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Abstract. We know that trapdoor permutations can be used to con-
struct all kinds of basic cryptographic primitives, including trapdoor
functions, public-key encryption, private information retrieval, oblivious
transfer, key agreement, and those known to be equivalent to one-way
functions such as digital signature, private-key encryption, bit commit-
ment, pseudo-random generator and pseudo-random functions. On the
other hand, trapdoor functions are not as powerful as trapdoor permuta-
tions, so the structural property of permutations seem to be something
special that deserves a more careful study. In this paper, we investi-
gate the relationships between one-way permutations and all these basic
cryptographic primitives. Following previous work, we focus on an im-
portant type of reductions called black-box reductions. We prove that
no such reductions exist from one-way permutations to either trapdoor
functions or private information retrieval. Together with previous re-
sults, all the relationships with one-way permutations have now been
established, and we know that no such reductions exist from one-way
permutations to any of these primitives except trapdoor permutations.
This may have the following meaning, with respect to black-box reduc-
tions. We know that one-way permutations imply none of the primitives
in “public cryptography”, where additional properties are required on
top of “one-wayness” [12], so permutations cannot be traded for any of
these additional properties. On the other hand, we now know that none of
these additional properties can be traded for permutations either. Thus,
permutation seems to be something orthogonal to those additional prop-
erties on top of one-wayness. Like previous non-reducibility results [12,
21, 23, 17, 7, 9, 8, 6], our proofs follow the oracle separation paradigm of
Impagliazzo and Rudich [12].

1 Introduction

Modern cryptography has provided us with all kinds of protocols for various
interesting and important tasks involving security issues. However, almost all of
these protocols have their securities based on some intractability assumptions
which all imply P 6= NP. So unconditional proofs of security for these protocols
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may seem far beyond our reach. One important line of research then is to un-
derstand the relationships among these assumptions. However, there are many
interesting cryptographic tasks, and even a single task may be several variants.
So potentially the whole picture could become very messy and have little help
in clarifying our understanding. Instead, we want to focus on the most basic
cryptographic tasks in their most primitive forms, which can serve as building
blocks for more advanced protocols. We will also restrict ourselves to the classi-
cal world of cryptography, and leave the questions in quantum cryptography for
future studies.

According to [7], such basic cryptographic primitives can be roughly divided
into two categories: private cryptography and public cryptography.3 Private
cryptography is represented by private-key encryption, and includes one-way per-
mutation (OWP), one-way function (OWF), pseudo-random generator (PRG),
pseudo-random functions (PRF), bit commitment (BC), and digital signature
(DS). Public cryptography is represented by public-key encryption (PKE), and
includes trapdoor permutations (TDP), trapdoor functions (TDF), oblivious
transfer (OT), private information retrieval (PIR), and key agreement (KA).
“One-wayness” turns out to be essential as these primitives all are known to
imply one-way functions [11, 19, 1, 2, 7]. For private cryptography, one-wayness
basically is also sufficient as one-way functions can be used to construct all the
primitives therein, except one-way permutations. For public cryptography, ad-
ditional properties are required on top of one-wayness, and the relationships
among primitives appear to be rather complicated. We know that trapdoor per-
mutations imply all of them, but some implications among others are known to
fail, in the sense to be discussed next.

It is not clear what it means that one primitive Q does not imply the other
primitive P , or equivalently P can not be reduced to Q, especially when both
primitives exist under some plausible assumptions. After all, if the primitive P
exists, there is a protocol of P based on Q that simply ignores Q. Impagliazzo
and Rudich [12] introduced a restricted but important subclass of reductions
called black-box reductions. Informally speaking, a black-box reduction from P
to Q is a construction of P out of Q that ignores the internal structure of the
implementation of Q. Furthermore, the security of P ’s implementation can also
be guaranteed in a black-box way that one can use any adversary breaking P as
a subroutine to break Q. In fact in cryptography, almost all constructions of one
primitive from another known so far are done in this way, so it makes sense to
focus on reductions of this kind. Hereafter, all the reductions or implications we
refer to in this paper will be black-box ones. To prove that no black-box reduction
exists from P to Q, it suffices to construct an oracle relative to which Q exists
whereas P does not. Using this approach, Impagliazzo and Rudich [12] showed
that no such black-box reduction exists from KA to OWP. As every primitive

3 We want to remark that this classification is just a convenient one for us and is by
no means a precise or complete one. The situation becomes complicated when one
wants to talk about variations of primitives meeting additional requirements (e.g.
[23, 6]).
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in public cryptography implies KA [1, 4, 7], this provides a strong evidence that
primitives in public cryptography requires strictly more than one-wayness. Since
then, more and more separations between cryptographic primitives have been
established following this paradigm [21, 23, 17, 7, 9, 8, 6].
We know that trapdoor permutations imply all those basic cryptographic

primitives, but it is not the case for trapdoor functions as they do not imply OT
[7] and thus PIR [4]. So there seems to be something special for being a per-
mutation which deserves further study. We also know that one-way functions do
not imply one-way permutations [20, 16], so permutation does not seem to be a
property that one can have for free. We know that one-way permutations imply
none of the primitives in public cryptography [12], so on top of one-wayness,
one can not trade permutations for any of the additional properties required in
public cryptography. Then, the question we want to ask is: can any of those ad-
ditional properties required in public cryptography be traded for permutations?
Formally, can any of the primitives except TDP in public cryptography imply
OWP? Figure 1 summarizes the relationships known so far between primitives
and OWP. We will show that neither TDF nor PIR implies OWP, so the answer
to that question is actually no!

TDF → PKE OWP

TDP
↗

↘

↘

↗
KA

\↙

↘
↓ 6 ↑

PIR → OT OWF,PRG,PRF,BC,DS

Fig. 1. Relationships between OWP and other cryptographic primitives

We first construct an oracle, relative to which an injective trapdoor func-
tion (iTDF) exists whereas OWP does not. As iTDF implies PKE [24]4 and
PKE (two-pass KA) implies KA, we establish the impossibility of having black-
box reductions from OWP to either TDF, PKE, or KA. Next, we construct
an oracle, relative to which PIR exists whereas OWP does not. Because PIR
implies OT [4], we establish that no black-box reduction exists from OWP to
either PIR or OT. One immediate corollary is that PIR does not imply TDP,
in contrast to the known result that TDP does imply PIR [15]. So according
to our results, none of the primitives in public cryptography implies OWP in a
black-box way. This is interesting in the sense that all the powerful primitives,
except TDP, in public cryptography, which make almost all of conceivable cryp-
tographic tasks possible, are still unable to yield OWP. Our results suggest that
permutation is really a special property that is orthogonal to other additional
properties required in cryptography. Furthermore, the reducibility from OWP
to each primitive was already known before, so now all the relationships, with
respect to black-box reductions, between one-way permutations and those basic

4 In fact, TDF with polynomial pre-image size suffices to imply PKE [1].
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cryptographic primitives have been established. However, we want to stress that
we are still far from being able to settle the real relationships among primitives,
and in fact, to have separations beyond black-box reductions would require some
major breakthrough in complexity theory [12].
For each separation between primitives, we need to find a suitable oracle

that is powerful enough for making one primitive possible, but still not so for
the other. We basically follow the approach of Impagliazzo and Rudich [12] and
Gertner et al. [7]. It is known that a random function is one-way with high prob-
ability, even relative to a PSPACE-complete function [12]. Then, OWF exists
relative to an oracle containing a random function and a PSPACE-complete
function, but on the other hand, OWP does not relative to such an oracle [20,
16]. We want to separate OWP from TDF and PIR. Each time we look for a
special function which realizes the additional property required by that primitive
but does not yield permutations. By adding such a function to the oracle, we can
build the corresponding primitive, TDF or PIR, but relative to the oracle, OWP
still does not exist. Our strategy of finding such special functions is based on the
observation that both TDF and PIR can be seen as two-party primitives while
OWP involves only one party. So we look for those functions that are useful in
a two-party setting but useless in a one-party case.
The rest of the paper is organized as follows. In Section 2, we describe our

notation and provide definitions for the cryptographic primitive involved in this
paper. Then in Section 3 and 4, we prove that no black-box reductions exist
from OWP to iTDF and PIR, respectively.

2 Notation and Definitions

Let [n] denote the set {0, 1, . . . , n − 1}. For x ∈ {0, 1}n, let x[i] denote the i-th
bit of x if i ∈ [n], and an arbitrary value, say 0, otherwise. We write poly(n) to
denote a polynomial in n. We write ∗ for {0, 1}∗ and (∗, q, ∗) for those (u, q, v)
with u, v ∈ {0, 1}∗. For a distribution S, we write s ∈ S to denote sampling
s according to the distribution S. For any n ∈ N, let Un denote the uniform
distribution over {0, 1}n.
Parties in cryptographic primitives are assumed to run in polynomial time,

and are modeled by probabilistic polynomial-time Turing machines (PPTM).
Each cryptographic primitive is associated with a security parameter k, for eval-
uating how secure that primitive is. A function is called negligible if it vanishes
faster than any inverse polynomial. We say that two distributions X and Y over
{0, 1}k cannot be distinguished if for any PPTM M ,

∣

∣

∣

∣

Pr
x∈X

[M(x) = 1]− Pr
y∈Y
[M(y) = 1]

∣

∣

∣

∣

≤ δ(k),

for some negligible function δ(k). We say a function is easy to compute if it is
computable in polynomial time. We say that a function f is hard to invert if for
any PPTM M ,

Pr
x∈Uk

[f(M(f(x))) = f(x)] ≤ δ(k),
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for some negligible function δ(k).
In the following, we give brief definitions of the cryptographic primitives

studied in this paper. More formal treatment can be found in standard textbooks
or the original papers. The most fundamental primitive is one-way function,
which is essential to all cryptographic primitives.

Definition 1. A one-way function (OWF) is a function that is easy to compute
but hard to invert.

From one-way functions, we define primitives with additional properties. A
one-way permutation is a one-way function that is itself a permutation.

Definition 2. A one-way permutation (OWP) is a one-way function f with
the additional requirement that for every k ∈ N, f maps {0, 1}k to {0, 1}k in a
one-to-one and onto way.

Trapdoor functions are one-way functions which, when given some additional
trapdoor information, are easy to invert.

Definition 3. A collection of trapdoor functions (TDF) is a collection of func-
tion families F = {Fk|k ∈ N} satisfying the following properties.

– There is a PPTM I, that on input 1k outputs a pair (f, t), where f is (an
index of) a function in Fk and t is a string called the trapdoor for f .

– Each f is easy to compute, and when the trapdoor t is given, f is also easy
to invert.

– For a random (f, t) ∈ I(1k), f is hard to invert without knowing the trapdoor
t.

Next, we describe private information retrieval, which was introduced by
Chor et al. [3]. This is a two-party protocol, where User wants to secretly learn
some bit of Server’s database, conditioned on a non-trivial upper bound on
Server’s communication complexity.

Definition 4. Private information retrieval (PIR) is a protocol involving two
parties. Server has a database x ∈ {0, 1}n while User has an index i ∈ [n] and
wants to learn the bit x[i] in the following way.

– Server sends less than n bits to User.
– User keeps the index secret in the sense that Server cannot distinguish the

distributions of messages sent from User when the indices are i and i′ re-
spectively, for any i′ 6= i.5

3 TDF does not imply OWP

In this section we construct an oracle Γ relative to which there are injective
trapdoor functions but no one-way permutations. It is shown in [20, 16] that

5 The security parameter here can be set to k = poly(n).
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no OWP exists relative to an oracle with a PSPACE-complete problem and
some random functions. We add a function G into such an oracle to do the
inverting job when provided with the trapdoor, and we want G to be useless in
constructing OWP. Our oracle Γ consists of the following.

– A PSPACE-complete problem.
– A length-tripling random function F (·, ·).
– A length-tripling random function H(·).
– A function G defined as follows.

∀(u, v) : G(u, v) =

{

w if ∃w : u = F (w,H(v)),
⊥ otherwise.

In Γ , the functions F and H are random while the function G is completely
determined by F and H. Call a query to G invalid if its answer is ⊥, and valid
otherwise. Note that we can assume w.l.o.g. that both F and H are injective,
because one can show that length-tripling functions are injective on sufficiently
long inputs with measure one .

G is designed in this way for the following purpose. The function F (·, H(t))
can be inverted if one has t, because for any x,

G(F (x,H(t)), t) = x.

Without knowing t, queries to G are likely to be invalid and thus useless. As we
will see, this makes the construction of trapdoor functions possible. On the other
hand, the function G is not helpful in a one-party primitive (OWP in particular),
for the following reason. To have a valid query G(y, t), y is likely to come from
a query F (x,H(t)) for some x, but then one knows x = G(y, t) already, which
makes such a query to G unnecessary. Our approach basically follows those of
[12, 7].

3.1 TDF in Γ

On input 1k, the trapdoor-function generator I outputs the pair (t,H(t)), where
t ∈ Uk is the trapdoor and H(t) is the index for the function F (·, H(t)). For
convenience, we write Ft(·) to denote the function F (·, H(t)), and assume its
domain being {0, 1}k. Given the index H(t), the function Ft is easy to compute,
just by querying the oracle F (·, H(t)). Having the trapdoor t, Ft is easy to invert,
with the help from the oracle G as

G(Ft(x), t) = G(F (x,H(t)), t)

= x.

It remains to show that Ft is hard to invert without knowing the trapdoor t.
Consider any oracle PPTM M as an inverter. Without the oracle G, Ft is a

random function and is likely to be one-way, by a standard argument (e.g. [20]).
The idea is that unless MΓ can guess the trapdoor t correctly, G is unlikely to
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provide useful information for inverting Ft. Formally, for a negligible function
δ(k), we want to upper-bound the probability

Pr
Γ

[

Pr
x,t
[MΓ (Ft(x), H(t)) = x] > δ(k)

]

,

which by Markov inequality is at most

Ex
Γ

[

Pr
x,t
[MΓ (Ft(x), H(t)) = x]

]

/δ(k) = Pr
Γ,x,t

[

MΓ (Ft(x), H(t)) = x
]

/δ(k).

We need the following lemma.

Lemma 1. PrΓ,x,t[M
Γ (Ft(x), H(t)) = x] ≤ kc2−k, for some constant c.

Proof. Define the following probability event:

– B1: M
Γ on input (Ft(x), H(t)) queries H on t or G on (∗, t).

We first show that this bad event is unlikely to happen.

Claim. PrΓ,x,t[B1] ≤ poly(k)2−k.

Proof. Note that whether or not MΓ queries H on t or G on (∗, t) does not
depend on either H(t) or G(∗, t). Instead, it is completely determined by the
input together with those H(t′) and G(∗, t′) for every t′ 6= t. Fix any x, t and
any restriction Γ0 of Γ that leaves only H(t) random. Note that G(∗, t) is not
fixed yet as it depends on H(t), but it has no effect on B1. Then whether or
not B1 happens depends only on the input, because all oracle answers that may
matter have been fixed. Therefore,

Pr
Γ,x,t

[B1] = Ex
x,t,Γ0

[

Pr
H(t)

[

MΓ0(F (x,H(t)), H(t)) queries H on t or G on (∗, t)
]

]

= Ex
x,t,Γ

[

Pr
h

[

MΓ (F (x, h), h) queries H on t or G on (∗, t)
]

]

= Ex
x,Γ,h

[

Pr
t

[

MΓ (F (x, h), h) queries H on t or G on (∗, t)
]

]

≤ poly(k)2−k,

where the last inequality is because M makes at most poly(k) queries. ut

Next, we want to show that if the bad event B1 does not happen, M
Γ is

unlikely to invert the input correctly. We may assume w.o.l.g. that MΓ always
uses its output to query Ft at the final step before it stops. This does not affect its
inverting probability, which is bounded above by the probability of the following
event:

– B2: M
Γ on input (Ft(x), H(t)) queries Ft on x.
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So it remains to prove the following claim.

Claim. PrΓ,x,t[B2|¬B1] ≤ poly(k)2−k.

Proof. The proof is very similar to that of Claim 1, by observing the correspon-
dence between (x, Ft) and (t,H). Fix any x, t and any restriction Γ1 of Γ that
leaves only Ft(x) random. Again G(∗, t) is not determined yet but it has no effect
as it is not queried conditioned on ¬B1. Then whether or not M

Γ queries Ft on
x is completely determined by the input, because all oracle answers that may
matter have been fixed. The rest is similar. ut

With these two claims, we have

Pr
Γ,x,t

[

MΓ (Ft(x), H(t)) = x
]

≤ Pr
Γ,x,t

[B1] + Pr
Γ,x,t

[B2|¬B1]

≤ poly(k)2−k + poly(k)2−k

≤ kc2−k,

for some constant c. This completes the proof of Lemma 1 ut

Let δ(k) = kc+22−k and we have

Pr
Γ

[

Pr
x,t
[MΓ (Ft(x), H(t)) = x] > δ(k)

]

≤ 1

k2
.

Now as
∑

k
1
k2 converges, the Borel-Cantelli Lemma tells us that with probability

one over Γ , Prx,t[M
Γ (Ft(x), H(t)) = x] is negligible for sufficiently large k. There

are only countably many machines M ’s, each of which can only succeed as an
inverter over a measure zero of Γ , so we have the following.6

Lemma 2. Relative to measure one of random Γ , injective trapdoor functions
exist.

3.2 No OWP in Γ

In this section we show that no OWP exists relative to Γ . It was shown in [20,
16] that no OWP exists relative to an oracle with a PSPACE-complete problem
and some random functions. We proceed by showing that the function G does
not help us build OWP either. The idea is that it is unlikely to have a valid
long input (F (x,H(t)), t) without querying F at (x,H(t)) first. But with x, the
answer to the query G(F (x,H(t)), t), one can eliminate this application of G.
We can see the random oracle Γ as a family of oracles, with each oracle in the
family being a possible instance of Γ .
Assume for the contrary that OWP exists relative to Γ . According to [20],

this implies that for any constant δ > 0, there exists a machineM that computes

6 Like previous work on this subject, we only consider uniform adversaries. The anal-
ysis does not appear to work against non-uniform adversaries, as there are uncount-
ably many of them.
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OWP on measure 1−δ of oracles in Γ . Let Γ ′ denote this subset of oracles relative
to which M is a OWP. We will show that for this M , there is another machine
N which never queries G but still produces the same outputs for most inputs.
Then we will show that a good inverter exists for N , which can also inverts M
well, so M cannot be one-way.
Consider inputs from {0, 1}n. SupposeM ’s running time is bounded by nc, for

some constant c ≥ 2 independent of n. For this constant c, let N be the machine
that simulates M step by step, keeps track of the queries to F , and answers any
query to G, say on (u, v), by the following. Look for w with u = F (w,H(v)), by
going through previous queries to F or searching the space {0, 1}|u|/3 if |u| ≤
3c log n. If such w is found, N answers G(u, v) with it. Otherwise N assumes
(u, v) an invalid query and answers it with ⊥. This takes at most polynomial
time.
For any input x ∈ {0, 1}n, N(x) 6= M(x) only if M every queries G on

some valid (u, v) with u longer than 3c log n but not obtained by previous
queries to F . Then for any fixed random choice of M , N(x) 6= M(x) for at
most nc2c logn/23c logn = 1/nc ≤ 1/n2 of oracles in Γ , and hence for at most
1/((1 − δ)n2) ≤ 2/n2 of oracles in Γ ′, for δ ≤ 1/2. Although we can then show
that relative to most oracles M and N agree on most inputs, but N may not
be a permutation relative to most oracles. So we can not apply [20] directly to
invert N , and some modification is needed. First, we can have the following.

Lemma 3. There are less than 2/n fraction of n-bit strings y such that
N−1(y) 6=M−1(y) for more than 2/n of oracles in Γ ′.

Proof. Consider the Boolean matrix A with rows indexed by y ∈ {0, 1}n and
columns indexed γ ∈ Γ ′, such that Ay,γ = 1 iff N

−1(y) 6=M−1(y) relative to γ.
For each x ∈ {0, 1}n, N(x) 6= M(x) for at most 2/n2 of oracles in Γ ′, and this
contributes at most 2−n4/n2 fraction of 1’s to A. As there are 2n different x’s,
the total fraction of 1’s in A is at most 4/n2. By the pigeon-hole principle, less
than 2/n of rows in A have more than 2/n of columns of 1’s. ut

For any y, M−1(y) is unique relative to any oracle in Γ ′ since it is a permu-
tation. So by Lemma 3, there are more than 1− 2/n fraction of n-bit strings y
such that N−1(y) is unique for more than 1 − 2/n of oracles in Γ ′, and hence
for more than 1 − 2/n − δ > 1 − ε of oracles in Γ , for any constant ε > δ and
sufficiently large n. Observe that based on [16], the proofs of Theorem 9.2 and
9.3 in [20] actually yield the following stronger statement.

Lemma 4. Assume P = NP. There is a constant λ such that for every machine
N , there exists a machine N ′ with the following property. For any ε < λ and for
any y, if N−1(y) is unique for 1 − ε of random oracles, then N ′(y) = N−1(y)
for 1−√ε of random oracles.

Then the rest follows closely the proof of Theorem 9.4 in [20]. Choose δ < λ
such that there exists ε with δ < ε < λ and ε + 4

√
ε < 1. We have P = NP

relative to Γ , so for any n, there are more than 1 − 2/n of n-bit string y such



118 Y.-C. Chang, C.-Y. Hsiao, and C.-J. Lu

that we can find N−1(y) =M−1(y) for more than 1−√ε of oracles in Γ . By the
pigeon-hole principle, there are more than 1− 4

√
ε of oracles in Γ relative to which

we can computeM−1(y) for more than 1−2/n− 4
√
ε fraction of n-bit strings y for

infinitely many n. That is, M is one-way relative to less than 4
√
ε < 1− ε < 1− δ

fraction of oracles in Γ , a contradiction. Thus, with probability one over Γ , no
one-way permutation exists relative to Γ . Together with Lemma 2, we have the
following theorem.

Theorem 1. There is no black-box reduction from OWP to iTDF.

4 PIR does not imply OWP

In this section we construct an oracle Φ relative to which PIR exists but OWP
does not. Similar to section 3 we add a special function G to an oracle consist-
ing of a PSPACE-complete problem and some random functions. The oracle Φ
consists of the following.

– A PSPACE-complete oracle.
– A length-tripling random function F (·, ·).
– A random function T : {0, 1}∗ → {0, 1}.
– A family of random functions H = {Hk : {0, 1}∗ → {0, 1}k|k ∈ N}.
– A family of functions G = {Gk|k ∈ N} defined as follows.

∀(u, v) : Gk(u, v) =

{

u[s]⊕ T (Hk(u), t) if ∃s, t : v = F (s, t),
⊥ otherwise.

The idea behind this design is the following. In PIR, User shall use F to
encrypt her index i as F (i,m), and Server shall call G with F (i,m) and his
database x to get

G(x, F (i,m)) = x[i]⊕ T (H(x),m),

an encryption of x[i], which can only be decrypted by User. As in the previous
section, we will next show that the function G is not useful for a one-party
primitive, and thus not useful for building OWP.

Although the oracle Φ is designed to enable PIR, we stress that the definition
of Φ does not depend on any instance of PIR. In Φ, the functions F, T,H are
random, and the function G is completely determined by F, T,H. When we want
to carry out a particular PIR instance, the oracle functions will then be queried
at some particular places. For example, with database x and index i, G will be
queried at (x, F (i,m) for a random m.

Note that G is a family of functions, but later when we refer to it, we usually
mean some Gk ∈ G, and similarly for H. G is well defined if F is injective, which
is not an issue as with probability one, it is so for sufficiently long inputs, and
we can make G outputs 0 on those short inputs. Call a query (u, v) to G valid
if G(u, v) 6= ⊥.
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4.1 PIR in Φ

The following is a 2-pass PIR using the oracle Φ, where Server has x ∈ {0, 1}n
and User has i ∈ [n]. Let k be the security parameter. For this parameter, we
let H denote Hk and let G denote Gk.

Server User
α←− α = F (i,m), for m ∈ Uk

β1 = G(x, α), β2 = H(x)
β1, β2−→ x[i] = β1 ⊕ T (β2,m)

The idea is the following. User needs to send her index i to Server in some
way in order to obtain the bit x[i]. As User does not want Server to learn her
index i, she would like to have it encrypted. So User chooses a random private
key m and uses the random function F to encrypt i as F (i,m). Server receives
F (i,m) but has no idea about i. How can Server send information about x[i] to
User without explicitly knowing the index i? The function G does the magical
work, which takes any x together with F (i,m) and returns the bit

G(x, F (i,m)) = x[i]⊕ T (H(x),m),

an encryption of x[i]. We want x[i] encrypted, since otherwise Server may recover
i by calling G using several different x’s (User’s security will be proved later).
On the other hand, User has the key m, so after receiving G(x, F (i,m)) and
H(x), she can query T (H(x),m) and derive

x[i] = G(x, F (i,m))⊕ T (H(x),m).

The total number of bits sent by Server to User is

|β1|+ |β2| = 1 + k,

which is okay when n > 1 + k.
It remains to prove User’s security. Note that Server cannot affect what User

would send, so whether Server is malicious or not makes no difference on User’s
security. If Server never queries the function G, the proof is standard as the rest
of the oracle consists of merely random functions. The idea is that unless Server
can guess User’s private key m correctly, queries to G are unlikely to provide
useful information. To see this, assume Server does not know m. The function
H serves as a random hash and it is unlikely for Server to find distinct x′, x′′

such that H(x′) = H(x′′) due to the large image of H(·), for sufficiently large k.
Then for a query G(x′, F (i,m)), the answer x′[i]⊕ T (H(x′),m) is likely to look
random as T (H(x′),m) is likely so, and such a query is unlikely to be useful.
That is, unless G is queried at (x′, α) and (x′′, α) for such x′, x′′, G looks like a
random function too.
Formally, we show that Server cannot distinguish the messages from User

having indices i and j respectively. Consider any machine M as a distinguisher.
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Let δ(n) = 2−k/4, a negligible function in n. For any i, j ∈ [n], define 4i,j
m =

MΦ(F (i,m))−MΦ(F (j,m)), which is a random variable of Φ. Then

Ex
m
[4i,j

m ] = Pr
m
[MΦ(F (i,m)) = 1]− Pr

m
[MΦ(F (j,m)) = 1].

We want to bound the probability

Pr
Φ

[

∃i, j :
∣

∣

∣
Ex
m
[4i,j

m ]
∣

∣

∣
> δ(n)

]

≤
∑

i,j

Pr
Φ

[∣

∣

∣
Ex
m
[4i,j

m ]
∣

∣

∣
> δ(n)

]

≤
∑

i,j

Ex
Φ

[

(

Ex
m
[4i,j

m ]
)2
]

/δ2(n).

So we need the following lemma.

Lemma 5. ∀i, j, ExΦ[Exm[(4i,j
m ])

2] ≤ poly(n)2−k.

Proof. Fix any i, j ∈ [n]. Write 4m for 4i,j
m and note that ExΦ[(Exm[4m])

2] =
ExΦ,m,m′ [4m4m′ ]. Define the following probability events, with Φ,m,m′ chosen
randomly:

– B1: On input F (i,m) or F (j,m), M
Φ queries on (∗,m) or knows distinct

x′, x′′ with H(x′) = H(x′′).

– B2: On input F (i,m
′) or F (j,m′), MΦ queries either F (∗,m), T (∗,m), or

G(∗, F (∗,m)).

These are the bad events, which happen with probability at most poly(n)2−k.
Next we show that the expectation of 4m4m′ is small if neither bad event
happens.

Consider any restriction Φ0 of Φ with F (∗,m) and T (∗,m) still random but
the rest fixed. M ’s computation is determined by the input and the answers to
its oracle queries.

Assume the condition ¬B1. Consider any possible run of M
Φ0(F (i,m)) and

MΦ0(F (j,m)), starting with F (i,m) = F (j,m) and then getting same oracle
answers, up to some query. Assume that now for some x′, G(x′, F (i,m)) and
G(x′, F (j,m)) are queried respectively, as other oracle answers are fixed under
Φ0. The answers x

′[i]⊕T (H(x′),m) and x′[j]⊕T (H(x′),m) have the same distri-
bution as T (H(x′),m) remains free up to this point. By induction,MΦ0(F (i,m))
and MΦ0(F (j,m)) have the same distribution of computations. So given ¬B1,
ExΦ0

[MΦ0(F (i,m))] = ExΦ0
[MΦ0(F (j,m))] and ExΦ0

[4m] = 0.

Consider any m′ 6= m. Given ¬B2, 4m′ is fixed under Φ0 as it does not de-
pend on F (∗,m) or T (∗,m). Let B = B1∪B2. Then given ¬B, ExΦ0

[4m4m′ ] =
ExΦ0

[4m]4m′ = 0 for any restriction Φ0. Thus,

Ex
Φ,m,m′

[4m4m′ |¬B] ≤ Pr
m,m′

[m = m′]

= 2−k,
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and we have

Ex
Φ,m,m′

[4m4m′ ] ≤ Pr
Φ,m,m′

[B] + Ex
Φ,m,m′

[4m4m′ |¬B]

≤ poly(n)2−k.

ut

Then, PrΦ[∃i, j|Exm[4i,j
m ]| > δ(n)] ≤ poly(n)2−k/2. As

∑

n poly(n)2
−k/2

converges for, say, k = Ω(log2 n), the Borel-Cantelli Lemma tells us that with
probability one over Φ, |Exm[4i,j

m ]| ≤ δ(n) for any i, j ∈ [n] for sufficiently
large n. There are only countably many machines M ’s as distinguishers, each
of which succeeds with measure zero over Φ. Then with probability one over Φ,
Server cannot learn User’s index for sufficiently large n. So we have the following.

Lemma 6. Our protocol is a PIR relative to measure one of Φ.

4.2 No OWP in Φ

The proof that no OWP exists in Φ is almost identical to the one in Section 3.2.
Assume the contrary that there is a PPTM M , with time bound nc, that com-
putes a OWP. We construct N by simulating M and replacing any query to
G at (u, v) by ⊥ if v is longer than 3c log n and not obtained from a previous
query to F . If v is obtained from a previous query F (s, t) or short enough to
find s, t by exhaustive search, N replace G(u, v) by u[s] ⊕ T (H(u), t). Then, as
in Section 3.2, N has the same output as M does on most inputs, but N can be
inverted on most inputs. It follows that M is not one-way, a contradiction. So
we have the following.

Theorem 2. There is no black-box reduction from OWP to PIR.

Together with Theorem 1 and previous results, we have the following.

Corollary 1. There is no black-box reduction from OWP to any of the basic
primitives, including TDF, PKE, PIR, OT, KA, OWF, PRG, PRF, BC, and
DS.
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