages 174–187, Berlin, 1994. Springer-
Verlag. Lecture Notes in Computer Science Volume 839.

4. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans.

Inform. Theory, IT-22:644–654, November 1976.
5. G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford,
fifth edition, 1979.

6. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In Ueli Maurer, editor, Advances in Cryptology - EuroCrypt ’96,
pages 143–154, Berlin, 1996. Springer-Verlag. Lecture Notes in Computer Science
Volume 1070.

7. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM J. Computing, 17(2):373–386, April 1988.

8. M. Rabin. Digitalized signatures as intractable as factorization. Technical Report
MIT/LCS/TR-212, MIT Laboratory for Computer Science, January 1979.

9. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

10. Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. On
monotone formula closure of SZK. In Proc. 35th FOCS, pages 454–465. IEEE,
1994.


