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Abstract. Group signature schemes are fundamental cryptographic tools that en-
able unlinkably anonymous authentication, in the same fashion that digital sig-
natures provide the basis for strong authentication protocols. In this paper we
present the first group signature scheme with constant-size parameters that does
not require any group member, including group managers, to know trapdoor se-
crets. This novel type of group signature scheme allows public parameters to be
shared among organizations. Such sharing represents a highly desirable simpli-
fication over existing schemes, which require each organization to maintain a
separate cryptographic domain.
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1 Introduction

Group signatures allow group members to anonymously sign arbitrary messages on be-
half of the group. In addition, signatures generated from the same signer are unlinkable,
i.e., it is difficult to determine whether two or more signatures were generated by the
same group member. In case of dispute, a group manager will be able toopena signature
and incontestably show the identity of the signer. At the same time, no one (including
the group manager) will be able to falsely accuse any other member of the group.

Group signatures were introduced by D. Chaum and E. van Heyst [16] in 1991. That
was followed by several other works, but only relatively recent ones [3, 10, 11] have
group public keys and group signatures with sizes that do not depend on the number
of group members. (While in theory one always needs at leastlog n bits to uniquely
identify n different users in any system, in practicelog n is orders of magnitude smaller
than the bit length of keys used in public key cryptography.) The scheme in [3] is the
most efficient one and the only proven secure against an adaptive adversary. However,
all the existing group signature schemes providing constant-size parameters require the
group manager to know the factors of an RSA modulus. Sharing these factors among
group managers of different organizations would compromise the security and/or the
trust assumptions of the entire scheme. This paper provides the first, affirmative answer
to the question of whether it is possible to design trapdoor-free group signature schemes
with public parameters that do not increase linearly in size with the number of group
members. We have an informal proof of security for the scheme (along the lines of the
proof in [3]), and sketch some arguments that might lead to a formal proof in the sense
of [5], in appendix §B.
? This work was partly funded by NSF.



1.1 Motivation

Our schemes are useful when several distinct groups or organizations must interact and
exchange information about individuals while protecting their privacy. Credential trans-
fer systems (CTS) [14, 15, 19, 17, 23, 9] are examples of such environments that can be
built via group signature schemes [9]. Real-world scenarios for the use of CTS include
the health-care industry, electronic voting, and transportation systems. In such cases, the
added manageability and improved optimization opportunities permitted by the use of a
single cryptographic domain for all participating organizations may outweigh other effi-
ciency considerations. A CTS allows users to interact anonymously with several organi-
zations so that it is possible to prove possession of a credential from one organization to
another. Different transactions cannot be linked to real identities or even pseudonyms.
It is then impossible to create profiles of users even if the organizations collude and,
at the same time, users cannot falsely claim to possess credentials. Optionally, a pri-
vacy officer is able to retrieve user identities in case of disputes or emergencies. Users
can thus authenticate themselves with anonymous credentials, protecting their privacy
while exercising their right to vote, obtaining health services or renting a GPS-tracked
automobile. The efficiency of a single signature generation or verification is measured
in the human time scale. Consequently, theoretical computational advantages become
less important, and instead the administrative complexity and related costs are likely
to be the overwhelming concern of implementers. In these situations, a scheme with
shareable parameters has a definite advantage since it eliminates the need for special-
ized techniques such as the ones employed in [9].

Recently in [5], it has been shown that group signatures can be built based on the
assumption that trapdoor functions exist. It would be interesting to show the same but
based on the existence of one-way functions. Our scheme is the first to be functionally
trapdoor-free as no group member, nor even the group manager, needs to know the
trapdoor information. Even though we use an RSA ring and we rely on the strong RSA
assumption for security, the operation of the scheme exploits only the one-wayness of
the RSA function, not its trapdoor properties.

Organization of this paper: The next section contains the definition of group signa-
tures and the attending security requirements. In section §3 we give a high-level, intu-
itive description of our proposed scheme, and place it in the context of previous work.
That section also introduces the cryptographic building blocks required for the scheme.
The specific construction of our scheme takes all of section §4. A security analysis is
provided in appendix §B.

2 Definition

In this section we present our characterization of group signature schemes. In general,
a group signature scheme is defined by a family of procedures:

SETUP: A probabilistic algorithm that generates the group-specific parameters. The
input to SETUPis the set of public parameters, which includes a security parameter,
and its output are the group public keyP and associated secret keyS.



JOIN: A prospective member executes this protocol (interacting with the group man-
ager) to join the group. The new member’s output is a membership certificate and the
corresponding secret.

SIGN: A probabilistic algorithm that outputs a group signature when given as input a
message, the group public key, a membership certificate, and the associated membership
secret.

VERIFY: A boolean-valued algorithm used to test the authenticity of signatures gen-
erated bySIGN.

OPEN: An algorithm that given as input a message, a group signature on it, and the
group secret key, extracts the membership certificate used to issue the signature, and a
non-interactive proof of the signature’s authorship.

2.1 Properties required

A group signature scheme must satisfy the following properties:

Correctness: A properly formed group signature must be accepted by the verification
algorithm.

Unforgeability: Without possession of a membership certificate, and knowledge of
associated secret, it is computationally infeasible to produce a signature that is accepted
by the verification algorithm.

Anonymity/ Unlinkability: Given a group signature on a message, it is computationally
infeasible to determine which member generated the signature. Moreover, given several
group signatures on the same or different messages it is computationally infeasible to
decide whether the signatures were issued by the same or by different group members.

Exculpability: A signature produced by a group member cannot be successfully at-
tributed to another, and the group manager cannot generate signatures on behalf of
other group members (non-framing).

Traceability: The group manager is “always” (with overwhelming probability) able to
open a valid signature and determine which member signed it. Even if a coalition of
group members collaborates to produce a signature on a message, possibly by combin-
ing their certificate secrets in some fashion, the group manager will succeed in attribut-
ing the signature to one of the colluding members (coalition-resistance) [3].

The requirements of unforgeability and coalition-resistance are equivalent to the
requirements that group membership certificates be unforgeable under passive and ac-
tive attacks, respectively, and only issuable by the group manager. In other words, a
membership certificate should contain the equivalent of a digital signature by the group
manager. Similarly, the requirements of traceability and exculpability imply that the
group signature should hide a regular digital signature issued by the member.

These listed requirements are intuitive, but somewhat redundant: For instance, ex-
culpability and traceability are clearly connected. In [5] the first formal model of group



signature schemes was introduced, showing the relations between different require-
ments, and simplifying the task of proving the security of a group signature scheme. In
that work, the authors claim that all security requirements of group signature schemes
are derivable from two newly defined concepts:full anonymityandfull traceability.

The new model introducestwo independent group managers, one in charge of group
membership management tasks, such as adding to or removing members from the
group, and another responsible for opening group signatures – i.e., revealing the identity
of the signer. The first manager providesprivacyby enabling users to sign and authen-
ticate themselves anonymously (or more properly, as arbitrary group members), while
the second manager providesaccountability, by tracing authorship of group signatures
back to the issuer when required. Compromise of the first manager’s secret key permits
one to enroll arbitrary signing keys in the group and issue signatures on behalf of these
non-entities. However it does not allow one to trace authorship of signatures. Compro-
mise of the second manager’s secret key allows one to trace authorship of signatures,
but not to add new public keys to the group.

Definition 1. Full anonymity (cf [5]): This is defined in terms of an adversarial game.
The goal of the adversary is to defeat the anonymity by identifying the authorship of a
group signature on a message. The game takes place in two stages. In the first (choose)
stage, the adversary is given access to all members’ secret keys. It also has access to
an OPENoracle, which it can query to find the authorship of various group signatures.
The output of the first stage is two member identitiesi0 andi1, a messagem and some
state informationS. These are given as input to the second (guess) stage, in which the
adversary is also given a group signatureσ onm, which is known to have been issued
by eitheri0 or i1 with equal probability. The adversary can continue to query theOPEN
oracle on signatures other thanσ. The output of this stage is a guessib for the identity of
the signer. The adversary is said to win this game if it can guess the correct signer with
more than a negligible advantage over a random guess. The group signature scheme is
fully anonymous if no efficient adversary can have a strategy for winning the game.

Definition 2. Full traceability (cf [5]): The game is played by an adversary, also in
two stages. In the first (choose) stage the adversary is given access to the second group
managers’ secret key (the signature opening key) and can adaptively corrupt as many
group members as it wishes. LetC be the set of corrupted members at the end of the first
stage. State information (including the secret keys of the members ofC) is used as input
to the guess stage, during which the adversary attempts to produce a messagem and a
valid group signatureσ onm, such that if the (uncorrupted)OPENprotocol is invoked
on (m,σ), it will fail to attribute σ to any group member in the setC. (Either theOPEN
protocol would fail to produce a valid group member identity, or it would produce the
identity of a member that has not been corrupted by the adversary.) The group signature
scheme is said to be fully traceable if no efficient adversary can succeed in this game
with non-negligible probability.

Remark 1.We also require that the compromise of either/both of the keys does not per-
mit one to misattribute a signature issued by a legitimate group member. (Enrolled be-
fore the keys are compromised.) This means in particular that a group signature scheme
is nota key escrow mechanism. This approaches differ from the one taken in [5]. There,



it is the case that the first group manager escrows the users’ secret keys – in particular
users can be framed by compromising the first manager’s secret key, which is equivalent
to compromisingall users’ secret keys.

3 Preliminaries

In the group authentication problem a holderU of a group certificate interacts with a
verifier V to prove his status as a group member without revealing his certificate. If
the interactive protocol can be made non-interactive through the Fiat-Shamir heuristic
([20]), then the resulting algorithm will be similar to the issuing of a group signature,
except thatU ’s identity may be unrecoverable from the signature alone. The issuing
of a group signature requires, in addition to a proof of membership, thatU verifiably
encryptssome information about his certificate under the group manager’s public key.
U must provide the verifier with an encrypted token and prove toV that the group
manager is able to decrypt the token to revealU ’s authorship of the signature.

A group signature can be seen as a proof of knowledge of a group certificate which
provides evidence of membership. The group certificate can be generated only by the
group managerGM and should be difficult to forge. In other words, the group member-
ship certificate has the effect of a signature issued by the group manager. In addition, it
has to contain some secret information generated by the group member and unknown
to GM to avoid framing attacks in whichGM signs on behalf of other members.

3.1 Modified ElGamal signatures

Nyberg-Rueppel signatures [25] are ElGamal-type signature variants originally designed
to provide message recovery. Instead of a one-way hash function, message-recovery
schemes use a redundancy function. The redundancy functionR is an one-to-one map-
ping of messages into a so-called message-signing spaceMS . The image ofR, de-
notedMR, must be sparse withinMS i.e., given a random element ofMS , there is
a negligible probability of it being inMR. Otherwise, the message-recovery scheme
is vulnerable to existential forgery attacks, as redundancy functions are, by definition,
efficiently invertible. The following table assumes thatMS = Z∗p. Again, the signature
calls for a random inputk, and the output is a pair(r, s), wherer = R(m)g−k mod p,
ands is computed as indicated in table 1.

If in the equations above, the redundancy functionR(·) is replaced by an one-way
function then the message-recovery property is lost. On the other hand, the requirement
that the image of the function be sparse in the signing space may also be dropped. This
modified Nyberg-Rueppel scheme, as a signature scheme ofshort messages only, is
(loosely) reducible to the hardness of discrete logarithm computations in the standard
model. Alternatively, it is (loosely) reducible to the discrete logarithm in the random or-
acle model if extended to arbitrarily long messages through the hash-and-sign paradigm.
Moreover, the form of the modified verification equation – if the one-way function is
suitably chosen – lends itself to the construction of proofs of knowledge of signatures
that are more efficient. (When compared to similar proofs for unmodified ElGamal-type
signature variants.)



Table 1.Nyberg-Rueppel signature variants.

Variant Signing equation Message recovery (verification)

I s = k−1(1 + xr) mod q R(m) = ryrs−1
gs−1

mod p

II s = x−1(−1 + kr) mod q R(m) = rysr−1
gr−1

mod p

III s = −xr + k mod q R(m) = ryrgs mod p

IV s = −x + kr mod q R(m) = ryr−1
gsr−1

mod p

V s = x−1(−r + k) mod q R(m) = rysgr mod p

VI s = k−1(x + r) mod q R(m) = rys−1
gs−1r mod p

We now describe the setting of our scheme. LetG be some arithmetic group. Not all
groupsG where Nyberg-Rueppel (or ElGamal) signatures make sense have the charac-
teristics needed by our scheme. In section §4, we outline the specifics of the protocols in
a suitable group, namely the subgroup of quadratic residues modulo a primep, wherep
is simultaneously asafeprime, i.e,p = 2q+1, with q also prime, and aSophie Germain
prime, that is the number̂p = 2p + 1 is prime. There are other choices for the groupG,
see appendix §C for a simpler construction in certain RSA rings.

Let G be a suitable group. The order ofG may be a known prime or unknown
composite number. Letg andg1 be fixed, public generators forG; it is assumed that
the discrete logarithm ofg with respect tog1 (and ofg1 w.r.t. g) is unknown to group
members. Lety = gx be the public key of the signerGM , with associated secretx. (In
the group signature scheme,y corresponds to the certificate issuing key.) Finally, this
signature scheme defines the message spaceM as the set of integers moduloq in the
case of known order, and the set of integers smaller than some upper bound otherwise.
The signing space isMS = G, and let the one-way functionh(·) : M → MS be
defined byh(m) = gm

1 . Clearly,h(·) satisfies the requirements of a secure one-way
function:h(·) is pre-image resistant by the hardness of computing discrete logarithms in
G. In the case of known order, it is further one-to-one, hence trivially collision-resistant.
In the case of unknown order, finding a collision would reveal the order ofG, i.e., it is
equivalent to factorization.

The signing and verification algorithms of the modified Nyberg-Rueppel are as fol-
lows:

Signing: r = gm
1 g−k (in G); (1)

s = −xr + k (mod q); (2)
Verification:gm

1 = ryrgs (in G). (3)

We have placed “modq” within parenthesis as that reduction is only computed when
the order ofG is a known prime. These signatures are issuable only by the signerGM ,
who is privy to the secret keyx associated toy. Indeed, such signatures are loosely
reducible, through a standard forking lemma argument [26], to the discrete logarithm
problem. Please refer to appendix §B.



3.2 High level description of the scheme

A prospective new memberU who wishes to join the group must have first secured a
digital signature certificate with some certification authority.U starts the join protocol
by choosing a random, secret valueu and computingIU = gu

1 . More precisely,U and
GM interact so that both contribute to the randomization ofu, while its value remains
secret from theGM . ThenU constructs a zero-knowledge proof (of knowledge) of the
discrete logarithm of the pseudonymIU with respect tog1. U signs the pseudonym and
the proof of knowledge of the pseudonym secret, and sends it to theGM to request a
group membership certificate.

GM verifies the signature againstU ’s public certificate and the correctness of the
zero-knowledge proof. If both are well-formed,GM responds with the signature pair
(r, s) on IU , which is technicallyGM ’s signature on an messageu known only toU .
This is safe from theGM ’s viewpoint because bothGM andU contribute to the choice
of the valueu. It is imperative, however, that onlyU knows the valueu, as it is in effect
the secret key allowingU to use the membership certificate to issue signatures. The
equations used byGM to generate(r, s) are:

r = IUg−k (in G); s = −xr + k (mod q), (4)

wherek is a random parameter ofGM ’s choice, and the reduction moduloq is applied
only in the case of known order.U verifies the signature, checking that:

IU = ryrgs (in G). (5)

The scheme must permitU to prove knowledge of this certificate pair(r, s) without
revealing any linkable function ofr, s, or u. It must also allowGM to openthe proof
and show the identity of the group member. Both problems can be solved by employing
a verifiable encryptionof digital signature schemes. However, unlinkability between
different protocol executions is not a requirement of verifiable encryption schemes, and
indeed existing protocols for ElGamal-type signature schemes do not provide it. Hence,
it would be possible to link two or more verifiable encryptions, which is equivalent to
linking two or more group signatures from the same signer. This is because, in existing
schemes, the first valuer of the signature pair(r, s) is revealed and the actual protocol is
applied only to the second values, reducing then the problem of verifiable encryption of
a digital signature to the simpler problem of verifiably encrypting a discrete logarithm
(see [8, 1, 22, 2] for details).

To solve this issue, it is necessary to ElGamal encrypt the valuer as well, and
prove in zero-knowledge that a Nyberg-Rueppel signature is known on a secret valueu.
More concretely, every time the group member must use the certificate, she encrypts the
inverse of the valuer, to get the ElGamal pair(R1, R2) = (r−1y`

2, g
`
2). This encryption

is under the second public keyy2 = gz
2 of the group manager, used for opening group

member signatures, with associated secretz.
The group member also encrypts his pseudonym:(Y1, Y2) = (IUy`′

2 , g`′
2 ). Notice

that the product cipher is:

(R1Y1, R2Y2) = (IUr−1y`+`′
2 , g`+`′

2 ) = (yrgsy`+`′
2 , g`+`′

2 ) (6)



In order to prove knowledge of a membership certificate, the memberU releases
the above ElGamal encrypted pairs(R1, R2) and (Y1, Y2) and proves that the prod-
uct cipher encrypts some information which the signer can write in two ways, i.e., as
the productIUr−1 for pseudonymIU (for which the signer knows the corresponding
pseudonym secret) and valuer, and also asyrgs, for the same valuer and somes
known to the signer. In other words, the signer shows that an equation like (6) holds for
the product cipher.

To proceed, we must overcome a difficulty with equation (6): The value in the ex-
ponent is reduced modulo the order of the groupG, while the encrypted valuer is an
element ofG itself. The reduction function does not preserve group operations, it is
not multiplicative; and the method for proving equality between an ElGamal-encrypted
value and a logarithm, due to Stadler [28], cannot be directly applied. The solution is to
employ a technique due to Boudot [7] that permits efficient comparison between loga-
rithms in different groups. So we use an auxiliary groupF of order compatible with the
operations inG. We release a commitment to the valuer as an exponent of an element
of F , and we show that it equals (up to modular reduction), the exponent ofy in the
representation with respect to the basis{y, g} of the value ElGamal encrypted in the
product cipher(R1Y1, R2Y2). Next, we use Stadler’s technique to prove the equality of
the encrypted valuer (in the pairR1, R2 of G), with the value committed as an exponent
in F .

To complete the sign protocol, the signer proves knowledge of the discrete loga-
rithm to basisg of the valueIU which is ElGamal encrypted in the pair(Y1, Y2). This
shows that the group manager will be able to open the signature with just an ElGamal
decryption operation.

Proofs of knowledgeIn this paper we make use of several types of proofs of knowl-
edge about various relations between secrets. All these proofs of knowledge have been
presented elsewhere. In order to harmonize the notation, which varies from author to
author, and make the paper self-contained, we include an appendix (§A) in which we
reproduce these various results.

4 The scheme

We now describe the scheme more concretely, starting withT , the set of shared public
parameters.T specifies security parametersδ, ε, σ, σ2, andτ , and a secure hash function
H that maps bit-strings of arbitrary length into bit-strings of fixed lengthτ . A typical
set of choices would beδ = 40, σ = 40, σ2 = 552, τ = 160, andH(·) = SHA-1(·).
The parameterε should be larger than 1 by a non-negligible amount. These security
parameters impact the security and efficiency of the various proofs of knowledge used
in the scheme. (Notation as in appendix §A.)T also specifies an arithmetic groupG and
three generatorsg, g1 andg2 of G.

In this section we assume thatG is the quadratic residues subgroup of the multiplica-
tive residues modulep, wherep is simultaneously a safe prime, i.e., andp = 2q + 1,
with q also prime, and a Sophie Germain prime, i.e., the numberp̂ = 2p + 1 is prime.
Primesp̂ such thatp̂ = 2p + 1, andp = 2q + 1, with p andq also prime are called



strongprimes. (More generally, if̂p = mp + 1 andp = nq + 1 with smallm, andn,
are also called strong primes, butm = n = 2 gives the most efficient scheme.) See [18,
21] for efficient methods to generate such primes. In order to chooseg it is enough to
pick a random elementg′ in Z∗p and setg ≡ g′2 mod p, provided thatg 6≡ 1 mod p.
The same procedure should be used to obtaing1 andg2.

The scheme also requires an auxiliary groupF of orderp, which in this section will
be chosen as the quadratic subgroup of the multiplicative residues modulop̂. Further-
more, the scheme requires a second auxiliary groupE of unknown composite order̂n.
A trusted party generates a composite modulusn, plus a proofP thatn is the product
of two safe primes. The groupE is defined as the quadratic residue subgroup of the
multiplicative residues modulon. The order ofE is the universally unknown number
φ(n)/4. Group managers of competing organizations may all share the same modulus
n, as the operation of the scheme does not requireanybodyto know the RSA trapdoor
associated ton, and the trusted party may safely forget the factorization at its discretion.

Table 2.Shared and group specific parameters

Shared parameters
Security parameters: δ, ε, σ, σ2, τ ;

Secure hash function: H(·) : {0, 1}∗ −→ {0, 1}τ ;
p̂, p, q, primes s.t. p̂ = 2p + 1 and p = 2q + 1;

G = {x ∈ Z∗p : ∃ a ∈ Z∗p s.t. x ≡ a2 mod p};
F = {x ∈ Z∗p̂ : ∃ a ∈ Z∗p̂ s.t. x ≡ a2 mod p̂};
E = {x ∈ Z∗n : ∃ a ∈ Z∗n s.t. x ≡ a2 mod n};

g, g1, and g2, generators of G.

Group-specific parameters
S, a string including y and y2;

CA’s signature: CERT CA(S).

Table 3.TheJOIN protocol

U −→ GM : JU = Im mod p
GM −→ U : a, b mod q

U −→ GM : SigU (IU = Ja
Ugb

1, PK[u : IU = gu
1 ])

GM −→ U : r = IUg−k mod p, s = −xr + k mod q

The above public parameters can be further certified if so desired. A proof of pri-
mality can be provided for each of the primes; as forg, g1 andg2, anybody can verify
their correct generation by testing that each is not congruent to0 or 1 modulop, and
then verifying that each is a square, by computing the Legendre symbol and checking

that:
(

g
p

)
=

(
g1
p

)
=

(
g2
p

)
= 1.



In order to setup a group using the shared parameters above, the group managerGM
choosesx andz at random among the numbers[1, q − 1] and set the public keysy =
gx, andy2 = gz

2 . The group manager should proceed to register these group-specific
parameters with some certification authority. TheGM would prepare a statementS
containing (minimally) a description of the group signature algorithms, a reference to
the shared parameters,GM ’s name, the group-specific parametersy, y1, andy2, and
some timed information, such as start and expiration dates. TheGM should obtain a
certificate CERTCA(S) from theCA establishing the group-specific parameters.

Let Sig
U
(·) denoteU ’s signature algorithm. To join the group, a prospective mem-

berU chooses a random secretm in the interval[1, q − 1], computesJU = gm
1 , and

sends this value toGM , who responds with two valuesa, andb in [1, q − 1]. U com-
putes his pseudonym asIU = Ja

Ugb
1, and its associated secretu = am + b mod q.

Next,U constructs a non-interactive proof of knowledge of the logarithm to basisg1 of
this pseudonym (see appendix A), and also his signatureS = Sig

U
(IU , PK) on both

the pseudonym and the proof-of-knowledge just constructed.U forwards to theGM
this signatureS.

TheGM now verifies that the pseudonym incorporated his contribution, i.e.,IU =
Ja

Ugb
1. This step is important becauseu is unknown toGM , who must sign it. Since

theGM contributed tou’s randomness, that does not constitute a threat to theGM ’s
signature algorithm. TheGM also verifies the correctness of the proof-of-knowledge
andU ’s signature. If satisfied, theGM generates a randomk mod q, and computes
r = IUg−k mod p, checking thatr < c, wherec equals:

c = p− 2σ+τ/2+2√p, (7)

and repeating the process of computing other randomk andr until such anr is found.
Note thatr < c with overwhelming probability in a single attempt, because since the
quadratic residues are nearly uniformly distributed in the interval[1, p − 1], we have

thatr < c with probability close to1− 2σ+τ/2+2
√

p > 1−2−645 if the security parameters
have the typical valuesδ = 40, τ = 160 andp has at least768 significant bits. This
very minor restriction on the possible values ofr reflects requirements of the proof of
equality of discrete logarithms in distinct groups, as we shall see later. After a suitable
r is found,U computess = k − xr mod q, and sends the certificate(r, s) to U . The
GM also records the signatureS, which tiesU ’s identity to the certificate’s pseudonym.
U verifies that the certificate(r, s) satisfies the verification equation, and if so, accepts
it as valid.

We now describe the protocolSIGN. One goal of this protocol is thatU convince
a verifierV of its knowledge of a membership certificate(r, s) as above. As in section
§3, the signer chooses random`, and`′, with 0 < `, `′ < q. U releases the ElGamal
encrypted pairs:

(Y1, Y2) = (IUy`′
2 , g`′

2 ); (R1, R2) = (r−1y`
2, g

`
2);

Next, U demonstrates that the pseudonymIU is encrypted by the pair(Y1, Y2), and
proves knowledge of the pseudonym secretu, by executingPK[u, `′ : Y1 = gu

1 y`′
2 ∧

Y2 = g`′
2 ]. This step is crucial to prevent framing attacks againstU , as not even the

group manager can execute it without knowledge ofu.



Continuing with theSIGN protocol,U generates a fresh, random generatorχ of
the groupF , and computes a (computationally zero-knowledge) commitment to the
valuer asE1 = E1(r, 0) = χr. In the language of appendix §A, this is a (degenerate)
commitment to the valuer in the groupF , with respect to the generatorχ.

U also generates a commitment tor in the auxiliary groupE of unknown order.
For that,U uses two generatorsβ andγ of E , whereβ andγ are provably randomly
generated, so thatU cannot know their relative discrete logarithm. For instance,γ and
β can be generated as the squares of two consecutive values of a secure pseudo-random
number generatorSPRNG. The commitment is computed asE2 = E2(r, s2) = γrβs2 ,
wheres2 is a random parameter ofU ’s choice:s2 ∈ [−2κ+τ+1, 2κ+τ+1], where2κ−1 ≤
|E| < 2κ. Notice that the valueR1Y1 = IUr−1y`+`′

2 = yrgsy`+`′
2 is also a commitment

to the valuer in the groupG, with generatorsy, g, andy2. Denote it byE3 = R1Y1.
In the next step,U reveals the commitmentsE1, E2, and the respective generators

γ, β, andχ. (In the case ofγ andβ, U must also reveal the seed of theSPRNGthat leads
to the computation ofγ andβ.) U then shows thatE1, E2 andE3 all are commitments
to the same valuer. (Notice that we are following the efficient construction found in [7],
repeated in detail here for reasons of convenience.)U executes two proofs of equality of
two committed values (def. 10). In the first proofU sendsV a triple(c′, D′, D′

1) satisfy-
ing: c′ = H(χ||γ||β||E1||E2||χD′

E−c′
1 mod p̂||γD′

βD′1E−c′
2 mod n). Again, refer

to def. (10) for how to build these proofs. In agreement with the notation in appendix
§A,we denote the above byPK[r, s2 : E1 = E1(r, 0)∧E2 = E2(r, s2)]. ThenU sends
V a quintuple(c,D, D1, D2, D3) satisfying:c = H(γ||β||y||g||y2||E2||E3||γDβD1E−c

2

mod n||yDgD2yD3
2 E−c

3 mod p||gD3
2 (Y2R2)−c mod p). Denote that byPK[r, s, s2, t :

E2 = E2(r, s2) ∧ E3 = E3(r, s, t) ∧ Y2R2 = gt
2].

If all of the commitmentsE1, E2, andE3 took place within the same group the
above would be a proof of equality of the committed exponent in each of the commit-
ments. However, as the order of the groups differ, we have only proved knowledge of
an integer valuer which satisfies

r ≡ r1 mod p, and r ≡ r3 mod q, (8)

wherer1 andr3 are, respectively, the exponents committed inE1 andE3, while r is
the exponent committed inE2. (As U does not know the order ofE , it cannot set up a
modular equation that the exponent ofE2 should satisfy, and must use the full integer
value r.) U could cheat and pass the “proof” above for any two different valuesr1

andr3, by settingr in E2 to equal the solution, computed via the Chinese Remainder
Theorem, to the pair of modular equations in (8). Thus, a non-memberU ′ would be
able to forge the proof of knowledge of a certificate, by choosingr3 ands arbitrarily,
computing the valuer1 that would make the certificate equation work, and then solving
the pair of equations (8) for anr that reduces tor1 mod p andr3 mod q, respectively.
In the cheating case, however, becauser1 6≡ r3 mod q, U ′ computes a valuer > p
as the solution of 8. Thus, ifU ′ is required to prove that the valuer2 committed in
E2 is within an interval of width at mostp, this forgery attack is prevented; and the
commitments must all hide the same value. So to complete the “proof of equality of
commitments in different groups,”U must construct a proof that the valuer is restricted
to an interval of width at mostp. For that,U uses the fact thatr < c, and constructs



Table 4.TheSIGN protocol

Proof arguments:

Y1, Y2, R1, R2, χ, γ, β, E1, and E2.

Signature of knowledge:

SPK[u, `′, `, r, s, s2, t : Y1 = gu
1 y`′

2 ∧ Y2 = g`′
2

∧ E1 = E1(r, 0) = χr ∧ R1 = r−1y`
2 ∧R2 = g`

2

∧ E2 = E2(r, s2) = γrβs2 ∧ r ∈ [−2δ+τ/2+1√c, c + 2δ+τ/2+1√c]

∧ E3 = E3(r, s, t) = Y1R1 = yrgsyt
2 ∧ Y2R2 = gt

2 ](M)

the proof of knowledge that a committed value lies in a slightly larger interval, def.
(13): PK[r, s2 : E2 = E2(r, s2) ∧ r ∈ [−2δ+τ/2+1

√
c, c + 2δ+τ/2+1

√
c]]. To

observe that the interval in question has width smaller thanp, notice that its width
equalsc + 2δ+τ/2+2

√
c < c + 2δ+τ/2+2√p = p, by choice ofc (see equation 7).

Finally,U must show that the exponent committed inE1 equals the value encrypted
in the pair(R1, R2), by executing (definition 14):PK[r, t : E1 = χr ∧ R1 =
r−1yt

2 ∧ W2 = gt
2]. The actual protocolSIGN combines all the proofs of knowledge

into a single signature of knowledge. This is done by simultaneously committing to all
the inputs of the proofs and using the resulting challenge in all the verification equations
(à la Fiat-Shamir). In addition, the messageM to be signed is used as an extra input of
the hash function.

The protocol is summarized in table 4. Moreover, algorithmVERIFY can be derived
immediately from the above formal description ofSIGN as a proof of knowledge of a
group certificate.

As forOPEN, it is enough that the group manager decrypts the pair(Y1, Y2) to obtain
the valueIU and the corresponding group membership certificate.GM constructs a
proof thatIU is indeed the value encrypted in(Y1, Y2) without revealing the group
secretx: PK[x : Y1I

−1
U = Y x

2 ∧ y2 = gx
2 ], a publicly verifiableproof of authorshipof

the signature.

5 Conclusions

In this paper we introduced the first group signature scheme with constant-size param-
eters that does not require any group members, including group managers, to know
trapdoor secrets. Our scheme is not bound to a specific setting but it can work in var-
ious groups where the Decision Diffie-Hellman assumption holds: The appendix §C
contains a simpler construction in an RSA ring.

Our scheme is less efficient than the state-of-the-art scheme in [3]. However, the
scheme in [3] requires the group manager to know trapdoor information which cannot
be shared with other group managers, thus making it difficult to enable collaboration
among distinct groups.
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A Proofs of knowledge

All the proofs of knowledge listed in this section have been proved zero-knowledge in a statistical
or computational sense within the random oracle model, under the Decisional Diffie-Hellman
assumption, and the Strong RSA assumption, explained below.

Notation 1 (Groups and generators).

– J stands for an arithmetic group, such as an RSA ring with composite modulusn or the
groupZ∗p of non-zero (multiplicative) residues modulop.

– g stands for an element ofJ of unknown composite order or known prime order. Letq be
the order ofg.

– Let κ be the smallest integer such that2κ is larger thanq. We assume thatκ is known, even
if q is not.

– g generates the subgroupG of J .

LetH stand for a secure hash function which maps arbitrarily long bit-strings into bit-strings
of fixed lengthτ . Let ε denote a second security parameter.

Definition 3 (Decisional Diffie-Hellman assumption (DDH)).LetJ be a group andg an el-
ement of known prime, or unknown composite, orderq in J . Let G = 〈g〉 be the subgroup
generated byg in J . The DDH assumption forG is then there is no efficient (randomized, prob-
abilistic) algorithm that can distinguish between the two following distributions inG:

{(h, i, j), where h, i, j are independently randomly distributed (i.r.d.) in G}
and

{(h′, i′, j′), where h′ = gx, i′ = gy, j′ = gxy for i.r.d. x, y with 0 ≤ x, y < q}



A triple of group elements such as(h′, i′, j′) above is called aDiffie-Hellman triple.The
DDH assumption is thus the statement that there is no efficient algorithm to distinguish between
Diffie-Hellman triples and randomly generated triples.

Definition 4 (Strong RSA assumption (SRSA)).Letn = pq be a composite modulus, wherep
andq are two large primes. The strong RSA assumption states that there is no efficient (random-
ized, probabilistic) algorithm that, given as inputn and an integery, but not the factorization of
n, can produce two other integersu ande, wheree > 1 andue ≡ y mod n.

SRSA underlies the security of the proof of equality of logarithms in distinct groups (10).

Definition 5 (Proof of knowledge of a discrete logarithm).U can prove to a verifierV his
knowledge of an integerx in {0, . . . , 2κ − 1}, such thath = gx, by releasing integerss andc,
with s in {−2ε(τ+κ)+1, . . . , 2ε(τ+κ)+1 − 1} andc in {0, . . . , 2τ − 1}, s.t.c = H(g||h||gshc),
where the symbol|| denotes string concatenation.

In order to compute the pair(s, c), U generates a random integerk in {−2ε(τ+κ), . . . , 2ε(τ+κ)−
1} and setsc = H(g||h||gk), ands = k − cx (as integer). Denote it by (notation introduced in
[11]): PK[x : h = gx].

This proof of knowledge can be transformed into a digital signature, withx being the secret
key associated with public keyh. To sign an arbitrary bitstringm, we instead computec as:
c = H(g||h||gshc||m). Denote thissignature of knowledge([11]) by: SPK[x : h = gx](m).

Returning to the notation in definition (5), if the orderq of the groupG is known, then
operations on the exponents should be computed moduloq, and some statements about the size
of parameters can be simplified. In the above we would substitute:

x ∈ {0, . . . , 2κ − 1} by x ∈ {0, . . . , q − 1},
s ∈ {−2ε(τ+κ)+1, . . . , 2ε(τ+κ)+1 − 1} by s ∈ {0, . . . , q − 1}, and

s = k − cx (in Z) by s = k − cx mod q.
In the following definitions we assume the group orderq is unknown; as above, it is straight-

forward to adapt them to the case of known order.

Definition 6 (Proof of knowledge of a common discrete logarithm).U can prove to a verifier
V his knowledge of anx (with 0 ≤ x < 2κ) s.t. two listsg1, g2, . . . , g` andh1, h2, . . . , h` (of
elements ofG) satisfyhi = gx

i , i = 1 . . . `, by releasings andc (−2ε(τ+κ)+1 ≤ s < 2ε(τ+κ)+1

and0 ≤ c < 2τ ) s.t.
c = H(g1|| . . . ||g`||h1|| . . . ||h`||(g1 . . . g`)

s(h1 . . . h`)
c).

U computesc = H(g1|| . . . ||g`||h1|| . . . ||h`||(g1 . . . g`)
k) for a randomly chosenk (−2ε(τ+κ) ≤

k < 2ε(τ+κ)), and setss = k − cx. Denote it by:PK[x : h1 = gx
1 ∧ · · · ∧ h` = gx

` ].

Definition 7 (Proof of knowledge of a representation).U can prove his knowledge of elements
x1, . . . , x` (with 0 ≤ xi < 2κ) s.t. a given elementA satisfiesA = gx1

1 · · · gx`
` , by releasingsi

andc (−2ε(τ+κ)+1 ≤ si < 2ε(τ+κ)+1; 0 ≤ c < 2τ ) s.t.c = H(g1|| . . . ||g`||A||gs1
1 . . . g

s`
` Ac).

Again,U computesc = H(g1|| . . . ||g`||A||gk1
1 . . . g

k`
` ) for randomly chosenki ( −2ε(τ+κ) ≤

ki < 2ε(τ+κ)), and setssi = ki − cxi. Denote it by:PK[x1, . . . , x` : A = gx1
1 · · · gx`

` ].
The next two proofs of knowledge assert that a committed value lies in an interval. The first

one was introduced in [12], and corrected in [13]. The second one, which uses the first as building
block, was introduced in [7], and is used in our scheme.

Let g, h be two elements ofG. Assume thatg andh are constructed in a provably random
way, for instance as consecutive images of a secure pseudo-random generator. Generatingg and
h in such a way ensures that no one knows the discrete logarithm ofg to basish, or that ofh to
basisg.



Definition 8 (Commitment to a secret value).Let x be a secret value held byU . Let g andh
be two provably random generators ofG. We say thatE = E(x, r) = gxhr is a commitment to
the valuex in G, wherer is a randomly generated value,0 < r < q.

If q is unknown, then one must chooser in a larger interval, say−2κ+τ+1 < r < 2κ+τ+1, to
ensure that all elements in the interval[0, q − 1] are sampled nearly uniformly. The commitment
reveals nothing aboutr in a statistical sense.

Let E be a distinct arithmetic group of unknown composite ordern. For instance,E can be
chosen as the subgroup of quadratic residues in an RSA ring. Letg = g1, g2, h = h1, and
h2 be provably random generators ofE . We assume that the smallest integerλ s.t. 2λ > n is
known. AssumeU has published two commitments,E = E1(x, r) = gx

1hr1
1 in G, and a second

commitmentE2(x, r2) = gx
2hr2

2 .
Let δ, σ andσ2 be other security parameters. Assume further thatx < b.

Definition 9 (Proof of knowledge of a committed value).U can prove inZK to a verifierV
knowledge of a numberx committed throughE = E(x, r) = gxhr, by sendingV a triple
(c, D, D1) satisfying:c = H(g||h||E||gDhD1E−c mod n).

U generates randomt ∈ [1, 2δ+τ/2b + 1] ands ∈ [1, 2δ+τ/2+σn − 1]; computesW = gths

mod n; computesc = H(g||h||E||W ); and finally computesD = t + cx, D1 = s + cr (in Z).

Definition 10 (Proof of equality of two committed values).U can prove inZK to a verifier
V that two commitmentsE1 = E1(x, r1) and E2 = E2(x, r2) hide the same exponentx, by
sendingV a quadruple(c, D, D1, D2) satisfying:c = H(g1||h1||g2||h2||E1||E2||gD

1 hD1
1 E−c

1

mod n||gD
2 hD2

2 E−c
2 mod n).

U generates the random valuest ∈ [1, 2δ+τ/2b + 1], s1 ∈ [1, 2δ+τ/2+σn − 1], ands2 ∈
[1, 2δ+τ/2+σ2n − 1]. Next, U computesW1 = gt

1h
s1
1 mod n, W2 = gt

2h
s2
2 mod n; and

setsc = H(g1||h1||g2||h2||E1||W1||W2). Finally, U computesD = t + cx, D1 = s1 + cr1,
D2 = s2 + cr2 (in Z). Denote this byPK[x, r1, r2 : E1 = E1(x, r1) ∧ E2 = E2(x, r2)].

Definition 11 (Proof that a committed number is a square).U can convince a verifierV that

the commitmentE = E(x2, r1) = gx2
hr1 mod n (r1 ∈ [−2σn + 1, 2σn − 1]) contains

the square of a number known toU , by sendingV the quintuple(F, c, D, D1, D2), wherec =
H(g||h||E||F ||F DhD1E−c mod n||gDhD2F−c mod n).

Indeed,U generates a randomr2 in [−2σn + 1, 2σn− 1], and setsF = gxhr2 . Notice now that
U can rewriteE in the basis{F, h} asE(x, r3) = F xhr3 mod n, wherer3 = r1 − r2x, and
r3 ∈ [−2σbn + 1, 2σbn − 1]. It is enough then forU to use the previous proof of equality of
the exponentx committed thoughE1 = F = E(x, r2) andE2 = E = E(x, r3), i.e., execute
PK[x, r2, r3 : F = gxhr2 ∧ E = F xhr3 ]. Denote this byPK[x, r1 : E = E(x2, r1)].

Definition 12 (Proof that a committed number lies in a larger interval). A proverU can con-
vince a verifierV that a numberx ∈ [0, b] which is committed inE = E(x, r) = gxhr mod n
(r ∈ [−2σn + 1, 2σn− 1]), lies in the much larger interval[−2σ+τ/2b, 2σ+τ/2b], by sendingV
the triple(C, D1, D2), whereD1 ∈ [cb, 2δ+τ/2b−1], andC = H(g||h||E||gD1hD2E−c); c =
C mod 2τ/2.

U generates randomss ∈ [0, 2δ+τ/2b − 1], t ∈ [−2δ+τ/2+σn + 1, 2δ+τ/2+σn − 1]; computes
W = gsht mod n; computesC = H(g||h||E||W ), andc = C mod 2τ/2; and setsD1 =
s + cx, D2 = t + cr, repeating the procedure from the beginning ifD1 6∈ [cb, 2δ+τ/2b− 1]. We
denote the above byPKCFT [x, r : E = E(x, r) ∧ x ∈ [−2δ+τ/2b, 2δ+τ/2b]].



Definition 13 (Proof that a committed number lies in a slightly larger interval). A prover
U can convince a verifierV that a numberx ∈ [a, b], committed inE = E(x, r) = gxhr

mod n (r ∈ [−2σn + 1, 2σn− 1]) lies in the slightly larger interval[a− α, b + α], whereα =
2δ+τ/2+1

√
b− a, by releasingẼ1, Ē1, and proving:PK[x, r : E = E(x, r)], PK[x̃1, r̃1 :

Ẽ1 = E(x̃2
1, r̃1)], PK[x̄1, r̄1 : Ē1 = E(x̄2

1, r̄1)], PKCFT [x̃2, r̃2 : Ẽ2 = E(x̃2, r̃2) ∧
x̃2 ∈ [−α, α]], where Ẽ2 = E

gaẼ1
mod n, PKCFT [x̄2, r̄2 : Ē2 = E(x̄2, r̄2) ∧ x̄2 ∈

[−α, α]], whereĒ2 = gb

EĒ1
mod n.

U computesẼ = E/ga mod n, Ē = gb/E mod n; setsx̃ = x−a andx̄ = b−x; computes
x̃1 = b√x− ac, x̃2 = x̃ − x̃2

1, x̄1 = b√b− xc, x̄2 = x̄ − x̄2
1; generates random̃r1 andr̃2 in

[−2σn + 1, 2σn − 1] s.t. r̃1 + r̃2 = r, and similarlyr̄1, r̄2 s.t. r̄1 + r̄2 = −r; computes the
commitmentsẼ1 = E(x̃2

1, r̃1), Ẽ2 = E(x̃2, r̃2), Ē1 = E(x̄2
1, r̄1), andĒ2 = E(x̄2, r̄2); and

executes the proofs of knowledge listed in the above definition. We denote the above proof of
knowledge byPK[x, r : E = E(x, r) ∧ x ∈ [a− α, b + α].

The last cryptographic building block we need is the verifiable ElGamal encryption of an
exponent.

Definition 14 (Verifiable ElGamal encryption of an exponent).AssumeU holds a secretr,
and has published the valueω = χr. Hereχ is a generator of a groupF of ordern, wheren
may be prime or composite, and0 < r < n. We assume that the DDH assumption holds inF . It
is possible forU to prove in zero-knowledge that a pair(A = r−1ya, B = ga) mod n, is an
ElGamal encryption under public keyy of the exponent ofω to basisχ.

We denote it by:PK[r : ω = χr ∧ A = r−1ya ∧ B = ga]. The proof can be found in [28],
and we repeat it here for convenience. Fori in {1, . . . , ν}, U generates randomti, and computes
gi = gti , yi = yti , andωi = χyi . Next,U computes

c = H(χ || ω ||A ||B || g1 || ω1 || · · · || gν || ων). (9)

Next,U computessi = ti − cia, whereci stand for theith-bit of c. The proof consists ofc and
si, i = 1, . . . , ν. In order to verify,V recomputesgi = gsiBci , y′i = ysiAci , andωi = ωy′i ,
and checks that (9) holds. The rationale for the proof is that, whenci = 0, the verifier checks that
gi andωi are correctly constructed; whenci = 1, the verifier checks that(A, B) is the ElGamal
Encryption of the discrete logarithm ofω to basisχ, provided thatgi andωi are constructed
correctly. If the statement were false,U could pass only one of the verification equations, for
eachi. In the random oracle model, the probability ofU successfully proving a false statement is
2−ν .

B Security analysis

Before the introduction of a formal model of security of group signature schemes [5], it was
common practice to prove the security of a scheme by showing that it would satisfy the vari-
ous informal requirements listed in section §2. Of course, it is impossible to be sure that any
such list is complete, and in fact early schemes failed to identify the need for resistance against
coalition/collusion attacks (see [4] for a discussion about this issue).

Thanks to the formal model, a clearer picture about the complete security requirements of
group signatures has now emerged; a scheme proven to satisfy “full anonymity” and “full trace-
ability” can be trusted to provide security – at least as long as the particular computational
assumptions underlying the cryptographic primitives (digital signatures, encryption, proofs-of-
knowledge) used in the scheme hold up. Unfortunately it is challenging to provide a proof in the



new model. The only example of such a proof is for the general construction given in [5] itself.
While that construction shares similar design principles with ours, their proof works in a different
model of computation. In particular, security conditions for the proofs-of-knowledge are defined
in the Common Reference String model. On the other hand, the primitives used in our scheme
are provably secure only in the Random Oracle Model (ROM). Indeed, ALL primitives based on
discrete logarithms (which we must use if the scheme is to be functionally trapdoor-free) are only
proven secure in the ROM model. Thus, in order to provide a formal security proof, we would
have to adapt the framework of [5] to the ROM setting. We plan to pursue this direction in a fu-
ture journal publication of this work. In this section we will give some arguments on how such a
formal proof would work for our scheme. Before we proceed, however, we would like to remark
that it is simple to prove the security of our scheme by going over each property in §2. In fact,
the only requirement that is not clear from the construction is security against coalition attacks.
Equivalently, it is not obvious whether group membership certificates are unforgeable even if
some (or all) the group members conspire to share their secrets, because our scheme uses a new,
modified Nyberg-Rueppel signature for certificate issuance. Indeed, certificate unforgeability is
equivalent to the property that this signature be existentially unforgeable under active attacks. We
now prove the security of the modified Nyberg-Rueppel.

Proposition 1 (Forking lemma for modified Nyberg-Rueppel).Let A be an adversary which
attempts to forge modified Nyberg-Rueppel signatures on messages issued under the public key
y = gx. AssumeA has a non-negligible probability of success, as computed over the sample
space of messagesm, random tapesr and random basesg1. ThenA has a non-negligible prob-
ability of success of computing relative discrete logarithms in the groupG.

Proof. SinceA has non-negligible success probability over sample triples(m, r, g1), a standard
product sample argument can be used to show that for a non-negligible set of choices of values
for the first two components, (i.e., values for the messagem and random taper) the algorithm
has a non-negligible probability of success over choices for the remaining component (the basis
g1 in G). Now consider the following reduction to the relative discrete logarithm problem. Given
two arbitrary valuesg2 andg3 in G, choose (with non-negligible probability of success) values
m andr such thatA can forge signatures on messagem with random taper for a non-negligible
subset of basesg1 in G. Then, with non-negligible probability, bothg2 andg3 will belong to
that subset. But this implies thatA can compute a pair(m, r) and valuess and s′ such that

gm
2 = ryrgs andgm

3 = ryrgs′ . Dividing the equations, we get
(

g2
g3

)m

= gs−s′ , which implies

dlogg3
(g2) = s−s′

m
.

Proposition 2. The modified Nyberg-Rueppel signature scheme, as a signature scheme on short
messages, is existentially unforgeable under chosen message attacks, if the discrete logarithm
problem is hard inG.

Proof. Since we are considering short messages only, there is no need to use the random oracle
model. The previous proposition reduces such forgeries to the hardness of discrete logarithm
computations. Of course the reduction is “loose” by a factor of2: If you can forge signatures
with probability at leastp, the probability of successful computation of discrete logarithms is at
leastp2.

Notice that theSIGN protocol is a Schnorr-type signature scheme, in the sense that it binds
all the signature parameters in a single hash computation, and the signer’s secret is a discrete
logarithm. In fact, the signature itself includes a proof of knowledge of discrete logarithm of
the signer’s public key with respect to a fixed basis (also tied in the hash computation). Such



constructions can be proven secure in the random oracle model [26]. In other words, individual
group member signatures are secure against existential forgery by adaptively chosen message
attacks.

Consider now the anonymity game. The attacker has corrupted all secret keys of all group
members. It is allowed to query anOPENoracle for opening arbitrary valid signatures. After
possibly some interaction with the oracle it can choose two identitiesi0 andi1 and a message
m. The adversary challengeσ is then a valid group signature onm that is known to have been
issued by eitheri0 or i1 with equal probability. The adversary is allowed to further interact with
theOPENoracle, but is now restricted not to query the oracle with the challenge(m, σ).

Claim (Reduction to passive attacks).Assume that the group member signature is secure against
existential forgery by adaptively chosen message attacks, and that it implements a sound zero-
knowledge proof of knowledge of a certificate on a pseudonym and its associated secret. If there
is an efficient attacker that, upon interacting with anOPENoracle, can guess the identity of the
signer on the challenge with non-negligible advantage over a random guess, then there is an
efficient attackerwithout access to anOPENoracle that can similarly guess the identity of the
signer with non-negligible advantage over a random guess.

Argument. The idea for the proof is as follows: LetA0 be an attacker with access to the ora-
cle, andA1 an attacker that has full access to ALL the group members for all time – i.e., it is
able to see the internal state of the group members that lead to computation of group signatures
(except that he cannot see the computation of the challenge). However,A1 is not given access
to the oracle. LetQ be some query made byA0 to the oracle. If the oracle accepts and decrypts
the message, then it means that either the query included a valid group member signature or that
the proof of knowledge was forged. Since we assume the proof of knowledge is sound, this sec-
ond case can only happen with negligible probability. Therefore, with overwhelming probability
the adversary either submitted a signature previously computed by some group member, orA0

constructed a new signature using his knowledge of one of the group member’s secret key. In the
latter case,A0 already knew what the response of the oracle would be and could have continued
the computation without need of the queryQ. In the former case,A0 does acquire knowledge
through the interaction, but this knowledge is available toA1 through its access to the internal
state of all group members through time. So with overwhelming probability we can reduce a
computation ofA0 to one ofA1.

Claim (Full anonymity).Under the assumptions of the previous proposition, and assuming fur-
ther that the signature of knowledge composes well with ElGamal encryption, our group signature
scheme provides full anonymity.

Argument. Since the identity of the signer is encrypted using ElGamal, which is semantically
secure, it is safe against passive attacks on the encryption scheme, as long as the proofs of knowl-
edge compose well with it. But from the previous proposition, we know that an adversary does not
gain any significant advantage from accessing theOPENoracle, i.e., from staging active attacks
against the encryption scheme.

Remark 2.Such a result may sound surprising, specially in view of the proof in [5], which im-
plies that in order for a group signature scheme to be secure in the formal model it isrequiredthat
the cipher used be secure against chosen ciphertext attacks, whereas our scheme uses ElGamal,
which is only semantically secure. Still, in light of results such as [27], it is at least conceivable
that semantic security is sufficient if the proofs of knowledge arenon-malleable.

Moreover, our scheme can be easily modified to use Cramer-Shoup encryption instead of
ElGamal. This will only require adding the authenticating tags to each of the two ElGamal en-
crypted pairs(Y1, Y2) and(R1, R2) and verifying such tags during signature verification as well



as before decrypting within the signature opening algorithm. (Notice that the authenticating tags
can be shown well-constructed without requiring knowledge of the Cramer-Shoup scheme’s pri-
vate keys.)

The second property we should prove is the full traceability.

Claim (Full traceability).Under the assumptions of the previous claims, and using the fact that
the modified Nyberg-Rueppel signature is unforgeable under chosen message attacks, our group
signature scheme is fully traceable.

Argument. To prove such a claim one must show the impossibility of an adversary to produce
a signature that, when opened, reveals either an invalid pseudonym or a valid pseudonym whose
secret is unknown to the attacker. In each case, the attacker must either be capable of forging
the proof of knowledge of a certificate on a pseudonym and associate secret, or must be able to
produce certificates for new, invalid users. ( Forging a new certificate for a valid, uncompromised
user would NOT suffice, for the adversary would still have to prove knowledge of the pseudonym
secret. ) The latter case is not possible because the modified Nyberg-Rueppel is existentially
unforgeable under chosen message attacks. The former case would violate the assumption that
the Schnorr signature implements sound proofs-of-knowledge.

C An alternative construction in the RSA ring

In this appendix we briefly describe another possible realization of the scheme. Much of the no-
tation and procedures are the same as in section 4. The shared parameters are chosen differently.
We defineG to be the group of quadratic residues in the RSA ring generated by a composite
modulus which is a product of safe primes. Namely, a trusted party generates two safe primesp,
q, and publishesn = pq. After constructing a proof thatn is formed correctly, the third party
may forget its factorization, as it is not needed for the scheme. The groupF is chosen as a group
of ordern. For that, one searches for a primep̂ so thatp̂ = mn + 1, wherem is a small number.
One then setsF to be the subgroup ofm-powers in the groupZ∗p̂. The group-specific parameters
are the same.

The JOIN protocol is little changed. There are no restrictions on the value ofr = IUg−k

mod n, wherek is chosen in the interval[−2τ+2κ, 2τ+2κ − 1]; as before,κ stands for the
bitlength of|G|. The termsa, b, ands cannot be reduced modulo the unknown order ofG, which
is unknown.

TheSIGN protocol can be considerably simplified. There is no need for an extra commitment
in a group of unknown order, as the order of the groupG is itself unknown. Moreover, there is
no need to prove that ther in the commitmentE1 is bounded in a certain interval, as a cheating
U could not find a value that reduces to different valuesr1 mod n and r2 mod φ(n) while
satisfying the signature equation, becauseφ(n) is unknown toU .

ProtocolOPENis unchanged from the previous case.



Table 5.Shared and group specific parameters.

Shared parameters

Security parameters δ, ε, σ1, σ2, τ (integers);

Secure hash function H(·) : {0, 1}∗ −→ {0, 1}τ ;

n, a composite integer, the product of safe primes;

p̂, a prime satisfying p̂ = mn + 1, where m is small;

G = {x ∈ Z∗n : ∃ a ∈ Z∗n s.t. x ≡ a2 mod n};

F = {x ∈ Z∗p̂ : ∃ a ∈ Z∗p̂ s.t. x ≡ am mod p̂};

P , an (optional) proof that n is a product of safe primes;

g, g1, and g2, generators of G;

P ′, an (optional) proof that g, g1, and g2 are quadratic residues.

Group-specific parameters

S, a string including y and y2;

CA’s signature CERT CA(S).

Table 6.TheJOIN protocol.

U −→ GM : JU = Im mod n

GM −→ U : a, b ∈ [−2τ/2+κ, 2τ/2+κ − 1]

U −→ GM : Sig
U

(IU = Ja
U gb

1 mod n, PK[u : IU = gu
1 ])

GM −→ U : r = IU g−k mod n,

s = −xr + k ∈ [−22κ+τ+1, 22κ+τ+1 − 1]

Table 7.TheSIGN protocol.

Proof arguments:

Y1, Y2, R1, R2, χ, E1.

Signature of knowledge:

SPK[u, `′, `, r, s, t : Y1 = gu
1 g`′ ∧ Y2 = g`′

2

∧ E1 = E1(r, 0) = χr ∧ R1 = r−1y`
2 ∧ R2 = g`

2

∧ E2 = Y1R1 = E2(r, s, t) = yrgsyt
2 ∧ Y2R2 = gt

2](M)


