
Leakage-Resilient Authenticated Key
Establishment Protocols

SeongHan Shin, Kazukuni Kobara, and Hideki Imai

Institute of Industrial Science, The University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

shinsh@imailab.iis.u-tokyo.ac.jp, {kobara,imai}@iis.u-tokyo.ac.jp
http://imailab-www.iis.u-tokyo.ac.jp/imailab.html

Abstract. Authenticated Key Establishment (AKE) protocols enable
two entities, say a client (or a user) and a server, to share common ses-
sion keys in an authentic way. In this paper, we review AKE protocols
from a little bit different point of view, i.e. the relationship between infor-
mation a client needs to possess (for authentication) and immunity to the
respective leakage of stored secrets from a client side and a server side.
Since the information leakage would be more conceivable than breaking
down the underlying cryptosystems, it is desirable to enhance the im-
munity to the leakage. First and foremost, we categorize AKE protocols
according to how much resilience against the leakage can be provided.
Then, we propose new AKE protocols that have immunity to the leak-
age of stored secrets from a client and a server (or servers), respectively.
And we extend our protocols to be possible for updating secret values
registered in server(s) or password remembered by a client.

1 Introduction

1.1 Background

Authenticated Key Establishment (abbreviated by ‘AKE’) protocols, which in-
clude Authenticated Key Agreement (AKA) and Authenticated Key Transport
(AKT), are designed for two entities, say a client and a server (in case of two-
party protocols), to share common session keys in an authentic way over open
networks where the session keys can be used for subsequent cryptographic algo-
rithms (e.g., symmetric key cryptosystems and message authentication codes).
Since AKE protocols are crucial cryptographic primitives, they have been widely
used in various protocols, such as SSH (Secure SHell) [22], SSL/TLS (Secure
Socket Layer/Transport Layer Security) [14, 23], and in many applications such
as internet banking, electronic commerce, secure content download, secure re-
mote access and so on. In the literature, there exist many efficient and secure
AKE protocols (typical examples can be found in [18, 19]) in either the random
oracle model or the standard model which consider an adversary that not only
can eavesdrop the communication of the entities but also can actively modify,

delete and insert messages sent between the entities of its own choice. For au-
thentication, AKE protocols must require the involving entities to possess some
information like stored secrets, passwords or public keys (or their fingerprints).

While the security of cryptosystems and protocols including AKE has been
usually discussed with the assumption that stored secrets will never be revealed,
we assume here the stored secrets may be leaked out. This can happen maybe
due to a bug or a mis-configuration of the system. Formally,

Assumption 1 (Leakage) Stored secrets may leak out due to accidents such
as bugs or mis-configurations of the system. The source of the leakage, i.e. the
bugs or the mis-configurations, will be fixed as soon as possible. But some clients
continue to use the same personal information, such as passwords.

Of course, once the bug or the mis-configuration is found, it will be patched or
fixed as soon as possible and then the system will be rebuilt (if necessary). This
is a common practice in Internet [10, 31]. Even though the patch or the system-
rebuild may remove the risk of further leakage coming from the same bug or
the mis-configuration, the leaked secrets may still be abusable to intrude the
newly rebuilt system or the other systems, e.g. when a client registers the same
password to different servers (see Section 1.4). Thus, we think it is very important
to take into account the impact of the leakage (and the burden on the client). The
idea of considering leakage of stored secrets is not a new one. Already, proactive
schemes [17, 35], forward-secure schemes [1, 2, 5, 11], key-insulated systems [13,
24] and password-authenticated key exchange (PAKE) [3, 4, 6, 8, 15, 16, 19, 26–
30, 32, 33, 36] assumed the similar situations.

Problem Setting. Let us think of secrets stored in devices in the model of
proactive schemes, forward-secure schemes and key-insulated systems where the
secrets should be updated or refreshed regularly in a predetermined time period
or at a time when a client (or a server) notices the leakage of stored secrets.
Specifically, proactive schemes [17, 35] improve threshold schemes by allowing
multiple leakage of secrets, limiting only the number of simultaneous leakages.
While forward-secure schemes [1, 2, 5, 11] evolve secrets at the end of each time
period, key-insulated systems [13, 24] update secrets with update information
coming from TRM (Tamper-Resistant Modules). All of them can minimize the
impact of the leakage, but not completely prevent the damage. In addition,
it takes some time from when stored secrets leaked out until the client (or the
server) can realize the fact and then the secrets are updated by new ones. Within
the term for realizing the fact or the time period for updating, an adversary who
obtained the secrets can break its security in a limited time period. Bringing this
problem into AKE protocols, which use only stored secrets, may end up with the
same result as above. That’s the reason why authentication totally depends on
stored secrets so that leakage of the secrets is directly connected to impersonating
the victimized entity. For the countermeasure, there exist AKE protocols using
a password, without TRM. However, most of PAKE protocols requiring only a
password on client’s side can provide a solution against leakage of stored secrets

from a client, not a server. Thus, it is desirable to provide immunity to the
leakage of stored secrets from a client and a server, respectively. More detailed
discussion will be provided through this section. From now on, we focus on AKE
protocols using password where the password naturally takes a major role for
authentication.

1.2 Classification of AKE Protocols using Password

In the literature, various AKE protocols have been proposed so far which could
be divided by what is used to authenticate entities. Here, we classify them ac-
cording to the types of information a client needs to possess.

At first, let us start by categorizing the types of information to be possessed
by a client as follows. (i) Human-Memorable Secret (HMS): A secret, which is
remembered and typed in by a client, such as a password. (ii) Stored Secret
(SS): Secrets stored in a client’s machine, in a memory card or somewhere that
is not protected with perfect tamper-resistant modules. It may be merely secret
values, a signing key of a digital signature scheme, a decryption key of a public
key cryptosystem and/or a common key of a symmetric key cryptosystem. (iii)
Public Information (PI): Public information, such as a verification key of a dig-
ital signature scheme, an encryption key of a public key cryptosystem or their
fingerprints. While anyone can get the public information, its validity must be
verified at their own responsibility.

Additionally, we assume the followings on the HMS and the SS.

Assumption 2 (Short but Secure to On-line Attacks) The size of the
human-memorable secret is short enough to memorize, but large enough to avoid
on-line exhaustive search. This means the secret may be vulnerable to off-line
exhaustive search.

The on-line attack is a series of exhaustive search for a secret performed on-line
where adversaries are willing to sieve out secret candidates one by one running an
authentication protocol with the target entity (usually, server). In contrast, the
off-line attack is performed off-line massively in parallel with recorded transcripts
of a protocol. While on-line attacks are applicable to all of the protocols using
password equally, they can be prevented by letting a server take appropriate
intervals between invalid trials. But, we cannot avoid off-line attacks by such
policies, mainly because the attacks are performed off-line and independently of
the server. As a result, off-line attacks are critical to most of the protocols using
human-memorable passwords.

Assumption 3 (No Perfect TRM) TRM (Tamper-Resistant Modules) used
to store the secrets are not perfectly free from bugs and mis-configurations.

With the above types of information, we differentiate previous AKE proto-
cols.1 At first, we list up typical AKE protocols using HMS and explain how
they work briefly. (We ignore protocols, which are vulnerable to off-line attacks
as they are, such as CHAP [20], IPsec with pre-shared secret [21] and so on.)
1 A more detailed description of previous AKE protocols will be given in [38].

SSL/TLS and SSH. We show two AKE protocols of SSL/TLS and SSH. (For
formal description of the following protocols, refer to SSL/TLS [14, 23] and SSH
[22].)

1. Password-based User Authentication over a Secure Channel: In this scheme,
a client establishes a secure connection to a server, and then sends the client’s
password for authentication through the secure connection. The server ver-
ifies the given password in the same way as the usual password verification
procedure. Note that the server needs to store (a hashed value of) the pass-
word.

2. Public-Key based User Authentication with a Password-Protected Secret-
Key: A server verifies a client’s secret key using a challenge-response protocol.
In addition to that, the client stores the secret key in encrypted form with
his password.

Password-Authenticated Key Exchange (PAKE) Protocols. PAKE pro-
tocols are designed for entities to share a fresh session key (to be secure against
off-line attacks) by using only a pre-shared human-memorable password, which
may be exhaustible with off-line attacks but not with on-line attacks.

A brief sketch of PAKE protocols, which only rely on a password, is given
as follows. Both a client and a server share the same password in advance. For
authentication and key exchange, they run a PAKE protocol using the shared
password (or a hashed value of it). If their inputs coincide with each other,
they can obtain the same value that is used to generate a session key for secure
channels. Otherwise, they get distinct values which are hard to guess each other.
Thus, no adversary can intrude in the middle of them or impersonate one entity
to the other.

Up to now, a variety of studies on PAKE protocols [3, 4, 6, 8, 15, 16, 19, 26–30,
32] have appeared in the literature. In PAKE protocols, a client keeps in mind his
password whereas the counterpart server should have its verification data that
is used to verify the client’s knowledge of the password. That means leakage of
stored secrets (that is, verification data) from the server makes possible off-line
dictionary attacks for an adversary.

Threshold-PAKE (T-PAKE) Protocols. In order to prevent the leakage
of stored secrets from a server, [33, 36] proposed T-PAKE protocols where a
client’s password or verification data is not stored in a single server but rather
shared among a set of servers using a secret sharing scheme. Since only a certain
threshold of servers can reconstruct the client’s password or verification data
in the authentication phase, the leakage of stored secrets from any number of
servers smaller than the threshold doesn’t help an adversary to perform off-line
attacks.

Table 1. Attack and security levels

Attack levels On-line attacks Off-line attacks
Security levels

Strongly secure∗1 (©) Secure Secure

Weakly secure∗2 (4) Secure Insecure

*1: An AKE protocol using password is said to be strongly secure (denoted by
©), if the protocol can be tolerant against both on-line and off-line attacks.
*2: An AKE protocol using password is said to be weakly secure (denoted by
4), if the protocol can be tolerant against on-line but not off-line attacks.

1.3 Evaluation by Immunity to the Leakage

As mentioned in Section 1.1, we consider the situation that stored secrets from
a client and a server may leak out due to a bug or a mis-configuration of the
system. Before evaluating previous AKE protocols using password according to
immunity to the leakage of stored secrets, we divide security levels into two cases
with respect to whether an AKE protocol can maintain its security (with the
client’s password unknown to an adversary) against on-line and off-line attacks
and then summarize them in Table 1.

With these security levels, we summarize comparative results in Table 2 about
whether a client (or a server) can remain resistant against on-line and off-line
attacks even after stored secrets from the client (or the server) are leaked out to
an adversary, respectively. For simplicity, we evaluate immunity to the leakage
of each class of AKE protocols presented in Section 1.2.

As shown in the table, PAKE protocols just require that a client keep in mind
his password while the counterpart server should have its verification data asso-
ciated with the password. Consequently, if stored secrets in the server are leaked
out, an adversary who gets them can retrieve the original password through
off-line attacks, simply by verifying password candidates one by one using the
verification data. As a countermeasure to the leakage from server, [33, 36] pro-
vided a solution in which n (n > 1) servers share verification data (or verification
function) using a secret sharing scheme and the threshold of servers participate
in the protocol to authenticate a client. That is, the leakage of stored secrets
from any number of servers smaller than the threshold does not make off-line
attacks possible. However, the client’s password can be retrieved if stored secrets
from the threshold or more than the threshold of servers are leaked out. In a
word, it is impossible for PAKE (T-PAKE) protocols using only HMS (and PI)
to achieve strong security against the leakage from server(s).

Fact 1 (Impossibility of Strong Security in PAKE and T-PAKE) PAKE
(T-PAKE) protocols, requiring only HMS (and PI) as clients’ possessions, cannot
achieve the strong security against the leakage from server(s). For any such a
protocol, an adversary can perfectly simulate the protocol using the leaked secrets
from server(s) so that he/she can try the password candidates off-line in parallel.

Table 2. Comparison of AKE protocols using password

Client’s possessions Immunity to leakage
Protocols HMS SS PI from Client from Server

PAKE∗1
√ © 4

Our Proposals
√ √ © ©

SSL/TLS∗2, SSH∗2,
√ √ © 4∗4

T-PAKE

SSL/TLS∗3, SSH∗3
√ √ √ 4 ©

*1: Most PAKE protocols, being secure against server compromisea, which hold
clients’ verification data
*2: Key-establishment part of SSL/TLS and SSH in the password-based user au-
thentication modeb

*3: Key-establishment part of SSL/TLS and SSH in the public-key based user au-
thentication mode with a password-protected secret-keyc

*4: T-PAKE protocols [33, 36] have the immunity up to its threshold of servers.

a Throughout this paper, we use the terminology of ‘leakage’ rather than ‘com-
promise’.

b More specifically, password authentication after the server authentication in
SSL/TLS or the password authentication in SSH.

c More specifically, mutual authentication in SSL/TLS, RSA authentication in
SSH protocol version 1 or public key authentication in SSH protocol version 2.

SSL/TLS and SSH in the password-based user authentication mode make a
server keep a hashed value of a client’s password. As a matter of course, leakage
of stored secrets from the server results in revealing the password through off-line
attacks. In the SSL/TLS and SSH of the public-key based user authentication
mode with a password-protected secret-key, leakage from a client can prevent
an adversary, who is willing to get the client’s password, from obtaining the
password through only on-line attacks, but not off-line attacks.

As a consequence, Table 2 indicates that the existing AKE protocols using
password are vulnerable to the leakage from either client or server. That means
any of the AKE protocols (except our protocols) doesn’t provide immunity to
the leakage of stored secrets from client and server, respectively. Remind that
AKE protocols, which use only stored secrets, can minimize the impact of the
leakage by updating or refreshing the secrets, but not completely prevent the
damage.

1.4 A Realistic, but Critical, Problem of AKE Protocols using
Password

Are all the existing AKE protocols using password really secure in the real world?
Instead of answering to the question, we take for an example a very compelling
but critical situation in the real world.

Let us think of an ordinary client who would connect with several disparate
servers, each requiring a password, over networks for internet banking, internet
shopping, internet auction, ftp servers, electronic voting and so on. As of now,
all of the AKE protocols implicitly have the assumption that the client regis-
ters information-theoretically independent passwords corresponding to different
servers. Remember that password can be defined as human beings have some-
thing memorable usually in size of 6-8 characters (including numbers). Ironically,
how many passwords can we remember? 10 or 20? Of course, it depends on the
individual. Here, we have another assumption as follows:

Assumption 4 (One Memorized Secret) A client remembers only one human-
memorable secret, i.e. one password, even if he/she communicates with several
different servers. That means the client use the same password to a distinct kind
of servers, not sharing any secret information one another.

Under the Assumption 4 in the multiple server scenario, we have to take into
consideration the impact on other servers after the leakage of stored secrets from
one server in the real world.

Definition 1 (Impact after the Leakage from One Server) An AKE pro-
tocol using password, where there is no impact on other servers after the leakage
of stored secrets from one server, is said to be desirable in the sense that an ad-
versary, after obtaining verification data associated with a client’s password from
one server, cannot retrieve the password that makes possible to impersonate the
client to other servers of the Assumption 4. That is, the password is completely
protected against off-line attacks even if the adversary can get some verification
data from servers.

Of course, a client may change his password instantly to all servers at a time
when he comes to know that stored secrets from one of the servers are revealed
out. However, it triggers the burden on the client.

Motivation. The motivation of this paper is on how to design an AKE proto-
col that has immunity to the leakage of stored secrets from a client and servers,
respectively, under the Assumption 4. That means the client need not change his
password, even if stored secrets are leaked out from either the client or servers.
However, we can easily deduce the following fact that there exists no AKE pro-
tocol, which is immune to the leakage from a client and servers simultaneously.

Fact 2 (Impossibility of Perfect Security) Any AKE protocol cannot achieve
the strong security against the leakage from both a client and servers simultane-
ously. If an adversary obtains stored secrets from both a client and servers at the
same time, he/she can perfectly simulate the protocol using the leaked secrets.
Thus the adversary can try the password candidates off-line in parallel.

This fact motivates us to achieve the next highest goal, i.e. the strong security
against the leakage from a client and servers, respectively. Notice that our pro-
tocol is not a kind of PAKE protocols, but a new one that requires one password
and secret values on client’s side.

1.5 Our Contributions

In this paper, we propose new AKE protocols that are immune to the leakage
of stored secrets from both a client and servers respectively, as long as the leak-
ages are not simultaneous, where the client keeps one password in his mind and
stores secret values in devices. Specifically speaking, a client registers a partial
secret value (which is not a share itself) of one password to a different kind of
servers by means of a secret sharing scheme. The protocol of Section 2.2 is a
generalized version in which the number of servers is fixed in advance whereas
the second in Section 2.3 can be readily applied to the real world, simply because
the latter considers synchronization between a client and one of the servers for
registering a secret value. That means the client can compute a secret value with
the same password at any time when needed to register to a necessary server
without restricting the number of servers. In our protocols, an adversary obtain-
ing stored secrets after the leakage from all of the servers (the client has been
communicating with) cannot find out the password. Also, an adversary getting
stored secrets after the leakage from the client cannot sieve out the password.
More interestingly, the password remains information-theoretically secure even
if the leakage of stored secrets from the client and servers happens, respectively.

In addition to that, our protocols have the following advantages: (1) the
proposed protocols can be constructed with small modifications of the widely
used Diffie-Hellman key exchange protocol [12]. (2) the proposed protocols have
a formal validation of security in the standard model (instead of the random
oracle model [9]) under the assumption that DDH (Decisional Diffie-Hellman)
problem is hard and MACs are selectively unforgeable against partially chosen
message attacks (which is a weaker notion than being existentially unforgeable
against chosen message attacks).

Then, we extend our protocol of Section 2.2 to two protocols where one en-
ables a client to update each of the secret values registered in different servers
without changing his password (which might be remembered with considerable
effort)2 and the other enables a client to change his password with a new pass-
word while updating each of the secret values in different servers.

For better understanding, it may be helpful to state about what is different
between our approach and T-PAKE protocols [33, 36]. The main difference is
that [33, 36] cannot preserve its security (a client’s password) against off-line
attacks if stored secrets from the threshold or more than the threshold of servers
would be revealed, whereas ours can maintain it even after stored secrets from
all of the servers (a client is communicating with) would be revealed out. That’s
the reason why [33, 36] proposed T-PAKE protocols in order to protect a client’s
password from the leakage of stored secrets in a server where verification data
(or function) associated with the password is distributed by a set of servers.

2 This additional function is useful when we consider a situation where one admin-
istrator of servers resigns with secret values (associated with clients’ passwords) in
the server. However, recall that the frequent change of passwords rather increases
the risk of password to be lost and cracked, simply because people tend to write it
down on somewhere.

Contrarily, our protocols distribute secret values computed with the password
by the client himself. Accordingly, if stored secrets from the threshold or more
than the threshold of servers are leaked out in [33, 36], clients’ passwords can
be retrieved by an adversary which affects on different servers that don’t share
any secret information one another under the Assumption 4. Besides, both the
communication and the computation complexity of [33, 36] are by far larger
than ours. And, applications of [33, 36] are restricted since a certain threshold
of servers must take part in the protocol for authentication.

1.6 Organization

This paper is organized as follows: In Section 2, we propose new AKE protocols
that have immunity to the leakage of stored secrets from not only a client but
also servers, respectively. Section 3 shows how our protocols can remain resistant
against off-line attacks even after the leakage of stored secrets from the client
and servers, respectively. Then, we extend the proposed protocols in Section 4.

2 Our Proposals: Leakage-Resilient AKE Protocols

2.1 Scenario

Here, we consider the following scenario that there are n− 13 disparate kinds of
servers communicating with a client, who wants to use one password and secret
values to produce cryptographically secure (or, high entropy) session keys with
different servers at any time.

Our protocols are defined over a finite cyclic group G = 〈g〉 where |G| = q
and q is a large prime (or, a positive integer divisible by a large prime). While
G can be a group over an elliptic curve, we assume that G is a prime order
subgroup over a finite field Fp. That is, G = {gi mod p : 0 ≤ i < q} where p
is a large prime number, q is a large prime divisor of p − 1 and g is an integer
such that 1 < g < p − 1, gq ≡ 1 and gi 6= 1 for 0 < i < q. A generator of G
is any element in G except 1. In the aftermath, all the subsequent arithmetic
operations are performed in modulo p, unless otherwise stated. Both g and h
are two generators of G so that its DLP (Discrete Logarithm Problem), i.e.
calculating

a = logg h, (1)

should be hard for each entity. Both g and h may be given as system parameters
or chosen with an initialization phase between entities.

The protocols consist of the following four phases: an initialization phase,
a secrecy amplification phase, a verification phase and a session-key generation

3 In case of two-party protocols, n becomes 2. As our protocols also satisfy the two-
party case, we set up n (2 ≤ n < q), at the same time, in order to consider the
multiple server scenario of Assumption 4.

phase. In the initialization phase, a client registers each of the secret values
computed by himself to different servers. Then, he stores the corresponding secret
values in devices such as smart cards or computers and keeps only one password
in mind. In the secrecy amplification phase, secrecy of a weak secret, i.e. a human-
memorable password that may be vulnerable against off-line attacks, is amplified
to a strong secret (we call it a keying material) that is secure even against off-line
attacks. In the verification phase, both client and server can confirm whether or
not they share the same keying material using a challenge-response protocol with
the keying material as its key. In the session-key generation phase, a session key
is generated using the keying material.

2.2 A Leakage-Resilient AKE Protocol

We describe a construction for a leakage-resilient AKE protocol which is illus-
trated in Fig. 1. The key idea behind our protocol is that a client can generate
n shares of his password, where each of the n− 1 shares is used for registering a
secret value to the corresponding server and the remaining one share (not itself)
is stored in his devices in the initialization phase, only by inputting the password
(as a secret value) into (n, n)-threshold secret sharing scheme of [7, 37].

[Initialization] A client C, included in n entities, is willing to register each of
the secret values generated by one password pw to the respective n− 1 different
server Si (1 ≤ i ≤ n−1). For simplicity, we assign the servers consecutive integer
1 ≤ i ≤ n− 1 where i can be regarded as each server’s ID and n as the client’s
ID. First and foremost, the client picks a random polynomial p(x) of degree n−1
with coefficients also randomly chosen in (Z/qZ)∗:

p(x) =
n−1∑

j=0

αj · xj mod q (2)

and sets α0 = pw4 where pw is the client’s password. After computing the
respective shares p(i) (1 ≤ i ≤ n − 1) with the above polynomial, he registers
securely each of the secret values hp(i)·λi to the corresponding server Si (1 ≤ i ≤
n− 1) as follows:

Si ← hp(i)·λi , where λi =
n∏

k=1,k 6=i

k

k − i
mod q (3)

where p(i) is a share of (n, n)-threshold secret sharing scheme and λi is a La-
grange coefficient. Note that share p(n), which is for the client, is never regis-
tered to any server. Then, the client just stores the corresponding secret values

4 Instead of pw, a hashed value of the password can be used. In either case where both
have the same entropy, it doesn’t affect on the security.

Client C Server Si (1 ≤ i ≤ n− 1)

r1 ←R (Z/qZ)∗

y1 ← gr1 · hi · h−pw

r2 ←R (Z/qZ)∗

y2 ← gr2 · hp(i)·λiy1 -

y2¾

kmc ← (y2 · hi · h−pw)r1

v1 ← MACkmc(Tagc||y1||y2)

kms ← (y1 · hp(i)·λi)r2

v2 ← MACkms(Tags||y1||y2)v1 -

v2¾

If v2 = MACkmc(Tags||y1||y2),

skc ← MACkmc(Tagsk||y1||y2).

If v1 = MACkms(Tagc||y1||y2),

sks ← MACkms(Tagsk||y1||y2).

Fig. 1. A leakage-resilient AKE protocol. The underlined values represent stored secrets
of client and server, respectively

hi (1 ≤ i ≤ n−1) to the servers Si in devices, such as smart cards or computers,
which may happen to leak the secrets hi and keeps his password pw in mind.

hi ← hΣn
l=1,l 6=ip(l)·λl . (4)

Of course, all the other (intermediate) values should be deleted from the devices.

[Secrecy Amplification] When the client C wants to share a session key with
one of the servers Si (1 ≤ i ≤ n−1), he chooses a random number r1 ←R (Z/qZ)∗.
Then, the client sends y1 to server Si, after calculating y1 ← gr1 ·hi ·h−pw using
the corresponding secret value hi to the server and his password pw that is
partially shared with the server. The server Si also calculates y2 ← gr2 · hp(i)·λi

with a random number r2 ←R (Z/qZ)∗ and its secret value hp(i)·λi (partial secret
information about the password) registered by the client in the initialization
phase, and then transmits it to the client. On both sides, the client’s keying
material becomes kmc ← (y2 · hi · h−pw)r1 and the server’s one becomes kms ←
(y1 · hp(i)·λi)r2 .

Only if the client uses the right password pw and the corresponding secret
value hi to server Si and the server Si uses the right secret value hp(i)·λi , both
of them can share the same keying material that is obtained by Lagrange inter-
polation:

kmc =
(
y2 · hi · h−pw

)r1 =
(
gr2 · hp(i)·λi · hΣn

l=1,l 6=ip(l)·λl · h−pw
)r1

= gr2·r1 , (5)

kms =
(
y1 · hp(i)·λi

)r2

=
(
gr1 · hΣn

l=1,l 6=ip(l)·λl · h−pw · hp(i)·λi

)r2

= gr1·r2 . (6)

Otherwise guessing the other’s keying material is hard due to the DLP (see [38]).
Also, adversaries cannot determine the correct password of the client through

off-line attacks since they don’t know the client’s random number r1 chosen at
the time and the secret value hi corresponding to sever Si, both of which are
required to narrow down the password pw.

This phase ends up with only one pass in parallel since both y1 and y2 can
be calculated and sent independently (where gr1 ·hi and y2 are pre-computable).
Additionally, the implementation cost of this phase is very low because it can
be simply obtained from a small modification of widely used Diffie-Hellman key
exchange protocol [12]. That’s why h−p(i)·λi = hi · h−pw.

[Verification] In this phase, a pair of entities can verify whether they share the
same keying material or not with a challenge-response protocol using the keying
material calculated in the secrecy amplification phase.

The client and the server calculate v1 ← MACkmc
(Tagc||y1||y2) and v2 ←

MACkms(Tags||y1||y2), respectively, using a MAC generation function MACk(·)
with the keying materials as its key k. Both Tagc and Tags are pre-determined
distinct values, e.g. Tagc = (IDc||IDs||00) and Tags = (IDc||IDs||01) where
IDc and IDs are IDs of the client and the server respectively. Then, they ex-
change v1 and v2 each other, before verifying v2 = MACkmc

(Tags||y1||y2) and
v1 = MACkms(Tagc||y1||y2) on both sides. If at least one of them does not hold,
the corresponding entities wipe off all the temporal data including the keying
materials, and then close the session. Otherwise they proceed to the session-key
generation phase.

Adversaries can try off-line attacks for the keying material using {(Tagc||y1||y2)
and v1} or {(Tags||y1||y2) and v2}. The success probability achieved within a
polynomial time t can be negligible if a strong secret can be shared in the secrecy
amplification phase and an appropriate MAC generation function, whose keys
are unguessable, is used.

[Session-Key Generation] If the above verification phase succeeds in, the
entities generate their session keys using the verified keying materials as follows:

skc ← MACkmc
(Tagsk||y1||y2) (7)

sks ← MACkms
(Tagsk||y1||y2) (8)

where Tagsk is a pre-determined distinct value from both Tagc and Tags, e.g.
Tagsk = (IDc||IDs||11). The generated session keys are used for their subse-
quent cryptographic algorithms.

The requirement for the MAC generation function in this phase and the
previous phase is εmac(k2, t, i) can be negligibly small for a practical security pa-
rameter k2 and i (this is a polynomial of k2). That’s the reason why if adversaries
cannot forge a MAC corresponding to (Tagsk||y1||y2) and kmc or kms with sig-
nificant probability, they cannot obtain any information of the session key. This
requirement can be satisfied by using a universal one-way hash function [34] or
by using a practical MAC generation function, such as HMAC-SHA-1 [25] (and
even KeyedMD5), since any effective algorithms have not been known so far to

make εmac′(k2, t, i) non-negligible where εmac′(k2, t, i) is larger than or equal to
εmac(k2, t, i).

2.3 A More Practical Leakage-Resilient AKE Protocol

The proposed protocol in Section 2.2 deployed a (n, n)-threshold secret sharing
scheme, in order to generate n − 1 secret values with each registered to n − 1
servers respectively. That is, a client should determine the number of different
servers in advance and register each of the secret values to the servers all at
once. When it comes to the real world, it is desirable that a client be able to
choose among a different kind of servers at his own will. Although a client in
the protocol of Section 2.2 can choose n − 1 different servers, we show how to
apply the proposed protocol to the case where the client can compute a secret
value (from one password) at any time when needed. This approach will lead
the protocol of Section 2.2 to be more simpler in the initialization phase, just by
replacing (n, n)-threshold secret sharing scheme with (2, 2)-threshold one.

[Initialization] A client C is willing to register a secret value generated by
one password pw to one of different servers Si where i can be regarded as each
server’s ID. Every time when needed to register a secret value to a server, the
client picks a distinct random polynomial pi(x) (for the respective server Si) of
degree 1 with coefficient αi1 randomly chosen in (Z/qZ)∗:

pi(x) =
1∑

j=0

αij · xj = αi0 + αi1 · x mod q (9)

and sets αi0 = pw where pw is the client’s password. After computing a share
pi(1) with the above polynomial, he registers securely a secret value hpi(1)·λ1 to
one of different servers Si as follows:

Si ← hpi(1)·λ1 , where λ1 = 2 mod q (10)

where pi(1) is a share of (2, 2)-threshold secret sharing scheme for the server Si

and λ1 is a Lagrange coefficient. Note that share pi(2) is for the client. Then,
the client just stores the corresponding secret value hi in devices and keeps his
password pw in mind.

hi ← hpi(2)·λ2 , where λ2 = −1 mod q . (11)

The rest phases of this protocol are as same as those of Section 2.2.

3 Security

This section shows the security of password in Section 2.2 against off-line attacks
after the leakage of stored secrets from a client and servers, respectively. And the

security of password in Section 2.3, which is a case of n = 2 in (n, n)-threshold
secret sharing scheme, inherits from Section 3 straightforwardly. Moreover, the
security against on-line and off-line attacks of the below adversary can be proven
in the standard model as Theorem 2. (For formal security proof, refer to [38].)

In the security model of our protocol, we consider a far more powerful ad-
versary who has ability to not only eavesdrop, modify and delete the messages
exchanged by entities, but also to insert messages of its own choice. This adver-
sarial power is modeled by giving the adversary oracle access to the instances
of our protocol. In addition, the adversary is given access to a Leak oracle that
simulates Assumption 1. That is, Leak oracle accepts an entity ID and then
reveals the corresponding stored secrets. However, this oracle does not reveal
stored secrets of its partner at the same time, because of Fact 2.

3.1 Security of Password against the Leakage

The primary goal of an adversary after obtaining stored secrets from a client
and servers, respectively, is to perform off-line exhaustive search for the client’s
password that makes possible to impersonate the client to other servers under
the Assumption 4.

Theorem 1 The password in our protocol of Section 2.2 remains information-
theoretically secure against off-line attacks after the leakage of stored secrets
from the client C and n − 1 servers Si (1 ≤ i ≤ n − 1), respectively. Even if
an adversary obtains stored secrets from the Leak oracle, she cannot retrieve the
client’s original password through off-line exhaustive search that is the best attack
for the adversary.

Proof. When an adversary gets secrets stored in devices from the client C and
n − 1 servers Si (1 ≤ i ≤ n − 1) respectively, what she wants to know is the
client’s password pw or a value associated with the password

hpw = hΣn
m=1p(m)·λm . (12)

Only if the above value hpw is computed, the adversary can narrow down the
original password by checking possible password candidates with equation (12)
one by one (through off-line exhaustive search). In order to simplify the proof,
let us fix n = 5.

First, we think of the security of password against an adversary who obtains
stored secrets hi (1 ≤ i ≤ 4) of the client C and is trying to deduce hΣ5

m=1p(m)·λm

for the client’s password pw. Below is the exponent part of hi

logh h1

logh h2

logh h3

logh h4

 =

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1

 ·

p(1) · λ1

p(2) · λ2

p(3) · λ3

p(4) · λ4

p(5) · λ5

. (13)

Equation (13) means that the secrets hi (1 ≤ i ≤ 4) don’t reveal any information
about the password pw, simply because each row contains 4 shares (the number
of shares needed for the client’s password is more than that of hi by one share)
and each exponent part of hi is linearly independent one another. That is the
adversary cannot compute hΣ5

m=1p(m)·λm with stored secrets hi.
Second, we think of the security of password against an adversary who obtains

stored secrets hp(i)·λi of all the servers Si (1 ≤ i ≤ 4) and is trying to deduce
hΣ5

m=1p(m)·λm for the client’s password pw. Below is the exponent part of hp(i)·λi

logh S1 →
logh S2 →
logh S3 →
logh S4 →

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ·

p(1) · λ1

p(2) · λ2

p(3) · λ3

p(4) · λ4

p(5) · λ5

. (14)

Intuitively, the number of shares included in hΣ5
m=1p(m)·λm is one more than that

of hp(i)·λi (1 ≤ i ≤ 4), since each row only contains one share of (5, 5)-threshold
secret sharing scheme. Although the adversary gathers all of the secret values
from servers Si (1 ≤ i ≤ 4), the number of shares is 4. That means the password
is information-theoretically secure as a secret value of (5, 5)-threshold secret
sharing scheme.

2

Theorem 2 (Indistinguishability of sk) Suppose the following adversary A,
which accepts a challenge transcript (that may be obtained by eavesdropping a
protocol, impersonating a partner or intruding in the middle of the target enti-
ties), and then asks qex, qse, qre and qle queries to the Execute, Send, Reveal,
Leak oracles respectively, and finally is given skx by Testsk oracle where skx is
either the target session key or not with the probability of 1/2. Then Advindsk

A ,
the advantage of adversary A to distinguish whether skx is the target session key
or not in a polynomial time t, is upper bounded by

Advindsk

A ≤ εmac(k2, t, qse + 2qex + qre + 2) + 2(qse + qex + 1) · εddh(k1, t)

+
2(qse + 1)

N
+

2(2qse + qex + 1)
|G| (15)

where both k1 and k2 are the security parameters.

4 Extensions

It is reasonable that a client has control of each of the secret values registered
in a different kind of servers and of password kept in his mind, regularly or
irregularly. Here, we provide two extended versions of Section 2.2, simply by
using a proactive threshold scheme [35] in which there is a basic assumption
that an adversary who gets stored secrets from a server cannot take the update

information. One is for the secret-values update which enables a client to up-
date each of the secret values stored in different servers without changing his
password. And the other is for the password update which enables a client to
change his password with a new one while updating each of the secret values in
different servers. In the point of view of updating stored secrets, our approach is
similar to those of key-insulated systems [13] and intrusion-resilient signatures
[24]. However, the main difference is that we don’t use TRM (Tamper-Resistant
Modules) to produce update information, which can be computed by the client
himself in our protocol. We omit two versions of Section 2.3, whose extensions
can be readily shown in the same way of Section 4.

[Secret-Values Update (for Proactive Security)] When a client C, in-
cluded in n entities, wants to update each of the secret values which has been
registered to the respective n − 1 different servers Si (1 ≤ i ≤ n − 1) with
new ones (to be generated by the same password pw), he picks another random
polynomial p′(x) of degree n− 1 with coefficients randomly chosen in (Z/qZ)∗:

p′(x) =
n−1∑

j=1

βj · xj mod q (16)

and sets β0 = 0. After computing the respective shares p′(i) (1 ≤ i ≤ n − 1)
with the above polynomial, the client transmits securely each of the new secret
values hp′(i)·λi to the corresponding server Si (1 ≤ i ≤ n− 1) as follows:

Si ← hp′(i)·λi , where λi =
n∏

k=1,k 6=i

k

k − i
mod q (17)

where p′(i) is a new share of (n, n)-threshold secret sharing scheme and λi is
a Lagrange coefficient. Consequently, each server Si can produce an updated
secret value h(p(i)+p′(i))·λi = hp(i)·λi ·hp′(i)·λi with multiplying the previous secret
value hp(i)·λi by a new one hp′(i)·λi . Note that share p′(n), which is for the client,
is never registered to any server. Then, the client also updates and stores the
corresponding secret values hi

′ = hΣn
l=1,l 6=i(p(l)+p′(l))·λl (1 ≤ i ≤ n− 1) in devices

and keeps the same password pw in mind.

hi
′ ← hi · hΣn

l=1,l 6=ip
′(l)·λl . (18)

Of course, the client doesn’t need to update secret values stored in different
servers Si (1 ≤ i ≤ n−1) simultaneously. That means he can update each of the
secret values in servers at any time, only if the client chooses a different random
polynomial every time.

[Password Update] If a client C wants to change his password pw with a new
one pwnew while updating each of the secret values registered to the respective
n − 1 different servers Si (1 ≤ i ≤ n − 1), he follows the above secret-values

update in the same way except that the client picks another random polynomial
p′′(x) of degree n− 1 with coefficients randomly chosen in (Z/qZ)∗:

p′′(x) =
n−1∑

j=0

γj · xj mod q (19)

and sets γ0 = −pw + pwnew where pwnew is the client’s new password.

Acknowledgements

The authors would like to thank anonymous referees for useful comments.

References

1. M. Abdalla, S. Miner, and C. Namprempre. Forward-Secure Threshold Signature
Schemes. In Proc. of Topics in Cryptology (CT-RSA 2001), LNCS 2020, pages
441-456. Springer-Verlag, 2001.

2. R. Anderson. Two Remarks on Public Key Cryptology. Technical Report, No. 549,
University of Cambridge, December 2002.

3. E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman Key Exchange
Secure against Dictionary Attacks. In Proc. of ASIACRYPT 2002, LNCS 2501,
pages 497-514. Springer-Verlag, 2002.

4. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-based Proto-
cols Secure against Dictioinary Attacks. In Proc. of IEEE Symposium on Security
and Privacy, pages 72-84, 1992.

5. M. Bellare and S. Miner. A Forward-Secure Digital Signature Scheme. In Proc. of
CRYPTO ’99, LNCS 1666, pages 431-448. Springer-Verlag, 1999.

6. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password-Authenticated
Key Exchange using Diffie-Hellman. In Proc. of EUROCRYPT 2000, LNCS 1807,
pages 156-171. Springer-Verlag, 2000.

7. G. R. Blakley. Safeguarding Cryptographic Keys. In Proc. of National Computer
Conference 1979 (AFIPS), Vol. 48, pages 313-317, 1979.

8. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
against Dictionary Attacks. In Proc. of EUROCRYPT 2000, LNCS 1807, pages
139-155. Springer-Verlag, 2000.

9. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. In Proc. of ACM CCS ’93, pages 62-73, 1993.

10. CERT Coordination Center, http://www.cert.org/.
11. R. Canetti, S. Halevi, and J. Katz. A Forward-Secure Public-Key Encryption

Scheme. In Proc. of EUROCRYPT 2003, LNCS 2656, pages 255-271, 2003.
12. W. Diffie and M. Hellman. New Directions in Cryptography. In IEEE Transactions

on Information Theory, Vol. IT-22(6), pages 644-654, 1976.
13. Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-Insulated Public Key Cryptosystems.

In Proc. of EUROCRYPT 2002, LNCS 2332, pages 65-82. Springer-Verlag, 2002.
14. A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 Protocol. Netscape Communica-

tions Corp., 1996, http://wp.netscape.com/eng/ssl3/.
15. O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords

Only. In Proc. of CRYPTO 2001, LNCS 2139, pages 408-432, 2001.

16. R. Gennaro and Y. Lindell. A Framework for Password-based Authenticated Key
Exchange. In Proc. of EUROCRYPT 2003, LNCS 2656, pages 524-543. Springer-
Verlag, 2003, A full paper is available at http://eprint.iacr.org/2003/032.

17. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive
Public Key and Signature Systems. In Proc. of ACM CCS ’96, pages 100-110,
April 1997.

18. IEEE Std 1363-2000. IEEE Standard Specifications for Public Key Cryptography.
Main Document, pages 53-57, IEEE, August 29, 2000.

19. IEEE P1363.2. Standard Specifications for Password-based Public Key Crypto-
graphic Techniques. Draft version 11, August 12, 2003.

20. IETF (Internet Engineering Task Force). Challenge Handshake Authentication
Protocol. http://www.ietf.org/rfc/rfc1994.txt.

21. IETF (Internet Engineering Task Force). IP Security Protocol (ipsec) Charter.
http://www.ietf.org/html.charters/ipsec-charter.html.

22. IETF (Internet Engineering Task Force). Secure Shell (secsh) Charter.
http://www.ietf.org/html.charters/secsh-charter.html.

23. IETF (Internet Engineering Task Force). Transport Layer Security (tls) Charter.
http://www.ietf.org/html.charters/tls-charter.html.

24. G. Itkis and L. Reyzin. SiBIR: Signer-Base Intrusion-Resilient Signatures. In Proc.
of CRYPTO 2002, LNCS 2442, pages 499-514. Springer-Verlag, 2002.

25. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. IETF RFC 2104, 1997, http://www.ietf.org/rfc/rfc2104.txt.

26. K. Kobara and H. Imai. Pretty-Simple Password-Authenticated Key-
Exchange under Standard Assumptions. IACR ePrint Archieve, 2003,
http://eprint.iacr.org/2003/038.

27. J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Ex-
change using Human-Memorable Passwords. In Proc. of EUROCRYPT 2001,
LNCS 2045, pages 475-494. Springer-Verlag, 2001.

28. T. Kwon. Authentication and Key Agreement via Memorable Password. In Proc.
of NDSS 2001 Symposium, 2001.

29. P. MacKenzie. More Efficient Password-Authenticated Key Exchange. In Proc. of
Topics in Cryptology (CT-RSA 2001), LNCS 2020, pages 361-377, 2001.

30. P. MacKenzie. On the Security of the SPEKE Password-Authenticated Key Ex-
change Protocol. IACR ePrint Archieve, 2001, http://eprint.iacr.org/2001/057/.

31. Microsoft Corporation, http://www.microsoft.com/.
32. P. MacKenzie, S. Patel, and R. Swaminathan. Password-Authenticated Key Ex-

change Based on RSA. In Proc. of ASIACRYPT 2000, LNCS 1976, pages 599-613.
Springer-Verlag, 2000.

33. P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold Password-
Authenticated Key Exchange. In Proc. of CRYPTO 2002, LNCS 2442, pages 385-
400. Springer-Verlag, 2002.

34. M. Naor and M. Yung. Universal One-Way Hash Functions and Their Crypto-
graphic Applications. In Proc. of STOC ’98, pages 33-43, 1998.

35. R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. In Proc. of
10th Annual ACM Symposium on Principles of Distributed Computing, 1991.

36. M. D. Raimondo and R. Gennaro. Provably Secure Threshold Password-
Authenticated Key Exchange. In Proc. of EUROCRYPT 2003, LNCS 2656, pages
507-523. Springer-Verlag, 2003.

37. A. Shamir. How to Share a Secret. In Proc. of Communications of the ACM, Vol.
22(11), pages 612-613, 1979.

38. A full version of this paper will appear in IACR ePrint Archieve.

