
The Hardness of Hensel Lifting:

The Case of RSA and Discrete Logarithm

Dario Catalano, Phong Q. Nguyen, and Jacques Stern

École normale supérieure
Département d’informatique

45 rue d’Ulm, 75230 Paris Cedex 05, France.
{Dario.Catalano,Phong.Nguyen,Jacques.Stern}@ens.fr

Abstract. At ACM CCS ’01, Catalano et al. proposed a mix of the
RSA cryptosystem with the Paillier cryptosystem from Eurocrypt ’99.
The resulting scheme, which we call RSAP, is a probabilistic cryptosys-
tem which is both semantically secure under an appropriate decisional
assumption and as efficient as RSA, but without the homomorphic prop-
erty of the Paillier scheme. Interestingly, Sakurai and Takagi presented
at PKC ’02 a proof that the one-wayness of RSAP was equivalent to
the RSA assumption. However, we notice in this paper that the above
proof is not completely correct (it works only in the case when a perfect
oracle - i.e. an oracle that always provides correct answers - is given).
We fix the proof by presenting a new proof based on low-dimensional
lattices. The new proof, inspired by the work of Sakurai and Takagi,
is somewhat related to Hensel lifting and the N -adic decomposition of
integer exponentiation. Roughly speaking, we consider the problem of
computing f(x) mod M ` given f(x) mod M and an exponent ` > 1. By
studying the case f(x) = xe and M is an RSA-modulus, we deduce
that the one-wayness of RSAP is indeed equivalent to the RSA assump-
tion, and we are led to conjecture that the one-wayness of the original
Paillier scheme may not be equivalent to the RSA assumption with ex-
ponent N . By analogy, we also study the discrete logarithm case, namely
when f(x) = gx and M is a prime, and we show that the corresponding
problem is curiously equivalent to the discrete logarithm problem in the
subgroup spanned by g.

Keywords: Public-key, RSA, Paillier, Discrete logarithm, Hensel, One-
wayness, Lattice.

1 Introduction

Many basic computational problems in number theory can be efficiently solved
by first looking at the problem modulo a (small) prime number p and then per-
forming a so-called Hensel lifting, which iteratively transforms solutions modulo
p into solutions modulo arbitrary powers of p. This is for instance the case with
factorization of univariate integer polynomials, and with integer root finding of
univariate integer polynomials (see [1, 5]). The lifting process has been dubbed

298 D. Catalano, P.Q. Nguyen, and J. Stern

Hensel lifting because of the pioneering work of the German mathematician
Hensel on p-adic numbers at the end of the 19th century. The p-adic numbers
are beyond the scope of this paper, and we refer the interested reader to [8] for
more information: Let us just briefly mention that, mathematically speaking,
the p-adic numbers are an extension (depending on p) of the field Q of rational
numbers, which is built as a completion of Q with respect to a specific metric
(different from the usual absolute valuation |x−y|) related to the decomposition
in base p of every positive integer. The link between Hensel lifting and p-adic
numbers is natural: Hensel lifting produces solutions modulo increasing powers
of p which can be viewed as better and better approximations of some “true” so-
lution, where the quality of the approximation is measured thanks to the specific
metric of the p-adic numbers.

In this paper we consider Hensel lifting from a cryptographic perspective. We
study the hardness of the general problem of computing f(x) modM ` (where `
is an integer ≥ 2) given f(x) modM , where the function f is implemented as
either the RSA function or the Discrete Logarithm function. More precisely, we
investigate the following problems:

1. Given an RSA modulus N and the value xe mod N where 0 ≤ x < N , how
hard is it to compute xe mod N ` (for ` > 1)?

2. Given a prime p, an integer g and the value gx mod p where x is defined
modulo the order of g, how hard is it to compute gx mod p` (again for
` > 1)?

Motivation and Previous work. At Eurocrypt ’99 Paillier [11] proposed
a new cryptosystem based on a novel computational problem: the composite
residuosity class problem. The details of the scheme are given below, for now
let us highlight the main contributions of Paillier’s construction. Given an RSA
modulus N , the multiplicative group Z∗

N2 can be partitioned into N equivalence
classes according to the following equivalence relation: a, b ∈ Z∗

N2 are equivalent
if and only if the product ab−1 is an N -th residue modulo N 2, where by N -
residue we intend an element x ∈ Z∗

N2 such that there exists y ∈ Z∗
N2 satisfying

the equation x ≡ yN mod N2.
The composite residuosity class problem is then the problem to determine,

on input a random value w ∈ Z∗
N2 to which class such an element belongs.

The one-wayness of Paillier’s scheme is provably equivalent to the class problem
which turns out to be related but not known to be equivalent to the problem of
inverting RSA, when the public encryption exponent is set to N . The semantic
security of Paillier’s scheme is provably equivalent to a decisional variant of the
class problem. Paillier’s paper has sparkled a huge amount of research due to
its beautiful and original mathematical structure. Moreover the scheme is very
attractive for many practical applications because of its homomorphic property:
given the ciphertexts c1 =ENC(m1) and c2 =ENC(m2), an encryption of m1+
m2 can easily be obtained by simply multiplying c1 and c2.

The main drawback of Paillier’s scheme is its cost: encryption and decryption
cost respectively two and one modular exponentiations, but all the operations

The Hardness of Hensel Lifting: The Case of RSA and Discrete Logarithm 299

are performed modulo N2. Moreover the exponents used have all order Ω(N).
To improve the efficiency of the scheme, Catalano et al. [4] proposed a mix of
Paillier’s scheme with the RSA scheme, whose running time is comparable to
that of plain RSA, and which is still semantically secure under an appropriate
decisional assumption. The new scheme follows from an alternative decryption
process for a particular instance of Paillier’s scheme, which allows to drastically
reduce the size of the encryption exponent. Interestingly enough, even though
the modification proposed in [4] only slightly changes the encryption scheme, it
deeply influences its mathematical structure. In the following we will refer to
the Catalano et al. cryptosystem as the RSA– Paillier Cryptosystem (RSAP for
brevity).

Later, Sakurai and Takagi [12] further studied the properties of the RSA-
Paillier scheme and presented a proof that its one-wayness is equivalent to the
problem of inverting RSA. Unfortunately, even though the proposed ideas are
very appealing, they turn out not to be completely sound from a technical
point of view. Specifically they prove that the one-wayness of RSA-Paillier cryp-
tosystem is equivalent to the problem of computing, given a value of the form
re mod N , the “lifted” value re mod N2. Then the proof proceeds by a stan-
dard reductio ad absurdum argument: they prove that if one has an oracle to
efficiently solve the above lifting problem this oracle could be used to construct
an efficient algorithm that computes the least significant bit of RSA (which, in
turn, is known to be a hard core predicate [2] for the RSA function [7]). How-
ever, as we will show in section 3, the argument is flawed, in the sense that the
proposed technique works only for the particular case in which the oracle gives
a correct answer with probability 1 (and we will note that another result of [12]
related to another variant of RSA suffers from the same flaw). Thus the problem
of proving the equivalence between the one-wayness of RSA and the one-wayness
of RSA-Paillier remains open for the general case in which the provided oracle
answers correctly only for a non-negligible fraction of the inputs.
A variant of the Hensel lifting problem was discussed by Takagi [13], who pro-
posed some efficient variants of RSA using N -adic expansion.

Our Results. Our contributions can be summarized as follows. First of all we
prove that the one-wayness of the RSA-Paillier function is actually equivalent to
that of the RSA function. We then turn our attention to the original Paillier’s
trapdoor function and we prove the following, somehow surprising, results:

1. Given a random RSA modulus N , computing rN mod N2 from a value
rN mod N where 0 ≤ r < N is as hard as solving the composite residu-
osity class problem.

2. Given a random RSA modulus N , computing rN mod N3 from a value
rN mod N where 0 ≤ r < N is as hard as inverting RSA when the pub-
lic exponent is set to N .

In some sense, the above results seem to provide an intuitive separation between
the Class assumption, introduced by Paillier, and the RSA assumption. This
leads us to conjecture that the one-wayness of the Paillier scheme is not equiv-
alent to the RSA assumption with exponent N .

300 D. Catalano, P.Q. Nguyen, and J. Stern

Our techniques can be generalized to the discrete logarithm function (modulo
a prime p) as well, and we prove that, under certain conditions, the problem
of computing gx mod p` when g, p, h = gx mod p are given is equivalent to the
problem of computing x. More precisely, the order ω of g modulo p is assumed
to be prime and publickly known, and the integer ` is defined as the unique
positive integer such that gω 6≡ 1 (mod p`) and gω ≡ 1 (mod p`−1).

Road map. The paper is organized as follows. In Section 2 we provide definitions
and notations that are useful for the rest of the paper. Then we quickly describe
Paillier’s cryptosystem and its variant from [4]. Section 3 presents our results for
the RSA case. The discrete logarithm case is discussed in Section 4. We conclude
the paper with some remarks and directions for future research in Section 5.

2 Preliminaries

Notation (Basically quoted from [4]). In the following we denote by N the set
of natural numbers, by R+ the set of positive real numbers, by ZN the ring of
integers mod N , which we identify to the set {0, 1 . . . , N − 1}, and by Z∗

N its
subset of invertible elements. In particular, we view elements of ZN as integers
of {0, . . . , N−1}: for instance, if r ∈ ZN , re mod N2 denotes the integer r raised
to the power e (as an integer and not as an integer mod N), eventually taken
modulo N2. We say that a function negl : N → R+ is negligible iff for every
polynomial P (n) there exists a n0 ∈ N s.t. for all n > n0, negl(n) ≤ 1/P (n).
We denote by PRIMES(k) the set of primes of length k. For a, b ∈ N we write
a ∝ b if a is a non zero multiple of b.

If A is a set, then a← A indicates the process of selecting a at random and
uniformly over A (which in particular assumes that A can be sampled efficiently).

If N is an RSA modulus (i.e. N = pq with p, q primes), then we denote by
RSA[N, e] the RSA function with exponent e. In the following we will assume
that RSA[N, e] is a one-way function, i.e. that given N of unknown factorization,
a public exponent e and RSA[N, e](x) = xe mod N , for random x it is infeasi-
ble to efficiently compute x. We will refer to this conjecture as the RSA[N, e]
assumption.

Paillier’s Scheme. Let N = pq be an RSA modulus and consider the multi-
plicative group Z∗

N2 . Let g be an element whose order is a multiple of N in Z∗
N2 .

Paillier [11] defines the following function

Fg : Z∗
N × ZN → Z∗

N2

Fg(r,m) = rNgm mod N2

and proves the following statements:

– The function Fg is a trapdoor permutation. The trapdoor information is the
factorization of N .

– Inverting Fg is equivalent to inverting RSA[N,N].

The Hardness of Hensel Lifting: The Case of RSA and Discrete Logarithm 301

By the first property above, once g is fixed, for a given w ∈ Z∗
N2 , there exists

a unique pair (m, r) such that w = rNgm mod N2. We say that m is the class
of w relative to g, and we indicate this value with Classg(w). We define the
Computational Composite Residuosity Class Problem as the problem of comput-
ing m when N, g and w are provided. We will assume this to be an intractable
problem. More formally, we use the following definition from [3]:

Definition 1. We say that computing the function Classg(·) is hard if, for every
probabilistic polynomial time algorithm A, there exists a negligible function
negl() such that

Pr

p, q ← PRIMES(n/2); N = pq;
g ← Z∗

N2 s.t. ord(g) ∝ N ;
c← ZN ; z ← Z∗

N ; w = gczN mod N2;
A(N, g, w) = c

= negl(n)

In his paper Paillier proves that the function Class is random self reducible [2]
over g ∈ Z∗

N2 , i.e. that its complexity is independent of the specific base g used.

The RSA-Paillier scheme. Let N = pq be an RSA modulus and consider the
multiplicative group Z∗

N2 . For a random e ∈ ZN such that gcd(e, λ(N2)) = 1,
Catalano et al. [4] defined the following function

Ee : Z∗
N × ZN → Z∗

N2

Ee(r,m) = re(1 +mN) mod N2

and they proved it is a trapdoor permutation equivalent to RSA[N, e].
To encrypt a message m, one simply chooses a random r ∈ Z∗

N and sets c =
(1+mN)re mod N2. From the ciphertext c, anyone knowing the factorization of
N can retrieve the message, by first computing r = e

√
c mod N and then getting

m as (c(r−1)e mod N2)−1
N

over the integers.
Notice that, in order for the above decryption procedure to work it is not nec-
essary to assume gcd(e, λ(N 2)) = 1. As a matter of fact, one can consider expo-
nents e such that gcd(e, λ(N)) = 1.
In this sense by letting e = N we go back to an instance of Paillier’s scheme
where g is set to (1 + N). For the purposes of this paper, however, we will as-
sume gcd(e, λ(N2)) = 1. The reason for this choice will become clearer in the
next section.

3 The RSA Case

We start this section by introducing a new computational problem, which is
actually very similar to a problem presented in [12].
Informally, the problem we have in mind can be stated as follows. Assume an
RSA modulus N is provided, given c = re mod N (where r ← {0, . . . , N − 1}),

302 D. Catalano, P.Q. Nguyen, and J. Stern

we want to compute the “lifted” value re mod N ` for ` > 1. More formally we
define the following function over {0, . . . , N − 1}:

Hensel−RSA[N, e, `](re mod N) = re mod N l

Note that this function is well-defined over {0, . . . , N − 1} because the RSA-
function is a permutation over ZN .

It is immediate to see that if the factorization of the modulus is known then
one can efficiently computeHensel-RSA. On the other hand, if the factorization
of N is not available, we conjecture it is infeasible to compute such a function
in probabilistic polynomial time.

Definition 2. We say that computing the function
Hensel-RSA[N, e, `](re mod N) is hard if, for every probabilistic polynomial
time algorithm A, there exists a negligible function negl() such that

Pr

p, q ← PRIMES(n/2); N = pq;
r ← {0, . . . , N − 1}; w = re mod N ;
A(N, e, w, `) = re mod N `

 = negl(n)

In the next lemma (originally presented, in a slightly different form, in [12])
we make explicit the relation existing between the problem of computing the
function Hensel-RSA and the one-wayness of the RSA-Paillier scheme.
The proof is straighforward and is left to the reader.

Lemma 1. Given an RSA modulus N and a public exponent e, the RSA-Paillier
function is one-way if and only if Hensel-RSA[N,e,2] is hard.

Now, on top of Lemma 1, we prove that the one-wayness of RSA-Paillier is
equivalent to the one-wayness of RSA, by showing that the problem of comput-
ing Hensel-RSA, with parameters N, e and 2, on input re mod N and the one
of computing r from re mod N are computationally equivalent. Observe that
assuming that Hensel-RSA[N, e, 2] is hard implicitly implies that the RSA[N, e]
assumption must hold. Consequently, we will focus on proving that the inverse di-
rection also holds, i.e. that under the RSA[N, e] assumption Hensel-RSA[N, e, 2]
is hard.

3.1 A flawed solution

In this paragraph we discuss the approach followed by Sakurai and Takagi [12,
Theorem 2], and we show why it is incorrect.
As already sketched in the introduction, they propose the following strategy:
assume, for the sake of contradiction, that one has an oracle O that, on input
re mod N , computes re mod N2 with some non negligible probability of success
ε. Then, on input a random RSA ciphertext re mod N , the basic idea of their
proof is to use such an oracle to compute the least significant bit of r with some
non-negligible advantage, and then apply the bit-security result of [7]. They
implement this idea as follows:

The Hardness of Hensel Lifting: The Case of RSA and Discrete Logarithm 303

1. Run O(re mod N) and obtain b0 + b1N = re mod N2.
2. Run O((2−1r)e mod N) and obtain a0 + a1N = (2−1r)e mod N2.
3. Return 1 as the lsb of r if a0 + a1N = 2−e(b0 + b1N) mod N

2 holds and 0
otherwise.

Finally they claim that the success probability of the above algorithm is ε2.
However this is not true. As a matter of fact in order for such an estimate to
be correct it is crucial to query the oracle on random and independently gener-
ated inputs. Here, on the contrary, the two inputs are clearly not independently
sampled. Thus it is not possible to bound by ε2 the probability of success of
the algorithm1. By the way, exactly the same mistake appears in another part
of the paper [12], more precisely in the proof of [12, Theorem 6], related to the
one-wayness of another class of probabilistic variants of RSA.

Furthermore, we note that even if the proof was correct, the reduction would
be rather inefficient in terms of oracle calls. Indeed, the reduction makes two
oracle calls to obtain only one bit of information on r, which implies that to
completely recover r, one has to make at least 2 logN oracle calls. And one also
has to use the reduction of the bit-security result of [7].

3.2 Our Solution

With the next theorem we propose a general result connecting the difficulty of
computing the Hensel-RSA function with the hardness of inverting RSA. Specif-
ically we prove that, given a public exponent of the form e = fN ` (for constants
` ≥ 0 and f > 0 such that gcd(f, λ(N 2)) = 1), Hensel-RSA[N, e, ` + 2] is hard
if and only if RSA[N, e] is hard. Note that any valid RSA public encryption
exponent e can be written in the form e = fN ` (where gcd(f, λ(N2)) = 1),
unless gcd(e,N) is a non-trivial factor of N , in which case the public exponent
e would disclose the RSA private key. As already mentioned our proof will fo-
cus on showing that under the RSA[N, e] assumption, Hensel-RSA[N, e, `+2] is
hard. Interestingly, our reduction only calls the oracle twice, as opposed to at
least 2 logN for the (flawed) one proposed by [12].

Theorem 1. Given an integer N and an integer e of the form e = fN ` where
f is coprime with λ(N2) and ` ≥ 0, then Hensel-RSA[N, e, `+ 2] is hard if and
only if the RSA[N, e] assumption holds.

Proof. Assume, for the sake of contradiction, that Hensel-RSA[N, e, `+2] is not
hard. This means that there exists an oracle O that, on input a random challenge
w = re mod N , computes re mod N `+2 with some non-negligible probability ε.
Here we will show how to use this oracle to construct a probabilistic polyno-
mial time algorithm I that succesfully inverts RSA with a polynomially related
probability.
1 For example it may very well happen that the non-negligible set of inputs for
which the oracle answers correctly does not contain any couple of the form
(re mod N, (2−1r)e mod N), and, in such a case, the success probability of the algo-
rithm would be 0.

304 D. Catalano, P.Q. Nguyen, and J. Stern

Assume that we are given as input a random element w = re mod N : our
goal is to compute r. We start by choosing a random a uniformly in Z∗

N . We then
call the oracle O twice, on inputs w and (aew) mod N . Since the queries w and
(aew) mod N are independent and uniformly distributed over ZN (by definition
of r, w and a), we obtain with probability ε2 the integers re mod N `+2 and
µe mod N `+2 where µ is defined by µ = ar mod N .

We may assume that r ∈ Z∗
N , otherwise either r = 0 or we are able to factor

N . Then µ is invertible modulo N `+2, and there therefore exists z ∈ ZN`+1 such
that :

ar ≡ µ(1 + zN) (mod N `+2) (1)

Raising to the power e = fN `, we obtain :

aere ≡ µe(1 + zfN `+1) (mod N `+2).

In this congruence, we know a, re mod N `+2 and µe mod N `+2: we can thus
compute zf modulo N . Since f is coprime with N , we derive z0 = z mod N .
Taking equation (1) modulo N 2, we obtain:

ar ≡ µ(1 + z0N) (mod N
2), (2)

where only r and µ are unknowns both in {1, . . . , N − 1}.
To complete the proof, we solve this linear congruence by a lattice reduc-

tion argument (see for instance the survey [10] for references on lattice theory).
Consider indeed the following set

L = {(R,U) ∈ Z2 : aR ≡ U(1 + z0N) (mod N
2)}.

Since L is a subgroup of Z2, L is a lattice, whose dimension is obviously equal to
two. The vector (r, µ) belongs to L and to [1, N − 1]2. Therefore L ∩ [1, N − 1]2
is not empty. A classical lattice reduction result (which can be viewed as a
particular case of integer programming in fixed dimension, see [9]) then states
that one can compute a vector (r′, µ′) ∈ L ∩ [1, N − 1]2 in time polynomial in
logN (because one obviously knows a basis of L whose size is polynomial in
logN). Because (r, µ) and (r′, µ′) both belong to L, equation (2) implies :

rµ′ ≡ r′µ (mod N2).

Since r, µ, r′, µ′ all lie in [1, N − 1], the congruence is in fact an equality over Z:
rµ′ = r′µ. ¿From r′ and µ′, we can therefore compute the integers r and µ up
to a multiplicative factor, namely gcd(r, µ).

We now show that with overwhelming probability, this gcd will be sufficiently
small that it can be exhaustively searched in polynomial time. To see this, notice
that the number of pairs (α, β) ∈ [0, N − 1]2 which have a common divisor d
is O(N2/d2) as N grows, therefore, for any B, the number of pairs (α, β) ∈
[0, N − 1]2 which have a a gcd > B is at most O(

∑

d>B N
2/d2) = O(N2/B).

Since µ and r are both uniformly distributed over ZN , the probability that
gcd(µ, r) ≥ (logN)/ε is O(ε2/ logN) by taking B = (logN)/ε2. Finally, we

The Hardness of Hensel Lifting: The Case of RSA and Discrete Logarithm 305

proved that with probability at least ε2 − O(ε2/ logN) = ε2(1 − o(1)) over the
choice of (a, r), we can compute in polynomial time r an µ up to the factor
gcd(r, µ) which is ≤ (logN)/ε2. Thus, we can compute r in time polynomial in
logN and 1/ε, thanks to an exhaustive search over gcd(r, µ), since the value of
r can be checked with w = re mod N .

ut

As an immediate consequence of Theorem 1 and Lemma 1, we obtain:

Corollary 1. Given an RSA modulus N together with a public exponent e such
that gcd(e, λ(N2)) = 1, the RSAP encryption function is one-way if and only if
RSA[N, e] is a one-way function.

Observe that, by setting f = ` = 1 in the parameters of Theorem 1, we get that
the hardness of Hensel-RSA[N,N, 3] is actually equivalent to that of RSA[N,N].
To complete the picture, with the next theorem we make explicit the relation ex-
isting between the one-wayness of Paillier’s encryption function and the problem
of computing Hensel-RSA with parameters N,N, 2.

Theorem 2. Given an RSA modulus N , then Hensel-RSA[N,N,2] is hard if and
only if Classg is hard.

Proof. Since, for all g such that ord(g) ∝ N , all the intances of Classg(·) are
computationally equivalent, we will prove the theorem for the case in which
g = 1 +N (note that 1 +N has order N in Z∗

N2).
First assume that a random ciphertext c = (1 +mN)rN mod N2 is given. Our
goal is to compute m using an oracle that, when receiving an input of the form
yN mod N returns as output the value yN mod N2, with probability ε (non
negligible). Thus when the oracle is given the value c mod N , it will answer
(N
√
c mod N)N mod N2 with probability ε. Note that this value corresponds to

rN mod N2 (Observe that this is true even in the case in which r is greater than
N). From rN mod N2 and rN mod N it is easy to compute m.

Conversely, assume we are given an oracle than on input a random c ∈ Z∗
N2

computes the class of c with respect to the base (1 +N) (again we denote by ε
the probability of success of the oracle). Now we would like to compute, for a
random challenge rN mod N , the corresponding rN mod N2, using the provided
oracle.
Let us consider the value

d = (rN mod N) + kN

Where k ← ZN . Note that, since rN mod N is uniformly distributed in Z∗
N and,

being Z∗
N2 isomorphic to Z∗

N × ZN [11], d is uniformly distributed in Z∗
N2 and

can be written (univoquely) as

d = rN (1 +mN) mod N2

extracting m from d (via the given oracle) thus leads to compute rN mod N2.
ut

306 D. Catalano, P.Q. Nguyen, and J. Stern

Remark 1. At PKC’01 Damg̊ard and Jurik [6] presented a generalized (and still
homomorphic) version of Paillier’s basic cryptosystem in which the expansion
factor is reduced and the block length of the scheme may be changed without
altering the public key. Moreover they show that such a variant is as secure as
Paillier’s construction.
The result presented in Theorem 2 above, can be generalized to connect the
one-wayness of the Damg̊ard-Jurik construction and the hardness of Hensel-
RSA with appropriate parameters. Details are deferred to the final version of
this paper.

4 The Discrete Log Case

In this section we extend our results to the discrete logarithm function. Let
ω ∈ PRIMES(k) and g ∈ Zp an element of order ω in Z∗

p, where p is a prime
(note that ω must divide p − 1). We introduce the following, computational,
problem: Given p, g, ω and h = gx mod p, compute h′ = gx mod p`.

Formally we define the function:

Hensel−Dlog[p, g, `](gx mod p) = gx mod p`

We will assume this function to be not computable in probabilistic polynomial
time.

Definition 3. Let n(·) be a polynomial, we say that computing the function
Hensel-Dlog[p, g, `](gx mod p) is hard if, for every probabilistic polynomial
time algorithm A, there exists a negligible function negl() such that

Pr

ω ← PRIMES(k)
p← PRIMES(n(k)) s.t. p− 1 ∝ ω
g ← Z∗

p s.t. ord(g) = ω
x← Zω; h = gx mod p;
A(N, g, h, ω, `) = gx mod p`

= negl(k)

With the following theorem we relate the hardness of the function Hensel-
Dlog, to the hardness of the Discrete Logarithm function.

Theorem 3. Let ω be a k-bit random prime and p, such that p − 1 ∝ ω, a
prime whose size is polynomially related with k. Given g of order ω in Z∗

p, p
and ω, Hensel-Dlog[p, g, `] is hard if and only if the discrete logarithm in the
subgroup spanned by g in Z∗

p is a one-way function, where ` is defined as the

unique positive integer such that gω 6≡ 1 (mod p`) and gω ≡ 1 (mod p`−1).

Proof. We follow the proof of Theorem 1. Assume, for the sake of contradiction,
that Hensel-Dlog[p, g, `] is not hard. This means that there exists an oracle O
that, on input a random challenge h = gx mod p uniformly distributed over the

The Hardness of Hensel Lifting: The Case of RSA and Discrete Logarithm 307

subgroup spanned by g, computes gx mod p` with some non-negligible proba-
bility ε. Here we will show how to use this oracle to construct a probabilistic
polynomial time algorithm I that succesfully extracts discrete logarithms in base
g modulo p with a polynomially related probability.

We are given as input a random element h = gx mod p: our goal is to com-
pute x. We start by choosing a random a uniformly in Z∗

ω. We then call the
oracle O twice, on inputs h and ha mod p. Since the queries h and ha mod p are
independent and uniformly distributed over the subgroup spanned by g (because
ω is prime), we obtain with probability ε2 the integers gx mod p` and gµ mod p`

where µ is defined by µ = ax mod ω.
Because 0 ≤ a < ω and 0 ≤ x < ω, there exists an integer r such that

ax = µ+ rω and 0 ≤ r < ω. We obtain :

gax ≡ gµgrω (mod p`).

¿From gx mod p` and gµ mod p`, we therefore derive grω mod p`. Besides, ` is
such that gω 6≡ 1 (mod p`) and gω ≡ 1 (mod p`−1). One can therefore compute
an integer z ∈ Zp such that :

gω ≡ 1 + p`−1z (mod p`).

Then :
grω ≡ 1 + p`−1rz (mod p`).

Hence, we can compute r mod p, and since 0 ≤ r < ω < p, we know r exactly.
Now, in the equation ax = µ+rω, only the integers 0 ≤ x < ω and 0 ≤ µ < ω

are unknown. We have:
rω

a
≤ x <

(r + 1)ω

a
.

We thus obtain an interval of length ω/a containing x. We now show that with
overwhelming probability, this interval will be sufficiently short to be exhaus-
tively searched.

Indeed, with probability at least 1 − ε2/ logω over the choice of a, we have
a ≥ ε2ω/ logω, which implies that 0 ≤ ω/a ≤ (logω)/ε2. It follows that with
probability at least ε2 − ε2/ logω = ε2(1− 1/ logω) over the choice of (r, a), we
have 0 ≤ ω/a ≤ (logω)/ε2 and the outputs of the two oracle calls are correct.
Then, by exhaustive search over at most (logω)/ε2 ≤ k/ε2 possibilities, we
obtain x (the correct value can be recognized by the congruence h ≡ gx (mod p)).
Thus, with probability at least ε2(1 − 1/ logω) = ε2(1 − o(1)) (as k grows), we
can compute x in time polynomial in k and 1/ε. ut

5 Conclusions

In this paper we introduced two new functions and we studied their computa-
tional properties by relating them to the problems of inverting RSA and com-
puting discrete logarithms. Moreover we formally proved that the one-wayness

308 D. Catalano, P.Q. Nguyen, and J. Stern

of the RSA-Paillier scheme [4] is actually equivalent to that of RSA, thus fixing
an incorrect proof recently proposed by Sakurai and Takagi [12].

There are several open questions arising from this research. It would be nice
to know whether it is possible to further extend our results to discover the
exact relation existing between Paillier’s Class assumption and RSA[N,N]. An-
other intriguing direction may be to try to improve our understanding about
the hardness of the Hensel-Dlog function, and to find cryptographic applica-
tions. We proved that if one can compute gx mod p` from gx mod p (in the case
when gω ≡ 1 mod p but gω 6≡ 1 mod p`) then one could compute the discrete
logarithm function over the subgroup spanned by g. This implies that computing
gx mod p`−1 from gx mod p may be potentially easier than computing discrete
logarithms in the subgroup spanned by g.

Acknowledgements. We would like to thank Igor Shparlinski for helpful dis-
cussions.

References

1. E. Bach and J. Shallit Algorithmic Number Theory, Vol.1: Efficient Algorithms.
MIT Press, 1996.

2. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, No. 4:850-864, 1984.

3. D. Catalano, R. Gennaro and N. Howgrave-Graham. The Bit Security of Paillier’s
Encryption Scheme and its Applications. In Advances in Cryptology - Eurocrypt

’01. LNCS vol.2045, Springer, 2001, pages 229-243.
4. D. Catalano, R. Gennaro, N. Howgrave-Graham and P. Q. Nguyen. Paillier’s Cryp-

tosystem Revisited. In 8th ACM Conference on Computer and Communication

Security pp.206-214, 2001.
5. H. Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts

in Mathematics, Vol 138, Springer, 1996.
6. I. Damg̊ard and M. Jurik. A Generalization, a Simplification and Some Applica-

tions of Paillier’s Probabilistic Public-Key System. In Public key Cryptography,
LNCS vol. 1992, 2001, pages 119-136.

7. R. Fischlin and C.P. Schnorr. Stronger Security Proofs for RSA and Rabin Bits.
J. of Cryptology, 13(2):221–244, Spring 2000.

8. F. Gouvêa. p-adic numbers. Universitext, Springer, 1997.
9. M. Grötschel, L. Lovász and A. Schrijver. Geometric Algorithms and Combinatorial

Optimization. Springer-Verlag, 1993.
10. P. Q. Nguyen and J. Stern. The two faces of lattices in cryptology. In Proc. of

CALC ’01, volume 2146 of LNCS, Springer-Verlag, 2001.
11. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. In Advances in Cryptology - Eurocrypt ’99, LNCS vol. 1592, Springer,
1997, pages 223-238.

12. K. Sakurai and T. Takagi. New Semantically Secure Public-Key Cryptosystems
from the RSA Primitive In Public key Cryptography, LNCS vol. 2274, 2002, pages
1-16.

13. T. Takagi Fast RSA type Cryptosystems Using n-adic Expansion. In Proc. of

Crypto ’97, volume 1294 of LNCS, Springer-Verlag, 1997.

