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Abstract. We consider a novel security requirement of encryption
schemes that we call “key-privacy” or “anonymity”. It asks that an eaves-
dropper in possession of a ciphertext not be able to tell which specific
key, out of a set of known public keys, is the one under which the cipher-
text was created, meaning the receiver is anonymous from the point of
view of the adversary. We investigate the anonymity of known encryption
schemes. We prove that the El Gamal scheme provides anonymity under
chosen-plaintext attack assuming the Decision Diffie-Hellman problem
is hard and that the Cramer-Shoup scheme provides anonymity under
chosen-ciphertext attack under the same assumption. We also consider
anonymity for trapdoor permutations. Known attacks indicate that the
RSA trapdoor permutation is not anonymous and neither are the stan-
dard encryption schemes based on it. We provide a variant of RSA-
OAEP that provides anonymity in the random oracle model assuming
RSA is one-way. We also give constructions of anonymous trapdoor per-
mutations, assuming RSA is one-way, which yield anonymous encryption
schemes in the standard model.

1 Introduction

The classical security requirement of an encryption scheme is that it provide pri-
vacy of the encrypted data. Popular formalizations— such as indistinguishability
(semantic security) [22] or non-malleability [15], under either chosen-plaintext
or various kinds of chosen-ciphertext attacks [27, 29]— are directed at capturing
various data-privacy requirements. (See [5] for a comprehensive treatment).
In this paper we consider a different (additional) security requirement of

an encryption scheme which we call key-privacy or anonymity. It asks that the
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encryption provide (in addition to privacy of the data being encrypted) privacy
of the key under which the encryption was performed.
This might sound odd, especially in the public-key setting which is our main

focus: here the key under which encryption is performed is the public key of
the receiver and being public there might not seem to be anything to keep
private about it. The privacy refers to the information conveyed to the adversary
regarding which specific key, out of a set of known public keys, is the one under
which a given ciphertext was created. We call this anonymity because it means
that the receiver is anonymous from the point of view of the adversary.
Anonymity of encryption has surfaced in various different places in the past,

and found several applications, as we detail later. However, it lacks a compre-
hensive treatment. Our goal is to provide definitions, and then systematically
study popular asymmetric encryption schemes with regard to their meeting these
definitions. Below we discuss our contributions and then discuss related work.

1.1 Definitions

We suggest a notion we call “indistinguishability of keys” to formalize the prop-
erty of key-privacy. In the formalization, the adversary knows two public keys
pk0,pk1, corresponding to two different entities, and gets a ciphertext C formed
by encrypting some data under one of these keys. Possession of C should not
give the adversary an advantage in determining under which of the two keys
C was created. This can be considered under either chosen-plaintext attack or
chosen-ciphertext attack, yielding two notions of security, IK-CPA and IK-CCA.
We also introduce the notion of an anonymous trapdoor permutation, which

will serve as tool in some of the designs.

1.2 The search for anonymous asymmetric encryption schemes

In a heterogenous public-key environment, encryption will probably fail to be
anonymous for trivial reasons. For example, different users might be using dif-
ferent cryptosytems, or, if the same cryptosystem, have keys of different lengths.
(If one possible recipient has a RSA public key with a 1024 bit modulus and the
other a RSA public key with a 512 bit modulus, the length of the RSA cipher-
text will immediately enable an eavesdropper to know for which recipient the
ciphertext is intended.) We can however hope for anonymity in a context where
all users use the same security parameter or global parameters. We will look at
specific systems with this restriction in mind.
Ideally, we would like to be able to prove that popular, existing and practical

encryption schemes have the anonymity property (rather than having to design
new schemes.) This would be convenient because then existing encryption-using
protocols or software would not have to be altered in order for them to have the
anonymity guarantees conferred by those of the encryption scheme. Accordingly,
we begin by examining existing schemes. We will consider discrete log based
schemes such as El Gamal and Cramer-Shoup, and also RSA-based schemes
such as RSA-OAEP.
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It is easy to see that an encryption scheme could meet even the strongest
notion of data-privacy— namely indistinguishability under chosen-ciphertext
attack— yet not provide key-privacy. (The ciphertext could contain the public
key.) Accordingly, existing results about data-privacy of asymmetric encryption
schemes are not directly applicable. Existing schemes must be re-analyzed with
regard to key-privacy.

In approaching this problem, we had no a priori way to predict whether or
not a given asymmetric scheme would have the key-privacy property, and, if it
did, whether the proof would be a simple modification of the known data privacy
proof, or require new techniques. It is only by doing the work that one can tell
what is involved.

We found that the above-mentioned discrete log based schemes did have the
key-privacy property, and, moreover, that it was possible to prove this, under the
same assumptions as used to prove data-privacy, by following the outline of the
proofs of data-privacy with appropriate modifications. This perhaps unexpected
strength of the discrete log based world (meaning not only the presence of the
added security property in the popular schemes, but the fact that the existing
techniques are strong enough to lead to a proof) seems important to highlight. In
contrast, folklore attacks already rule out key-privacy for standard RSA-based
schemes. Accordingly, we provide variants that have the property. Let us now
look at these results in more detail.

1.3 Discrete log based schemes

The El Gamal cryptosystem over a group of prime order provably provides
data-privacy under chosen-plaintext attack assuming the DDH (Decision Diffie-
Hellman) problem is hard in the group [25, 12, 33, 3]. Let us now consider a
system of users all of which work over the same group. (To be concrete, let q be
a prime such that 2q+1 is also prime, let Gq be the order q subgroup of quadratic
residues of Z∗

2q+1 and let g ∈ Gq be a generator of Gq. Then q, g are system wide
parameters based on which all users choose keys.) In this setting we prove that
the El Gamal scheme meets the notion of IK-CPA under the same assumption
used to establish data-privacy, namely the hardness of the DDH problem in the
group. Thus the El Gamal scheme provably provides anonymity. Our proof ex-
ploits self-reducibility properties of the DDH problem together with ideas from
the proof of data-privacy.

The Cramer-Shoup scheme [12] is proven to provide data-privacy under
chosen-ciphertext attack, under the assumption that the DDH problem is hard
in the group underlying the scheme. Let us again consider a system of users,
all of which work over the same group, and for concreteness let it be the group
Gq that we considered above. In this setting we prove that the Cramer-Shoup
scheme meets the notion of IK-CCA assuming the DDH problem is hard in Gq.
Our proof exploits ideas in [12, 3].
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1.4 RSA-based schemes

A simple observation that seems to be folkore is that standard RSA encryption
does not provide anonymity, even when all modulii in the system have the same
length. In all popular schemes, the ciphertext is (or contains) an element y =
xe mod N where x is a random member of Z∗

N . Suppose an adversary knows that
the ciphertext is created under one of two keys N0, e0 or N1, e1, and suppose
N0 ≤ N1. If y ≥ N0 then the adversary bets it was created under N1, e1, else
it bets it was created under N0, e0. It is not hard to see that this attack has
non-negligible advantage.
One approach to anonymizing RSA, suggested by Desmedt [14], is to add

random multiples of the modulus N to the ciphertext. This seems to overcome
the above attack, at least when the data encrypted is random, but results in a
doubling of the length of the ciphertext. We look at a few other approaches.
We consider an RSA-based encryption scheme popular in current practice,

namely RSA-OAEP [8]. (It is the PKCS v2.0 standard [28], proved secure against
chosen-ciphertext attack in the random oracle model [18].) We suggest a variant
which we can prove is anonymous. Recall that OAEP is a randomized (invertible)
transform that on input a message M picks a random string r and, using some
public hash functions, produces a point x = OAEP(r,M) ∈ Z∗

N where N, e is the
public key of the receiver. The ciphertext is then y = xe mod N . Our variant
simply repeats the ciphertext computation, each time using new coins, until the
ciphertext y satisfies 1 ≤ y ≤ 2k−2, where k is the length of N . We prove that
this scheme meets the notion of IK-CCA in the random oracle model assuming
RSA is a one-way function. (Data-privacy under chosen-ciphertext attack must
be re-proved, but this can be done, under the same assumption, following [18].)
The expected number of exponentiations for encryption being two, encryption in
our variant is about twice as expensive as for RSA-OAEP itself, but this may be
tolerable when the encryption exponent is small. The cost of decryption is the
same as for RSA-OAEP itself, namely one exponentiation with the decryption
exponent. As compared to Desmedt’s scheme, the size of the ciphertext increases
by only one bit rather than doubling. Our proof exploits the framework and
techniques of [18, 8].

1.5 Trapdoor permutation based schemes

We then ask a more theoretical, or foundational, question, namely whether there
exists an encryption scheme that can be proven to provide key-privacy based
only on the assumption that RSA is one-way, meaning without making use of
the random oracle model. To answer this we return to the classical techniques
based on hardcore bits. We define a notion of anonymity for trapdoor permu-
tations. We note that the above attack implies that RSA is not an anonymous
trapdoor permutation, but we then design some trapdoor permutations which
are anonymous and one-way as long as RSA is one-way. Appealing to known
results about hardcore bits then yields an encryption scheme whose anonymity
is proven based solely on the one-wayness of RSA. The computational costs of
this approach, however, prohibit its being useful in practice.
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1.6 Applications and Related work

In recent years, anonymous encryption has arisen in the context of mobile com-
munications. Consider a mobile user A, communicating over a wireless network
with some entity B. The latter is sending A ciphertexts encrypted under A’s
public key. A common case is that B is a base station. A wants to keep her iden-
tity private from an eavesdropping adversary. In this case A will be a member
of some set of users whose identities and public keys are possibly known to the
adversary. The adversary will also be able to see the ciphertexts sent by B to A.
If the scheme is anonymous, however, the adversary will be unable to determine
A’s identity. A particular case of this is anonymous authenticated key exchange,
where the communication between roaming user A and base station B is for the
purpose of authentication and distribution of a session key based on the parties
public keys, but the identity of A should remain unknown to an eavesdropper.
Anonymity is targeted in authenticated key exchange protocols such as SKEME
[23]. The author notes that a requirement for SKEME to provide anonymous
authenticated key exchange is that the public-key encryption scheme used to
encrypt under A’s public key must have the key-privacy property.
In independent and concurrent work, Camenisch and Lysyanskaya [10] con-

sider anonymous credential systems. Such a sytem enables users to control the
dissemination of information about themselves. It is required that it be infeasi-
ble to correlate transactions carried out by the same user. The solution to this
given in [10] makes use of a verifiable circular encryption scheme that needs to
have the key-privacy property. They provide a notion similar to ours, but in the
context of verifiable encryption. They observe that their variant of the El Gamal
scheme is anonymous under chosen-plaintext attack.
Sako [30] considers the problem of achieving bid secrecy and verifiability

in auction protocols. Their approach is to express each bid as an encryption
of a known message, with the key to encrypt it corresponding to the value of
the bid. Thus, what needs to be hidden is not the message that is encrypted,
but the key used to encrypt it. The bid itself can be identified by finding the
corresponding decrypting key that successfully decrypts to the given message.
Unlike the previous examples, where the key-privacy property was needed to
protect identities, this application shows how that property can be exploited to
satisfy a secrecy requirement. Sako also considered a notion similar to ours and
gave a variant of the El Gamal scheme that was expected to be secure in that
sense.
Formal notions of key-privacy have appeared in the context of symmetric

encryption [1, 13, 17]. Abadi and Rogaway [1] show that popular modes of oper-
ation of block ciphers, such as CBC, provide key-privacy if the block cipher is a
pseudorandom permutation.
The notion given by Desai [13], like ours, is concerned with the privacy of

keys. However, the goal, model and setting in which it is considered differs from
ours— the goal there is to capture a security property for block cipher based
encryption schemes that implies that exhaustive key-search on them is slowed
down proportional to the size of the ciphertext. There is, however, a similarity



Key-Privacy in Public-Key Encryption 573

between our definitions (suitably adapted to the symmetric setting) and those
of Abadi and Rogaway [1] and Fischlin [17]. Although the exact formalizations
differ, it is not hard to see that there is an equivalence between the three for
chosen-plaintext attack.

Chosen-ciphertext attacks do not seem to have been considered before in
the context of key-privacy. In fact, Fischlin [17] observes that giving decryption
oracles to the adversary in their setting makes its task trivial. However, in our
formalization chosen-ciphertext attacks can be modeled by giving decryption
oracles and then putting an appropriate restriction on their use. The restriction
is the most natural and is anyway in effect for modeling semantic security against
chosen-ciphertext attack. This allows us to make a distinction between those
encryption schemes that are anonymous under chosen-ciphertext attack, such
as Cramer-Shoup, and those that are not, such as El Gamal— just as there
are schemes that are semantically secure under chosen-plaintext attack but not
under chosen-ciphertext attack.

2 Notions of Key-Privacy

The notions of security typically considered for encryption schemes are “indis-
tinguishability of encryptions under chosen-plaintext attack” [22] and “indistin-
guishability of encryptions under adaptive chosen-ciphertext attack” [29]. The
former is usually denoted IND-CPA, but is denoted IE-CCA in this paper to
emphasize that it is about encryptions, not keys. Similarly, the latter notion is
usually denoted IND-CCA (or IND-CCA2), but is denoted IE-CCA in this pa-
per. It is well-known that these capture strong data-privacy properties. However,
they do not guarantee that some partial information about the underlying key
is not leaked. Indeed, in a public-key encryption scheme, the entire public-key
could be made an explicit part of the ciphertext and yet the scheme could meet
the above-mentioned data-privacy notions. We want to make a distinction be-
tween such schemes and those that do not leak information about the underlying
key. As noted earlier, schemes of the latter kind are necessary if the anonymity
of receivers is a concern.

We are interested in formalizing the inability of an adversary, given a chal-
lenge ciphertext, to learn any information about the underlying plaintext or
key. It is not hard to see that the goals of data-privacy and key-privacy are
orthogonal. We recognize that existing encryption schemes are likely to have
already been investigated with respect to their data-privacy security properties.
Hence it is useful, from a practical point of view, to isolate the key-privacy re-
quirements from the data-privacy ones. We do this in the form of two notions:
“indistinguishability of keys under chosen-plaintext attack” (IK-CPA) and “in-
distinguishability of keys under adaptive chosen-ciphertext attack” (IK-CCA).
We begin with a syntax for public-key encryption schemes, divorcing syntax from
formal notions of security.
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2.1 Syntax

The syntax of an encryption scheme specifies what algorithms make it up. We
augment the usual formalization in order to better model practice, where users
may share some fixed “global” information.
A public-key encryption scheme PE = (G,K, E ,D) consists of four algorithms.

The common-key generation algorithm G takes as input some security parameter
k and returns some common key I. (Here I may be just a security parameter k,
or include some additional information. For example in a Diffie-Hellman based
scheme, I might include, in addition to k, a global prime number and generator of
a group which all parties use to create their keys.) The key generation algorithm
K is a randomized algorithm that takes as input the common key I and returns
a pair (pk, sk) of keys, the public key and a matching secret key, respectively; we

write (pk, sk)
R
← K(I). The encryption algorithm E is a randomized algorithm

that takes the public key pk and a plaintext x to return a ciphertext y; we write
y ← Epk(x). The decryption algorithm D is a deterministic algorithm that takes
the secret key sk and a ciphertext y to return the corresponding plaintext x or a
special symbol ⊥ to indicate that the ciphertext was invalid; we write x← Dsk(y)
when y is valid and ⊥ ← Dsk(y) otherwise. Associated to each public key pk is
a message space MsgSp(pk) from which x is allowed to be drawn. We require
that Dsk(Epk(x)) = x for all x ∈ MsgSp(pk).

2.2 Indistinguishability of Keys

We give notions of key-privacy under chosen-plaintext and chosen-ciphertext
attacks. We think of an adversary running in two stages. In the find stage it
takes two public keys pk0 and pk1 (corresponding to secret keys sk0 and sk1,
respectively) and outputs a message x together with some state information s. In
the guess stage it gets a challenge ciphertext y formed by encrypting at random
the messages under one of the two keys, and must say which key was chosen. In
the case of a chosen-ciphertext attack the adversary gets oracles for Dsk0

(·) and
Dsk1

(·) and is allowed to invoke them on any point with the restriction (on both
oracles) of not querying y during the guess stage.

Definition 1. [IK-CPA, IK-CCA] Let PE = (G,K, E ,D) be an encryption
scheme. Let b ∈ {0, 1} and k ∈ N. Let Acpa, Acca be adversaries that run in two
stages and where Acca has access to the oracles Dsk0

(·) and Dsk1
(·). Now, we

consider the following experiments:

Experiment Exp
ik-cpa-b
PE,Acpa

(k)

I
R
← G(k)

(pk0, sk0)
R
← K(I); (pk1, sk1)

R
← K(I)

(x, s)← Acpa(find, pk0, pk1)
y ← Epkb

(x)
d← Acpa(guess, y, s)
Return d

Experiment Expik-cca-b
PE,Acca

(k)

I
R
← G(k)

(pk0, sk0)
R
← K(I); (pk1, sk1)

R
← K(I)

(x, s)← A
Dsk0

(·),Dsk1
(·)

cca (find, pk0, pk1)
y ← Epkb

(x)

d← A
Dsk0

(·),Dsk1
(·)

cca (guess, y, s)
Return d
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Above it is mandated that Acca never queries Dsk0
(·) or Dsk1

(·) on the challenge
ciphertext y. For atk ∈ {cpa, cca} we define the advantages of the adversaries
via

Advik-atk
PE,A

atk
(k) = Pr[Expik-atk-1

PE,A
atk
(k) = 1 ]− Pr[Expik-atk-0

PE,A
atk
(k) = 1 ] .

The scheme PE is said to be IK-CPA secure (respectively IK-CCA secure) if

the function Advik-cpa
PE,A (·) (resp. Adv

ik-cca
PE,A (·)) is negligible for any adversary A

whose time complexity is polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus
the size of the code of the adversary, in some fixed RAM model of computation.
(Note that the execution time refers to the entire experiment, not just the adver-
sary. In particular, it includes the time for key generation, challenge generation,
and computation of responses to oracle queries if any.) The same convention is
used for all other definitions in this paper and will not be explicitly mentioned
again.

2.3 Anonymous one-way functions

A family of functions F = (K ,S ,E ) is specified by three algorithms. The ran-
domized key-generation algorithm K takes input the security parameter k ∈ N

and returns a pair (pk, sk) where pk is a public key, and sk is an associated
secret key. (In cases where the family is not trapdoor, the secret key is sim-
ply the empty string.) The randomized sampling algorithm S takes input pk

and returns a random point in a set that we call the domain of pk and denote
DomF (pk). We usually omit explicit mention of the sampling algorithm and just

write x
R
← DomF (pk). The deterministic evaluation algorithm E takes input pk

and a point x ∈ DomF (pk) and returns an output we denote by Epk(x). We let
RngF (pk) = {Epk(x) : x ∈ DomF (pk)} denote the range of the function Epk(·).
We say that F is a family of trapdoor functions if there exists a deterministic
inversion algorithm I that takes input sk and a point y ∈ RngF (pk) and re-
turns a point x ∈ DomF (pk) such that Epk(x) = y. We say that F is a family of
permutations if DomF (pk) = RngF (pk) and Epk is a permutation on this set.

Definition 2. Let F = (K ,S ,E ) be a family of functions. Let b ∈ {0, 1} and
k ∈ N be a security parameter. Let 0 < θ ≤ 1 be a constant. Let A,B be
adversaries. Now, we consider the following experiments:

Experiment Exp
θ-pow-fnc
F ,B (k)

(pk, sk)
R
← K (k)

x1‖x2
R
← DomF (pk) where |x1| = dθ · |(x1‖x2)|e

y ← Epk(x1‖x2)
x′

1 ← B(pk, y) where |x′
1| = |x1|

For any x′
2 if Epk(x

′
1‖x

′
2) = y then return 1

Else return 0

Experiment Expik-fnc-b
F ,A (k)

(pk0, sk0)
R
← K (k)

(pk1, sk1)
R
← K (k)

x
R
← DomF (pkb)

y ← Epkb
(x)

d← A(pk0, pk1, y)
Return d
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We define the advantages of the adversaries via

Advθ-pow-fnc
F ,B (k) = Pr[Expθ-pow-fnc

F ,B (k) = 1 ]

Advik-fnc
F ,A (k) = Pr[Expik-fnc-1

F ,A (k) = 1 ]− Pr[Expik-fnc-0
F ,A (k) = 1 ] .

The family F is said to be θ-partial one-way if the function Advθ-pow-fnc
F ,B (·) is

negligible for any adversary B whose time complexity is polynomial in k. The
family F is said to be anonymous if the function Advik-fnc

F ,A (·) is negligible for
any adversary A whose time complexity is polynomial in k. The family F is said
to be perfectly anonymous if Advik-fnc

F ,A (k) = 0 for every k and every adversary
A.

Note that when θ = 1 the notion of θ-partial one-wayness coincides with the stan-
dard notion of one-wayness. As the above indicates, we expect that information-
theoretic anonymity is possible for one-way functions, even though not for en-
cryption schemes.

3 Anonymity of DDH-based schemes

The DDH-based schemes we consider work over a group of prime order. This
could be a subgroup of order q of Z∗

p where p, q are primes such that q divides
p − 1. It could also be an elliptic curve group of prime order. For concreteness
our description is for the first case. Specifically if q is a prime such that 2q + 1
is also prime we let Gq be the subgroup of quadratic residues of Z

∗
p . It has order

q. A prime-order-group generator is a probabilistic algorithm that on input the
security parameter k returns a pair (q, g) satisfying the following conditions:
q is a prime with 2k−1 < q < 2k; 2q + 1 is a prime; and g is a generator of
Gq. (There are numerous possible specific prime-order-group generators.) We
will relate the anonymity of the El Gamal and Cramer-Shoup schemes to the
hardness of the DDH problem for appropriate prime-order-group generators.
Accordingly we next summarize definitions for the latter.

Definition 3. [DDH] Let G be a prime-order-group generator. Let D be an
adversary that on input q, g and three elements X,Y, T ∈ Gq returns a bit. We
consider the following experiments

Experiment Expddh-real
G,D (k)

(q, g)
R
← G(k)

x
R
← Zq ; X ← gx

y
R
← Zq ; Y ← gy

T ← gxy

d← D(q, g,X, Y, T )
Return d

Experiment Expddh-rand
G,D (k)

(q, g)
R
← G(k)

x
R
← Zq ; X ← gx

y
R
← Zq ; Y ← gy

T
R
← Gq

d← D(q, g,X, Y, T )
Return d

The advantage of D in solving the Decisional Diffie-Hellman (DDH) problem for
G is the function of the security parameter defined by

Advddh
G,D(k) = Pr[Expddh-real

G,D (k) = 1 ]− Pr[Expddh-rand
G,D (k) = 1 ] .
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We say that the DDH problem is hard for G if the function Advddh
G,D(·) is negligible

for every algorithm D whose time-complexity is polynomial in k.

3.1 El Gamal

The El Gamal scheme in a group of prime order is known to meet the notion
of indistinguishability under chosen-plaintext attack under the assumption that
the decision Diffie-Hellman (DDH) problem is hard. (This is noted in [25, 12]
and fully treated in [33]). We want to look at the anonymity of the El Gamal
encryption scheme under chosen-plaintext attack.

Let G be a prime-order-group generator. This is the common key genera-
tion algorithm of the associated scheme EG = (G,K, E ,D), the rest of whose
algorithms are as follows:

Algorithm K(q, g)

x
R
← Zq

X ← gx

pk ← (q, g,X)
sk ← (q, g, x)
Return (pk, sk)

Algorithm Epk(M)

y
R
← Zq

Y ← gy

T ← Xy

W ← TM
Return (Y,W )

Algorithm Dsk(Y,W )
T ← Y x

M ←WT−1

Return M

The message space associated to a public key (q, g,X) is the group Gq itself, with
the understanding that all messages from Gq are properly encoded as strings of
some common length whenever appropriate. Note that a generator g is the output
of the common key generation algorithm, which means we fix g for all keys. We
do it only for a simplicity reason and will show that all our results hold also for
a case when each key uses a random generator g.

We now analyze the anonymity of the El Gamal scheme under chosen-plaintext
attack.

Theorem 1. Let G be a prime-order-group generator. If the DDH problem is
hard for G then the associated El Gamal scheme EG is IK-CPA secure. Con-
cretely, for any adversary A there exists a distinguisher D such that for any
k

Advik-cpa
EG,A (k) ≤ 2Advddh

G,D(k) +
1

2k−2

and the running time of D is that of A plus O(k3).

The proof of the above is in the full version of this paper [2].

3.2 Cramer-Shoup

The El Gamal scheme provides data privacy and anonymity against chosen-
plaintext attack. We now consider the Cramer-Shoup scheme [12] in order to
obtain the same security properties under chosen-ciphertext attack. We will use
collision-resistant hash functions so we begin by recalling what we need.
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A family of hash functions H = (GH, EH) is defined by a probabilistic gener-
ator algorithm GH —which takes as input the security parameter k and returns
a key K— and a deterministic evaluation algorithm EH —which takes as input
the key K and a string M ∈ {0, 1}∗ and returns a string EHK(M) ∈ {0, 1}

k−1.

Definition 4. Let H = (GH, EH) be a family of hash functions and let C be
an adversary that on input a key K returns two strings. Now, we consider the
following experiment:

Experiment Expcr
H,C(k)

K
R
← GH(k) ; (x0, x1)← C(K)

If (x0 6= x1) and EHK(x0) = EHK(x1) then return 1 else return 0

We define the advantage of adversary C via

Advcr
H,C(k) = Pr[Exp

cr
H,C(k) = 1 ] .

We say that the family of hash functions H is collision-resistant if Advcr
H,C(·)

is negligible for every algorithm C whose time-complexity is polynomial in k.

Let G be a prime-order-group generator. The common key generation algorithm
of the associated Cramer-Shoup scheme CS = (G,K, E ,D) is:

Algorithm G(k) : (q, g1)
R
← G; g2

R
← Gq; K

R
← GH(k); Return (q, g1, g2,K).

The rest of algorithms are specified as follows:

Algorithm K(q, g1, g2,K)
g1 ← g

x1, x2, y1, y2, z
R
← Zq

c← gx1
1 gx2

2 ; d← gy11 gy22

h← gz1
pk ← (g1, g2, c, d, h,K)
sk ← (x1, x2, y1, y2, z)
Return (pk, sk)

Algorithm Epk(M)

r
R
← Zq

u1 ← gr1 ; u2 ← gr2
e← hrM
α← EHK(u1, u2, e)
v ← crdrα

Return (u1, u2, e, v)

Algorithm Dsk(u1, u2, e, v)
α← EHK(u1, u2, e)
If u1

x1+y1αu2
x2+y2α = v

then M ← e/u1
z

else M ← ⊥
Return M

The message space is the group Gq. Note that the range of the hash function
EHK is {0, 1}k−1 which we identify with {0, . . . , 2k−1}. Since q > 2k−1 this is
a subset of Zq. Again for simplicity we assume that g1, g2 are fixed for all keys
but we will show that our results hold even if g1, g2 are chosen at random for all
keys.

We now analyze the anonymity of CS under chosen-ciphertext attack.

Theorem 2. Let G be a prime-order-group generator and let CS be the asso-
ciated Cramer-Shoup scheme. If the DDH problem is hard for G then CS is
anonymous in the sense of IK-CCA. Concretely, for any adversary A attack-
ing the anonymity of CS under a chosen-ciphertext attack and making in total
qdec(·) decryption oracle queries, there exists a distinguisher D for DDH and an
adversary C attacking the collision-resistance of H such that

Advik-cca
CS,A (k) ≤ 2Advddh

G,D
(k) + 2Advcr

H,C(k) +
qdec(k) + 2

2k−3
.

and the running time of D and C is that of A plus O(k3).
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The proof of the above is in the full version of this paper [2]. Note that security
of the Cramer-Shoup scheme in the IE-CCA sense has been proven in [12] using
a weaker assumption on the hash function H than the one we have here. They
do not require that H be collision-resistant, as we do, but only that it be a
universal one-way family of hash functions (UOWHF) [26]. We have at this time
not determined if the scheme can also be proven secure in the IK-CCA sense
assuming H to be a UOWHF.

4 Anonymity of RSA-based schemes

The attack on RSA mentioned in Section 1 implies that the RSA family of trap-
door permutations is not anonymous. This means that all traditional RSA-based
encryption schemes are not anonymous. We provide several ways to implement
anonymous RSA-based encryption. First we take a direct approach, specifying
an anonymous RSA-OAEP variant based on repetition and proving it secure in
the random oracle model. Then we show how to construct anonymous trapdoor
permutation families based on RSA and derive anonymous RSA-based encryp-
tion schemes from them. In particular, the latter leads to anonymous encryption
schemes whose proofs of security are in the standard rather than the random
oracle model. We begin with a description of the RSA family of trapdoor per-
mutations we will use in this section. See Section 2 for notions of security for
families of trapdoor permutations.

Example 1. The specifications of the standard RSA family of trapdoor permu-
tations RSA = (K ,S ,E ) are as follows. The key generation algorithm takes as
input a security parameter k and picks random, distinct primes p, q in the range
2k/2−1 < p, q < 2k/2. (If k is odd, increment it by 1 before picking the primes.)
It sets N = pq. It picks e, d ∈ Z∗

ϕ(N) such that ed ≡ 1 (mod ϕ(N)) where

ϕ(N) = (p−1)(q−1). The public key is N, e and the secret key is N, d. The sets
DomRSA(N, e) and RngRSA(N, e) are both equal to Z∗

N . The evaluation algorithm
is EN,e(x) = xe mod N and the inversion algorithm is IN,d(y) = yd mod N . The
sampling algorithm returns a random point in Z∗

N .

The anonymity attack on RSA carries over to most encryption schemes based
on it, including the most popular one, RSA-OAEP. We next describe a variant of
RSA-OAEP that preserves its data-privacy properties but is in addition anony-
mous.

4.1 Anonymous variant of RSA-OAEP

The original scheme and our variant are described in the random-oracle (RO)
model [7]. All the notions of security, defined earlier, can be “lifted” to the
RO setting in a straightforward manner. To modify the definitions, begin the
experiment defining advantage by choosing random functions G and H, each
from the set of all functions from some appropriate domain to appropriate range.
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Then provide a G-oracle and H-oracle to the adversaries, and allow that Epk and

Dsk may depend on G and H (which we write as EG,H
pk and DG,H

sk ).
The idea behind our variant is to repeat the standard encryption procedure

under RSA-OAEP, until the ciphertext falls in some “safe” range. We refer to
our scheme as RSA-RAEP (for repeated asymmetric encryption with padding).
More concretely, for RSA = (K ,S ,E ), our scheme RSA-RAEP = (G,K, E ,D) is
as follows. The common key generator algorithm G takes a security parameter k
and returns parameters k, k0 and k1 such that k0(k) + k1(k) < k for all k > 1.
This defines an associated plaintext-length function n(k) = k−k0(k)−k1(k). The
key generation algorithm K takes k, k0, k1 and runs the key-generation algorithm
of the RSA family, namely K on k to get a public key (N, e) and secret key (N, d)
(see Example 1). The public key for the scheme pk is (N, e), k, k0, k1 and the
secret key sk is (N, d), k, k0, k1. The other algorithms are depicted below. The
oracles G and H which Epk and Dsk reference below map bit strings as follows:
G : {0, 1}k0 7→ {0, 1}n+k1 and H : {0, 1}n+k1 7→ {0, 1}k0 .

Algorithm EG,H
pk (x)

ctr = −1
Repeat

ctr ← ctr + 1

r
R
← {0, 1}k0

s← (x‖0k1)⊕G(r)
t← r⊕H(s)
v ← (s‖t)e mod N

Until (v < 2k−2) ∨ (ctr = k1)

If ctr = k1 then y ← 1‖0k0+k1‖x
Else y ← 0‖v
Return y

Algorithm DG,H
sk (y)

Parse y as b‖v where b is a bit
If b = 1 then parse v as w‖x where |x| = n

If w = 0k0+k1 then z ← x

Else (if w 6= 0k0+k1) z ← ⊥
Else (if b = 0)

(s‖t)← vd mod N where:
|s| = k1 + n and |t| = k0

r ← t⊕H(s)
(x‖p)← s⊕G(r) where:
|x| = n and |p| = k1

If p = 0k1 then z ← x
Else z ← ⊥

Return z

Note that the valid ciphertexts under RSA-OAEP are (uniformly) distributed in
RngRSA(N, e), which is Z∗

N . Under RSA-RAEP, valid ciphertexts take the form
0‖v where v ∈ (Z∗

N ∩ [1, 2
k−2]). The expected running time of this scheme is

approximately twice that of RSA-OAEP (and k1 times more, in the worst case).
The ciphertext is longer by one bit. However, unlike RSA-OAEP, this scheme
turns out to be IK-CCA secure. The (data-privacy) security of RSA-OAEP under
CCA has already been established [18]. It is not hard to see that this result holds
for RSA-RAEP as well. We omit the (simple) proof of this, noting only that the
security (relative to RSA-OAEP) degrades roughly by the probability that after
k1 repetitions, the ciphertext was still not in the desired range (and consequently,
the plaintext had to be sent in the clear). Given this, we turn to determining
its security in the IK-CCA sense. We show that if the RSA family of trapdoor
permutations is partial one-way then RSA-RAEP is anonymous.

Theorem 3. If the RSA family of trapdoor permutations is partial one-way then
Π = RSA-RAEP is anonymous. Concretely, for any adversary A attacking the



Key-Privacy in Public-Key Encryption 581

anonymity of Π under a chosen-ciphertext attack, and making at most qdec de-
cryption oracle queries, qgen G-oracle queries and qhash H-oracle queries, there
exists a θ-partial inverting adversary MA for the RSA family, such that for any

k, k0(k), k1(k) and θ = k−k0(k)
k ,

Advik-cca
Π,A (k) ≤ 32qhash · ((1− ε1) · (1− ε2) · (1− ε3))

−1 ·Advθ-pow-fnc
RSA,MA

(k) +

qgen · (1− ε3)
−1 · 2−k+2

where

ε1 = 4 ·

(

3

4

)k/2−1

; ε2 =
1

2k/2−3 − 1
;

ε3 =
2qgen + qdec + 2qgenqdec

2k0
+
2qdec

2k1
+
2qhash

2k−k0
,

and the running time of MA is that of A plus qgen · qhash ·O(k
3).

The proof of the above is in the full version of this paper [2]. Note that for
typical parameters k0(k), k1(k), and number of allowed queries qgen, qhash and
qdec, the values of ε1, ε2 and ε3 are very small. This means that if there exists
an adversary that is successful in breaking RSA-RAEP in the IK-CCA sense,
then there exists a partial inverting adversary for the RSA family of trapdoor
permutations that has a comparable advantage and running time.
The θ-partial one-wayness of RSA has been shown to be equivalent to the

one-wayness of RSA, for θ > 0.5 [18]. In RSA-RAEP (as also in RSA-OAEP) this
is usually the case. (In general, the equivalence holds if any constant fraction of
the most significant bits of the pre-image can be recovered, but the reduction
is proportionately weaker [18].) Using this and Theorem 3 we are able to prove
the security of RSA-RAEP in the IK-CCA sense assuming RSA to be one-way.
A theorem to this effect, with concrete bounds, can be found in the full version
of this paper [2].

4.2 Encryption with anonymous trapdoor permutations

Given that the standard RSA family is not anonymous, we seek families that
are. We describe some simple RSA-derived anonymous families.

Construction 1 We define a family F = (K ,S ,E ) as follows. The key gen-
eration algorithm is the same as in the standard RSA family of Example 1.
Let (N, e) be a public key and k the corresponding security parameter. We set
DomF (N, e) = RngF (N, e) = {0, 1}k. Viewing Z∗

N as a subset of {0, 1}k we
define

EN,e(x) =

{

xe mod N if x ∈ Z∗
N

x otherwise

for any x ∈ {0, 1}k. This is a permutation on {0, 1}k. The sampling algorithm
S on input N, e simply returns a random k-bit string. It is easy to see that this
family is trapdoor.
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As we will see, the family F is perfectly anonymous. But it is not one-way.
However, it is weakly one-way. (Meaning, for every polynomial-time adversary

B, there is a polynomial β(·) such that Adv1-pow-fnc
F ,B (k) ≤ 1 − 1/β(k) for all

sufficiently large k.) Thus, standard transformations of weak to strong one-way
functions (cf. [19, Section 2.3]) can be applied. Most of these preserve anonymity.
To be concrete, let us use one.

Construction 2 Let F = (K ,S ,E ) be obtained from F of Construction 1
by Yao’s cross-product construction [34]. In detail, the key-generation algo-
rithm is unchanged and for any key N, e we set Dom

F
(N, e) = Rng

F
(N, e) =

{0, 1}k
2

. Parsing a point from this domain as a sequence of k-bit strings we set
EN,e(x1, . . . , xk) = (EN,e(x1), . . . ,EN,e(xk)). The sampling algorithm is obvious
and it is easy to see the family is trapdoor.

Proposition 1. The family F of Construction 2 is a perfectly anonymous fam-
ily of trapdoor, one-way permutations, under the assumption that the standard
RSA family is one-way.

The proof of one-wayness is a direct consequence of the known results on the
security of the cross-product construction. (A proof of Yao’s result can be found
in [19, Section 2.3].) The anonymity is easy to see. Regardless of the key, the
adversary simply gets a random string of length k2, and can have no advantage
in determining the key based on it.
The drawback of the construction is that the cross product construction is

costly, increasing both the computational and the space requirements. There
are alternative amplification methods that are better and in particular do not
increase space requirements, but we know of none that do not increase the com-
putational cost.
Standard methods of trapdoor permutation based encryption yield anony-

mous schemes provided the underlying trapdoor permutation is anonymous. This
means any encryption method based on hardcore bits [21].
These methods lead to appreciable losses of concrete security, which is why

we do not state concrete security versions of the results.
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