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Abstract. The enumeration of m-resilient Boolean functions in n vari-
ables would be a quite useful information for cryptography. But it seems
to be an intractable open problem. Upper and lower bounds have ap-
peared in the literature in the mid 80′s. Since then, improving them has
been the goal of several papers. In this paper, we give a new upper bound
which partially improves upon all the known bounds.
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1 Introduction

The principle of private cryptography relies on the share-out of a private key
between the sender of a message and its receiver. Symmetric cryptosystems are
commonly used owing to their efficiency. Currently, there is no mathematical
proof to ensure the unconditional security of the system except for the famous
Vernam [13] scheme. This system produces the encoded text by adding bitwisely
the plain text and the private key. Then the receiver retrieves the plain text by
using the same addition of the encoded text and the private key. In practice, since
the length of the private key must equal the length of the plain text, pseudo-
random generators are used for stream ciphers in order to minimize the size of
the private key (but the unconditional security is then no longer ensured). In
order to achieve maximal security, these systems are much studied.

The basic component of a keystream generator is the Linear Feedback Shift
Register (LFSR). The generic example of a keystream generator is composed of
n LFSR whose outputs are combined by a Boolean function from IFn2 to IF2.
The security of the system relies, in a central way, on the choice of the Boolean
function. Subsequently, the Boolean functions used to combine several LFSR,
called combining functions, must fulfil several criteria. They must be balanced,
i.e., they must take the value 1 and the value 0 with the same probability on
the set IFn2 . They must have high algebraic degrees (see definition at section 2)
so that the keystream generator resists the Berlekamp-Massey’s attack [6]. The
generator must also resist the Siegenthaler’s correlation attack [12]. This comes
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down to choose a combining function which is correlation-immune of a high order
m [11], i.e., whose output distribution does not change when m input values
(i.e., m coordinates of the input vector) are fixed. If the combining function is
correlation-immune of order m, the attacker has to guess the initialization of
at least m + 1 LFSR to observe a correlation between them and the output of
the pseudo-random generator during a correlation attack. Combining functions
must also have high non-linearities in order to prevent linear approximation. Of
course these criteria are partially opponent and tradeoffs exist.

Enumerating the Boolean functions satisfying one or several of these criteria
is useful for several reasons. Firstly because it indicates for which values of the
parameters (n, . . .) there is a chance of finding good cryptographic functions by
random search. Secondly because a large number of functions is necessary if we
want to impose extra constraints on the functions or if we want to modify the
cryptosystems using them by having the function as part of the secret key.
Mitchell [7] proposed a number of open problems with partial results about
enumerating Boolean functions satisfying various criteria, including balanced-
ness and correlation-immunity. The first bounds on the number of first order
correlation-immune Boolean functions were lower bounds (see [7, 14, 8, 5]). In
1990, Yang and Guo published the first upper bound on such functions. Park,
Lee, Sung and Kim [8] proceeded further and improved upon Yang-Guo’s bound.
In 1995, Schneider [10] used a new idea to improve upon previous bounds. He
obtained bounds for the numbers ofmth-order correlation-immune functions and
of m-resilient functions. Carlet and Klapper [1] obtained a general upper bound
on the number of Boolean functions whose distances to affine functions are all
divisible by 2m. They deduced an upper bound on the number of m-resilient
functions and improved upon Schneider’s bound for m large.

In the present paper, we obtain an upper bound on m-resilient functions
(m ≥ n

2 − 1), and improve upon Schneider’s bound for all values m > n
2 − 1.

We show with tables of values that our bound partially improves upon Carlet-
Klapper’s bound (the expressions of both bounds seem difficult to compare math-
ematically).

The organization of the paper is as follows. Section 2 introduces the nota-
tion and the definitions that are needed in the paper including the definition of
correlation-immunity. Section 3 reviews the previous upper bounds on the num-
bers of first order correlation-immune functions, i.e., Yang et al’s and Park et
al’s bounds, and of m-resilient functions, i.e., Schneider’s and Carlet-Klapper’s
bounds. Extensions of Yang et al.’s and Park et al.’s bounds are given for the
case of 1-resilient functions in this section for the first one and in appendix B
for the second one. Section 4 introduces a new upper bound on the number of
m-resilient functions. We give a table of values corresponding to the ratio of
Schneider’s bound to the new bound, and a second table corresponding to the
ratio of Carlet-Klapper’s bound to the new one.
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2 Notation and Definitions

Let n be any positive integer. We denote by
⊕

the usual addition in IF2 and
in IFn2 . The Hamming weight wH(u) of a word u in IFn2 is the number of its
components equal to 1. We denote by ¹ the partial order on the words of IFn2 ,
i.e., (u1, . . . , un) ¹ (v1, . . . , vn) if and only if (ui = 1)⇒ (vi = 1). Any Boolean
function f in n variables, f : IFn2 7→ IF2, admits a unique Algebraic Normal Form
(A.N.F.):

f(x1, . . . , xn) =
⊕

u∈IFn2

au

(

n
∏

i=1

xuii

)

=
⊕

u∈IFn2

au x
u .

The function g : u 7→ au is called the Möbius transform of f . For any word u,
the coefficient au belongs to IF2, and can be computed thanks to the formula

au =
⊕

v∈IFn2 ,v¹u

f(v) . (1)

The algebraic degree of a Boolean function f is the degree of its algebraic normal
form. The Hamming weight wH(f) of a Boolean function f in n variables is
the size of its support, i.e., the size of the set {x ∈ IFn2 |f(x) = 1}. A Boolean
function f in n variables is called balanced if its Hamming weight equals 2n−1.

Definition 1. [11] Let X [j] = (X
[j]
1 , X

[j]
2 , ..., X

[j]
n ) be the n-tuple of LFSR out-

put digits at time j. The combining function f is mth-order correlation-immune
if every m-tuple obtained by fixing m components from X [j] is statistically in-
dependent of the random value Z = f(X1, X2, . . . , Xn) associated to arbitrary
outputs of LFSR.

A characterization ofmth-order correlation-immune functions was given by Guo-
Zhen and Massey in [4].

Definition 2. Let f be a Boolean function in n variables. The Walsh Transform
of f is defined as the following real-valued function over the vector space IFn2 ,

f̂(x) =
∑

u∈IFn2

f(x)(−1)u·x,

where u · x stands for
∑n

i=1 ui xi .

Theorem 1. [4] A Boolean combining function f in n variables is mth-order
correlation-immune, where 1 ≤ m ≤ n, if and only if for every word u in IFn2
such that 1 ≤ wH(u) ≤ m, f̂(u) equals 0, i.e., f(x) ⊕ u · x is balanced for all u
such that 1 ≤ wH(u) ≤ m.

A balanced Boolean function in n variables which is correlation-immune of order
m is called m-resilient. This notion was considered for the first time by Chor et
al. in [2].

The tradeoff between the order of correlation-immunity and the algebraic
degree was given by Siegenthaler.
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Theorem 2. [12] Let f be an mth-order correlation-immune Boolean function
of degree d in n variables. Then d ≤ n −m. Furthemore, if f is balanced then
d ≤ n−m− 1 if m < n− 1 and d = 1 if m = n− 1.

This result leads to the first obvious bound on the numbers of m-resilient and
mth-order correlation-immune functions. The number of mth-order correlation-

immune functions in n variables is upper bounded by 2
∑n−m

i=0
(ni), and the number

of m-resilient functions in n variables is upper bounded by 2
∑n−m−1

i=0
(ni) if m <

n− 1.

3 Previous Upper Bounds

The number ofmth-order correlation-immune Boolean functions is still unknown
(an asymptotic formula is known, due to Denisov [3]). The first upper bound
on the number of correlation-immune Boolean functions, published by Yang and
Guo in 1990 [14], enumerates in fact the number of Boolean functions which
satisfy partially the first order correlation-immunity criterion, i.e., the functions
f such that for two distinct integers i1 and i2, f ⊕ xi1 and f ⊕ xi2 are balanced.
This leads to:

Proposition 1. [14] Let n be a positive integer greater than 1. The number of
1st-order correlation-immune Boolean funtions in n variables is less than:

2n−2
∑

k=0

k
∑

r=0

(

2n−2

r

)2(
2n−2

k − r

)2

.

Yang and Guo did not study the corresponding bound for 1-resilient functions.
This can be done:

Proposition 2. Let n be a positive integer greater than 1. The number of 1-
resilient Boolean functions in n variables is less than:

2n−2
∑

a=0

(

2n−2

a

)4

.

We give the proof of this bound in appendix A.
This work was deepened by Park, Lee, Sung and Kim for 1st-order cor-

relation-immunity. They showed that the number of correlation-immune func-
tions is itself upper bounded by this same number as in Proposition 2. Park et
al. obtained this bound by numbering the Boolean functions such that for three
distinct integers i1, i2, i3, the functions f⊕xi1 , f⊕xi2 and f⊕xi3 are balanced.
They did not study the corresponding bound for 1-resilient Boolean functions.
The bound obtained is quite complicated and is given in appendix B.

The number of balanced Boolean functions such that f(x) ⊕ xi is balanced
for three distinct integers could be calculated by considering the solutions of a
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system of four equations with eight unknowns. When the number of integers
increases by one, only one new equation can be obtained and the number of
unknowns is doubled. Thus, enumerating the number of Boolean functions such
that f(x) ⊕ xi is balanced for i ∈ I ⊆ {1, . . . , n} leads to considering |I| + 1
equations and 2|I| unknowns. Thus, for n greater than 3, the gap between the
number of equations and the number of unknowns is too large to obtain a bound
which can be computed easily.

Maitra and Sarkar [5] found a sufficient condition for a function f to be such
that f(x)⊕xi is balanced for three values of i but f is not first order correlation-
immune. A lower bound on the number of such functions provides an upper
bound on the number of mth-order correlation-immune functions by using the
bound of Park, Lee, Sung and Kim. However, the formula given by Maitra and
Sarkar cannot be computed and thus their bound cannot be compared to the
other bound.

Schneider proposed a new idea in 1990 for obtaining an upper bound on
the number of mth-order correlation-immune Boolean functions, and an upper
bound on m-resilient Boolean functions. In [10], he presented an algorithm for
producing all correlation-immune functions. This algorithm is not very efficient
(the workfactor, if computed, could be comparable to the complexity of searching
among all Boolean functions). But the idea of this algorithm allowed him to
provide an enumeration which is quite efficient.

Theorem 3. [10] The number of m-resilient Boolean functions in n variables
is less than:

n−m
∏

i=1

(

2i

2i−1

)(n−i−1
m−1 )

.

We can compare these three bounds by giving values in the 1-resilient case. It
can be observed that Schneider’s bound is always better than Yang-Guo’s and
Park et al.’s bounds for n > 4. The case n = 3 can be explained: the number

Table 1. Values of previous upper bounds for first order resilient functions

n YG (Resilient) PLSK (Resilient) Schneider

3 18 8 12
4 1810 648 840
5 4.4916 107 1.1979 107 1.081 107

6 7.0667 1016 1.3711 1016 6.498 1015

7 4.6909 1035 6.5259 1034 1.191 1034

8 5.6935 1073 5.6396 1072 2.8523 1071

of balanced Boolean functions such that f(x)⊕ xi is balanced for three distinct
values of i is then exactly the number of 1-resilient functions.
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Carlet and Klapper obtained two bounds on the number of m-resilient func-
tions, one for 2 ≤ m < n/2 and the other one for n/2 ≤ m < n. They improved
upon Schneider’s bound for m large.

Theorem 4. [1] The number of m-resilient Boolean functions in n variables,
n/2 ≤ m < n, is less than:

21+
∑n−m−1

i=0
(ni)(1 + ε)

2
∑n−m−1

i=0
(m−1
i )

+ 2
∑n−m−2

i=0
(ni),

where ε = 1

2Ω((2n/n)1/2)
.

The number of m-resilient Boolean functions in n variables, 2 ≤ m < n/2, is
less than:

2
∑n−m−1

i=0
(ni) − 2

∑n−m−2

i=0
(ni)

222m+1−1
+ 2
∑n−m−2

i=0
(ni) .

4 A New Bound for m-Resilient Functions

Our improvement of Schneider’s bound is based on several ideas. One of them
is to use more efficiently than Schneider does the bound on the degrees of m-
resilient Boolean functions. Recall that, thanks to Siegenthaler’s theorem, we
know that, for m < n− 1, the degree of an m-resilient function in n variables is
less than or equal to n−m− 1 .

Lemma 1. Let f be a Boolean function in n variables. If the algebraic degree
of f is at most d, then f is completely determined by its values at the words
u ∈ IFn2 such that wH(u) ≤ d.

Proof. Consider the algebraic normal form of the function:

f(x) =
⊕

u∈IFn2

g(u)xu,

where g is the Möbius transform of f . For every word u such that d < wH(u) ≤ n,
the coefficient g(u) is equal to zero, and thus:

f(x) =
⊕

u∈IFn2 |wH(u)≤d g(u)x
u

=
⊕

u∈IFn2 |wH(u)≤d,u¹x g(u)

=
⊕

u∈IFn2 |wH(u)≤d,u¹x

(

⊕

v∈IFn2 |v¹u
f(v)

)

.

Every v such that v ¹ u where wH(u) ≤ d has weight at most d. ut

The number of Boolean functions of degrees less than n−m− 1 being neg-
ligible in comparison with Schneider’s bound, we shall bound the number of
m-resilient functions of degree exactly n−m−1 and add the number of Boolean
functions of degrees less than n−m−1. To this aim, we shall use a lemma which
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was first proved in [1]. But we shall need a slightly different statement of this
lemma, with extra precisions that will be useful in our context. For this reason,
we give a proof of the lemma. We first introduce a notation:
Let u and v be two vectors in IFn2 ; we denote by v ∧ u the vector such that, for
every index i, (v ∧ u)i = vi ui = min(vi, ui), i.e., and by v ∨ u the vector such
that, for every index i, (v ∨ u)i = max(vi, ui) (these two operations are called
bitwise-AND and bitwise-OR).

Lemma 2. [1] Let f(x) =
⊕

u∈IFn2
au x

u be an m-resilient Boolean function in

n variables of degree n−m−1 ≥ 2 with m ≥ 2 and let
⊕

u∈IFn2
bu x

u be the ANF

of the function f(x)⊕ x1 ⊕ · · · ⊕ xn (i.e. bu = au if wH(u) > 1 or if u = 0 and
bu = au ⊕ 1 if wH(u) = 1). If u is a word in IFn2 of weight n−m− 1 such that
au = 1 (i.e. bu = 1) then for all non-zero v in IFn2 such that v ∧ u = 0, we have:

bv =
⊕

s∨t=u∨v
s∧u6=0

t∧u6=0

bs bt .

Proof. We know (cf. [1]) that for every word x such that wH(x) ≥ n −m, we

have that
⊕

{s,t} |s∨t=x

bs bt = 0. We apply this to x = v ∨ u. In the corresponding

relation, the coefficient bv appears with a non-zero coefficient only in the term
bu bv since if bu′ bv appears, then u′ ∨ v = x, so u ¹ u′. We deduce:

bv =
⊕

s∨t=u∨v
s,t6=v

bs bt .

According to Siegenthaler’s inequality, the double condition that s ∨ t = u ∨ v
and s, t 6= v implies, if bs 6= 0 and bt 6= 0, that s ∧ u 6= 0 and t ∧ u 6= 0 since u
has weight n−m− 1. ut

Theorem 5. Let n and m be two positive integers such that n
2 −1 ≤ m < n−2.

The number of m-resilient functions of degree n−m− 1 in n variables is lower
than:

(

n
n−m−1

)

2(
m+1
n−m−1)+1

n−m
∏

i=1

(

2i

2i−1

)(n−i−1
m−1 )

.

Thus, the number of m-resilient functions in n variables is lower than:

2
∑n−m−2

i=0
(ni) +

(

n
n−m−1

)

2(
m+1
n−m−1)+1

n−m
∏

i=1

(

2i

2i−1

)(n−i−1
m−1 )

.

The principle of the proof is to bound the number of different truth-tables of
m-resilient functions of maximum degree (d = n−m− 1) by using the fact that
some of their successive restrictions are balanced. The bound is then obtained
by adding the number of Boolean functions of degrees at most n−m− 2 (which
is negligible).
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Proof. According to Siegenthaler’s Theorem on the degrees of resilient functions
and according to Lemma 1, we only need, when evaluating the number of possible
truth tables of f (that is the number of choices of the values of f at words
u ∈ IFn2 ) to consider the words u such that 0 ≤ wH(u) ≤ n−m− 1. In order to
bound the number of m-resilient functions of degree exactly n−m− 1, we first
bound the number of m-resilient functions whose ANF contains the monomial
x1 . . . xn−m−1. We proceed by induction.

• step 1: Every m-resilient Boolean function f is such that the restricted function
f(x1, . . . , xn−m, 0, . . . , 0) is balanced, i.e., has weight 2

n−m−1. Since the mono-
mial x1 . . . xn−m−1 appears in the ANF of the function, the number of words of
the support which are less than u = 1n−m−10m+1 for the partial order is odd.
Consequently, there are

∑

i odd

(

2n−m−1

i

)(

2n−m−1

2n−m−1 − i

)

=
1

2

(

2n−m

2n−m−1

)

different choices for the restriction of the truth-table of f at words of {0, 1}n−m×
{0}m.
• step 2: We now consider the restrictions of f in which the (n −m)th variable
is fixed to zero. For the values of the variables xn−m+1, . . . , xn, we fix m − 1
variables among m to zero (there are m possible different choices), and the last
free one is fixed to 1 because the cases where it is fixed to 0 have already been
considered at the previous step. Indeed every word v lower (for the partial order
¹) than the word u = 1n−m0m has been considered at the first step and, a
fortiori, every word lower than u′ = 1n−m−10m+1 has already been considered.
Thus only the words in {u ∈ IFn2 |u = (u1, . . . , un−m−1, 0 . . . , 0, 1, 0, . . . , 0)} will
be given a value by f at this step. We do not know how many words in this
set must be in the support of the considered functions since we do not know
how many words in the set {u ∈ IFn2 |u = (u1, . . . , un−m−1, 0, . . . , 0)} are already
in the support. But if this latter number is i, then the former one must be
j = 2n−m−1 − i. And we know that for every j we have:

(

2n−m−1

j

)

≤

(

2n−m−1

2n−m−2

)

.

We can bound the number of choices for one such restriction by
(

2n−m−1

2n−m−2

)

, and

since the number of such restrictions is m, the number of choices
(

2n−m−1

2n−m−2

)

is
raised to the mth power. At the end of this step, we have considered all the
words in IFn2 such that 0 ≤ wH(xn−m, xn−m+1, . . . , xn) ≤ 1 .

• step p: Assume we have already chosen the values on the words x such that
0 ≤ wH(xn−m−p+3, . . . , xn) ≤ p− 2 .
We now consider the restrictions such that xn−m−p+2 = 0, and m− 1 variables
among m+p−2 are fixed to 0; the remaining free variables are fixed to 1 because
the other cases have already been considered in the previous steps. Thus there are
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(

m+p−2
m−1

)

such restrictions. For each restriction, we do not know exactly how many
words should be in the support, but this number can be bounded by the maxi-

mum possible number of choices, i.e.,
(

2n−m−p+1

2n−m−p

)

. Since there are
(

m+p−2
m−1

)

such

restrictions, the number of choices
(

2n−m−p+1

2n−m−p

)

is raised to the power
(

m+p−2
m−1

)

. We
show now that, at the end of this step, we have considered all the words x such
that 0 ≤ wH(xn−m−p+2, . . . , xn) ≤ p− 1: if wH(xn−m−p+2, . . . , xn) ≤ p− 2 or if
wH(xn−m−p+2, . . . , xn) = p− 1 and xn−m−p+2 = 1, then x has been considered
before step p (by induction hypothesis); and if wH(xn−m−p+2, . . . , xn) = p − 1
and xn−m−p+2 = 0, then it has been considered at step p.

• step n −m: According to the property proved above, all the words such that
wH(x3, . . . , xn) ≤ n−m− 2 have been considered at the end of step n−m− 1.
Thus, only the words of weight n − m − 1 and such that x1 = x2 = 0 have
still to be given a value by f . We first choose a value f(x) for every word x =
(0, 0, x3, . . . , xn) of weight n−m−1 such that x∧u 6= 0, where u = 1n−m−10m+1.

The number of such choices equals 2(
n−2

n−m−1)−(
m+1
n−m−1). We apply now Lemma 2

to any word v of weight n−m− 1 and such that v∧u = 0. We deduce the value
of bv and thus of av. Indeed, according to relation (1), the values of all the bits
bs, bt such that s ∨ t = u ∨ v and s ∧ u 6= 0, t ∧ u 6= 0 can be deduced from the
values of f(x) already chosen since x ¹ s implies that either wH(x) < n−m− 1
or x ∧ u 6= 0. The knowledge of bv implies that of f(v) because all the values
f(x) such that x ≺ v have been already chosen, and according to relation (1).

We have now proved that the number of m-resilient functions f of degree
n−m−1 and whose ANF contains the monomial x1 . . . xn−m−1 is upper bounded
by:

1

2(
m+1
n−m−1)+1

n−m
∏

i=1

(

2i

2i−1

)(n−i−1
m−1 )

.

This number does not change if we replace the monomial x1 . . . xn−m−1 by any
other monomial µ of same degree (since the notion of resiliency is invariant under
the permutation of the coordinates of x). Any m-resilient function of degree
n −m − 1 belonging to

⋃

µ Sµ, where Sµ is the set of all m-resilient functions
of degree n−m− 1 whose ANF contains µ, we obtain a bound on the number
of m-resilient functions of degree n −m − 1 by multiplying the number above
by the number of these monomials, i.e.,

(

n
n−m−1

)

. Our bound on the number
of all m-resilient functions is then obtained by adding the number of Boolean
functions of degrees at most n−m− 2. ut

We now give tables of values permitting to compare the bounds. We give in
the first table the values of the new bound for dn2 e ≤ m ≤ dn2 e+ 5. In the next
table, we compare Schneider’s bound and the new bound (which improves upon
it for m ≥ dn2 e). In the last table of values, we compare Carlet-Klapper’s bound
and the new one.
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Table 2. New bound on the number of m-resilient functions

n\m dn

2
e dn

2
e+ 1 dn

2
e+ 2 dn

2
e+ 3 dn

2
e+ 4 dn

2
e+ 5

6 1.1 105 11 − − − −
7 9.5 105 12 − − − −
8 5.36 1023 7.6 106 14 − − −
9 1.4 1031 5.9 107 15 − − −
10 6.5 10102 4.2 1039 4.4 108 17 − −
11 2.3 10145 1.4 1049 3.2 109 18 − −
12 5.6 10430 1.3 10199 5.8 1059 2.3 1010 20 −
13 1.6 10638 2.6 10265 2.7 1071 1.6 1011 21 −
14 1.3 101776 1.3 10918 4.8 10345 1.5 1084 1.2 1012 23
15 3.4 102712 3.7 101286 1.9 10441 9.7 1097 8.0 1012 47
16 3.8 107264 1.2 104034 2.0 101761 3.9 10553 7.5 10112 5.5 1013

17 1.6 1011333 2.7 105855 5.7 102361 1.0 10684 6.8 10128 3.7 1014

18 7.6 1029577 8.2 1017260 1.6 108313 1.1 103109 7.8 10833 7.3 10145

19 1.1 1046898 2.8 1025709 6.5 1011567 9.8 104025 4.4 101004 9.4 10163

20 7.8 10120074 2.4 1072742 5.3 1037511 2.7 1015805 1.1 105137 4.3 101197

21 1.2 10192912 7.7 10110527 3.0 1053700 1.2 1021240 2.5 106468 1.8 101414

Table 3. (Schneider’s bound/new bound) for m-resilient functions

n\m dn

2
e dn

2
e+ 1 dn

2
e+ 2 dn

2
e+ 3 dn

2
e+ 4 dn

2
e+ 5

6 8.5 8.7 − − − −
7 9.8 101 1.5 101 − − − −
8 3.7 101 2.3 103 2.7 101 − − −
9 2.5 104 1.2 105 5.0 101 − −
10 3.1 102 5.7 108 1.2 107 9.0 101 − −
11 2.1 108 8.7 1014 2.5 109 1.7 102 − −
12 5.3 103 4.8 1018 1.8 1023 1.1 1012 3.1 102 −
13 1.1 1014 2.4 1035 9.3 1033 9.2 1014 5.7 102 −
14 1.8 105 8.5 1034 3.3 1060 2.6 1047 1.6 1018 1.1 103

15 7.7 1021 4.8 1072 3.2 1096 7.4 1063 5.7 1021 2.0 103

16 1.2 107 4.1 1059 5.4 10135 1.1 10146 4.4 1083 4.1 1025

17 1.3 1032 1.9 10135 8.4 10234 1.4 10212 1.1 10107 6.0 1029

18 1.6 109 1.4 1095 1.5 10274 6.2 10383 1.4 10298 2.3 10134

19 1.2 1045 1.0 10234 2.7 10512 7.9 10598 4.2 10407 7.8 10165

20 4.3 1011 1.6 10144 9.5 10511 5.1 10899 1.3 10900 3.1 10544

21 1.1 1061 2.6 10382 2.3 101028 1.7 101503 7.8 101310 9.4 10712
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Table 4. (Carlet-Klapper’s bound/new bound) for m-resilient functions

n\m dn

2
e dn

2
e+ 1 dn

2
e+ 2 dn

2
e+ 3 dn

2
e+ 4 dn

2
e+ 5

6 5.5 10−2 1.27 − − − −
7 2.6 10−2 1.12 − − − −
8 5.5 10−4 1.2 10−2 1 − − −
9 4.4 10−5 6.7 10−3 9.0 10−1 − −
10 3.3 10−4 2.4 10−6 3.6 10−3 8.2 10−1 − −
11 2.0 10−6 9.7 10−8 1.9 10−3 7.6 10−1 − −
12 7.3 1010 1.4 10−9 2.6 10−9 1.1 10−3 7.0 10−1 −
13 4.1 1012 7.0 10−14 4.7 10−11 6.1 10−4 6.5 10−1 −
14 2.0 1099 4.5 1012 1.7 10−19 5.9 10−13 3.5 10−4 6.1 10−1

15 2.7 10142 9.1 109 1.3 10−26 5.0 10−15 2.0 10−4 5.7 10−1

16 4.2 10511 1.6 10194 2.2 103 2.4 10−35 2.9 10−17 1.2 10−4

17 9.3 10785 2.3 10253 2.5 10−9 6.1 10−46 1.1 10−19 6.9 10−5

18 1.1 102256 6.4 101158 4.1 10317 3.9 10−28 1.4 10−58 2.9 10−22

19 3.7 103610 1.2 101649 2.4 10383 1.6 10−55 2.2 10−73 5.1 10−25

20 2.3 109330 5.9 105571 1.3 102275 4.7 10445 2.0 10−93 1.5 10−90

21 5.4 1015353 2.5 108328 4.1 103053 8.1 10497 7.1 10−144 2.6 10−110

22 3.7 1037456 1.5 1024442 5.2 1012102 2.0 103998 5.2 10532 3.6 10−209

Remark 1. A slight improvement of our bound is possible: let k be a positive
integer; the number of Boolean functions of degree at most n − m − 1 and
whose ANF contains at most k − 1 monomials of degree n − m − 1 equals

2
∑n−m−2

i=0
(ni)
(

∑k−1
j=0

(( n
n−m−1)

j

)

)

. We deduce that the number of m-resilient

functions in n variables is lower than:

2
∑n−m−2

i=0
(ni)





k−1
∑

j=0

(
(

n
n−m−1

)

j

)



+

(

n
n−m−1

)

k 2(
m+1
n−m−1)+1

n−m
∏

i=1

(

2i

2i−1

)(n−i−1
m−1 )

.

We have checked that for almost every n, some values of k ≤
(

n
n−m−1

)

permit
to improve upon our bound.

5 Conclusion

We have obtained for m ≥ n
2 an improvement of Schneider’s bound on the

number of m-resilient functions in n variables. The tables computed show that
our bound also partially improves upon Carlet-Klapper’s bound. Notice that
the values of m for which this happens in the tables are those among which
the best satisfactory tradeoffs between resiliency order, nonlinearity (limited by
Sarkar-Maitra’s bound [9]) and degree (limited by Siegenthaler’s bound) can
be obtained (since none of these parameters must be small). Moreover, we can
conjecture that, asymptotically, the new bound improves upon Carlet-Klapper’s
bound whenm−n/2 is fixed and n tends to infinity (recall that Carlet-Klapper’s
bound improves upon Schneider’s one when n−m is fixed and n tends to infinity).
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A Proof of Proposition 2

We prove that the number of 1-resilient functions in n variables is less than
∑2n−2

k=0

(

2n−2

a

)4
.

Every Boolean function f in n variables can be considered as the concatenation
of four Boolean functions in n − 2 variables, f = f1f2f3f4. The ANF of the
function is

f = (1− xn)(1− xn−1)f1 ⊕ (1− xn)xn−1f2 ⊕ xn(1− xn−1)f3 ⊕ xnxn−1f4 .
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We have:

wH(f) = 2n−1 ⇔ wH(f1) + wH(f2) + wH(f3) + wH(f4) = 2n−1 (2)

wH(f|xn=0) = 2n−2 ⇔ wH(f1) + wH(f2) = 2n−2 (3)

wH(f|xn−1=0) = 2n−2 ⇔ wH(f1) + wH(f3) = 2n−2 (4)

Thus,
(3), (4) ⇒ wH(f2) = wH(f3) (5)

(2), (3), (5) ⇒ wH(f1) = wH(f4) (6)

The bound of Proposition 2 is then a direct consequence of equations (3), (5)
and (6). Indeed, we can deduce:

2n−2
∑

wH(f1)=0

(

2n−2

wH(f1)

)2(
2n−2

2n−2 − wH(f1)

)2

.

ut

B Park, Lee Sung and Kim’s bound in the case of first

order resilient Boolean function

Proposition 3. Let n be a positive integer greater than 1. The number of 1-
resilient Boolean functions in n variables is less than:

2n−3
∑

a,b,c,d=0

(

2n−3

a

)(

2n−3

b

)(

2n−3

c

)(

2n−3

d

)(

2n−3

2n−2 − a− b− c

)

×

(

2n−3

2n−2 − a− c− d

)(

2n−3

c+ d− b

)(

2n−3

a+ b− d

)

.

Proof. Every Boolean function in n variables f can be considered as the con-
catenation of eight functions in n− 3 variables, i.e., f = f1f2f3f4f5f6f7f8. The
corresponding ANF of the function is

f = (1− xn)(1− xn−1)(1− xn−2)f1 ⊕ (1− xn)(1− xn−1)xn−2f2

⊕ (1− xn)xn−1(1− xn−2)f3 ⊕ (1− xn)xn−1xn−2f4

⊕ xn(1− xn−1)(1− xn−2)f5 ⊕ xn(1− xn−1)xn−2f6

⊕ xnxn−1(1− xn−2)f7 ⊕ xnxn−1xn−2f8 .

We have the following equations:

wH(f) = 2n−1 ⇔

8
∑

i=1

wH(fi) = 2n−1 (7)
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wH(f|xn=0) = 2n−2 ⇔ wH(f1) + wH(f2) + wH(f3) + wH(f4) = 2n−2 (8)

wH(f|xn−1=0) = 2n−2 ⇔ wH(f1) + wH(f2) + wH(f5) + wH(f6) = 2n−2 (9)

wH(f|xn−2=0) = 2n−2 ⇔ wH(f1) + wH(f3) + wH(f5) + wH(f7) = 2n−2 (10)

We obtain:
(8), (9)⇒ wH(f3) + wH(f4) = wH(f5) + wH(f6) (11)

(7), (11)⇒ wH(f1) + wH(f2) = wH(f7) + wH(f8) (12)

Assume that the values of wH(f1), wH(f2), wH(f3) and wH(f7) are fixed, then

(8)⇒ wH(f4) = 2n−2 − wH(f1)− wH(f2)− wH(f3) (13)

(10)⇒ wH(f5) = 2n−2 − wH(f1)− wH(f3)− wH(f7) (14)

(9), (14)⇒ wH(f6) = wH(f3) + wH(f7)− wH(f2) (15)

(12)⇒ wH(f8) = wH(f1) + wH(f2)− wH(f7) (16)

Since we know that the values of wH(f1), wH(f2), wH(f3) and wH(f7) vary
between 0 and 2n−3, we can deduce the formula with the equations (13), (14),
(15) and (16). ut


