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Abstract. Differential cryptanalysis analyzes ciphers by studying the
development of differences during encryption. Linear cryptanalysis is
similar but is based on studying approximate linear relations. In 1994,
Langford and Hellman showed that both kinds of analysis can be com-
bined together by a technique called differential-linear cryptanalysis, in
which the differential part creates a linear approximation with proba-
bility 1. They applied their technique to 8-round DES. In this paper
we present an enhancement of differential-linear cryptanalysis in which
the inherited linear probability is smaller than 1. We use this exten-
sion to describe a differential-linear distinguisher for a 7-round reduced-
version of DES, and to present the best known key-recovery attack on
a 9-round reduced-version of DES. We use our enhanced technique to
attack COCONUT98 with time complexity 233.7 encryptions and 227.7

chosen plaintexts.

1 Introduction

Differential cryptanalysis [2] analyzes ciphers by studying the development of
differences during encryption. Linear cryptanalysis [11] is similar but is based
on studying approximate linear relations.
In 1994, Langford and Hellman [10] showed that both kinds of analysis can

be combined together by a technique called differential-linear cryptanalysis, in
which the differential part creates a linear approximation with probability 1.
Using their new technique they have succeeded to analyze up to 8-round reduced
variants of DES [12] using only 512 chosen plaintext in a few seconds on a
personal computer. This attack is so far the best known attack on 8-round DES.1

The differential-linear technique was later applied to analyze the IDEA ci-
pher [9]: a reduced version of IDEA was analyzed by a differential-linear attack
in [6], and differential-linear weak keys of the full IDEA (along with a related-key

? The work described in this paper has been supported by the European Commission
through the IST Programme under Contract IST-1999-12324.

1 From now on we will use the shorthand r-round DES for an r-round reduced version
of DES.
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differential-linear attack on reduced IDEA) were found in [7]. It was also shown
that the ciphertext-only extension of differential and linear cryptanalysis works
also with differential-linear cryptanalysis [5].
Langford and Hellman’s technique is an example for devising the “distin-

guisher” used in the attack as a combination of two much simpler parts; in this
case a combination of a differential characteristic and a linear approximation.
Such combinations were later used in other kinds of cryptanalysis, e.g., crypt-
analysis using impossible differentials [4, 3] (miss in the middle), and boomerang
attacks [15], both use combinations of differential characteristics.
In this paper we present an extension of differential-linear cryptanalysis in

which the linear probability induced by the differential characteristic is smaller
than 1. We use this extension to describe a differential-linear distinguisher for
7-round DES, and then present a differential-linear key-recovery attack on 8-
round and 9-round DES. This extension can attack DES with up to 10 rounds,
where the 9-round variant of the attack is by far the best known attack against
9-round DES. We also apply the technique to the full COCONUT98.
This paper is organized as follows: In Section 2 we describe Langford and

Hellman’s differential-linear attacks. In Section 3 we present our differential-
linear extension. In Section 4 we present the distinguishing attack on 7-Round
DES. In Sections 5 and 6 we present the key recovery attacks on 8-Round and
9-Round DES, respectively. In Section 7 we present a key recovery attack on
COCONUT98. Finally, Section 8 summarizes the paper.

2 Differential-Linear Cryptanalysis

Langford and Hellman [10] show that a concatenation of a differential char-
acteristic and a linear characteristic can be performed. They select a 3-round
characteristic of DES, which predicts the differences of a few bits after three
rounds with probability 1 (the probability for the whole block difference after
three rounds is much lower). So, given a pair of plaintexts with the required
plaintext difference, they know the difference of a few bits after three rounds for
certain. They use a 3-round linear approximation for rounds 4–6. If the difference
in the intermediate data before the linear approximation can be predicted, then
we can obtain information about the parities. More precisely, if the difference in
the input subset can be predicted, then we know whether the input subset parity
in both encryptions is the same or differ. As the linear approximation predicts
the output subset parity, we can now predict whether the output subset parities
of the two ciphertexts are more likely to be the same or not. Fortunately, they
found differential and linear characteristics in which the subset required for the
parity is predicted with probability 1 by the differential characteristic. Thus, the
differential characteristic actually tells them the difference of the two parities.
Both difference and parity are linear operations (they both use XOR). Thus, the
two linear approximations in rounds 4–6 in both encryptions can be combined
into a six-round approximation of rounds

61–51–41–differential–42–52–62,
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where the subscript denote whether the round is in the first encryption or the
second, and “differential” refers to the differential combiner that ensures that
the parities of the data before round 4 in both encryptions are always equal (or
always differ).
This enlarged linear characteristic has twice as many rounds as the origi-

nal, thus its probability is much closer to 1/2 than the original. However, it is
still usable, and in various cases it leads to the best known attacks against the
analyzed cipher, as in the case of the differential-linear attack on 8-round DES
described by Langford and Hellman.
The differential-linear distinguisher is based on encrypting many pairs with

some known input difference. Each pair is encrypted, and the output subset
parity is computed for both ciphertext. The fraction of times when the two
parities are agree differ from 1/2 for a good differential-linear characteristic.
Thus, it can be used to distinguish the cipher from a random permutation. A
key recovery attack can be mounted using standard techniques (guessing the
following round subkey, etc.).

3 Our Differential-Linear Extension

We observed that in the above approximation

61–51–41–differential–42–52–62

all the rounds are approximated with probabilities which may be different than
1/2± 1/2, except for the connection by the differential characteristic, which has
probability 1.
From now on, we use notations based on [1, 2] for differential and linear

cryptanalysis, respectively. In our notations ΩP , ΩT are the input and output
differences of the differential characteristic, and λP , λT are the input and output
subsets (denoted by bit masks) of the linear characteristic.
In this paper we propose using a differential connection with fractional prob-

abilities. Let the probability of the linear characteristic be denoted by 1/2 + q,
and the probability of the differential characteristic be denoted by p′ (in the case
of Langford and Hellman, p′ = 1 and q = 0.195).
Given the probabilities of the differential characteristic p′, we approximate

the linear probability 1/2+p of the relations of the parities of the subsets of bits
λP between both encryptions (in the particular case of p

′ = 1 certainly p = 1/2
as in Langford and Hellman’s analysis), and then compute the probability of
the total relation (from the last round of the linear characteristic through all its
rounds backward in the first encryption, through the differential approximation
of the parity, through the linear characteristic in the second encryption to its
last round). This probability is computed by the usual rule for probabilities of
concatenation of linear characteristics. Thus, the total probability is

1/2 + 4pq2.
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Note that the differential probability p′ is the probability for the expected
difference in the required subset of bits, which is usually different (higher) than
the probability of the differential characteristic with the full block output dif-
ference, so the best characteristic for our purposes may be different than the
best ordinary characteristic. For example, in Langford and Hellman’s case the
characteristic predicts with probability 1 only 36 bits of the 64 bits of the output
difference; these 36 bits include all the 5 bits of λP . Given an ordinary differential
characteristic with probability p

Ω
, we know that the full block output difference

ΩT appears with probability pΩ , and that with probability 1− pΩ the difference
is different. When considering only the subset of bits in λP , the probability of
the characteristic on these bits becomes p′. The probability 1/2 + p can now be
approximated by

1/2 + p ≈ p′ + (1− p′)/2 = 1/2 + p′/2,

assuming that the parity in the rest of the cases is uniformly distributed. This
assumption is not necessarily accurate, for example, there might be other high-
probability differential characteristics with the same plaintext difference, but
with different (or same) parity of the subset of bits of the difference. Thus, this
approximated probability should be verified by the designer of an attack, and if
possible, he should perform a more accurate computation of the probability, or
check it experimentally.
It is worth mentioning that the attack works even if the differential char-

acteristic predicts that there are differences in some of the bits in the sub-
set λP . All we need is to know the parity of the differences of the bits in
λP (rather than fixing the differences to 0). For example, assume that ΩT =
10 ?0 ?0 67 80 D7 6? 11x (where the ? denotes an unpredicted hex digit) and
assume that λP = 00 00 08 D7 00 00 00 01x. Then, the 8 bits selected by λP
are known in ΩT , of which 5 have value 1 and 3 have value 0. Therefore, the
expected parity of the differences of the two runs is ΩT ·λP = 1. Note that even
if ΩT · λP is unknown but constant, the attack still succeeds.

4 A Distinguishing Attack on 7-Round DES

We now present an attack that distinguishes whether a cipher (given in a form of
a black box) is a 7-round DES, or a random permutation, using the differential-
linear technique. We use the following 4-round extended differential characteris-
tic with probability pΩ = 14/64 = 0.21875, which is an extension by one round
of the 3-round characteristic used by Langford and Hellman. This extended char-
acteristic is presented in Figure 1.
The 3-round differential was concatenated with the 3-round linear approxi-

mation with probability 1/2 + 0.195 presented in Figure 2. This 3-round linear
approximation is also the best 3-round linear approximation for DES.
We use our 4-round differential characteristic to build a distinguisher with a

probability of 1/2 + p ≈ 1/2 + 14/64
2

≈ 1/2 + 0.109 (recall, that for a random
permutation this value is 1/2). This approximation assumes that the behavior of
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ΩP = 00 80 82 00 60 00 00 00x

A′ = 00 80 82 00x a′ = 60 00 00 00x p = 14
64

= P (E0 00 00 00x)

B′ = 0 b′ = 0 p=1

C′ = 00 W0 XY 0Zx c′ = 60 00 00 00x

= P (V 0 00 00 00x)

D′ =?? ?? M? ??x d′ = 00 W0 XY 0Zx

= P (0? ?? ?? 0?x)

ΩT =?? ?? M? ?? 00 W0 XY 0Zx

F

F

F

F

(where V ∈ {1, . . . , Fx}, W ∈ {0, 8}, X ∈ {0, 8}, Y ∈ {0, 2}, Z ∈ {0, 2}, M ∈
{0, . . . , 7}, and any ? is any arbitrary value)

Fig. 1. The Extended 4-Round Differential Characteristic Used in Our Distinguisher

the remaining fraction of 1− 14/64 = 50/64 of the pairs induces uniform linear
distribution. We have verified the value of p experimentally, and confirmed this
probability using hundreds of different keys, and millions of encrypted pairs. The
linear characteristic has probability 1/2+ q = 1/2+ 2(−20

64
)2 ≈ 1/2+ 0.195. The

total probability of the approximation is thus

1/2 + 4pq2 = 1/2 + 4 · 0.109 · 0.1952 = 1/2 + 0.0167 = 1/2 + 2−5.91.

The distinguishing attack is as follows:

1. SelectN = 211.81 plaintext pairs with the plaintext differenceΩP = 00 80 82 00 60 00 00 00x.
2. Request the ciphertexts of these plaintext pairs (encrypted under the un-
known key K).



Enhancing Differential-Linear Cryptanalysis 259

λP = 21 04 00 80 00 00 80 00x

A′ = 21 04 00 80x a′ = 00 00 80 00x 1/2− 20
64

= P (00 00 F0 00x)

B′ = 0 b′ = 0 1/2+1/2

C′ = 21 04 00 80x c′ = 00 00 80 00x 1/2− 20
64

= P (00 00 F0 00x)

λT = λP = 21 04 00 80 00 00 80 00x

F

F

F

Fig. 2. The 3-Round Linear Approximation Used in [10]

3. For each ciphertext pair, compute the parity of the bits masked by λT =
21 04 00 80 00 00 80 00x in each of the plaintexts, and count for how many
pairs both parities are equal. Let the number of such pairs be denoted by m.

4. If
m

N
>
1

2
+ ε, where ε =

4pq2

2
= 2−6.90,

(i.e., m > 210.81 + 24.91) conclude that the cipher is 7-round DES.

5. Otherwise, conclude that the cipher is not 7-round DES.

The parameters N and ε are selected as to maximize the success rate of the
attack while requiring the lowest data complexity. For N = 211.81 and ε = 2−6.90

the attack succeeds with probability higher than 84.13%, and has data and time
complexities of 212.81.

We point out that unlike most linear attacks (and most differential-linear
attacks) it suffices in this case to test whether mN > 1

2
+ ε rather than whether

|mn − 1/2| ≥ ε. This follows from the fact that in this specific attack the bias is
always positive and is unaffected by any key bit (as all the affected key bits are
used twice and thus cancelled).
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In order to show that for these parameters we get this success rate we use
the following statistical reasoning (see [13]): For a random permutation each pair
behaves randomly, and thus in half of the pairs the two parities of the subset of
the ciphertext bits are equal. Therefore, the number of equal parities behaves
like a binomial random variable X ∼ Bin(211.81, 1/2). It is easy to see that such
random variable can be approximated according to the normal distribution, and
thus we conclude that the probability that this random variable (counting the
number of pairs with equal parities) is higher than 210.81 + 24.91 is at most
15.87%. We conclude that for a random permutation the probability that the
above algorithm outputs ‘this is a random permutation’ is 84.13%.
Repeating this analysis for 7-round DES with X ∼ Bin(211.81, 1/2 + 2−5.91)

the probability that the algorithm outputs ‘this is a random permutation’ is
15.87%.

5 A Key Recovery Attack on 8-Round DES

This attack can be extended to a key-recovery attack by adding one round for
the analysis, and using the 7-round distinguisher, as follows

1. SelectN = 213.81 plaintext pairs with the plaintext differenceΩP = 00 80 82 00 60 00 00 00x.
2. Request the ciphertexts of these plaintext pairs (encrypted under the un-
known key K).

3. Initialize an array of 64 counters to zeroes.
4. For each ciphertext pair
(a) Try all the 64 possible values of the 6 bits of the subkey K8 that enter

the S Box S1 in round 8.
(b) For each value of the subkey, compute the output of S1 in the last round,

and use its output to compute the parity of the subset of bits in λT after
round 7. Now we can compute the output subset parity, as we know 4 of
the subset bits from the ciphertext, and the remaining one from the the
output of S1 and the ciphertext.

(c) If the parities in both members of the pair are equal, increment the
counter in the array which relates to the 6 bits of the subkey.

5. The highest entry in the array should correspond to the six bits of K8
entering S1 in round 8.

6. The rest of the key bits can be recovered by auxiliary techniques.

For N = 213.81 this attack succeeds with probability 77.27% or more. The
complexity of the attack is 214.81 · 26/64 = 214.81 time (in units of 8-round DES
encryptions; 26 subkeys tried, each trial takes about one S box computation out
of the 64 S boxes of a full encryption), requiring 214.81 chosen plaintexts.

6 A Key Recovery Attack on 9-Round DES

Similarly, the attack can be extended to 9 rounds by analyzing two rounds in
addition to the 7-round distinguisher.
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ΩP = 00 00 02 02 40 00 00 00x

A′ = 00 00 02 02x a′ = 40 00 00 00x p = 12
64

= P (30 00 00 00x)

B′ = 0 b′ = 0 p = 1

C′ = 00 W0 XY 0Zx c′ = 40 00 00 00x

= P (V 0 00 00 00x)

D′ =?? ?? M? ??x d′ = 00 W0 XY 0Zx

= P (0? ?? ?? 0?x)

ΩT =?? ?? M? ?? 00 W0 XY 0Zx

F

F

F

F

Fig. 3. The Modified 4-round Differential Characteristic Used in the 9-Round Attack

In this case we use the slightly modified differential characteristic presented
in Figure 3.

This characteristic is similar to the original, except that its first round is
replaced. This replacement is done to reduce the number of active S boxes in the
round preceding the characteristic. This characteristic induces a linear probabil-
ity of 1/2+p = 1/2+0.09375 (again, we experimentally verified this probability).
With this change, the 7-round distinguisher with 84.13% success rate would re-
quire N = 212.25 pairs (for ε = 2−7.13).

To mount a 9-round key recovery attack, we set the differential and linear
characteristics combination at rounds 2–8, and analyze rounds 1 and 9.

The attack is as follows

1. Select N = 215.75 plaintexts, consisting of 26.75 structures, each is chosen by
selecting:
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(a) Any plaintext P0

(b) The plaintexts P1,. . . ,P255 which differ from P0 by all the 255 possible
subsets of the eight bits masked by 18 22 28 28 00 00 00 00x (these are
the output bits of S6 and S8 in round 1).

(c) The plaintexts P256,. . . ,P511 selected as Pi = Pi−256⊕40 00 00 00 00 00 02 02x.
2. Request the ciphertexts of these plaintext pairs (encrypted under the un-
known key K).

3. At this stage we do not know which pairs in the structure have the difference
ΩP before round 2. Instead, we guess these pairs by trying all the possible
values of the 12 bit of the subkey K1 which enter S6 and S8.

4. For each value of the 12 bits of K1 entering S6 and S8
(a) Partially encrypt S6 and S8 in the first round of each plaintext and find

the pairs which satisfy the difference ΩP before round 2 (assuming the
guessed value is correct)

(b) Given all the pairs, apply the 8-round attack on these pairs (the attack
is on the 8 rounds from round 2 to round 9).

5. Each trial of the key gives us 12 + 6 = 18 bits of the subkeys (12 bits in
round 1 and 6 bits in round 9), along with a measure for correctness (which
is the number of times it is suggested in the 8-round attack). The correct
value of the 18 bits is expected to be the most frequently suggested values
(with over 88.80% success rate).

6. The rest of the key bits are then recovered by auxiliary techniques.

Note that due to the mass of 212 applications of the 8-round attack, and the
need to identify which application uses the correct guess of the 12 bits of the first
subkey, we need more data than for a single application of the 8-round attack.
This attack requires 215.75 chosen plaintexts, and finds the key in time 215.75 ·

212·26·3/72 ≈ 229.17 (in units of 9-round DES encryptions). This time complexity
of this attack can be further reduced using auxiliary techniques and reordering
of the operations.

7 Attack on COCONUT98

We can use our results to present the best known attack against the CO-
CONUT98 block cipher. COCONUT98 is a 64-bit blocksize 256-bit keysize block
cipher, that was designed using the decorrelation theory [14].
The cipher is composed of 4 Feistel rounds, a decorrelation module, and 4

additional Feistel rounds. The decorrelation module is M(xy) = (xy⊕K5K6)×
K7K8 mod GF (2

64), where x, y are the 32-bit data word, xy denotes their con-
catenation. K5,K6,K7,K8 are four 32-bit values supplied by the user key, and
where K7K8 6= 0. The multiplication is over the finite field GF (2

64) defined by
the polynomial x64+x11+x2+x+1 over GF (2). Note that the exact underlying
polynomial has no effect on our results. The Feistel rounds can be described as
follows:

φ(x) = x+ 256 · S(x mod 256) mod 232

Fki(x, y) = (y, x⊕ φ(ROL11(φ(y ⊕ ki)) + c mod 232))
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λP = 00 00 08 D7 00 00 00 01x

A′ = 00 00 08 D7x a′ = 00 00 00 01x 1/2 + 0.135

B′ = 0 b′ = 0 1/2 + 1/2

C′ = 00 00 08 D7x c′ = 00 00 00 01x 1/2 + 0.135

λT = λP = 00 00 08 D7 00 00 00 01x

F

F

F

Fig. 4. A 3-round Linear Approximation of COCONUT98 with Probability 1/2+0.0364

where c = B7 E1 51 62x is a known constant and ki is the round subkey.

In [15] a 4-round differential (of the Feistel rounds) with probability 0.83 · 2−4

was introduced. It was commented that the expected difference that enters the
decorrelation module leads to some fixed but unknown difference after the decor-
relation module. We denote this differential byΩCOCONUT98. Thus,ΩCOCONUT98

is a differential with probability p = 0.83 · 2−4 for the first 4 Feistel rounds and
the decorrelation module. Note that we have no idea what the output difference
of ΩCOCONUT98 is. Still, this does not interfere with our analysis, as we men-
tioned before. In case that the subset λP of bits of this output difference has an
odd number of active bits (i.e., the scalar product λP ·ΩT is 1), then there are
going to be more disagreements on the output parity then agreements, and the
linear bias would be negated, without affecting the analysis.

In Figure 4 we present a linear approximation for 3 Feistel rounds of CO-
CONUT98. This approximation has a probability 1/2 + q = 1/2 + 0.0364.

We can now use ΩCOCONUT98 concatenated to the 3-round linear approxi-
mation to present a distinguisher for the entire COCONUT98 but the last round.
The distinguisher has a bias of 4pq2 ≈ 1/3638. Note that we do no know whether
the bias is in favor of having the same parity, or having complement parities (as
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we have no idea what the output of the differential is; this output depends on
some key that we do not know), but this does not stop us from attacking the
cipher.

The attack retrieves subkey bits of the last round. As the only unknown value
in the equation of the parities is the least significant bit of the right half after
the 7th Feistel round (just after the approximation), we need to determine the
least significant bit of the output of the function F in the last round. As this
bit is unaffected by the second φ, and as the addition of the constant c does not
change it (the least significant bit of the constant c is 0), then it is unchanged
after the rotate left operation. In this operation we actually need to know bit
21 before the rotate. In order to determine this bit, we need to know the lower
22 bits that enter the first φ, and we conclude that we need to know the 22
lower key bits in the last round. As guessing these 22 key bits can be very time
consuming, we try to look for more efficient solutions. We can approximate (with
very high probability) the true value of the relevant bit, by knowing the output
of the S-box in the first φ (i.e., look at the 8 lower subkey bits) and m bits of
the subkey from bit 21 and downward. Considering only m subkey bits causes a
mistake in a fraction of 2−m of the cases. As this mistake appears uniformly and
affects all trials similarly, we actually get a bias of 4pq2 · (1 − 2−m+1). For the
value m = 7 this bias is 1/3700. A slight improvement of the bias to the value
4pq2 = 1/3638 can be performed by discarding some mistaken data.

Our attack counts over these 7+8 = 15 subkey bits using the following algo-
rithm:

1. Initialize 215 counters. Each corresponds to a different last round subkey.

2. Encrypt N pairs with the required input difference.

3. For each 15-bit subkey subkey value partially decrypt all ciphertext pairs
and check whether the parities of the subsets are equal or different. For each
ciphertext pair increment the counter of the subkey in case of equality.

4. Look for the counter with the maximal bias from N/2 (i.e., |counter−N/2|
is maximal), and suggest the related subkey as the right subkey.

The time complexity of this algorithm is 2N encryptions and 2 · 215 ·N addi-
tional last round activations (and 216 additional memory accesses, which we
omit). Hence, the total running time of the algorithm is 216 · N/8 = 213 · N
COCONUT98 encryptions.

We now determine N . We associate the right key counter with the random
variable X, and each of the 215− 1 wrong subkeys with its own random variable
Yi. We assume that all of these variables have a normal distribution and thatX ∼
N(N/2 +N/3700, N/4) and that ∀i : Yi ∼ N(N/2, N/4). For N = 8/(1/3700)2,
the success rate of the attack is at least 75.46%. Thus, we conclude that we need
N = 8 · 37002 = 226.7 pairs (227.7 chosen plaintexts), and time complexity of
239.7 COCONUT98 encryptions.

The rest of the key can be found with auxiliary techniques using other dif-
ferentials and linear approximations with a negligible additional time and data
complexities.
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We can reduce the time complexity of the attack by observing that we are
actually interested in 15 bits of the ciphertext. In the above analysis we perform
the same operations for the same values many times. Using a precomputed table
(which requires 215 · 215 = 230 last round activations to compute) we can reduce
the time complexity of the attack to 239.7 memory accesses, which are equivalent
to at most 233.7 COCONUT98 encryptions.

8 Summary and Conclusions

In this paper we presented an extension of differential-linear cryptanalysis that
allows using a differential characteristic with probability lower than 1. We showed
that this extension can attack DES reduced 7, 8, and 9 rounds. The latter is the
best known method against 9-round DES.

This attack can be extended to analyze the 10-round reduced-variant of DES
with time complexity about 250 and using about 220 chosen plaintexts.

We also presented the fastest attack on the full COCONUT98. Our attack
requires about 227.7 chosen plaintexts and time complexity of about 233.7 CO-
CONUT98 encryptions. Previous results [15] required 216 adaptive chosen plain-
texts and ciphertexts and 238 COCONUT98 encryptions.

We summarize our results along with previously known results in Table 1.

Cipher Attack Complexity Success
Data Time Rate

8-round DES Differential [2] 214CP 29 53%
Linear [11] 218KP 225 49.4%
Linear [11] 219KP 226 93.2%
Differential-Linear [10] 512CP 214 80%
Differential-Linear [10] 768CP 214.6 95%
C.P. Linear Cryptanalysis [8] 216CP 223 51%
C.P. Linear Cryptanalysis [8] 217CP 224 94%
Enhanced Differential-Linear – this paper 214.8 CP 214.8 77.3 %

9-round DES Differential [2] 224CP 232 99.97%
Enhanced Differential-Linear – this paper 215.8 CP 229.2 88.8%

COCONUT’98 Boomerang [15] 216ACPC 238 99.96%
(full cipher) Enhanced Differential-Linear – this paper 227.7CP 233.7 75.5%

Complexity is measured in encryption units.
CP - Chosen Plaintexts, KP - Known Plaintexts
ACPC - Adaptive Chosen Plaintexts and Ciphertexts

Table 1. Summary of Our Results and Previously Known Results
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