
Chosen-Ciphertext Security
without Redundancy

Duong Hieu Phan and David Pointcheval

École normale supérieure – Dépt d’informatique
45 rue d’Ulm, 75230 Paris Cedex 05, France.

{duong.hieu.phan,david.pointcheval}@ens.fr

Abstract. We propose asymmetric encryption schemes for which all ci-
phertexts are valid (which means here “reachable”: the encryption func-
tion is not only a probabilistic injection, but also a surjection). We thus
introduce the Full-Domain Permutation encryption scheme which uses
a random permutation. This is the first IND-CCA cryptosystem based
on any trapdoor one-way permutation without redundancy, and more
interestingly, the bandwidth is optimal: the ciphertext is over k more
bits only than the plaintext, where 2−k is the expected security level.
Thereafter, we apply it into the random oracle model by instantiating
the random permutation with a Feistel network construction, and thus
using OAEP. Unfortunately, the usual 2-round OAEP does not seem to
be provably secure, but a 3-round can be proved IND-CCA even without
the usual redundancy m‖0k1 , under the partial-domain one-wayness of
any trapdoor permutation. Although the bandwidth is not as good as in
the random permutation model, absence of redundancy is quite new and
interesting: many implementation risks are ruled out.

1 Introduction

By now, the widely admitted appropriate security level for asymmetric encryp-
tion is the so-called chosen-ciphertext security (IND-CCA): that is actually the
semantic security [16] against adaptive chosen-ciphertext attacks [21]. For achiev-
ing semantic security, even in the basic chosen-plaintext scenario, the encryption
algorithm must be probabilistic, which means that a given plaintext (with a fixed
public key) should be possibly encrypted in many different ways (at least 2k dif-
ferent ciphertexts if 2−k is the expected security level). This naturally implies an
expansion: the ciphertext is at least over k more bits than the plaintext. OAEP
achieves the optimal bound if one considers IND-CPA only, but fails when con-
sidering IND-CCA [5, 15].

The general idea for designing cryptosystems which are secure in the sense
of chosen-ciphertext security is indeed to make the decryption oracle useless
by making the creation of new “valid” ciphertexts (which are not produced by
actually encrypting some known plaintexts) impossible. The general approach
is thus to add some redundancy either to the plaintext before encrypting [5] or
in a tag appended to the ciphertext [4, 18]. The former method can be named

“encode-then-encrypt”, with a randomized bijective encoding (padding), and a
trapdoor injective one-way function as encryption [5, 23, 8]. The latter is more
like a key-encapsulation technique combined with a MAC of the plaintext, the
ciphertext and/or the ephemeral key [10, 1, 18].

For symmetric encryption schemes, Desai [11] avoids the overhead due to the
MAC or redundancy by using variable-length input PRF, variable-length output
PRF (unbalanced Feistel paradigm) or variable-length input super-PRF (encode-
then-encipher). The proposed schemes are chosen-ciphertext secure, without re-
dundancy and the ciphertext expansion is smaller than for any other provably
secure scheme.

In the present paper, inspired by this idea (encode-then-encipher), we con-
sider the case of asymmetric encryption, by using a public random permutation
which is clearly a bijective encoding, and this leads to the first IND-CCA scheme
without any redundancy. More interestingly, the bandwidth of this scheme is
optimal.

On the other hand, the security proof holds in the strong and ideal “random
permutation model”. Such a scheme in a weaker model (the random oracle model
or the standard model) would be better. The second part of this paper is devoted
to this goal. We use the construction of OAEP but with 3 rounds, instead of
2, and we can prove that such a scheme is IND-CCA and all the ciphertexts are
reachable by the encryption algorithm, and are thus valid (or almost all in the
most general case).

The rest of the paper is organized as follows: We first briefly recall the security
notions for asymmetric encryption; then we present the FDH encryption and
we prove that it is IND-CCA secure with any trapdoor one-way permutation.
Finally we consider the random oracle model, in which we propose a 3-round
OAEP for which (almost) any ciphertext is valid (i.e., reachable) and we show
that it achieves IND-CCA under the partial-domain one-wayness of any trapdoor
permutation [15].

2 Public Key Encryption

The aim of a public-key encryption scheme is to allow anybody who knows the
public key of Alice to send her a message that she will be the only one able to
recover, thanks to her private key.

2.1 Definitions

A public-key encryption scheme π is defined by the three following algorithms:

– The key generation algorithm G. On input 1k, where k is the security param-
eter, the algorithm G produces a pair (pk, sk) of matching public and private
keys.

– The encryption algorithm E . Given a message m and a public key pk, Epk(m)
produces a ciphertext c of m. This algorithm may be probabilistic (involving
random coins r ∈ R, and then denoted Epk(m; r).)

– The decryption algorithm D. Given a ciphertext c and the secret key sk,
Dsk(c) gives back the plaintext m.

2.2 Security Notions

The widely admitted security notion for encryption schemes is the so-called
semantic security [16] (a.k.a. polynomial security/indistinguishability of encryp-
tions): if the attacker has some a priori information about the plaintext, the
view of the ciphertext should not increase this information. This security notion
requires the computational impossibility to distinguish between two messages,
chosen by the adversary itself, which one has been encrypted, with a probabil-
ity significantly better than one half: its advantage Advind

π (A), as defined below
where the adversary A is seen as a 2-stage Turing machine (A1, A2), should be
negligible.

Advind
π (A) = 2× Pr

b,r

[
(pk, sk) ← G(1k); (m0,m1, s) ← A1(pk)
c = Epk(mb; r) : A2(m0,m1, s, c) = b

]
− 1.

Another notion has been thereafter defined, the so-called non-malleability [12],
but this notion is equivalent to the above one in some specific scenarios [7].
Moreover, it is equivalent to the semantic security [3] in the most interesting
scenarios, described below.

Indeed, an attacker can play many kinds of attacks: it may just have access
to public data, and then encrypt any plaintext of its choice (chosen-plaintext
attacks), or have access to extra information, modeled by various oracles. In this
model, the strongest oracle is definitely the decryption algorithm, which can
be queried on any ciphertext, except the challenge ciphertext (adaptive/non-
adaptive chosen-ciphertext attacks [17, 21]).

A general study of these security notions and attacks has been driven in [3],
we therefore refer the reader to this paper for more details. Actually, one conclu-
sion is that the strongest security level is the so-called chosen-ciphertext security,
which is the semantic security (IND) under adaptive chosen-ciphertext attacks
(CCA), hence the notation IND-CCA, also known as IND-CCA2, to be compared
to IND-CCA1, which captures lunchtime attacks [17] only.

2.3 Secure Designs

The expected security level is thus IND-CCA, which is now required to be prov-
ably achieved before any practical use. The last ten years have seen several
practical proposals which provide this strong security level. The first, and most
famous one, is definitely OAEP [5], a generic conversion proposed by Bellare and
Rogaway, which applies to any trapdoor partial-domain one-way permutation,
such as RSA, in the random oracle model [15]. Some variants have been recently
proposed, which either apply to particular cases (SAEP, SAEP+ [8]) or more
general ones (OAEP+ [23]). But they all add some redundancy in the plaintext

before encrypting it: a ciphertext that is not properly generated, without know-
ing the plaintext, is valid with negligible probability only. The latter property
had been formally defined by the plaintext-awareness notion [5, 3]. Granted it,
a decryption oracle does not provide any information.

Some other paddings have also been proposed to apply to more general fami-
lies of functions, which are not necessarily one-to-one: Fujisaki and Okamoto [13,
14], Pointcheval [20] and Okamoto and Pointcheval [18]. Once again, chosen-
ciphertext security is achieved granted redundancy, but in the ciphertext: only
properly generated ciphertexts (with some known plaintexts) have a chance to
be valid: plaintext-awareness.

3 FDP: Full-Domain Permutation Encryption

In the same vein as the Full-Domain Hash signature [6, 9], we suggest the Full-
Domain Permutation encryption, in which one applies a random permutation
to the message (and the random coins) before encrypting it with the trapdoor
one-way permutation. We therefore obtain the first cryptosystem which achieves
chosen-ciphertext security, without redundancy: any ciphertext is valid, and the
bandwidth is optimal.

3.1 Description

The FDP-encryption is quite simple, since it uses a random permutation P
(which is a bijective random oracle, or an ideal-cipher with a particular key,
say 0. See also [22]). The key generation algorithm selects a trapdoor one-way
permutation ϕpk (and its inverse ψsk, granted the trapdoor sk) over {0, 1}k+`, and
a random permutation P over the same space —{0, 1}` ×{0, 1}k is identified to
{0, 1}`+k. The public key pk thus defines the permutation ϕpk, while the private
key sk defines the inverse ψsk of ϕpk. Then,

Epk(m; r) = ϕpk(P(m, r)) Dsk(c) = m, where (m, r) = P−1(ψsk(c)).

The space of the plaintexts is {0, 1}`, while the space of the random coins r is
{0, 1}k. Note that both P and P−1 are public permutations.

Note that usual trapdoor one-way permutations are not on a binary set, as it
will be discussed in a more extensive way in the following. Anyway, just doubling
the computational cost, on average, one easily gets such a particular case from
any permutation over an interval: [2] suggested an iterated version.

3.2 Security Result

As already said, the first advantage of this scheme is that any ciphertext is valid:
any ciphertext can be decrypted into a plaintext, furthermore any ciphertext can
also be reached by the encryption algorithm. The second important advantage
comes from the security result given below: it provides chosen-ciphertext secu-
rity under the intractability of inverting ϕ, with a security level in 2k, with an

overhead of k bits (the random coins). This means that the bandwidth is opti-
mal: contrary to OAEP or OAEP+ which need an overhead of at least 2k bits
(the random coins and the redundancy), for a similar security level. Of course,
this remark only applies to the most general case where ` ≥ k (e.g., k = 80 and
k + ` = 1024.)

Theorem 1. Let A be any chosen-ciphertext adversary against ϕ-FDP, within
time τ . After qp and qd queries to the permutation oracles and the decryption
oracle respectively,

Advind-cca
π (A) ≤ 2×Succow

ϕ (τ +2qp×Tϕ)+2×
(

(qp + qd + 1)2

2k+`
+

qp

2k
+

(qd + 1)2

2`

)

where Tϕ is the time complexity for evaluating ϕ.

Let us briefly recall that for any algorithm A,

Succow
ϕ (A) = Pr

pk,

x∈{0,1}k+`

[A(ϕpk(x)) = x], and Succow
ϕ (τ) = max

|A|≤τ

{
Succow

ϕ (A)
}

.

3.3 Sketch of the Proof

The goal of the proof is to simulate the oracles P, P−1, and Dsk in such a way
that the adversary can not distinguish the simulations from the real oracles. In
the simulation, the decryption answer for a ciphertext that has not been obtained
before is a new random value (and independent with others). We then have to
keep the simulation of the random permutation consistent. On the other hand,
the challenge is made independent with the plaintexts m0 and m1: the adversary
has no advantage.

The proof follows by successively modifying the rules involved in the (perfect)
simulation where the oracles P and P−1 are first simulated by using a perfectly
random permutation P and its inverse P−1. The last game provides a simulation
of Dsk, without inverting ϕpk.

Anyway, the simulation remains almost perfect unless the adversary asks the
pre-image via ϕpk of the challenge ciphertext to the random permutation P−1:
it thus helps to invert ϕ. The complete proof can be found in the full version of
this paper [19].

4 The Random Oracle Model and OAEP

The above result is not so surprising, but the optimal bandwidth is a very good
news. However the proof requires a full-domain random permutation, which is
hard to find: practical block-ciphers have smaller block sizes. In this section, we
present an instantiation of this random permutation, in the random oracle model
only. The counter-part will be the need of a stronger assumption about the trap-
door one-way permutation: with a 3-round OAEP, a trapdoor partial-domain
one-way permutation leads to an IND-CCA cryptosystem, without redundancy.

4.1 The 2-round OAEP Case

Before studying the 3-round OAEP, let us first consider the more classical 2-
round OAEP which can be described as follows: we use two hash functions G and
H before encrypting with a trapdoor one-way permutation ϕpk. More precisely,
for encrypting a message m, one randomly chooses r, and computes s and t:

s = m⊕ G(r) t = r ⊕H(s).

Then, the ciphertext is c = ϕpk(s, t). For decryption, one computes

(s, t) = ψsk(c) r = t⊕H(s) m = s⊕ G(r).

The usual way to prove the security of a scheme is to exploit an adversary
to break the assumption (for instance, the partial-domain one-wayness of the
permutation ϕpk). For that, we must simulate all the resources that the attacker
can access, namely, the oracles G, H but also the decryption oracle Dsk. For
the above 2-round OAEP, the decryption oracle does not seem simulatable. The
following attack game uses the same arguments as the counter-example shown by
Shoup against the original OAEP security result [23]. Let us consider an attacker
who chooses s, s′ and calls for H to get respectively h = H(s) and h′ = H(s′).
Then it chooses t and computes c = ϕpk(s, t). If it asks c to Dsk, it gets the
corresponding plaintext m. Then, it computes t′ = t⊕h⊕h′ and c′ = ϕpk(s′, t′).
If it asks c′ to Dsk, it gets the corresponding plaintext m′. One can easily see
that, since r′ = r, the relation m⊕m = s⊕ s′ should hold. But if the simulator
can not detect that r′ = r, it can not output a consistent value for m′.

Unfortunately, we did not find any easy way to make a consistent simulation
for the 2-round OAEP. But a 3-round is more promising.

4.2 Description of the 3-round OAEP

The public key is any trapdoor (partial-domain) one-way bijection ϕpk from a set
E to a set F, while the private key is the inverse ψsk. For the sake of generality,
we do not stick to binary sets (of the form {0, 1}k): we just assume that there is
an integer κ such that:

{0}κ×{0, 1}k+` ⊆ E ⊆ {0, 1}κ+k+` (identified to {0, 1}κ×{0, 1}k×{0, 1}`).

However, note that in the case that E 6= 0κ‖{0, 1}k+` we won’t get (as an-
nounced) a surjective encryption. But contrary to all the previous IND-CCA
schemes, the proportion of valid ciphertexts (i.e., which are reachable) is greater
than 1/2κ, which is not negligible: for efficient applications with RSA, it can be
equal to 1/2, or even 1 (by loosing a factor 2 in efficiency, one can get κ = 0,
with the iterated-RSA [2]).

The encryption and decryption algorithms use three hash functions: F , G, H
(assumed to behave like random oracles in the security analysis):

F : {0, 1}k → {0, 1}` G : {0, 1}` → {0, 1}k H : {0, 1}k+κ → {0, 1}`.

Encryption Algorithm: The space of the plaintexts is M = {0, 1}`, the en-
cryption algorithm uses random coins in R = {0, 1}k, and outputs a ciphertext
c into F: on a plaintext m ∈M, and a random r ∈ R, one computes

s = m⊕F(r) t = r ⊕ G(s) u = s⊕H(0κ‖t) c = ϕpk(0κ, t, u).

Decryption Algorithm: On a ciphertext c, one first computes (B, t, u) =
ϕsk(c), where B ∈ {0, 1}κ, t ∈ {0, 1}k, u ∈ {0, 1}` and then

s = u⊕H(B‖t) r = t⊕ G(s) m = s⊕F(r).

4.3 Security Result

About the 3-round OAEP, one can claim the following security result, which
states that the IND-CCA security level is achieved under the (set) partial-domain
one-wayness of the trapdoor permutation ϕ [15].

Theorem 2. Let A be any chosen-ciphertext adversary against the 3-round
OAEP construction with the trapdoor permutation family ϕ, within time τ . After
qf , qg, qh and qd queries to the random oracles F , G and H, and the decryption
oracle respectively,

Advind-cca
π (τ) ≤ 2κ × Succs-pd-ow

ϕ (τ + qg · qh × Tϕ + qd · Tlu, qh)

qf

2k
+

qg

2`
+ 2κ ×

(
qd(2qg + qd)

2`
+

qd(3qf + 2qd)
2k

)

where Tϕ is the time complexity for evaluating ϕ, and Tlu is the time complexity
for a look up in a list.

Let us recall the definition of the (set) partial-domain one-wayness in our par-
ticular case, where A is any algorithm which outputs a subset of {0, 1}k of size
q:

Succs-pd-ow
ϕ (A, q) = Pr

pk,
(B,t,u)∈E

[t ∈ A(ϕpk(B, t, u))]

and Succow
ϕ (τ, q) = max

|A|≤τ

{
Succs-pd-ow

ϕ (A, q)
}

,

is small for any reasonable time bound τ .

4.4 Sketch of the Proof

The goal of the proof is again to simulate the oracles. For simulating the random
oracles, we use lists as usual to store the known answers. We simulate the de-
cryption oracle as follows: when we receive a query y, either the corresponding
s and t have both been asked to G and H, we can extract m, or one of them
has not been asked, we can safely answer a random plaintext. However, such a

plaintext-ciphertext relation implicitly defines several relations about the ran-
dom oracles F , G and H. We show that it is still possible to answer consistently.
The challenge ciphertext also implicitly defines relations. We show that possible
inconsistencies with the latter relations can not be detected by the adversary
unless it has partially inverted the function ϕpk on the challenge ciphertext.

The proof is provided by a sequence of games, but for clarity reasons, we
briefly explain only the distances between two consecutive games. The formal
and full proofs are provided in the Appendix A.
Game G0: The adversary is fed with the public key pk, and outputs a
pair of messages (m0,m1). Next a challenge ciphertext is produced by flipping
a coin b and producing a ciphertext c? of m? = mb. This ciphertext comes from
a random r? ← {0, 1}k and c? = E(mb, r

?) = ϕpk(0κ, t, u). On input c?, A2

outputs bit b′ in the time t. We denote by S0 the event b′ = b and use the same
notation Sn in any game Gn below. Note that the adversary is given access to
the decryption oracle Dsk during both steps of the attack. The adversary can
also ask the random oracles F , G, and H.
Game G1: The simulation in this game is presented on the Figure 1. We
simulate the way that the challenge c? is generated as the challenger would do,
and we simulate the random oracles F , G, and H, as well as the decryption
oracle Dsk, by maintaining lists F-List, G-List,H-List and D-List to deal with
identical queries, since they all are deterministic. Since the simulation is perfect,
we directly derive that

Pr[S1] = Pr[S0]. (1)

Game G2: We manufacture the challenge c? independently of anything else.

IRule Chal(2)

Choose randomly ahead of time c+ R← F and set c? = c+.

Lemma 3. Let us note (B+, t+, u+) the pre-image of the challenge c+. We de-
note by AskH2 the event that B+‖t+ has been asked to H. Then,

Pr[S1] ≤ 1
2

+
qf

2k
+

qg

2`
+ 2κ × Pr[AskH2]. (2)

Proof (Full proof in the Appendix A.1). The main idea in simulating this game
is that we make the components of the challenge c? (namely r?, f?, s?, g?, t?,
h?, u? and c?) independent to m?. We can do this by choosing ahead of time
random values for r?, s?, and t?, and we can see that a difference occurs when
one of these values is asked to the corresponding oracle. On the other hand,
when the challenge is independent to m?, the attacker has only the chance of
one half to guess the bit b. ut

Game G3: In this game, we modify the simulation of the decryption oracle,
by outputting a random message when the ciphertext has not been “correctly”
encrypted. We thereafter define in a consistent way the values of the random
oracles:

F,
G

a
n
d
H

O
ra

cl
es

Query F(r): if a record (r, f) appears in F-List, the answer is f .
Otherwise the answer f is chosen randomly: f ∈ {0, 1}k and the record (r, f)
is added in F-List.
Query G(s): if a record (s, g) appears in G-List, the answer is g.
Otherwise the answer g is chosen randomly: g ∈ {0, 1}` and the record (s, g)
is added in G-List.

IRule EvalGAdd(1)

Do nothing

Query H(B‖t): if a record (B, t, h) appears in H-List, the answer is h.
Otherwise the answer h is chosen randomly: h ∈ {0, 1}k and the record (B, t, h)
is added in H-List.

D
O

ra
cl

e Query Dsk(c): if a record (m, c) appears in D-List, the answer is m.
Otherwise the answer m is defined according to the following rules:

IRule Decrypt-Init(1)

Compute (B, t, u) = ψsk(c);

Look up for (B, t, h) ∈ H-List:

– if the record is found, compute s = u⊕ h.
Look up for (s, g) ∈ G-List:
• if the record is found

IRule Decrypt-TS(1)

h = H(B‖t),
s = u⊕ h, g = G(s),
r = t⊕ g, f = F(r),
m = s⊕ f .

• otherwise
IRule Decrypt-TnoS(1)

same as rule Decrypt-TS(1).
– otherwise

IRule Decrypt-noT(1)

same as rule Decrypt-TS(1).

Answer m and add (m, c) to D-List.

C
h
a
ll
en

g
er

For two messages (m0, m1), flip a coin b and set m? = mb, choose randomly
r?, then answer c?, where

IRule Chal(1)

f? = F(r?), s? = m? ⊕ f?,
g? = G(s?), t? = r? ⊕ g?,
h? = H(0κ‖t?), u? = s? ⊕ h?.
Compute c? = ϕpk(0

κ, t?, u?).

Fig. 1. Formal Simulation of the IND-CCA Game against 3-OAEP

IRule Decrypt-TnoS(3)

Choose m
R← {0, 1}` and g

R← {0, 1}k,
then define r = t⊕ g and f = m⊕ s.

Add (r, f) in F-List, and (s, g) in G-List.

IRule Decrypt-noT(3)

Choose m
R← {0, 1}`, h

R← {0, 1}` and g
R← {0, 1}k,

then define s = u⊕ h, r = t⊕ g and f = m⊕ s.
Add (r, f) in F-List, (s, g) in G-List, and (B, t, h) in H-List.

Lemma 4.

|Pr[AskH3]− Pr[AskH2] | ≤ qd(qg + qd)
2`

+ 2
qd(qf + qd)

2k
. (3)

Proof (Full proof in the Appendix A.2). In the proof, one successively modifies
the simulation of the decryption oracle, just changing the order of elements to
be randomly chosen, so that the decryption of a ciphertext which has not been
correctly encrypted is a truly random plaintext. ut
Game G4: In this game, we delay the explicit definitions of some oracle
answers implicitly defined by some plaintext-ciphertext relations: we do not in-
troduce them during the simulation of the decryption oracle, but when s is asked
to G. Some problems may appear if the implicitly defined answers are asked be-
fore G(s) is queried.

IRule Decrypt-TnoS(4)

Choose m
R← {0, 1}`.

IRule Decrypt-noT(4)

Choose m
R← {0, 1}`.

IRule EvalGAdd(4)

Look up for (B, t, h) ∈ H-List and (m, c) ∈ D-List such that
c = ϕpk(B, t, h⊕ s).
If the record is found, we compute r = t⊕ g and f = m⊕ s, and
finally add (r, f) in F-List.

Lemma 5.

|Pr[AskH4]− Pr[AskH3] | ≤ qd · qf

2k
+

qd · qg

2`
. (4)

Proof (Full proof in the Appendix A.3). Since we don’t store anymore (r, f),
(s, g), (B, t, h), inconsistencies could occur when B‖t, s or r are asked. For
solving this problem, we modify the rule EvalGAdd by defining in a consistent
way F(r) at the moment that s is asked to G. But there is still a problem if r is
asked before G(s) is queried, or if s is asked before H(B‖t) is queried. ut

Game G5: We now complete the simulation of the oracle Dsk. We don’t ask
any query to ψsk. Intuitively, if both B‖t and s have been asked, we can easily
find them, and then m. Otherwise, we give a random answer as in the game G4.

IRule Decrypt-Init(5)

Look up for (B, t, h) ∈ H-List and (s, g) ∈ G-List such that
ϕpk(B, t, s⊕ h) = c.

– if the record is found, we furthermore define u = s⊕ h.
– otherwise, we take B = ⊥, t = ⊥, u = ⊥.

IRule Decrypt-TS(5)

r = t⊕ g, f = F(r), m = s⊕ f .

The two games G5 and G4 are perfectly indistinguishable. In fact, in the first
case, nothing is modified and in the second case, by making B = ⊥, t = ⊥, u = ⊥,
the answer of the decryption oracle for the question c will be a random m as in
the game G4:

Pr[AskH5] = Pr[AskH4]. (5)

Simply outputting the list of queries to H during this game, one gets:

Pr[AskH5] ≤ Succs-pd-ow
ϕ (τ ′, qh), (6)

where τ ′ is the running time of the simulation in this game: τ ′ ≤ qg · qh ×
Tϕ + qd × Tlu. We can indeed perform the simulation granted an additional list
GH-List which contains all the tuples (B, t, h, s, g, y) where (B, t, h) ∈ H-List,
(s, g) ∈ G-List and y = ϕpk(B, t, s⊕h). This concludes the proof of the Theorem.

4.5 Special Cases

In the particular but classical case where κ = 0 and k ≤ `, one can claim

Theorem 6. Let A be any chosen-ciphertext adversary against the 3-round
OAEP construction with the trapdoor permutation family ϕ, within time τ . After
qo and qd queries to the random oracles and the decryption oracle respectively,

Advind-cca
π (τ) ≤ Succs-pd-ow

ϕ (τ + q2
o × Tϕ + qd × Tlu, qo) +

2qo + qd(5qo + 2qd)
2k

where Tϕ is the time complexity for evaluating ϕ, and Tlu is the time complexity
for a look up in a list.

5 Conclusion

We have described the Full-Domain Permutation encryption which is IND-CCA
without redundancy and provides an optimal bandwidth. In the random oracle
model, we have shown that the absence redundancy can be obtained by consid-
ering the 3-round OAEP construction. However, the bandwidth is not optimal,
and the security relies on the strong partial-domain one-wayness assumption.

Acknowledgments

We thank Anand Desai for fruitful discussions.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In CT – RSA ’01, LNCS 2020, pages 143–158. Springer-
Verlag, Berlin, 2001.

2. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-Privacy in Public-
Key Encryption. In Asiacrypt ’01, LNCS 2248, pages 566–582. Springer-Verlag,
Berlin, 2001.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions
of Security for Public-Key Encryption Schemes. In Crypto ’98, LNCS 1462, pages
26–45. Springer-Verlag, Berlin, 1998.

4. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for De-
signing Efficient Protocols. In Proc. of the 1st CCS, pages 62–73. ACM Press, New
York, 1993.

5. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt
with RSA. In Eurocrypt ’94, LNCS 950, pages 92–111. Springer-Verlag, Berlin,
1995.

6. M. Bellare and P. Rogaway. The Exact Security of Digital Signatures – How to
Sign with RSA and Rabin. In Eurocrypt ’96, LNCS 1070, pages 399–416. Springer-
Verlag, Berlin, 1996.

7. M. Bellare and A. Sahai. Non-Malleable Encryption: Equivalence between Two
Notions, and an Indistinguishability-Based Characterization. In Crypto ’99, LNCS
1666, pages 519–536. Springer-Verlag, Berlin, 1999.

8. D. Boneh. Simplified OAEP for the RSA and Rabin Functions. In Crypto ’01,
LNCS 2139, pages 275–291. Springer-Verlag, Berlin, 2001.

9. J.-S. Coron. On the Exact Security of Full-Domain-Hash. In Crypto ’00, LNCS
1880, pages 229–235. Springer-Verlag, Berlin, 2000.

10. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In Crypto ’98, LNCS 1462, pages
13–25. Springer-Verlag, Berlin, 1998.

11. A. Desai. New Paradigms for Constructing Symmetric Encryption Schemes Secure
Against Chosen-Ciphertext Attack. In Crypto ’00, LNCS 1880, pages 394–412.
Springer-Verlag, Berlin, 2000.

12. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In Proc. of the
23rd STOC. ACM Press, New York, 1991.

13. E. Fujisaki and T. Okamoto. How to Enhance the Security of Public-Key Encryp-
tion at Minimum Cost. In PKC ’99, LNCS 1560, pages 53–68. Springer-Verlag,
Berlin, 1999.

14. E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric
Encryption Schemes. In Crypto ’99, LNCS 1666, pages 537–554. Springer-Verlag,
Berlin, 1999.

15. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA–OAEP is Secure under
the RSA Assumption. Journal of Cryptology, 2003. To appear.

16. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

17. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In Proc. of the 22nd STOC, pages 427–437. ACM Press, New
York, 1990.

18. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In CT – RSA ’01, LNCS 2020, pages 159–175. Springer-
Verlag, Berlin, 2001.

19. D. H. Phan and D. Pointcheval. Chosen-Ciphertext Security without Redundancy.
In Asiacrypt ’03, LNCS. Springer-Verlag, Berlin, 2003. Full version available at
http://www.di.ens.fr/users/pointche

20. D. Pointcheval. Chosen-Ciphertext Security for any One-Way Cryptosystem. In
PKC ’00, LNCS 1751, pages 129–146. Springer-Verlag, Berlin, 2000.

21. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In Crypto ’91, LNCS 576, pages 433–444. Springer-
Verlag, Berlin, 1992.

22. R. Rivest, A. Shamir, and A. Tauman, How to Leak a Secret. In Asiacrypt ’01,
LNCS 2248, pages 552–565. Springer-Verlag, Berlin, 2001.

23. V. Shoup. OAEP Reconsidered. In Crypto ’01, LNCS 2139, pages 239–259.
Springer-Verlag, Berlin, 2001.

A Complements for the Proof of the Theorem 2

A.1 Proof of Lemma 3

Game G1.1: For proving this lemma, we present a more detailed sequence
of games from the game G1 to the game G1.2 . We first make the value of the
random seed r? explicit and move its generation up-front.

IRule Chal(1.1)

The two values r+ R← {0, 1}k, f+ R← {0, 1}` have been chosen
ahead of time, then

r? = r+, f? = f+, s? = m? ⊕ f+, g? = G(s?),

t? = r+ ⊕ g?, h? = H(0κ‖t?), u? = s? ⊕ h?.

Compute c? = ϕpk(0κ, t?, u?).

The two games G1.1 and G1 are perfectly indistinguishable unless r? has been
asked for F . We define this event AskF1.1. We have:

|Pr[S1.1]− Pr[S1] | ≤ Pr[AskF1.1]. (7)

In this game, f+ is used in (s, t) but does not appear in the computation since
F(r+) is not defined to be equal to f+. Thus, the input to A2 follows a distri-
bution that does not depend on b. Accordingly:

Pr[S1.1] =
1
2
. (8)

Game G1.2: In this game, instead of defining s? from f? which is a random
value f+, we randomly choose s? and then we define f+ from s?. Because s? is
chosen randomly, we give a random answer for the question s? to G.

IRule Chal(1.2)

The values r+ R← {0, 1}k, s+ R← {0, 1}`, g+ R← {0, 1}k have been
chosen ahead of time, then

r? = r+ s? = s+ g? = g+ f? = s+ ⊕m?

t? = r+ ⊕ g+ h? = H(t?) u? = s+ ⊕ h?.

Compute c? = ϕpk(0κ, t?, u?).

The two games G1.2 and G1.1 are perfectly indistinguishable unless s? is asked
for G. We define this event AskG1.2. We have:

|Pr[AskF1.2]− Pr[AskF1.1] | ≤ Pr[AskG1.2]. (9)

In this game, r+ = t? ⊕ g+ is uniformly distributed, and independently of the
adversary’s view since g+ is never revealed:

Pr[AskF1.2] =
qf

2k
. (10)

Game G1.3: Similarly to the above game, instead of defining t? from a
random g+, we randomly choose t? and then we define g+ from t?. Because t?

is chosen randomly, we give a random answer for the question (0κ‖t?) to H.

IRule Chal(1.3)

The values r+ R← {0, 1}k, s+ R← {0, 1}`, t+
R← {0, 1}k, h+ R←

{0, 1}` have been chosen ahead of time, then

r? = r+ s? = s+ t? = t+ h? = h+

f? = s+ ⊕m? g? = t+ ⊕ r+ u? = s+ ⊕ h+.

Compute c? = ϕpk(0κ, t?, u?).

The two games G1.3 and G1.2 are perfectly indistinguishable unless 0κ‖t? is
asked for H. We define this event AskH1.3. We have:

|Pr[AskG1.3]− Pr[AskG1.2] | ≤ Pr[AskH1.3]. (11)

In this game, s+ = u? ⊕ h+ is uniformly distributed, and independently of the
adversary’s view since h+ is never revealed:

Pr[AskG1.3] =
qg

2`
.

Game G1.4: We manufacture the challenge c? independently of anything
else.

IRule Chal(1.4)

The values t+
R← {0, 1}k, u+ R← {0, 1}` have been chosen ahead

of time.
Compute c? = ϕpk(0κ, t+, u+).

The distribution of c? remains the same:

Pr[AskH1.4] = Pr[AskH1.3]. (12)

Game G1.5: We choose the challenge c? uniformly in the space F.

IRule ChalC(1.5)

The value c+ R← F is chosen randomly ahead of time, then c? =
c+.

We can write c+ as ϕpk(B+, t+, h+). We define AskH1.5 the event that B+‖t+ is
asked to H. In the case B+ = 0κ, which event is denoted by GoodB and which
probability is at least 1/2κ, this game is identical to the previous one:

Pr[AskH1.5] = Pr[AskH1.5 ∧ GoodB] + Pr[AskH1.5 ∧ ¬GoodB]

≥ Pr[AskH1.5|GoodB] · Pr[GoodB] ≥ Pr[AskH1.4] · 1
2κ

. (13)

To conclude the proof of the lemma, one first notes that the games G1.5

and G2 are identical, and thus Pr[AskH1.5] = Pr[AskH2]. Then, combining all
the above equations, on gets

Pr[S1] ≤ Pr[S1.1] + Pr[AskF1.1] ≤ 1
2

+ Pr[AskF1.1]

≤ 1
2

+ Pr[AskF1.2] + Pr[AskG1.2]

≤ 1
2

+ Pr[AskF1.2] + Pr[AskG1.3] + 2κ · Pr[AskH1.5]

≤ 1
2

+
qf

2k
+

qg

2`
+ 2κ · Pr[AskH2].

A.2 Proof of Lemma 4

Game G2.1: First, we modify the rule Decrypt-noT by not calling anymore
the oracles G and H. Let us remind that the adversary asks a D-query on c =
ϕpk(B, t, u) such that H(B‖t) has never been queried.

IRule Decrypt-noT(2.1)

Choose h
R← {0, 1}` and set s = u⊕ h.

Choose g
R← {0, 1}k and set r = t⊕ g.

Compute f = F(r) and set m = s⊕ f .
Add (s, g) in G-List, (B, t, h) in H-List.

The two games G2.1 and G2 are perfectly indistinguishable unless s is already
in G-List. Because B‖t has not been queried to H, h = H(B‖t) is uniformly
distributed and therefore, we can consider s as a uniform variable. So, the prob-
ability that s has already been queried to G is (qg + qd)/2`:

|Pr[AskH2.1]− Pr[AskH2] | ≤ qd(qg + qd)/2`. (14)

Game G2.2: In this game, we modify again the rule Decrypt-noT(2.2) by not
querying the oracle F either:

IRule Decrypt-noT(2.2)

Choose h
R← {0, 1}` and set s = u⊕ h.

Choose g
R← {0, 1}k and set r = t⊕ g.

Choose f
R← {0, 1}` and set m = s⊕ f .

Add (r, f) in F-List, (s, g) in G-List, (B, t, h) in H-List.

The two games G2.2 and G2.1 are perfectly indistinguishable unless r is already
in F-List. Since g is randomly chosen, we can consider r as a uniform variable.
So, the probability that r has already been queried to F is less than (qf +qd)/2k:

|Pr[AskH2.2]− Pr[AskH2.1] | ≤ qd(qf + qd)/2k. (15)

Game G2.3: Still about the rule Decrypt-noT, instead of defining m from a
random f , we first choose m and then we define f from m:

IRule Decrypt-noT(2.3)

Choose m
R← {0, 1}`.

Choose h
R← {0, 1}` and set s = u⊕ h.

Choose g
R← {0, 1}k and set r = t⊕ g.

Compute f = m⊕ s.
Add (r, f) in F-List, (s, g) in G-List, (B, t, h) in H-List.

The two games G2.3 and G2.2 are perfectly indistinguishable:

Pr[AskH2.3] = Pr[AskH2.2]. (16)

Game G2.4: We now modify the rule Decrypt-TnoS by not calling anymore
the oracles F and G. About this rule, the adversary asks for the decryption of
c = ϕpk(B, t, u) such that h = H(B‖t) is known, but s = u ⊕ h has never been
queried to G.

IRule Decrypt-TnoS(2.4)

Choose g
R← {0, 1}k and set r = t⊕ g.

Choose f
R← {0, 1}` and set m = s⊕ f .

Add (r, f) in F-List, (s, g) in G-List.

The two games G2.4 and G2.3 are perfectly indistinguishable unless r is already
in F-List. Since g is randomly chosen (s is not in G-List), we can consider r
as a uniform variable. So, the probability that r is queried to F is less than
(qf + qd)/2k:

|Pr[AskH2.4]− Pr[AskH2.3] | ≤ qd(qf + qd)/2k. (17)

Game G2.5: As above, in the rule Decrypt-TnoS, instead of defining m from
a random f , we first choose m and then we define f from m:

IRule Decrypt-TnoS(2.5)

Choose m
R← {0, 1}`.

Choose g
R← {0, 1}k and set r = t⊕ g.

Compute f = m⊕ s.
Add (r, f) in F-List, (s, g) in G-List.

The two games G2.5 and G2.4 are perfectly indistinguishable:

Pr[AskH2.5] = Pr[AskH2.4]. (18)

A.3 Proof of Lemma 5

Game G3.1: In this game, we don’t store anymore (s, g) in G-List, nor (r, f)
in F-List and we modify the simulation of G, so that F-List is built as soon as
possible:

IRule Decrypt-TnoS(3.1)

Choose m
R← {0, 1}`.

IRule Decrypt-noT(3.1)

Choose h
R← {0, 1}`.

Choose m
R← {0, 1}`.

Add (B, t, h) in H-List.

IRule EvalGAdd(3.1)

Search (B, t, h) ∈ H-List and (m, c) ∈ D-List such that c =
ϕpk(B, t, h ⊕ s). If the record is found, we compute r = t ⊕ g,
f = m⊕ s and add (r, f) in F-List.

The two games G3.1 and G3 are perfectly indistinguishable unless r is asked
to F before s is asked to G, we denote this event by AskRbS, In fact, if r is asked
after s, at the moment that s is asked, by the above simulation of G, we will
find out (B, t, h) and therefore (r, f) is computed and added in F-List as in the
game G3.

|Pr[AskH3.1]− Pr[AskH3] | ≤ Pr[AskRbS3.1]. (19)

Until s is asked, g is a uniform variable, so is r. Therefore, the probability
that r has been asked to F is qf/2k:

Pr[AskRbS3.1] ≤ qd · qf/2k. (20)

Game G3.2: We continue to simulate the oracle Dsk. We use the following
rule:

IRule Decrypt-noT(3.2)

Choose m
R← {0, 1}`.

In this game, we don’t store anymore (B, t, h) in H-List. In the G3.1, for the
question t, we answer randomly h, so the attacker in the two games G3.2 and
G3.1 can not distinguish the answers of a question to H. Nevertheless, H-List
has been changed and therefore, the answer for a question to F can be changed.
We easily see that the two games G3.2 and G3.1 are perfectly indistinguishable
unless s is asked to G before B‖t is asked to H, we denote this event by AskSbT,
In fact, if s is asked to G after B‖t is asked to H, at the moment s is asked,
by the above simulation of G, we will find out (B, t, h) and therefore (r, f) is
computed and added in F-List as in the game G3.1.

|Pr[AskH3.2]− Pr[AskH3.1] | ≤ Pr[AskSbT3.2]. (21)

Until B‖t is asked to H, h is a uniform variable, so is s = u⊕ h. Therefore, the
probability that s has been asked to G is qg/2`:

Pr[AskSbT3.2] ≤ qd · qg/2`.

