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Abstract. Essentially all known one-time signature schemes can be de-
scribed as special instances of a general scheme suggested by Bleichen-
bacher and Maurer based on “graphs of one-way functions”. Bleichen-
bacher and Maurer thoroughly analyze graph based signatures from a
combinatorial point of view, studying the graphs that result in the most
efficient schemes (with respect to various efficiency measures, but focus-
ing mostly on key generation time). However, they do not give a proof of
security of their generic construction, and they leave open the problem
of determining under what assumption security can be formally proved.
In this paper we analyze graph based signatures from a security point of
view and give sufficient conditions that allow to prove the security of the
signature scheme in the standard complexity model (no random oracles).
The techniques used to prove the security of graph based one-time sig-
natures are then applied to the construction of a new class of algebraic
signature schemes, i.e., schemes where signatures can be combined with
a restricted set of operations.

1 Introduction

One-time signatures [Lam79] are digital signature schemes where the signer is
restricted to sign a single document. They are interesting cryptographic primi-
tives because they allow to solve many important cryptographic problems, and
at the same time offer substantial efficiency advantages over regular digital sig-
nature schemes (cf. [RSA78,Sch90,GMR88,BM92]), especially with respect to
signing, verification and key generation time. Applications of one time signatures
include the design of regular signature schemes [Mer87,Mer90,BM92,DN94], on-
line/off-line signatures [EGM96], digital signatures with forward security proper-
ties [BM99,AR00,MMM02], efficient broadcast authentication protocols [Per01]
[Roh99], network routing protocols [HPT97], and more. The first one-time signa-
ture scheme was proposed by Lamport [Lam79] and (in an interactive setting) by
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Rabin [Rab78]. The idea of the basic scheme of Lamport is very simple: given a
one-way function f , one selects two random strings x0, x1 (which constitute the
secret key), and publishes f(x0), f(x1). Then, a single bit message b ∈ {0, 1} can
be signed by revealing xb. Verification is performed in the obvious way. Notice
how the signing process is almost instantaneous, while verification only involves
a single application of a one-way function. Key generation is almost as efficient,
requiring only two applications of the one-way function.

Since Lamport’s original proposal, many extensions and improvements have
been suggested [MM82,Mer82,Mer87,Vau92,BC93,EGM96,BM94,BM96b,BM96a]
[Per01]. The improvements usually involve iterating the application of the one-
way function, or revealing multiple values as part of a signature. All these
schemes (with the exception of Perrig’s) can be described as special instances of a
general scheme suggested by Bleichenbacher and Maurer [BM94,BM96b,BM96a],
based on the use of “graphs of one-way functions”. These are directed acyclic
graphs or DAGs (see next section for a formal definition) with values associ-
ated to the vertices computed according to one-way functions associated to the
edges (see Figure 1). Messages are signed by revealing the values for some of
the vertices, and signatures verified using the publicly available one-way func-
tions. As pointed out in [BM94,BM96b,BM96a] DAG-based one-time signatures
schemes generalize and have potential advantages over schemes simply based on
the iterated application of the one-way function (which correspond to graphs
consisting of a collection of disjoint chains). Unfortunately, one-wayness does
not seem a sufficiently strong assumption to guarantee the security of the graph
based one time signature schemes. In fact, [BM94] and subsequent papers only
study the combinatorial properties of the graphs, e.g., trying to maximize the
size of the message space that can be signed using graphs with a predetermined
number of vertices. The issue of determining sufficient security assumptions on
the “one-way function” f , and proving the security of graph based signatures in
the standard complexity model is left open in [BM94,BM96b,BM96a].

Our Contributions: In this paper we analyze the security of graph based
signatures in order to put them on the firm grounds of the standard computa-
tional complexity security model. We show that under standard assumptions the
security of graph based signatures can be formally proved. In order to achieve
provable security, we adopt an approach in the definition of graph based sig-
natures that is dual to the one used in [BM94]. Namely, instead of associating
values to the nodes of a graph and functions to the edges, we propose to asso-
ciate values to the edges and functions to the nodes (Figure 2 shows an example).
Then, we prove that if the functions associated to the nodes are regular collision
resistant (or simply universal one-way) hash functions and one-to-one pseudoran-
dom generators, then the resulting one-time digital signature scheme is provably
hard to break. These primitives can be built starting from any one-way permu-
tation. The regularity and one-to-one properties can be relaxed assuming that
the hash functions and pseudo-random generator only satisfy pseudorandomness
and collision resistant properties.
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Fig. 1. DAG where values are associ-
ated to vertices and functions to edges
(e.g. v2=f1(v1), v6=f2(v2), v4=f3(v3,v2),
v5=f4(v4)).
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Fig. 2. DAG where values are associated
to edges and functions to vertices (e.g.
(v2,v5)=f1(v1),v4=f2(v3,v2)).

An important byproduct of this work is the use of a hybrid argument in a novel
way in our proof. Indeed, in order to prove the security of the signature scheme,
our analysis involves telling two distributions apart. However, a direct hybrid
argument cannot be used because the number of hybrid distributions may be
exponential on the security parameter. We show that by carefully setting a total
order relation on the hybrids, we can combine them into a small (polynomial)
number and the proof goes through. To the best of our knowledge this is a novel
use of hybrid argument and may be of independent interest.

Extensions: Graph-based one-time signatures can be extended to instantiate
a new type of signature scheme referred as algebraic signatures, originally sug-
gested by Rivest [MR02]. An algebraic signature scheme is a signature scheme
in which computing signatures of unseen messages is allowed in a restricted
way. Associated to each algebraic signature scheme there is a set of functions
O = {f1, . . . , ft} (where each function fi maps messages into messages). The
fundamental property of algebraic signature schemes is that given signatures
sig(m1), . . . , sig(mr) anyone can compute signature sig(fi(m1, . . . ,mr)). Clearly,
algebraic signatures require the definition of a new notion of unforgeability.
Namely, an algebraic signature scheme is secure if no adversary can efficiently
compute signatures of messages that cannot be computed fromm1, . . . ,mr by ap-
plying the functions in O. (See Section 6 for details). Micali and Rivest [MR02],
and, recently, Bellare and Neven [BN02], presented constructions of transitive
signatures which allow to sign edges in an undirected graph in such a way that
computing signatures of the transitive closure of the signed edges does not re-
quire knowledge of the secret key. Similarly, Johnson et al. [JMSW02] studied
several cases where the signing algorithm is homomorphic with respect to a
binary operation fi.

Building on graph-based one-time signature schemes we give explicit con-
structions for algebraic signatures on sets which support union and subset op-
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erations and also union and super-intersection operations1. We see graph-based
algebraic signatures as an area that deserves further research, since it may lead
to efficient and useful constructions.

2 Notation and basic definitions

In this section we review some definitions used throughout the paper. We start by
recalling some standard definitions about cryptographic primitives and directed
graphs.

2.1 Cryptographic Primitives

We first recall the standard definition of security of signature schemes under
chosen-message attacks (cf. [GMR88]) adapted to the case of one-time signature
schemes. Then, we recall the (also standard) definitions of security of collision-
resistant one-way hash functions (cf. [BR97]) and pseudorandom generators
(cf. [BM84,Yao82]).

One-Time Signature Scheme: Formally, a signature scheme consists of three
algorithms Σ = (KG,Sig, Vf). Given a security parameter k ∈ N, the key gener-
ation algorithm KG(k) outputs a pair of public and private keys (pk, sk); Sig is
the signing algorithm taking as input a key sk and a message m, and returning a
signature σ; Vf is the verification algorithm taking as input a key pk, a message
m and a signature σ, and returning a boolean decision. The signing algorithm
may be randomized but the verification algorithm is usually deterministic. It is
required that valid signatures are always accepted. A one-time signature scheme
is secure against existential forgery in a one-chosen-message attack if no compu-
tationally bounded adversary (forger), after obtaining the signature of a single
message of his choice, can output a (different) message and a corresponding valid
signature, except with negligible probability.

Collision-Resistant Hash Functions: Let H be a family of functions. An
individual element in H is function H:R2 → R, for some fix set R. The family
H is said to be collision-resistant if, for H randomly chosen in H, any computa-
tionally bounded adversary (collision-finder) can not find two different messages
m and m′ that map by H to the same value, except with negligible probability.

Furthermore, we say H is regular if it satisfies Pr
[

H(X) = y : X
R

← R2
]

=

Pr
[

Y = y : Y
R

← R
]

for all y ∈ R, and all H ∈ H.

Pseudorandom Generators: Let G:R → R2 be a deterministic function.
G is a pseudorandom generator if it no computationally bounded adversary
(distinguisher) can tell apart the output of G(x) on a random input x from a
truly random value on R2 with non-negligible probability. Also, a pseudorandom

1 The super-intersection of sets A and B, denoted A¯B, is the collection of all sets
S such that A ∩B ⊆ S ⊆ A ∪B.
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generator G is one-to-one if there is no pair of distinct inputs x, x′ ∈ R, that
produce the same output on G.

2.2 Graphs

A directed graph is a pair (V,E) where V is a finite set of vertices and E ⊆ V ×V
is the set of edges. A path of length ` ≥ 0 from v0 to v` in G is a sequence of
vertices p = (v0, . . . , v`) such that (vi−1, vi) ∈ E for all i = 1, . . . , `. If such a
path exists, we say that v0 is a predecessor of v` and v` is a successor of v0.
The sets of predecessors and successors of v are denoted Pred(v) and Succ(v),
respectively. A set of vertices S is predecessor closed if Pred(v) ⊆ S for all v ∈ S.
Similarly, S is successor closed if Succ(v) ⊆ S for all v ∈ S. A cycle is a path
(v0, . . . , v`) of length ` ≥ 1 such that v0 = v`. A directed acyclic graph (DAG) is
a directed graph with no cycles.

The indegree of a vertex v is the number of edges (v′, v) ∈ E pointing to v,
the outdegree is the number of edges (v, v′) ∈ E departing from v, and the total
degree is the sum of the indegree and the outdegree. Vertices with indegree 0 are
called sources, and vertices with outdegree 0 are called sinks. Vertices that are
neither sources nor sinks are called internal vertices. For simplicity, in this paper
we only considers DAGs with a single source v⊥ with outdegree 1, a single sink v>
with indegree 1, and n > 0 internal nodes with total degree 3. For such graphs,
there are only two kind of internal vertices: expansion vertices with indegree 1
and outdegree 2, and compression vertices with indegree 2 and outdegree 1. So,
the sets of vertices of our graphs can be partitioned as V = VG ∪VH ∪{v⊥, v>},
where VG are the expansion vertices and VH the compression vertices. We also
fix a total order relation (VG,≤) that extends the partial order defined over VG
by the predecessor relation.

An example of DAG is depicted in Figure 3. Vertex 0 is the source, vertex 11
the sink, VH = {1, 2, 3, 4, 5} are compression vertices, and VG = {6, 7, 8, 9, 10}
are expansion vertices.

A cut in a graph (V,E) is a nontrivial partition C = (S, S̄) of the vertices
such that S is predecessor closed (or, equivalently, S̄ is successor closed). The
set of cuts in a graph (V,E) is denoted Cuts(V,E), and it forms a partial order
where (S, S̄) v (S′, S̄′) if and only if S ⊆ S′ (or, equivalently, S̄ ⊇ S̄′). Notice
that since (S, S̄) is nontrivial (i.e., both S and S̄ are not empty), and S, S̄ are
predecessor and successor closed, it is always the case that v⊥ ∈ S and v> ∈ S̄.
Therefore, a cut can be implicitly represented by a single set of vertices S with
the convention that if v⊥ ∈ S then (S) represents (S, V \ S), while if v> ∈ S
then (S) represents (V \ S, S). For any cut C, the component of C containing
v⊥ (resp. v>) is denoted S(C) (resp. S̄(C)).

An edge e = (u, v) crosses a cut C = (S, S̄) if u ∈ S and v ∈ S̄. The set of
edges crossing C is denoted Edges(C) = E ∩ (S× S̄). We consider graphs where
each edge is labeled with an element from some set R. The labels associated
to the edges are not totally independent, but must satisfy certain constraints.
Let G:R → R2 and H:R2 → R be two arbitrary functions. (Later on, we will
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Fig. 4. Two cuts C1 v C2 in G.

instantiate G with a pseudorandom generator and H with a collision resistant
hash function.) A labeling is a partial function λ from E to R, i.e., a function
λ:T → R where T ⊆ E. The domain T of the labeling is denoted dom(λ). We say
that λ is consistent (with respect to functions G and H) if values are computed
according to functions G and H, i.e.,

– for every expansion vertex with incoming edge e0 ∈ dom(λ) and outgoing
edges e1, e2 ∈ dom(λ), G(λ(e0)) = (λ(e1), λ(e2)).

– for every compression vertex with incoming edges e0, e1 ∈ dom(λ) and out-
going edge e2 ∈ dom(λ), λ(e2) = H(λ(e0), λ(e1)).

We are interested in labeling functions defined over cuts. A labeled cut is a
labeling function σ such that dom(σ) is the set of edges of a cut, i.e., dom(σ) =
Edges(C) for some C ∈ Cuts(V,E). If σ is a labeling with domain Edges(C)
then we write σ:C. Similarly, we denote as {σ:C} the set of all labellings with
domain Edges(C). Notice that any function σ: Edges(C)→ R is consistent, i.e.,
the edges of a cut can be labeled independently. Any labeled cut σ:C can be
uniquely extended to a consistent labeling defined over all edges ending in S̄(C).

Proposition 1. For any directed acyclic graph (V,E), cut C ∈ Cuts(V,E) and
labeling σ: Edges(C)→ R, there exists a unique labeling, denoted [σ], such that
(1) dom([σ]) = E ∩ (V × S̄(C))
(2) [σ] is consistent, and
(3) [σ](v) = σ(v) for all v ∈ Edges(C).
Moreover, [σ] can be efficiently computed from σ.

Notice that for any two cuts C1 v C2, the set Edges(C2) is contained in
V ×S̄(C1). Therefore, given a labeled cut σ1:C1 and a cut C2 such that C1 v C2,
we can define a labeled cut σ2:C2 by restricting the domain of [σ1] to Edges(C2).

Definition 1. For any ordered pair of cuts C1 v C2, we define a corresponding
projection operation ΠC1

C2
(or, simply, ΠC2

when C1 is clear from the context)



384 A. Hevia and D. Micciancio

Algorithm KG(1k)

H
R

← H, σ⊥
R

← {σ: {v⊥}}
σ> ← Π{v>}(σ⊥)
pk ← (H,σ>), sk ← (H,σ⊥)
return (pk, sk)

Algorithm Sig(sk,m)
parse sk as (H,σ⊥)
σ ← Πµ(m)(σ⊥)
return σ : µ(m)

Algorithm Vf(pk,m, σ)
parse pk as (H,σ>)
if Π{v>}(σ) = σ>

return 1
else return 0

Fig. 5. Key Generation, Signing and Verification algorithms for GBOTS scheme.

that maps any labeled cut σ1:C1 to a corresponding labeled cut σ2:C2 obtained
by first extending σ1 to [σ1], and then restricting the domain of [σ1] to the set
Edges(C2).

Notice that if C1 = (S1, S̄1) and C2 = (S2, S̄2), then σ2 = ΠC2
(σ1) can be

computed from σ1 with at most |S2 \ S1| applications of functions G and H.

Example 1. Figure 4 depicts two example cuts S(C1) = {0, 1, 2, 3, 4} with
Edges(C1) = {(2, 5), (4, 7), (4, 6), (3, 6), (3, 8)}, and S(C2) = {0, 1, 2, 3, 4, 5, 8}
with Edges(C2) = {(8, 9), (5, 7), (4, 7), (4, 6), (3, 6)}. As a toy example, consider

R = Z10, H(x, y)
def
= x+y, and G(x)

def
= (x, x). If we choose {((2, 5), 3), ((4, 7), 9),

((4, 6), 5), ((3, 6), 2), ((3, 8), 8)} as a labeled cut σ:C1 in G, then it is easy to check
that the labeled cut defined by ΠC2

C1
(σ) (the consistent extension of C1 onto C2)

is {((8, 9), 1), ((5, 7), 3), ((4, 7), 9), ((4, 6), 5), ((3, 6), 2)}.

3 The GBOTS construction

A graph based one-time signature (GBOTS) scheme is specified by a directed
acyclic graph (V,E), a function µ :M→ Cuts(V,E) from a message spaceM to
the set of cuts of the graph, a length doubling function G : R→ R2 and a family
H of length halving functions H : R2 → R. Function µ must satisfy the security
property that if m 6= m′, then the cuts µ(m) and µ(m′) are incomparable, i.e.,
neither µ(m) v µ(m′) nor µ(m′) v µ(m). In particular, function µ is injective.
Examples of such functions are presented in [BM96b,BM96a].

The secret key of a GBOTS scheme consists of a labeled cut σ⊥: {v⊥} and a
hash functionH ∈ H, both chosen uniformly at random. The corresponding pub-
lic key is given by function H and the labeled cut σ> = Π{v>}(σ⊥). A signature
for a message m ∈ M is a labeled cut σ:µ(m). Message m is signed using se-
cret key (H,σ⊥) setting σ = Πµ(m)(σ⊥). A message signature pair (m,σ:µ(m))
is verified using public key (H,σ>) checking that Π{v>}(σ) = σ>. A formal
specification of the GBOTS scheme is given in Figure 5.

4 The Reduction

In this section we relate the security of GBOTS to the security of the under-
lying pseudorandom generator G and family of hash functions H. Formally, we
show how a forger adversary F that successfully attacks the one-time signature
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scheme, can be used to build efficient procedures to successfully attack G and H
as follows: an inverter algorithm IH that attempts to invert a randomly chosen
function H ∈ H; an inverter algorithm IG that attempts to invert function G;
a collision finder algorithm CH that on input H ∈ H attempts to find a col-
lision to H, and a distinguisher DG that attempts to tell random strings and
pseudorandom strings apart.

None of the adversaries IG, IH , CH ,DG is individually guaranteed to work,
but we can bound the success probability of the forger F as a function of the
combined success probabilities of IG, IH , CH ,DG. So, if G,H are cryptograph-
ically secure, then the GBOTS scheme is secure. In the rest of this section we
show how to build IG, IH , CH ,DG given black box access to the forger F . The
success probabilities of these adversaries are analyzed in the following section.

Adversaries IG, IH , CH ,DG all use the forger F in a specific way, common to
all four of them. So, we describe this general procedure A first. This procedure
takes as input a hash function H, a node v, and a labeling σv: Pred(v). The task
is, given oracle access to the forger algorithm, compute a labeling σ′v: Succ(v).
In other words, A gets as input a labeling of the smallest cut containing v, and
tries to output a labeling for the biggest cut not containing v (where biggest and
smallest refer to the v ordering relation).

Procedure A(H, v, σv) operates as follows:

1. Compute σ> = Π{v>}(σv).
2. Run F on input pk = (H,σ>).
3. Letm ∈M be the message output by F . If v 6∈ µ(m), then abort. Otherwise,

compute σm = Πµ(m)(σv) and continue to the next step.
4. Run F on input σm to get a forgerym′, σ′. We assume, without loss of gener-

ality, that F always outputs a valid message-signature pair, i.e., Π{v>}(σ
′) =

σ>. If F cannot forge a signature, then it outputs (m,σm)
5. If v ∈ µ(m′) then abort. Otherwise, compute and output σ′v = ΠSucc(v)(σ

′).

A few remarks follow. First, for any vertex v, Pred(v) v {v>}, so the pro-
jection operation in step 1 can always be performed. This produces a pair
pk = (H,σ>) which is similar, but not necessarily identically distributed, to
a public key. In step 3, if v ∈ µ(m), then Pred(v) ⊆ µ(m) because cut µ(m) is
closed. So, unless execution is aborted, Pred(v) v µ(m) and σm can be com-
puted from σv. Similarly, in step 5, if execution does not abort, v 6∈ µ(m′) and
µ(m′) v Succ(v). So, σ′v can be computed from σ′. Therefore, A always either
aborts or it succeeds, i.e., it outputs a cut σ′v: Succ(v) such thatΠ{v>}(σ

′
v) = σ>.

We use A to define IG, IH , CH and DG.

4.1 Inverting H

Algorithm IH on input a hash function H and target value y ∈ R, chooses one
vertex v ∈ VH at random, and selects σv uniformly at random among all labeled
cuts σ: Pred(v) such that σ(e) = y, where e is the only edge departing from v.
Then algorithm IH calls A(H, v, σv). If A aborts, also IH aborts. Otherwise, let
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σ′v: Succ(v) be the signature output by A. The output of IH is σ′v(e0);σ
′
v(e1),

where e0, e1 are the edges pointing to v.
We remark that IH may either abort, terminate successfully with a pre-image

of y under H, or fail, i.e., terminate without aborting, but with an output value
x0;x1 such that H(x0;x1) 6= y. The distinction between aborting execution and
failure to invert will be used in the analysis.

4.2 Inverting G

The algorithm to invert G is similar to IH . IG on input a target value (x1;x2) ∈
R2, chooses H ∈ H uniformly at random, picks one vertex v ∈ VG, and selects σv
uniformly among all labeled cuts σ: Pred(v) such that σ(e1) = x1 and σ(e2) = x2,
where e1, e2 are the edges departing from v. Then it callsA(H, v, σv). IfA aborts,
also IG aborts. Otherwise, let σ′v: Succ(v) be the signature output by A. The
output of IG is σ′v(e0) where e0 is the edge pointing to v. As for IH , inverter IG
can either abort, terminate successfully, or fail.

4.3 Finding Collisions

In order to describe the collision finder algorithm we need the following lemma.
The proof is simple and can be seen in the full version of this paper [HM02].
The proof uses the assumption that G is one-to-one.

Lemma 1. For any cut C ∈ Cuts(V,E), and labellings σ : C and σ′ : C, if σ 6=
σ′ and Π{v>}(σ) = Π{v>}(σ

′), then there exists a compression node v not in C
with incoming edges e0, e1 such that ([σ](e0), [σ](e1)) and ([σ](e0), [σ](e1)) form
a collision, i.e., H([σ](e0), [σ](e1)) = H([σ](e0), [σ](e1)) and [σ](ei) 6= [σ′](ei)
for some i ∈ {0, 1}.

The collision finder CH takes as input a hash function H, and selects a vertex
v ∈ VG ∪ VH uniformly at random. Notice that v ∈ VG and v ∈ VH happen with
the same probability because VG and VH have the same size. The rest of the
collision finder algorithm is similar to IG or IH , depending on whether v ∈ VG
or v ∈ VH .

If v ∈ VG, then CH chooses x ∈ R uniformly at random, computes (y1; y2) =
G(x), and picks σv uniformly at random among all labeled cuts σ: Pred(v) such
that σ(e1) = y1 and σ(e2) = y2, where e1, e2 are the edges departing from v.
Then it calls A(H, v, σv). If A aborts, also CH aborts. Otherwise, let σ′v: Succ(v)
be the signature output by A, and consider the cut Succ(v) \ {v}. Notice that
Succ(v) v Succ(v)\{v} and Pred(v) v Succ(v)\{v}. Therefore, we can compute
two labeling σ = ΠSucc(v)\{v}(σv) and σ′ = ΠSucc(v)\{v}(σ

′
v). If σ 6= σ′, then

compute a collision from σ and σ′ using Lemma 1.
If v ∈ VH , then CH chooses x0, x1 ∈ R uniformly at random, compute x2 =

H(x0, x1), and pick σv uniformly at random among all labeled cuts σ: Pred(v)
such that σ(e2) = y2. It then call A(H, v, σv). If A aborts, also IH aborts. Other-
wise, let σ′v: Succ(v) be the signature output by A, and consider the cut Succ(v)\
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{v}. As before, Succ(v) v Succ(v)\{v} and Pred(v) v Succ(v)\{v}. Therefore,
we can compute two labeling σ = ΠSucc(v)\{v}(σv) and σ′ = ΠSucc(v)\{v}(σ

′
v).

If σ 6= σ′, then compute a collision from σ and σ′ using Lemma 1.

4.4 Distinguishing G

Finally we describe a possible distinguisher for G. On input x1, x2 ∈ R2, DG
picks a random vertex v ∈ V and a hash function H ∈ H. This time vertex
v is not selected with uniform probability, but with probability proportional
to |VG ∩ (Pred(v) \ {v})|. Then DG chooses a node u ∈ VG ∩ (Pred(v) \ {v})
uniformly at random, and computes σv as follows. Let {σ:∪u′≤uPred(u

′)} denote
the set of all labellings defined over the union of cuts Pred(u′) for all expansion
vertices u′ ≤ u in the predecessor set of v but not including v; in other words, it
denotes the union of cuts Pred(u′) such that u′ ≤ u, and u′ ∈ VG∩(Pred(v)\{v}).
In this union, each labeling satisfies σ(e1);σ(e2) = x1;x2, where e1, e2 are the
edges departing from u. Distinguisher DG selects σu uniformly at random in
{σ:∪u′≤uPred(u

′)}, and computes σv = ΠPred(v)(σu). Notice that for all u′

predecessor of v, Pred(u′) ⊂ Pred(v), and the labeled cut σv can be computed
from σu.

Procedure A is run on input H, v, σv. If A aborts then DG outputs “random”,
while if A does not abort DG outputs “pseudorandom”.

5 Analysis

In this section we relate the success probability of the forger algorithm F to the
success probability of attacks to G and H. The following result states that if
G is a one-to-one pseudorandom generator and H is a regular collision-resistant
hash function family then the GBOTS scheme is existentially secure under one-
chosen-message attack.

Theorem 1. Let (V,E) be a directed acyclic graph, G a one-to-one pseudoran-
dom generator, and H a regular collision resistant family of hash functions, and
consider the corresponding GBOTS scheme. Let F be a forger that succeeds with
probability δ. Then δ ≤ (αεD+εC+εG+εH)n where α ≤ n is the average number
of VG predecessors of a random vertex in the graph and εG, εH , εC , εD are the
success probabilities (or advantage) of adversaries IG, IH , CH , DG as defined in
the previous section.

In order to prove the result, we first show that the success probability of
the adversaries IG, IH and CH is tightly related to the aborting probability of
procedure A, when called on randomly chosen inputs. We make this statement
more precise below. First, we need some notation.

A labeled cut σ is said to be consistent with (v, y) ∈ V × (R2 ∪ R) if one
of two cases hold: (a) if v ∈ VG and y = y1; y2 ∈ R2 then σ(e1) = y1 and
σ(e2) = y2 where e1 and e2 are the edges departing from v, or (b) if v ∈ VH
and y ∈ R then σ(e) = y where e is the only edge departing from v. The set of
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all labeled cuts σ consistent with (v, y) is denoted {σ : Pred(v)y}. In particular,
if either v ∈ VG and y = G(x) for x ∈ R chosen uniformly at random, or
v ∈ VH and y = H(x1;x2) for x1;x2 ∈ R2 chosen uniformly at random, the set
{σ : Pred(v)y} is denoted {σ: Pred(v)H/G(·)}.

Consider the following experiment. First, we choose a vertex v ∈ VH ∪ VG,
a hash function H ∈ H and a labeled cut σv ∈ {σ: Pred(v)H/G(·)} uniformly at
random. Then we call procedure A on input (H, v, σv). (For simplicity’s sake,
when clear from the context, we use A(·) to denote A(H, v, σv)). Let NoAbort

denote the event that A does not abort in this experiment. The following lemma
shows that the combined success probability of adversaries IG, IH and CH is
equal to the probability of the event NoAbort.

Lemma 2. Let εH , εG and εC the advantages of adversaries CH , IG and IH .
Let NoAbort be the event as described above. Then εH + εG+ εC = Pr [NoAbort ]

Proof. We analyze the success probability of adversaries IH , IG and CH in turn.
First, the success probability εH of adversary IH is the probability that, for
x1;x2 ∈ R2 and H ∈ H uniformly chosen at random, H(IH(H,H(x1;x2)))) =
H(x1;x2), that is, that IH returns a pre-image ofH(x1;x2) for a random domain
point x1;x2. ForX ∈ {H,G}, let PrX [E ] denote the probability of event E when
H ∈ H, v ∈ VX and σv ∈ {σ: Pred(v)H/G(·)} are chosen uniformly at random.
Then

εH = PrH [H(x′) = H(x), x′ ← A(H, v, σv), x
′ 6= abort ]

= (1− PrH [H(x′) 6= H(x) | A(·) 6= abort ]) · PrH [A(·) 6= abort ]

Similarly, for adversary IG we have

εG = (1− PrG [G(x′) 6= G(x) | A(·) 6= abort ]) · PrG [A(·) 6= abort ]

Lastly, recall that Adversary CH is successful if, after running A on a randomly
chosen v ∈ VH ∪ VG, either G(x) 6= G(x′) if v ∈ VG or H(x) 6= H(x′) if v ∈ VH .
Thus,

εC =
1

2
· (PrH [H(x′) 6= H(x) | x′ ← A(·), x′ 6= abort ] · PrH [A(·) 6= abort ] +

PrG [G(x′) 6= G(x) | A(·) 6= abort ] · PrG [A(·) 6= abort ])

Combining the above results and using that |VH | = |VG| the result follows.

As a second step toward proving Theorem 1, next lemma shows that the
success probability of the distinguisher DG is related to the difference between
forger’s success probability and the probability that procedure A does not abort
(in the experiment described in the previous lemma).

Lemma 3. Let εD and δ denote the advantage of distinguisher DG and forger
F respectively, and let α and NoAbort defined as before. Then

δ ≤ n · (αεD + Pr [NoAbort ]) .
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The following notation will be useful in the proof. For any v ∈ V , let W (v) =
VG ∩ Pred(v) \ {v} denote the set of all expansion vertices which are prede-
cessors of v. Also, given a vertex v ∈ V and a vertex u ∈ W (v), let Predv(≤
u) = ∪u′≤u, u′∈W (v)Pred(u

′) the cut formed by the union over u′ ≤ u of all sets
Pred(u′) ⊂ Pred(v). (Recall that ≤ is a total order relation over VG) Also, let
{σ: Predu(≤ v)} denote the set of all labeled cuts on Predv(≤ u); as before, for
y1; y2 ∈ R2, let σ: Predu(≤ v)y1;y2 denote the set of all labeled cuts compati-
ble with (u, y1; y2). (We stress that the compatibility is with respect to vertex
u, that is, σ(e1);σ(e2) = y1; y2). As before, if x ∈ R is uniformly distributed,
the set {σ: Predv(≤ u)G(x)} is denoted by {σ: Predv(≤ u)G(·)}. Notice that in
this extended definition, Predv(≤ u) ⊂ Pred(v) and therefore a labeled cut for
Pred(v) can be computed from any labeled cut in {σ: Predu(≤ v)}.

Proof (Lemma 3). By definition, εD = p1 − p0, where p1 and p0 denote the

probability that DG(y1; y2) = 1 when x
R

← R, y1; y2 ← G(x) and the probability

that DG(y1; y2) = 1 when y1; y2
R

← R2, respectively. Consider the following two
experiments, which we denote Exp1 and Exp0. In the first one, we chooseH ∈ H
uniformly at random, v ∈ VH ∪ VG with probability proportional to |W (v)|,
u ∈W (v) and σu ∈ {σ: Predv(≤ u)G(·)} uniformly at random; we then compute
σv as an extension of σu by σv = ΠPred(v)(σu) and finally call A on input
(H, v, σv). The second experiment, Exp0, is similar to the previous one, with the

exception that σu is drawn at random from {Predv(≤ u)y1;y2} for y1; y2
R

← R2.
Let q1(v

′, u′) and q0(v
′, u′) denote the probability procedure A does not abort

in Exp1 and Exp0 respectively, conditioned on the event that v = v′ and u = u′

are chosen in each experiment.
Let α = 1

n

∑

v∈VH∪VG
|W (v)| be the average number of expansion vertices of

a random vertex in the graph. We claim that,

p1 =
1

nα
·

∑

v∈VH∪VG

∑

u∈W (v)

q1(v, u) and p0 =
1

nα
·

∑

v∈VH∪VG

∑

u∈W (v)

q0(v, u)(1)

and that for all v ∈ VH ∪ VG, u ∈W (v) ∪ {v}

q0(v, u
∗) = q1(v, u) (2)

∑

v∈VH∪VG

q1(v, v) ≥ δ (3)

∑

v∈VH∪VG

q0(v, v
∗) = n · Pr [NoAbort ] (4)

where w∗ = maxw′<w(w
′), denotes the biggest vertex in VG smaller than w ∈ VG

and v = minv∈VG
(v) is the “smallest” expansion vertex in VG (where “biggest”

and “smallest” refer to the ≤ ordering relation).
Before proving these claims, we use them to finish the proof of the lemma.

Using equations (1-4), we have

εD =
1

nα

∑

v∈VH∪VG

{q1(v, v)− q0(v, v
∗)} ≥

1

nα
· (δ − n · Pr [NoAbort ])



390 A. Hevia and D. Micciancio

which gives the desired result.
We now justify the claimed equations (1-4) by analyzing each them in turn.

To justify the first part of (1), notice that by definition of p1 and standard
conditioning we have

p1 = Pr
[

A(H, v, σv) 6= abort : v
W

← VG ∪ VH , u
R

←W (v), H
R

← H, x
R

← R,

σu
R

← Predv(≤ u)G(x)

]

=
∑

v∈VH∪VG

∑

u∈W (v)

q1(v, u) · Pr [u | v ] · Pr [ v ]

=
∑

v∈VH∪VG

Pr [ v ]

|W (v)|

∑

u∈W (v)

q1(v, u)

where v
W

← VG ∪ VH means vertex v is drawn from set VG ∪ VH with probability
proportional to |W (v)|. Since, for all v ∈ V , Pr [ v ] = |W (v)|/(nα) Equation (1)
holds. The second part of (1) follows from a similar argument.

We justify Equation (2) as follows. Fix v ∈ VH ∪ VG and u ∈ W (v) ∪ {v}.
Consider experiment Exp0, and assume v and u∗ ∈W (v) are the vertices chosen.
First of all, notice that Predv(≤ u∗) ⊂ Predv(≤ u) because u∗ ≤ u, and thus,
σu can be computed from σu∗ . Second, assume v ∈ VG. Since the labeled cut
σu∗ ∈ σ: Predv(≤ u∗) is chosen uniformly at random, there is no other expansion
node in any path from u′ ≤ u∗ and u, and H is regular, the induced labeled cut
σu = ΠPred(u)(σu∗) ∈ σ: Predv(≤ u) is such that σu(e1);σu(e2) = G(x) for
some x ∈ R uniformly distributed (e1 and e2 are edges leaving vertex u). The
same argument when v ∈ VH boils down to σu(e) = H(x1;x2) for uniformly
distributed x1;x2 ∈ R

2 and e the only leaving edge of u. Thus, σu ∈ σ: Predv(≤
u)R, and q0(v, u

∗) = q1(v, u).
To justify Equation (3) we notice that when distinguisher DG chooses u = v,

the distribution of the public key and signature so computed by A from σu
follows the same distribution than the forger expects in the one-chosen-message
attack and, thus, the output of the forger is independent of the choice of v.

∑

v∈VH∪VG

q1(v, v) =

∑

v∈VH∪VG

Pr [F(m,σm) = (m′, σ′),m 6= m′, v ∈ µ(m), v 6∈ µ(m′) ] ≥ δ

where the last inequality follows from that, for any m,m′ ∈M, if m 6= m′ there
always exists v ∈ VH ∪ VG such that v ∈ µ(m) but v 6∈ µ(m′), otherwise m and
m′ would be comparable.

It remains to prove Equation (4). This follows from q0(v, v
∗) = q1(v, v) =

Pr [NoAbort | v ] and from vertex v ∈ VH∪VG being chosen uniformly at random
in the experiment that defines the event NoAbort. This concludes the proof of
the lemma.

Proof (Theorem 1). Immediate from Lemma 2 and Lemma 3.
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6 Extensions

In this section we consider extensions of the basic security results presented in
the previous sections. The first one concerns relaxing the security assumptions
about the underlying primitives G,H. The second applies the ideas in our proof
of security to build provably secure signature schemes with special algebraic
properties.

Universal one-way hash functions: The collision-resistance requirement on
the hash function familyH can be relaxed to universal one-wayness as defined by
Naor and Yung [NY89]. Recall that universal one-way hash function (UOWHF)
families are such that it is hard to find a colliding pair x 6= x′ such that H(x) =
H(x′) but the adversary must select x before H is given to it. We modify our
GBOTS construction, so that for each compression vertex v a different randomly
chosen function Hv ∈ H is used. The security argument in this case is modified
as follows. In order to compute σ> = Π{v>}(σv), algorithm A(H, v, σ) picks a
hash function Hv ∈ H uniformly at random anew to compute the label of each
edge leaving a compression vertex with the exception of the edge corresponding
to v, for which H is used. Thus, adversary IH needs only to pick ahead a random
value x ∈ R2 and, once given a target hash function H, to use procedure A to
invert H(x). Similarly, for CH it suffices to guess the compression vertex where
the collision given by Lemma 1 will be found, and use the target hash function H
there. Adversaries IH and CH remain the same. The remaining security argument
does not differ substantially from the one presented in Section 5. We point out
that regular universal one-way hash functions and one-to-one pseudorandom
generators can be constructed from any one-way permutation [NY89,CMR98].

Mapping messages to edges (or vertices): In this paper, we associate
values to edges in the graph and functions to vertices. This approach can be
seen as dual to the one used in [BM94], which associates values to vertices
and function to edges. Both approaches are essentially equivalent from a syntax
viewpoint and in terms of the class of schemes they yield. From a foundational
viewpoint, we believe that the approach presented here is conceptually simpler.

Graph based algebraic signature schemes: Algebraic signature schemes
are signature schemes in which signatures for (certain) new messages can be pro-
duced by combining signatures with a restricted set of operations. Since these
operations do not require knowledge of the secret key, algebraic signatures are
not signature schemes in the standard interpretation of the term, but they are
a new cryptographic primitive. They are useful in contexts where possession of
signatures of certain messages automatically entitles possession of signatures of
new messages, such as in credential systems. Credentials may be implemented
as signed documents which specify capabilities (or attributions) to be granted to
the credential holder. Thus, if implemented with the appropriate algebraic sig-
nature, the possession of one or more credentials (signatures) will automatically
enable the computation of the entitled credentials without the involvement of the
original signer. Algebraic signatures were originally suggested by Rivest [MR02].
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Informally, an algebraic signature scheme consists of three algorithms AS =
(KG,Sig,Vf) and a two set of operationsO = {f1, f2, . . . , fq} and S = {g1, g2, . . . ,
gs}, where each fi (resp. gi) is a function that takes one or more messages (resp.
signatures) as inputs and produces one message (resp. signature) as output. KG,
Sig, and Vf are as in any digital signature scheme (see Section 2.1). We require
that if δ1, . . . , δt are valid signatures for m1, . . . ,mt then gi(δ1, . . . , δt) is a valid
signature for fi(m1, . . . ,mt) for all appropriate fi, gi. Notice that signatures so
generated are subject to existential forgery under chosen message attacks, so a
new definition of security is required. Let span(O, {m1, . . . ,mt}) be the set of all
messages computable from {m1, . . . ,mt} by applying functions in O on them.
The security of algebraic signatures is defined in terms of unforgeability against
chosen-message attacks, where by convention, the forger is deemed successful
only if it outputs a signature of a messagem not in the set span(O, {m1, . . . ,mt}).

Graph-based one-time signatures can be used to build very efficient algebraic
signatures. Indeed, for practical functions fi, it is possible to build graphs such
that fi is embedded in the order relation v. That is, if fi(m1,m2) = m3, then
there exists a labeling σ:µ(m3) which can be computed from labellings σ1:µ(m1)
and σ2:µ(m2) and it is consistent with them.

Notice that the proof of security of Section 4 and Section 5 can be easily mod-
ified to prove that our (graph-based) algebraic signature scheme AS is secure.
Indeed, the only technical difference is that the forger F can request multiple
signatures σm:µ(m). This can be easily factored in by modifying Procedure A
so each signature σm is computed from σv (or A aborts, if not possible). Since
the forger F must output (m′, σ′) for m′ not in span(O,∪mµ(m)), there must
exist v ∈ ∪mµ(m) so v 6∈ µ(m′) and the argument goes through. The rest of
the proof is identical and, in particular, adversaries IG, IH , CH , DG remain the
same, given black-box access to A.

Concrete constructions of Algebraic Signature Schemes: In this
section we sketch concrete graph constructions that yield algebraic signature
schemes with respect to (a) union and subset operations, and (b) union and
super-intersection operations. (Recall that the super-intersection of sets A and
B, denoted A¯B, is the collection of all sets S such that A∩B ⊆ S ⊆ A∪B.)

LetM be the set of all subset of n elements, where we denote such elements as
t0, . . . , tn−1. Consider the graph shown in Figure 6. (Although the figure shows
vertices vi having indegree and outdegree 1, and the vertices v′⊥ and v′> having
outdegree and indegree n, respectively, it is easy to cast this graph as one with
the properties considered in this work. Indeed, it suffices to replace each vertex vi
with a small subgraph of 2 compression and 2 expansion vertices, and to connect
each vi to both v′⊥ and v′> by simple tree construction).

We map every set S into the set of vertices µ(S) = C defined as follows:
vertices v⊥ and v′⊥ are in C, and vertices vi are in C if and only if ti 6∈ S. Notice
C is a valid cut for any set S. Given a labeled cut σ:µ(S) the labeling for any
C ′ = µ(S′) such that S′ ⊆ S can be computed by projecting σ:µ(S) on C ′.
The union operation is defined similarly, since given labeled cuts σ1:µ(S1) and
σ2:µ(S2) a consistent labeled cut for µ(S1 ∪ S2) can be computed.
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vi vn−1v1v0

v>

v⊥

v′>

v′⊥

Fig. 6. DAG for algebraic scheme with operations {∪, subset}.

A algebraic signature scheme for the {∪,¯} operations can be build by using
two graphs G1 and G2 each one like the one described above. In this case, given a
set S, we define the cut on the first graph by using the above shown rule, while
for the second case we “invert” the condition, and we include the corresponding
vertices only if ti ∈ S. It is an easy exercise to verify that such mapping allows the
computation of labeled cuts corresponding to the union and super-intersection
of two sets S1 and S2, given labeled cuts σ1:µ(S1) and σ2:µ(S2).

7 Conclusions

In this paper, we analyze graph based signatures from a security viewpoint and
give sufficient conditions, namely the existence of one-way permutations, under
which the signature scheme is secure in the standard complexity model (no
random oracles). Additionally, we present a security proof which uses a new
hybrid argument where the number of hybrid distributions may be exponential.
We believe this technique is of independent interest. We also propose a new
paradigm for the construction of algebraic signature schemes, which are new
useful primitives for applications where controlled “forgeability” of signatures is
needed, as in credential systems.
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