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Abstract. ESIGN is an efficient signature scheme that has been pro-
posed in the early nineties (see [14]). Recently, an effort was made to lay
ESIGN on firm foundations, using the methodology of provable security.
A security proof [15] in the random oracle model, along the lines of [2],
appeared in support for ESIGN. However, several unexpected difficul-
ties were found. Firstly, it was observed in [20], that the proof from [15]
holds in a more restricted model of security than claimed. Even if it is
quite easy to restore the usual security level, as suggested in [9], this
shows that the methodology of security proofs is more subtle than it at
first appears. Secondly, it was found that the proof needs the additional
assumption that e is prime to ϕ(n), thus excluding the case where e is
a small power of two, a very attractive parameter choice. The difficulty
here lies in the simulation of the random oracle, since it relies on the
distribution of e-th powers, which is not completely understood from a
mathematical point of view, at least when e is not prime to ϕ(n). In this
paper, we prove that the set of e-th power modulo an RSA modulus n,
which is a product of two equal size integers p,q, is almost uniformly dis-
tributed on any large enough interval. This property allows to complete
the security proof of ESIGN. We actually offer two proofs of our result:
one is based on two-dimensional lattice reduction, and the the other uses
Dirichlet characters. Besides yielding better bounds, the latter is one new
example of the use of analytic number theory in cryptography.

1 Introduction

Since the appearance of the celebrated RSA cryptosystem [18], a lot of effort has
been devoted to finding alternative schemes. In the area of signature, a major
challenge is to reduce the computing effort needed from the signer, since it is
well known that RSA requires a full-size modular exponentiation. Among the
potential candidates to answer this challenge is the ESIGN signature scheme,
that has been proposed in the early nineties (see [14]). While RSA generates
signatures by computing an e-th root of a hash value, ESIGN only requests to



find an element whose e-th power is close enough to the hash value. Thus, the
mathematical assumption underlying ESIGN is that, given an element y of Z?

n,
it is hard to find x with e-th power lying in an interval with lower endpoint y
and length say n2/3. This is called the approximate e-th root problem, in short
AERP. Combining this relaxed assumption with the use of an RSA modulus of
the form n = p2q allows a very efficient way to sign, with a computing time essen-
tially equivalent to a single exponentiation to the e-th power. This is especially
attractive when e is small, and in particular a small power of two.

As most newly proposed cryptosystems, ESIGN has attracted cryptanalytic
effort. Papers [3, 21] described several attacks against the underlying problem,
for e = 2, 3. Still, It is fair to say that there is no known attack against AERP
when e is ≥ 4. Recently, in connection with several standardization efforts such
as IEEE P1363, Cryptrec and NESSIE, an effort was made to lay ESIGN on firm
foundations, using the methodology of provable security. A security proof in the
random oracle model, falong the lines of [2], formally relating the security of
ESIGN with the AERP problem, appeared in [15]. However, several unexpected
difficulties were found. Firstly, it was observed in [20] that the proof from [15]
holds in a more restricted model of security than claimed: this model, termed
single occurrence chosen message attack SO-CMA is very similar to the usual
chosen message attack scenario but does not allow the adversary to submit the
same message twice for signature. This observation does not endanger the scheme
in any way, and furthermore, it is quite easy to restore the usual CMA security,
as suggested in [9]. Still, it shows that the methodology of security proofs is
more subtle that it at first appears, a fact already pointed out by Shoup [19],
in the context of public key encryption. Secondly, it was found that the proof
needs the additional assumption that e is prime to ϕ(n), thus exluding some
very attractive parameter choices, notably powers of two. The difficulty here lies
in the simulation of the random oracle, since it relies on the distribution of e-th
powers, which is not completely understood from a mathematical point of view.
In this paper, we prove that the set of e-th power modulo an RSA modulus n,
which is a product of two equal size integers p,q, is almost uniformly distributed
on any large enough interval. In other words, the number of e-th powers modulo
n in any interval of large enough length nδ is close to nδ

d
ϕ(n)

n , where d is the
number of e-th roots of unity modulo n. We actually offer two proofs of our
result. The first proof relies on methods from the geometry of numbers and uses
two-dimensional lattices. The second proof borrows from analytic number theory
and uses Dirichlet characters and the Polya-Vinogradov inequality. Both proofs
yield concrete estimates, which are enough to complete the security proof of
ESIGN. Although the estimates in the second proof are sharper, we have found
interesting to include the two methods, which are of independent interest.

Removing the restriction that e is prime to ϕ(n) may appear a side issue.
However, we believe that it is important both for practical and methodological
reasons. As already noted, ESIGN has has a very fast algorithm for signature
generation, since its main step is a single exponentiation to the e-th power.
Making e a power of two is the best way to take advantage of this feature



and should be allowed by the security proof. Also, as shown by various results,
notably [19, 20], provable security has many subtleties. In the present paper, the
subtlety lies in the simulation of the random oracle. As far as we know, this is the
only example where this part is not straightforward, and the underlying difficulty
may easily be overlooked. In other words, it may appear obvious that picking x
at random and suitably truncating xe mod n simulates a random oracle, which
is the main result of our paper. However, it is not, at least when e is not prime
to ϕ(n) and it is actually related with deep mathematical questions of analytical
number theory.

Our paper is organized as follows: we first recall some preliminaries from
number theory. Next, we present the two proofs. Finally, we produce a proof of
security for ESIGN, not using the assumption that e is prime to ϕ(n). In this
proof, we focus on the simulation of the random oracle, and explain where our
result on power residues is needed.

2 Number theoretic preliminaries

2.1 Lattices

Let n be an RSA modulus. For any integer α, we consider the lattice

L(α) = {(x, y) ∈ Z2 |x− αy = 0 mod n}.

We note that L(α) is a two-dimensional lattice with determinant n. Thus, its
shortest vector should be of euclidean norm of the order

√
n. It can be obtained

by applying the Gaussian reduction algorithm. This algorithm outputs within
time O((log n)3) a basis of L(α) consisting of two non-zero vectors U(α) and
V (α) such that

‖U‖ ≤ ‖V ‖ and |(U, V )| ≤ ‖U‖2/2,

where we have omitted α for clarity. ¿From a geometrical point of view, the
inequalities imply that the angle θ of U and V is such that | cos θ| ≤ 1/2, hence
| sin θ| ≥ √

3/2, and therefore

|U ∧ V | = n ≥
√

3|U ||V |
2

We say that L(α) is an ε-good lattice if |U | is bounded from below by n1/2−ε.
Note that, for such a lattice, we have

|V | ≤ 2√
3
n1/2+ε.

Lemma 1. The number of elements α in Zn such that L(α) is not an ε-good
lattice is at most 4n1−2ε.



Proof. This follows from the fact that the shortest non zero vector of a lattice
L(α) which is not ε-good lies in the disk centered at the origin, with radius
n1/2−ε. This number of integers in this disk is bounded by 4n1−2ε. To conclude,
it is enough to observe that an element (x, y) of the disk other than (0, 0) cannot
belong to two distinct L(α) lattices, unless y is not in Z?

n, which cannot happen
since n is an RSA integer, i.e. has two prime factors of almost equal size.

We let P be the parallelpided spanned by U and V .

Lemma 2. Let L(α)be ε-good. The width of P is at most 2n1/2+ε.

Proof. The square of the width is indeed bounded by

|U |2 + |V |2 + 2|(U, V )| ≤ 2|V |2 + |V |2 ≤ 3|V |2,

which is bounded by 4n1+2ε. The lemma follows.

Lemma 3. Let L(α)be ε-good. Let I be an interval of length nδ, with δ > 1/2.
The square I × I has at most (nδ−1/2 + 2nε)2 elements in L(α).

Proof. let P̃ be obtained by translating P by −u+v
2 . We consider the set X of

lattice points M such that the parallelpiped M + P̃ meets I × I. The number
of such points is clearly an upper bound for the number of lattice points inside
I×I. Now, the various parallelpiped M+P̃ are pairwise disjoint and,by lemma 2,
they are contained in the square J × J , obtained by enlarging I by n1/2+ε on
each side. Summing up the areas of the individual cells, we get:

n|X| ≤ (nδ + 2n1/2+ε)2.

which provides the desired bound on the number |X| of elements of X.

When L(α) is not ε-good, we can show a weaker bound:

Lemma 4. Let α be any integer. Let I be an interval of length nδ, with δ < 1.
The square I × I has at most nδ + 1 elements in L(α).

Proof. For fixed y, there is at most one pair (x, y) such that x−αy = 0 mod n in
any interval of length < n, such as I. This provides the requested bound nδ + 1.

2.2 Dirichlet characters

Let G be a finite (multiplicative) abelian group. A character χ over G is a
multiplicative homomorphism from G into the multiplicative group of complex
numbers. The set of characters over G is a group, called the dual of G and
denoted Ĝ. Its unit χ0 is the principal character, defined by χ0(g) = 1, for any
g ∈ G.

The following is well-known (see [6], chapter 7):



Theorem 1. i) There are exactly |G| characters over G.
ii) For any g 6= 1, the following holds:

∑

χ∈Ĝ

χ(g) = 0

iii) For any χ 6= χ0, the following holds:
∑

g∈G

χ(g) = 0

A Dirichlet character χ is a character over Z?
n, for some integer n. The charac-

ters can be extended to all integers by using the value 0 at integers not invertible
mod n. In the sequel, we will need a bound on the sum of such characters over
large intervals. This is given by the Polya-Vinogradov inequality (see [5] or [6],
chapter 9):

Theorem 2. For any non principal Dirichlet character χ over Z?
n and any in-

teger h, the following holds:

|
h∑

x=1

χ(x)| ≤ 2
√

n lnn.

Remark. When n is a prime number p, and, more generally when χ is a so-called
primitive character, the multiplicative constant 2 in the above can be replaced
by 1. We will not need such refinement.

3 Almost uniform density of e-th powers

We now turn to our main result. We first review the standard situation of an
RSA exponent.

3.1 The case where e is prime to ϕ(n)

Lemma 5. Let n be an RSA modulus and e be an integer prime to ϕ(n). Let I
be an interval of length nδ, with δ < 1. The number of integers from I which are
e-th powers of an element of Z?

n differs from nδ ϕ(n)
n by at most 4.

Proof. Since exponentiation to the e-th power is one-to-one, we have to count
the number of elements in I ∩Z?

n. The number of multiples of p in I differs from
nδ

p by at most one. Similarly for q. Since there may be one multiple of pq, the
final count is almost K, where

K = nδ ϕ(n)
n

and the difference with K is bounded by 3 + nδ

n ≤ 4.

We now turn to the general case. Observe that the set of e-th powers is a subgroup
of Z?

n. Accordingly, we will adopt this group-theoretic setting.



3.2 A proof based on lattices

We prove the following:

Theorem 3. Let n be an RSA modulus. Let I be an interval of length nδ, with
2/3 < δ < 1. Let G be any subgroup of Z?

n and let d be the number of elements of
the quotient group Z?

n/G. Then, for some constant M , the number of elements
of I ∩G is K(1 + λ(I)), where

K =
nδ

d

ϕ(n)
n

and |λ(I)| is bounded by Mn1/3−δ/2. Furthermore, M has the explicit bound
M ≤ 5d.

Remark. Observe that the case where G = Z?
n is an easy consequence of lemma 5.

Proof. We number the elements of Z?
n/G as g1, · · · gd (with g1 the unit of G),

and we let ai be the number of elements of Z?
n ∩ I which equal gi modulo G. We

first show an upper bound for

A =
d∑

i=1

a2
i

For any pair (x, y) in I× I, we define σ(x, y) as xy−1 mod n, when x, y both
belong to Z?

n and set σ(x, y) = ∞ otherwise. Observe that A can be interpreted as
the number of elements (x, y) of Z?

n∩I such that σ(x, y) ∈ G. Indeed, xy−1 mod n
is in G if and only if x and y are equal modulo G. We now use a counting
argument to estimate the size of σ−1(α), when α ranges over G. We distinguish
two cases

1. When L(α) is an ε-good lattice, then, by lemma 3, σ−1(α) has at most
(nδ−1/2 + 2nε)2 elements.

2. Otherwise, we use lemma 4 to get that σ−1(α) has at most nδ + 1 elements,
which we replace by the (crude) bound 2nδ.

Since there are at most 4n1−2ε values of α which give rise to a lattice L(α) which
is not ε-good, we get

A ≤ ϕ(n)
d

(nδ−1/2 + 2nε)2 + 8n1−2ε+δ.

Upperbounding ϕ(n) by n,we get:

A ≤ n2δ

d
(1 + 2n1/2+ε−δ)2 + 8n1−2ε+δ.

We now set ε = 1/6. This yields the bound

A ≤ n2δ

d
(1 + 2n2/3−δ)2 + 8n2δn2/3−δ.



Since δ is > 2/3, n2/3−δ is < 1 and its square is bounded by n2/3−δ. We finally
get:

A ≤ n2δ

d
(1 + (8 + 8d)n2/3−δ).

We now use the fact that the sum B =
∑d

i=1 ai is essentially known. Referring
to the proof of lemma 5 above, we see that it differs from

nδ ϕ(n)
n

by at most 4. Now, the vector (a1, · · · , ad) lies on the d-dimensional hyperplane
H defined by B =

∑d
i=1 xi. Let (b1, · · · , bd) be the orthogonal projection of the

origin on H. It is easily seen that bi = B/d. The square of the euclidean distance
between (a1, · · · , ad) and (b1, · · · , bd) is

∑d
i=1 a2

i +
∑d

i=1 b2
i − 2

∑d
i=1 aibi. This is

A− B2

d . we are thus led to find a lower bound for B2

d . Using the same estimate
as for the proof of lemma 5, we write

B2

d
≥ n2δ

d
(
ϕ(n)

n
− 4n−δ)2.

Using the fact that we have an RSA modulus, we use the lower bound 1 − 3√
n

for ϕ(n)
n and, combining with the above, obtain the final bound

B2

d
≥ n2δ

d
(1− 14√

n
).

Finally, piecing bounds together, we get:

A− B2

d
≤ n2δ

d
(22 + 8d)n2/3−δ,

which provides a bound for (a1 − b1)2 = (a1 − B/d)2. Observing that we only
have to deal with d ≥ 2, we easily get that |a1 −B/d| is at most

√
19nδn1/3−δ/2.

Replacing B/d by the constant

K =
nδ

d

ϕ(n)
n

,

yields a minute difference ≤ 4/d, which we handle by slightly raising the
√

19
constant. Thus, a1 can be written K(1 + λ(I)), with

|λ(I)| ≤ (
√

19 + γ)d
n

ϕ(n)
n1/3−δ/2,

We finally handle the term n
ϕ(n)by raising the constant again. This gives the

requested bound
|λ(I)| ≤ 5dn1/3−δ/2.



3.3 A proof based on characters

We now show that a better bound for λ(I), can be obtained as a consequence of
the Polya-Vinogradov inequality of theorem 2.

Theorem 4. Let n be an RSA modulus. Let I be an interval of length nδ, with
1/2 < δ < 1. Let G be any subgroup of Z?

n and let d be the number of elements of
the quotient group Z?

n/G. Then, for some constant M , the number of elements
of I ∩G is K(1 + λ(I)), where

K =
nδ

d

ϕ(n)
n

,

and |λ(I)| is bounded by Mn1/2−δ lnn. Furthermore, M has the explicit bound
M ≤ 5d.

Proof. We consider the dual Ĥ of the quotient group H = Z?
n/G. For any char-

acter χ over H, we can extend χ to G, by composing with the canonical homo-
morphism from G onto H. We still denote by χ, the resulting caracter. Since
there are d characters altogether, we get, using the relations in theorem 1, that
the number of elements of I ∩G is equal to the sum

1
d

∑

x∈I

∑

χ∈Ĝ

χ(x),

Changing the order of the sums, we see that this number consists of two terms:

1. one comes from the principal character and equals: |I∩Z
?
n|

d ,
2. the others come from the non trivial characters, and, by the Polya-Vinogradov

inequality, each is bounded by 4
dn1/2 lnn.

By lemma 5, the first contribution differs from

K =
nδ

d

ϕ(n)
n

by at most 4
d . Summing up with the second contribution, we obtain the bound:

4
d

+
4(d− 1)

d
n1/2 lnn ≤ 4n1/2 lnn.

Altogether, we obtain that the number of elements of I ∩G is K(1+λ(I)), with

λ(I) ≤ 4d
n

ϕ(n)
n1/2−δ lnn,

Using the fact that n is an RSA modulus, we estimate ϕ(n), by n(1−4/
√

n),
and bound the multiplicative constant by a term

' 4d(1 +
4√
n

).

This is bounded by 5. The result follows.



It should be noted that an even better bound has been obtained by Burgess [4].
The bound covers the case 1/4 < δ < 1, and reads:

|λ(I)| ≤ Mdn
1
4r− δ

r+1 lnn,

for any positive r. However, the constant M is not not explicit, and therefore the
improvement is not well suited for our purposes.

4 The security proof of ESIGN

In this section, we review the proof of security for ESIGN in view of the previous
results. For the reader’s convenience, we first provide a short description of the
scheme and of the underlying mathematical problem AERP. We follow [15].

4.1 Description

The key generation algorithm of ESIGN chooses two large primes p, q of equal
size k and computes the modulus n = p2q. The sizes of p, q are set in such a
way that the binary length |n| of n equals 3k. Additionally, an exponent e > 4
is chosen, possibly a small power of 2.

Signature generation uses a hash function H, outputting strings of length
k − 1, and is performed as follows:

1. Pick at random r in Z?
pq.

2. Convert (0‖H(m)‖02k) into an integer y and compute z = (y − re) mod n.
3. Compute

w0 = d z

pq
e

w1 = w0.pq − z

4. If w1 ≥ 22k−1, return to step 1.
5. Set u = w0.(ere−1)−1 mod p and s = r + upq.
6. Output s as the signature of m.

Signature verification converts integer se mod n into a bit string S of length
3k and checks that [S]k = 0‖H(m), where [S]k denotes the k leading bits of S.

The key idea in ESIGN is that the arithmetical progression re mod n + tpq
consists of e-th powers of integers easily computed from r. The signature gen-
eration algorithm simply adjusts t so as to fall into a prescribed interval, with
lower end-point y. The test at step 4 actually sets the length of this prescribed
interval to 22k−1.

The following lemma will prove useful in the sequel.

Lemma 6. For a fixed message m, the e-th power se mod n of the output s of
the signature generation algorithm is uniformly distributed over the set of e-th
powers of elements of Z?

n lying in the interval [y, y + 22k−1).



Proof. Denote by S(y) the intersection of the set of e-th powers in Z?
n and the

interval [y, y + 22k−1). Observe that s = r + tpq uniquely defines r = s mod pq
from s. This shows that any element in S(y) comes from a single r. To see
that all elements in S(y) are uniformly hit, pick w ∈ S(y), consider any r in
Z?

pq such that re = w mod pq, and apply the signature generation algorithm
with r, disregarding the check at step 4. This produces a value of s such that
se = re = w mod pq. Thus, w and se mod n lie in the arithmetical progression
se + tpq. Since this arithmetical progression has a single element in the interval
[y, y + 22k−1), we get that se mod n = w. The check at step 4 turns out correct
and the signature generation algorithm duly hits w as many times as the number
of e-th roots of an e-th power.

4.2 The approximate e-th root problem

As noted in the previous section, RSA moduli of the from p2q offer a very efficient
way to solve the following problem, having knowledge of the factorization of n:
given n and y in Z?

n, find x such that xe mod n lies in the interval [y, y +22k−1),
where the bit-size of n is 3k and [y, y + 22k−1) denotes {u|y ≤ u < y + 22k−1}.

It is conjectured that the above problem, called the approximate e-th root
problem (AERP) in [15], is hard to solve. More precisely, denote by Succaerp(τ, k)
the probability for any adversary A to find an element whose e-th power lies in
the prescribed interval, within time τ , in symbols:

Pr[(n, e) ← K(1k), y ← Zn, x ← A(n, e, y) : (xe mod n) ∈ [y, y + 22k−1)],

then, for large enough moduli, this probability is extremely small. Variants of
the above can be considered, where the length of the interval is replaced by 22k

or 22k+1.

4.3 Security proof

We now complete the security proof of ESIGN, in order to cover the case where
e is not prime to ϕ(n). We use the the random oracle model and prove the
following security result, where Texp(k) denotes the computing time of modular
exponentiation modulo a 3k-bit integer.

Theorem 5. Let A be a SO-CMA-adversary against the ESIGN signature scheme
that produces an existential forgery, with success probability ε, within time τ ,
making qH queries to the hash function and qs distinct requests to the signing
oracle respectively. Then, AERP can be solved with probability ε′, and within
time τ ′, where

ε′ ≥ ε− 2−k+1

qH
− (qH + qs)× (3/4)k − ke2(qH + qs)

2k−6

τ ′ ≤ τ + k(qs + qH) · Texp(k).



Our method of proof is inspired by Shoup [19]. It differs from [15] but extends
the proof given in [20]. The security estimates are similar and show the same
multiplicative loss qH : contrary to schemes based on self-reducible problems,
it does not seem that this can be avoided. Recall that earlier proofs used the
assumption that e is prime to ϕ(n), which we avoid. This brings additional terms
in the security estimates, which account for the simulation of the random oracle.
Also note that our security model is the single occurrence chosen message attack
SO-CMA from [20], where the attacker is only allowed to query each message
once. As already noted, it is easy to modify the scheme to withstand CMA
attackers and our proof can be modified accordingly.

As usual, the proof considers a sequence of Game1, Game2, etc of modified
attack games starting from the actual game Game0. Each of the games operates
on the same underlying probability space, only the rules defining how the view
is computed differ from game to game.

Proof. (of Theorem 5). We consider an adversary A outputting an existential
forgery (m, s), with probability ε, within time τ . We denote by qH and qs re-
spectively the number of queries from the random oracle H and from the signing
oracle. As explained, we start by playing the game coming from the actual ad-
versary, and modify it step by step, until we reach a final game, whose success
probability has an upper-bound obviously related to solving AERP on a random
instance (n, e, v).

Game0: The key generation algorithm K(1k) is run and produces a pair of keys
(pk, sk). The adversary A is fed with pk and, querying the random oracle H
and the signing oracle Σsk, it outputs a pair (m, s). We denote by S0 the
event that Vpk(m, s) = 1. We use a similar notation Si in any Gamei below.
By definition, we have

Pr[S0] = ε.

Game1: In this game, we discard executions, which end up outputting a valid
message/signature pair (m, s), such that m has not been queried from H.
This means restricting to the event AskH that m has been queried from H.
Unwinding the ESIGN format, we write: se = 0 ‖w ‖ ? modn. If AskH does
not hold, H(m) is undefined, and the probability that H(m) = w holds is
1/2k−1: Pr[S0 | ¬AskH] ≤ 2−k+1. Thus,

Pr[S1] = Pr[S0 ∧ AskH] ≥ Pr[S0]− 2−k+1.

Game2: In this game, we choose at random an index κ between 1 and qH . We
let mκ be the κ-th message queried to H by the adversary. We then discard
executions which output a valid message/signature pair (m, s), such that
m 6= mκ. Since the additional random value κ is chosen independently of
the execution of Game1,

Pr[S2] = Pr[S1]/qH .



Game3: In this game, we immediately abort if a signing query involves message
mκ. By the definition of existential forgery, this only eliminates executions
outside S2. Thus:

Pr[S3] = Pr[S2].

Game4: We now simulate the random oracle H, by maintaining an appropriate
list, which we denote by H-List. For any fresh query m, other than the κ-th
query, we pick at random u ∈ Zn and compute z = ue mod n, until the
most significant bit of z is 0. We next parse z as 0 ‖w ‖ ?, where w is of
length k− 1 and check whether z −w · 22k is less than 22k−1. If this is true,
we store (m,u, w) in H-List and returns w as the answer to the oracle call.
Otherwise we restart the simulation of the current query. From theorem 4, we
see that the game differs from the previous due to a slightly biased simulated
distribution. This distribution is obtained by setting z = w22k, counting the
number of e-th powers of elements of Z?

n lying in the interval [z, z + 22k−1),
and multiplying by a suitable constant for normalisation. Recall that, an
element x of [z, z +22k−1) is an e-th power modulo n if and only if x mod pq
is an e-th power modulo pq. This is basically a restatement of the key idea
of ESIGN. Thus, setting z′ = z mod pq, we have to count the number ν(z)
of elements of the interval [z′, z′ + 22k−1), which belong to the subgroup
G of e-th powers in Z?

pq. By theorem 4, the result is K(1 + λ(z)), where
|λ(z)| is bounded by M(pq)1/22−2k+1 ln pq, and where K, M are appropriate
constants. This yields

|λ(z)| ≤ M2−k+1/2 ln pq

Upperbounding ln pq by 3/2 log pq, we get:

|λ(z)| ≤ 3Mk2−k+1/2

Now, it is easily seen that any probability distribution obtained by normal-
izing a function ν(z) = K(1 + λ(z)), where λ(z) is bounded by λ, differs
from the uniform distribution by at most 2λ

1−λ ' 2λ. Taking into account the
bound M ≤ 5d, where d is the number of elements of the quotient of Z?

pq

by the sugroup of e-th powers, and bounding d by e2, we conclude that the
statistical distance of the simulated distribution to the uniform distribution
is bounded by twice the bound on λ, which is 30e2k2−k+1/2 ≤ 64e2k2−k.
Summing up for all oracle calls, we get:

| Pr[S4]− Pr[S3] | ≤ ke2(qH + qs)
2k−6

.

Game5: Here, we modify the previous simulation stopping and aborting the game
when the H query cannot be simulated after k trials. This game differs from
the previous one when w remains undefined after k attempts.

Pr[S5] ≥ Pr[S4]− (qH + qs)× (3/4)k.



Game6: We complete the simulation by replacing H(mκ) by v, where v is an
additional random string, which serves as an input to the AERP problem.
The distribution of H-outputs is unchanged:

Pr[S6] = Pr[S5].

Game7: We finally simulate the signing oracle: for any m, whose signature is
queried, we know that m = mκ does not hold, since corresponding executions
have been aborted in Game3. Thus H-List includes a triple (m,u, w), such that
ue mod n has its k leading bits of the form 0 ‖H(m). Accordingly, u provides
a valid signature of m. Furthermore, referring to lemma 6, we see that the
signing oracle outputs a value s, such that se mod n is uniformly distributed
over all elements of Z?

n whose k + 1 leading bits match up with 0‖H(M)‖0.
Keeping in mind that H(m) is chosen at random, we conclude that s and u
follow an identical distribution. We now argue that the simulation is perfect.
The key fact is that, due to the SO-CMA setting, all inputs m submitted
to the H oracle by the signing oracle during execution are distinct. This
implies that the values of s returned at each invocation of the signing oracle
are independent. Since the values of u are also independent, the overall
distribution of simulated signatures obtained at Game7 is identical to the
distribution of actual signatures from Game6. Therefore,

Pr[S7] = Pr[S6].

Summing up the above inequalities, we obtain

Pr[S7] ≥ Pr[S4]− (qH + qs)× (
3
4
)k ≥ Pr[S3]− (qH + qs)× (

3
4
)k − ke2(qH + qs)

2k−6

≥ Pr[S1]
qH

− (qH + qs)× (
3
4
)k − ke2(qH + qs)

2k−6

≥ ε− 2−k+1

qH
− (qH + qs)× (

3
4
)k − ke2(qH + qs)

2k−6

When Game7 terminates outputting a valid message/signature pair (m, s), we
unwind the ESIGN format and get se = (0 ‖ v ‖ ?) mod n, with v = H(m). If S7

holds, we know that m = mκ andH(m) = v. This leads to an element whose e-th
power lies in the interval [v22k, v22k + 22k), thus solving an instance of AERP.
We finally have: Pr[S7] ≤ Succaerp(τ ′, k), where τ ′ denotes the running time of
Game7. This is the requested bound. Observe that τ ′ is the sum of the time for
the original attack, plus the time required for simulations, which amounts to at
most k(qs + qH) modular exponentiations.

Remark. The security proof that appears in [15] replaces the k multiplicative
factor in the running time by 4. This is intuitively related to the fact that, on
average, it takes at most 4 steps to perform the simulation of each call to H in
Game4. It is actually possible to improve our time estimate

τ ′ ≤ τ + k(qs + qH) · Texp(k),



to
τ ′ ≤ τ + 4(qs + qH) · Texp(k),

This uses a method due to Jonsson [12]. It modifies the strategy for the simu-
lation of H in Game5: instead of limiting the number of trials allowed, at each
execution, to find a value of z in the correct range, it sets a counter that bounds
the overall number of retries, during the entire algorithm.
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