
A Complete and Explicit Security Reduction
Algorithm for RSA-based Cryptosystems

Kaoru Kurosawa1, Katja Schmidt-Samoa2, and Tsuyoshi Takagi2

1 Ibaraki University,
4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan

kurosawa@cis.ibaraki.ac.jp
2 Technische Universität Darmstadt, Fachbereich Informatik,

Alexanderstr.10, D-64283 Darmstadt, Germany
{samoa,takagi}@informatik.tu-darmstadt.de

Abstract. In this paper, we introduce a conceptually very simple and
demonstrative algorithm for finding small solutions (x, y) of ax + y =
c mod N , where gcd(a, N) = 1. Our new algorithm is a variant of the
Euclidian algorithm. Unlike former methods, it finds a small solution
whenever such a solution exists. Further it runs in time O((log N)3),
which is the same as the best known previous techniques, e.g. lattice-
based solutions.
We then apply our algorithm to RSA-OAEP and RSA-Paillier to ob-
tain better security proofs. We believe that there will be many future
applications of this algorithm in cryptography.

Keywords: Provable security, Euclidean algorithm, Lattice reduction,
RSA cryptosystem.

1 Introduction

Lattice reduction algorithms have been successfully applied to many cases of
modern cryptography. Especially, this methods allow us to find a small solution
(x, y) of the linear modular congruence

ax + y = c mod N, (1)

where the integers a and N are coprime, i.e. gcd(a,N) = 1. This technique was
used to prove the security of RSA-OAEP and RSA-Paillier.

By using the above mentioned technique, Fujisaki et al. showed that RSA-
OAEP is semantically secure against adaptive chosen ciphertext attacks (IND-
CCA2) under the RSA assumption in the random oracle model [FOPS01] after
important works of [BR95,Sho02]. In the random oracle model, the OAEP con-
version is a technique to design a secure encryption scheme from any trapdoor
one-way permutation [BR95]. We write f -OAEP if f is the underlying trapdoor
function. Today’s most famous cryptosystem, RSA-OAEP, is a result of this
work.



In the standard model, on the other hand, it is known that RSA-Paillier
encryption scheme is semantically secure against chosen plaintext attacks (IND-
CPA). After the work of [ST02], Catalano et al. proved that the one-wayness
of RSA-Paillier is equivalent to that of RSA [CGHGN01] by using the above
technique with c = 0.

Now it is an important aim in cryptography to improve security reduction
proofs, because the proposed size of the security parameters of a cryptosystem
is directly influenced by the reduction costs.

In this paper, we introduce a conceptually much simpler and demonstrative
algorithm for finding small solutions (x, y) of eq.(1). Our new algorithm is a
variant of the Euclidian algorithm. Unlike the lattice-based method, it exploits
that the sought-after small solution is non-negative. Further, it runs in time
O((log N)3), which is the same as the lattice-based method.

We then apply our algorithm to the security proof of RSA-OAEP to enhance
the advantage of the reduction algorithm. The proof of RSA-OAEP is divided
into two parts [FOPS01]. The first part was to prove the semantic security of
the general OAEP conversion scheme under the so-called partial-domain one-
wayness of the underlying trapdoor permutation. The second part was to exploit
the homomorphic properties of RSA function in order to show the equivalence
of partial-domain one-wayness and full-domain one-wayness in the RSA case.

However, the second part does not work for all values of a of eq.(1). More
precisely, it works if the lattice La,N = {(u, v) ∈ Z2|au = v mod N} contains no
non-zero vector of length at most 2k0+2, where k0 is the maximal bit-length of
the sought-after small solution. Since there are approximately π22k0+4 < 22k0+6

lattices containing a non-zero vector shorter than 2k0+2, the number of bad
values for a is bounded above by 22k0+6. Obviously, this result is not optimal,
especially if the bound k0 is close to half of the bit-length of N . One reason
for the non-optimal performance of the lattice-based method is that it does not
exploit all the information given about the sought-after solution. Namely, it
takes no advantage of the fact that the solution is non-negative, not only small
in absolute value.

For this problem, we are able to upper-bound the number of bad values for
a by 22k0+1 instead of 22k0+6.

Finally for RSA-Paillier, we use our new algorithm to construct an alterna-
tive reduction proof, extending the important work of Catalano et al. [CNS02].
Based on the analysis of our algorithm, we give the exact security analysis while
Catalano et al. gave only asymptotic results.

But we want to point out that the major aim of this paper is not the ad-
vancement of the reduction proofs of RSA-OAEP and RSA-Paillier, respectively.
Indeed, the achieved improvements are not dramatic ones. In fact, the main
objective of this paper is the introduction of a new algorithm for solving two-
variable linear congruence with small solutions. We believe that there will be
many future applications of this algorithm in cryptography. To confirm this as-
sumption, we revisit the security proofs of RSA-OAEP and RSA-Paillier as two
applications.



(Related works:) Note that this task is not a new one in cryptography. In 1985,
De Jonge and Chaum developed an attack against some kinds of RSA signature
schemes [JC86], which was enlarged in 1997 by Girault and Misarsky [GM97],
[Kat01]. These attacks utilize an affine variant of the Euclidian algorithm for
solving two-variable linear modular equations with small solutions. But it has
to be stressed, that this algorithm may fail, even if small solutions exist.

If c = 0, it is possible to find small solutions by means of continued frac-
tions. Again, the Euclidian algorithm is used. But as before, this method is only
heuristic, i.e. it does not succeed with all input.

Our algorithm, on the contrary, works for arbitrary inputs.

This paper is organized as follows: In Section 2 the security reduction algo-
rithms of the RSA-OAEP and the RSA-Paillier cryptosystem are reviewed. In
Section 3 we present our proposed algorithm for solving a two-variable modular
equation with small solutions. In Section 4 the proposed algorithm is applied
to the RSA-OAEP and the RSA-Paillier cryptosystem. In Section 5 we state a
concluding remark.

2 Security Reduction Algorithms of RSA-OAEP and
RSA-Paillier

In this section, we review the reduction proofs of the semantic security of RSA-
OAEP and the one-wayness of RSA-Paillier. In both cases we are confronted
with the problem of finding small solutions of modular congruences. We sketch
the existing solutions which utilize lattice reduction methods.

2.1 RSA-OAEP

Let f : {0, 1}k 7→ {0, 1}k be a one-way trapdoor permutation. The random oracle
reduction proof of f -OAEP states that if there is a CCA2-adversary against the
semantic security of f -OAEP with a non-negligible advantage and running time
t, then we are able construct an algorithm A with the following abilities: On the
input f(s1, s2), A computes in time polynomial in t and in the number of the
adversary’s queries to the different oracles (decryption and hash) a set S, such
that the probability of s1 being an element of S is non-negligible, too. In few
words, the semantic security of f -OAEP in the random oracle model is reduced
to the partial-domain one-wayness of f .

Now we consider the case f = RSA. We will sketch how the partial-domain
one-wayness of RSA is reduced to its full-domain pendant. First, we introduce
some notations. If x is a natural number, we write [x]l for the l most significant
bits and [x]l for the l least significant bits of the binary representation of x,
respectively. Let N be a k−bit RSA modulus and k0 < k/2. Suppose there is
an algorithm A that on the input C = me mod N returns a set S of size q
containing the integer x := [m]k−k0 . We show how to solve the RSA problem
(compute m from C = me mod N) using A as a subroutine. Pick any a ∈ Z×N



at random and run A on the inputs C and C ′ := Cae mod N . Because of the
homomorphic properties of the RSA function we know that C ′ is the encryption
of ma mod N . Hence the two output-sets produced by A contain the k−k0 most
significant bits of m and ma mod N , respectively. We define u := [m]k−k0 , r :=
[m]k0 , v := [ma mod N ]k−k0 and s := [ma mod N ]k0 . Thus, m = u · 2k0 + r and
ma mod N = v · 2k0 + s holds, leading to

v · 2k0 + s = a · (u · 2k0 + r) mod N

⇒ ar = s + c mod N, c = (v − ua) · 2k0 mod N. (2)

Thus for each of the q2 possible combinations u, v taken from the output-sets
of the two A-runs, we get a linear modular congruence in the two unknowns r
and s, where 0 ≤ r, s < 2k0 <

√
N . Note that therefore the reduction cost is

quadratic in q (the value q arises in the random oracle part of the RSA-OAEP
security proof, namely q equals the number of ASS ’s queries to one of the hash
oracles, where ASS is an adversary against the semantic security of the OAEP
conversion scheme). This is the main reason why the RSA-OAEP security proof
is not meaningful for real-life parameters. Of course, an improvement of the
congruence-solving-step will not affect this problem. Hence it is an important
future task to find a reduction proof where only one A-run is needed.

In the following, we call x, y a small solution of the congruence (2) iff 0 ≤
x, y < 2k0 holds. We explain how Fujisaki et al. find a small solution using the
Gaussian reduction algorithm. This algorithm can be viewed as a generalization
of the Euclidian algorithm in dimension 2. For all results concerning lattice
theory see [MG02], [SF]. At first, compute a reduced basis (U, V ) of the lattice
La,N = {(x, y) ∈ Z2|ax = y mod N} using the Gaussian algorithm. As we can
easily find a sufficiently short basis of La,N , for example take the vectors (1, a)
and (1, a + N), this can be done in time O((log N)3). Let T be a small solution
and T0 be any solution of (2). To find T0 = (x0, y0), we can choose x0 as we like
and then compute y0 = ax0 − c mod N . Define l = 2k0+2 and assume that La,N

is a so called l-good lattice, meaning that there exists no non-zero lattice vector
shorter than l. This choice of l together with the properties of a reduced basis
guarantee two important facts: in the first place, T is unique as a small solution
of (2). Secondly, the coefficients of T in the basis (U, V ) are smaller than 1/2 in
absolute value. Thus, the coefficients (in (U, V )) of the lattice point T − T0 can
be constructed simply by taking the closest integers to the coefficients of −T0.
This is a consequence of the uniqueness of basis representation. From knowledge
of T0 and T − T0, we can easily construct T .

But as stated above, this method only works if the randomly chosen a yields
an l-good lattice. We already have seen that the absolute number of bad values
for a can be bounded above by 22k0+6, consequently the probability of choosing
a bad value is smaller than 22k0+6−k. The total advantage of this reduction is
therefore greater than ε′ = ε(ε − 22k0+6−k), where ε denotes the advantage of
the partial inverter A. Note that ε′ is non-negligible in k = log N , if ε is non-
negligible in k and if k0 is adequate smaller than k, i.e. there is a rational number
0 < t < 1/2 such that k0 < tk.



2.2 RSA-Paillier

Let N, e be the RSA public-key. The Hensel lifting problem of the RSA en-
cryption function is to compute re mod N2 for a given ciphertext re mod N . In
2002, Sakurai and Takagi proved that RSA-Paillier is one-way iff the Hensel-
lifting problem is hard [ST02]. Moreover, they introduced a reduction algorithm
for solving the RSA problem using the Hensel-lifting oracle as a subroutine. But
this algorithm was not efficient (i.e. for each bit of the secret message two oracle-
calls were needed), and it could be proven to achieve a non-negligible advantage
only in case of a perfect Hensel-lifting oracle. A short time later, Catalano et al.
were able to show that the RSA problem could be solved by calling the (poten-
tially non-perfect) Hensel-lifting oracle only twice [CNS02], hence they reduced
the one-wayness of RSA-Paillier to the RSA problem. We shortly explain their
technique in the following.

Assume that a random RSA ciphertext c = re mod N is given. We con-
struct an algorithm that computes r given c,N, e using the Hensel lifting. The
algorithm obtains re mod N2 by invoking the Hensel lifting oracle. Then it
computes aere mod N for randomly chosen integer a ∈ (Z/NZ)×, and obtains
µe mod N2 from the Hensel lifting oracle, where µ = ar mod N . There is an
integer z such that ar = µ(1 + zN) mod N2. The integer z mod N can be com-
puted due to aere = µe(1+ ezN) mod N2. Consider the two-dimensional lattice
L = {(R, U) ∈ Z2|aR = U(1+zN) mod N2}. By the lattice reduction algorithm
we can find a vector (r′, µ′) ∈ L∩ [1, . . . , N −1]2 in polynomial time of log N . As
the sought-after vector (r, µ) is an element of L, too, we have the relationship
r′µ = rµ′ mod N2. Moreover, due to the size constraints 0 < r, r′, µ, µ′ < N we
conclude that in fact equality holds, i.e. r′µ = rµ′.
Thus, r and µ are multiples of r′/gcd(r′, µ′) and µ′/gcd(r′, µ′), respectively, with
a factor that is given by gcd(r, µ). As with overwhelming probability this factor
is sufficiently small, it can be found efficiently by an exhaustive search.

Catalano et al. showed that their method works in time polynomial in log N
with a non-negligible advantage, but they gave no concrete bounds.

3 The Proposed Reduction Algorithm

Let N be a natural number, 0 < a < N , 0 ≤ c < N , and gcd(a,N) = 1. In this
section we give the outline of the algorithm Lin Cong for finding small solutions
of the two-variable linear modular congruence

ax = y + c mod N. (3)

To be more concrete, we introduce an algorithm for finding so-called x-minimal
solutions of (3).

Definition 1. The pair (x̂, ŷ), 0 ≤ x̂ < N, 0 ≤ ŷ < B is called a x-minimal
solution of (3) with respect to the bound B, 0 < B < N , if (x̂, ŷ) possesses the
following properties:



1. ax̂ = ŷ + c mod N.
2. x̂ fulfills the following minimality condition: If (xalt, yalt) is a solution of the

congruence (3) where 0 ≤ yalt < B holds, then we have x̂ ≤ xalt.

Note that due to the condition gcd(a,N) = 1 for each B there is exactly one
x-minimal solution of (3) w.r.t. B.

As a second step, we propose an efficient variant of the algorithm with com-
plexityO((log N)3). One application of the new algorithm is to replace the lattice
based methods used in the reduction proofs described above. Note that we al-
ways use {0, 1, . . . , N − 1} as representatives for the residue classes modulo N .
The outline of the proposed algorithm is as follows:

Lin Cong (Outline)
Input: a, c, N, B, where 0 < a, B < N , 0 ≤ c < N , and gcd(a,N) = 1
Output: x̂, ŷ such that ax̂ = ŷ + c mod N and x̂ ≥ 0 is minimal

with respect to the property that 0 ≤ ŷ < B
1. set a′ = a, c′ = c,N ′ = N
2. set y′ = −c′ mod N ′

3. while y′ ≥ B do
4. set (a′, N ′) = (−N ′ mod a′, a′) (parallel assignment)
5. set c′ = c′ mod N ′, y′ = −c′ mod N ′

6. set ŷ = y′, x̂ = a−1 · (ŷ + c) mod N
7. return (x̂, ŷ)

In the following, we describe the idea of the proposed algorithm.
First note that gcd(a′, N ′) = gcd(a,N) = 1 and a′ < N ′ holds in any iteration.
Therefore we see that a′ = 0 is only possible if the corresponding N ′ (the old
value a′) equals 1. If this is the case, in step 5 of this iteration we compute y′ = 0
and the algorithm will terminate. Consequently, the assertion a′ = −N ′ mod a′

is always defined.
Let (x̂, ŷ) be the unique x-minimal solution of (3) w.r.t. B. We show that the
algorithm Lin Cong (Outline) on the inputs a, c, N, B returns (x̂, ŷ). To be more
precise, the algorithm finds ŷ and then computes the corresponding x̂ = a−1 ·
(ŷ + c) mod N . The main idea of the algorithm is to reduce the original problem
to a smaller instance and iterating this process. This is done as follows: From
ax̂ = ŷ + c mod N we deduce ax̂ = ŷ + c + kN for a suitable k ∈ Z. Euclidian
division yields N = aq + r with 0 ≤ r < a and a positive integer q. Hence we
have

ax̂ = ŷ + c + kN = ŷ + c + k(aq + r) ⇒ −rk = ŷ + c + a(kq − x̂)
⇒ −rk = ŷ + c mod a

Therefore we have constructed a new linear modular congruence with the new
module a in the role of N and the new factor −r = −N mod a in the role of a.
A solution of this new congruence is given by (k, ŷ) = (ax̂−ŷ−c

N , ŷ). The crucial
point is the fact that this solution is the x-minimal solution w.r.t. B of the new



congruence.
We define the following sequences by iterating this process:

N0 = N a0 = a c0 = c x0 = x̂

Ni+1 = ai ai+1 = −Ni mod ai ci+1 = ci mod Ni+1 xi+1 = aixi−ŷ−ci

Ni

Note that the first three columns exactly describe the corresponding se-
quences produced by the algorithm Lin Cong (Outline). For this reason, we denote
by fLin Cong the transformation (Ni, ai, ci) 7→ (Ni+1, ai+1, ci+1). Let us write
congi for the linear modular congruence defined with the parameters ai, ci and
Ni. Inductively, we conclude that the value xi occurring in the last column leads
to a solution (xi, ŷ) of congi. Moreover, we can deduce the following lemma (for
the rather technical proof see Appendix A):

Lemma 1. Let (xi, ŷ) be the x-minimal solution of congi w.r.t. B and let xi > 0.
Then (xi+1, ŷ) is the x-minimal solution of congi+1 w.r.t. B. In particular, the
y-value of the current x-minimal solution w.r.t. B does not change during the
transformation fLin Cong, as long as xi is non-negative.

Hence with each iteration of the while loop the transformation fLin Cong

constructs a smaller problem, because the sequence of the moduli Ni is strictly
monotone decreasing. The problem of finding the x-minimal solution is trivial
in the following case:

Definition 2. Let a, c, N, B be integers, where 0 < a, B < N , 0 ≤ c < N ,
and gcd(a,N) = 1 hold. The congruence ax = y + c mod N satisfies the zero-
minimum condition with respect to B, if −c mod N < B holds.

In fact, it is an easy observation that the x-minimal solution of the congru-
ence ax = y + c mod N w.r.t. B is given by the pair (0,−c mod N) iff ax =
y + c mod N satisfies the zero-minimum condition w.r.t. B. The aim of the algo-
rithm Lin Cong (Outline) is to convert the original congruence into a congruence
satisfying the zero-minimum condition w.r.t. B. This is done using the trans-
formation fLin Cong, which does not affect the y-value of the current x-minimal
solution w.r.t. B.

Indeed, we can prove the correctness of algorithm Lin Cong (Outline):

Theorem 1. Algorithm Lin Cong (Outline) is correct, i.e. given integers a, c, N, B,
where 0 < a,B < N , 0 ≤ c < N , and gcd(a,N) = 1 holds, the algorithm
terminates and outputs the unique x-minimal solution x̂, ŷ of the congruence
ax = y + c mod N with respect to the bound B (see Definition 1).

Proof. Let yi denote the y-value computed by the algorithm Lin Cong (Outline)
in the ith iteration of the while loop. Note that per definition this value yields
the solution (0, yi) of congi. For each i = 0, 1, 2, . . . the following holds: Either
congi satisfies the zero-minimum condition w.r.t. B and consequently (0, yi) is
the x-minimal solution of congi w.r.t. B. Or xi, the x-value of the x-minimal
solution of congi, is greater zero and lemma 1 tells us that (xi+1, ŷ) equals the



x-minimal solution of congi+1 w.r.t. B. As the sequence of the moduli Ni is
strictly monotone decreasing, there must be an i ≥ 0 such that congi satisfies
the zero-minimum condition w.r.t. B. If this iteration is reached (i.e. we have
yi < B for the first time), then (0, yi) = (xi, ŷ) must hold because according to
lemma 1 we know that the y-value of the x-minimal solution w.r.t. B has not
changed. Obviously, the x-value computed in step 6 is the correct one.

Analyzing algorithm Lin Cong (Outline) we see that the parallel assignment in
step 4 describes a variant of the Euclidian algorithm (set (a, b) = (−b mod a, a)
instead of set (a, b) = (b mod a, a) for a ≤ b). Obviously, the result remains the
same, but unfortunately the variant is less efficient. In particular, in the worst
case we need a − 1 steps (to see this, try a = b − 1), which is by far not fast
enough. But some modifications may be helpful: A closer look at the recursion
formula (a, b) = (−b mod a, a) discloses, that problems occur if b−a << a holds.
In the following steps the difference b − a is subtracted from a and b until the
resulting a is smaller than b − a. This procedure may take a long (too long)
time. Its result will be (a mod (b− a), b− k(b− a)), where k equals a÷ (b− a)3.
Therefore we gain a notable speedup by the following case differentiation:

if b− a ≥ a then set (a, b) = (−b mod a, a)
else set (a, b) = (a mod b− a, b−k(b−a)) with k = a÷(b−a).

But we need to be a little careful if we wish to assign this idea to the original
algorithm (with a′ in the role of a and N ′ in the role of b). In detail, we must
not ignore a reduction of the value c′ which would have occurred in one of
the skipped steps. A possible way out is to skip fewer steps, i.e. we subtract
N ′ − a′ until the resulting a′ is smaller than N ′ − a′ or c′ is greater than the
resulting N ′. We will see in a while that these modifications are good enough
to yield a polynomial running time (in log N). But before doing so, we have to
face a last problem: It is possible that the value ŷ we are seeking for would be
computed in one of the skipped steps. Note that in each skipped step the value
y′ = −c′ mod N ′ is reduced by the amount N ′ − a′ (this is true because due to
the above considerations the value c′ remains constant). Hence if the resulting y′

exceeds the bound B, all the “invisible” values y′ computed during the skipped
steps do so, too. This means that it is possible to miss the sought-after value ŷ
only in the last while cycle before termination. So we avoid missing the correct
ŷ by doing the following: If steps have been skipped during the last while cycle
add N ′ − a′ to the current value y′ until y′ + k(N ′ − a′) exceeds B for the first
time. Then set ŷ = y′+(k− 1)(N ′− a′) and compute the corresponding x̂-value
as usual.

3.1 Algorithm Lin Cong

The proposed algorithm Lin Cong is as follows:

3 x÷ y denotes the Euclidian quotient of x and y



Lin Cong
Input: a, c, N, B, where 0 < a, B < N , 0 ≤ c < N , and gcd(a,N) = 1
Output: x̂, ŷ such that ax̂ = ŷ + c mod N and x̂ ≥ 0 is minimal

with respect to the property that 0 ≤ ŷ < B
1. set a′ = a, c′ = c,N ′ = N
2. set y′ = −c′ mod N ′

3. while y′ ≥ B do
4. set diff=N ′ − a′

5. if diff < a′ and diff < N ′ − c′

6. then set k = min(a′ ÷ diff, (N ′ − c′)÷ diff)
7. set (a′, N ′) = (a′ − k · diff, N ′ − k · diff), set flag = 1
8. else set (a′, N ′) = (−N ′ mod a′, a′), set flag = 0
9. set c′ = c′ mod N ′, set y′ = −c′ mod N ′

10. If flag = 1 then set k =
⌈

B−y′

diff

⌉
− 1, set ŷ = y′ + k · diff

11. else set ŷ = y′

12. set x̂ = a−1 · (ŷ + c) mod N
13. return (x̂, ŷ)

We can prove the following theorem:

Theorem 2. a) The complexity of the algorithm Lin Cong is O((log N)3).
b) Let a, c, N, B be integers, where 0 < a, B < N , 0 ≤ c < N , and gcd(a, n) = 1

holds. Algorithm Lin Cong on the inputs a, c, N, B finds a small solution
0 ≤ x̂, ŷ < B of the congruence ax = y + c mod N , provided such a solution
exists at all.

Proof. From the discussion above we know that on each input the algorithm
Lin Cong computes the same output as its slower variant Lin Cong (Outline).
Thus the second part of the theorem is an immediate consequence of theorem
1. So it remains to show that algorithm Lin Cong runs in polynomial time. We
distinguish four cases

1. The condition in step 5 is not fulfilled due to N ′ − a′ = diff ≥ a′. Hence the
else-case in step 8 is entered. From N ′ ≥ 2a′ we deduce that the assignment
N ′ = a′ at least halves the value of N ′.

2. The condition in step 5 is not fulfilled due to N ′−a′ = diff ≥ N ′− c′. Hence
the else-case in step 8 is entered and N ′ is assigned to a′. Because of a′ ≤ c′

the reduction of c′ modulo N ′(= a′) in step 9 at least halves the value of c′.
3. The condition in step 5 is fulfilled and the value k computed in step 6 equals

a′ ÷ (N ′ − a′). In this case, the assignment a′ = a′ − k · (N ′ − a′) done in
step 7 is equivalent to a′ = a′ mod (N ′ − a′). As we have N ′ − a′ < a′, this
assignment at least halves the value of a′.

4. The condition in step 5 is fulfilled and the value k computed in step 6 equals
(N ′ − c) ÷ (N ′ − a′). The value of k is chosen in order to achieve that
N ′ − (k + 1)(N ′ − a′) ≤ c′ holds. Hence the reduction of c′ modulo N ′ in
step 9 of the following while cycle at least halves the value of c′.



Summing up, we see that at least in each second while cycle at least one of
the values a′, c′ and N ′ is at least halved. Note that the algorithm terminates
at once if a′ = 0, c′ = 0 or N ′ = 1 holds. So the number of while cycles is
bounded above by log a+2 log c+log N . Each step during the while loop can be
done in O((log N)2), therefore the time complexity of the algorithm Lin Cong is
O((log N)3).

3.2 Finding All Small Solutions

In this subsection we show that algorithm Lin Cong can be modified to find
all small solutions (x, y) of the linear modular congruence (3). We call (x, y) a
small solution, if 0 ≤ x, y <

√
N is satisfied. The time needed for computing all

small solutions is O((log N)3) + lO(log N), where l is the absolute number of
small solutions. The most important observation is that there is a quite simple
relationship between all the small solutions in the case of c = 0. The general
case c 6= 0 can be easily derived from the special case. We will see that in both
cases all small solutions are located on the same line.

The Case c = 0 Let (x0, y0) and (x1, y1) be two different small solutions of

ax = y mod N, gcd(a,N) = 1, (4)

i.e. we have
ax0 = y0 mod N and ax1 = y1 mod N,

leading to
x0y1 = x1y0 mod N.

But due to the size-constraints we deduce that this relationship even holds in
Z. Consequently, all small solutions are located on the same line through the
origin. Hence to get all small solutions we simply have to compute all integer
multiples (kx̂, kŷ), k ∈ Z≥0, kx̂, kŷ <

√
N , where (x̂, ŷ) is the smallest non-zero

solution of (4). This solution can be obtained using algorithm Lin Cong. If we
run algorithm Lin Cong on an input with c = 0, then it will terminate at once
with the result (0, 0). But we are seeking for a non-zero solution, hence we
exploit the relationship ax = y mod N ⇔ a(x− 1) = y − a mod N . Namely, we
run Lin Cong on the input (a,N − a,N,

√
N), get the result (x′, y′), and return

(x̂, ŷ) := (x′ + 1, y′). Theorem 1 shows that (x̂, ŷ) indeed yields the smallest
non-zero solution of (4).

The Case c 6= 0 Let (x̂, ŷ) be the small solution computed by algorithm
Lin Cong on the input (a, c, N,

√
N) and let (xalt, yalt) be a different small so-

lution. In particular, the difference (xalt − x̂, yalt − ŷ) is a non-zero solution of
(4). As x̂ is minimal, we know x̂ < xalt. Thus we conclude 0 < xalt − x̂ <√

N,−√N < yalt − ŷ <
√

N . We distinguish two cases:



1. If yalt > ŷ holds, then (xalt − x̂, yalt − ŷ) is a small solution of (4) and can
be found as described above.

2. Otherwise (xalt − x̂, yalt − ŷ) is a solution of (4), too, but only small in
absolute value (with a negative y-component). It is easy to see that we can
find all solutions (x, y), 0 ≤ x <

√
N,−√N < y ≤ 0 of (4) by computing all

small solutions of (−a)x = y mod N as usual and then changing the signs of
the y-components.

Note that at most one of these two cases may appear, because if there are
two additional small solutions (xalt1, yalt1) and (xalt2, yalt2) with yalt1 > ŷ and
yalt2 < ŷ, then the three differences (xalt1 − x̂, yalt1 − ŷ), (xalt2 − x̂, yalt2 − ŷ)
and (xalt1−xalt2, yalt1−yalt2) must be located on at most two lines through the
origin, a contradiction.
This leads to the following algorithm:

Lin Cong All
Input: a, c, N , where 0 < a, c < N , and gcd(a,N) = 1
Output: Set S = {(x, y)|ax = y + c mod N, 0 ≤ x, y <

√
N}

1. set S = {}.
2. set (x̂, ŷ) =Lin Cong(a, c, N,

√
N)

3. if x̂ ≥ √
N then return S and stop

4. else append (x̂, ŷ) to S

5. set (x′, y′) =Lin Cong(a,N − a,N,
√

N)
6. set (x0, y0) = (x′ + 1, y′), set k = 1
7. while x̂ + kx0 <

√
N and ŷ + ky0 <

√
N do

8. append (x̂ + kx0, ŷ + ky0) to S and increment k
9. if #S > 1 then return S and stop
10. set (x′, y′) =Lin Cong(N − a, a, N,

√
N)

11. set (x0, y0) = (x′ + 1,−y′), set k = 1
12. while x̂ + kx0 <

√
N and ŷ + ky0 ≥ 0 do

13. append (x̂ + kx0, ŷ + ky0) to S and increment k
14. return S

In step 2, we use algorithm Lin Cong to compute the small solution with the
minimal x-coordinate x̂. If even x̂ exceeds the bound

√
N , then obviously no

small solution exists at all. The value (x0, y0) computed in step 6 equals the
smallest non-zero solution of (4). As we have seen above, each sum of (x̂, ŷ) and
an integer multiple of (x0, y0) yields a solution of ax = y + c mod N . But as
x̂ is minimal, we only have to consider factors k ≥ 1. If there is at least one
small solution (x̂ + kx0, ŷ + ky0), we know that all small solutions have to be of
this shape. Hence the while loop in step 7 and 8 has finds all remaining small
solutions and the algorithm terminates. Otherwise we compute the smallest non-
zero solution of ax = y mod N with a negative y-component (step 10 and 11)
and proceed in the same way as before.



3.3 Comparison with the Continuous Fraction Method

Another often used method for finding small solutions of linear modular con-
gruence where the affine coefficient c equals zero is obtained by the continued
fraction expansion. We call this method the Euclidean reduction (See [HW79]
for the comprehensive treatment). To resume, this method finds all fractions p

q

nearby a rational number α (i.e. we have |α − p
q | < 1

2q2 ), where the fractions p
q

come in their lowest terms. Assume that we want to find small solutions that do
not exceed

√
N of the congruence ax = y mod N , where gcd(a,N) = 1 holds.

As we have already shown in subsection 3.2, all these solutions are located on
the same line through the origin. Therefore there exists a solution (x̂, ŷ) such
that gcd(x̂, ŷ) = 1 is fulfilled. From ax̂ = ŷ mod N we conclude that there is an
integer k such that ax̂ = ŷ + kN . We have

a

N
− k

x̂
=

ŷ

Nx̂
. (5)

If 2x̂ŷ < N holds, the upper-bound of ŷ/Nx̂ is 1/2x̂2. If in addition the rational
number k/x̂ is irreducible, i.e. gcd(k, x̂) = 1, we can find the integer x̂ and thus ŷ
by using the Euclidian reduction method. Note that gcd(k, x̂) = 1 holds because
gcd(x̂, ŷ) = 1 is satisfied. If gcd(k, x̂) = 1 is not true, there is an integer δ > 1
such that gcd(k, x̂) = δ. From ax̂−Nk = ŷ, we have δ|ŷ and hence δ| gcd(x̂, ŷ).
It contradicts to gcd(x̂, ŷ) = 1.
Summing up, we can use this method if we know that the product 2x̂ŷ does not
exceed N . Consequently, we prefer the use of algorithm Lin Cong, which finds
x̂, ŷ, even if 2x̂ŷ < N is not fulfilled.

4 Security Reduction Analysis using the Proposed
Algorithm

In this section, we show how algorithm Lin Cong may be applied to the reduction
proofs of RSA-OAEP and RSA-Paillier. In the case of RSA-OAEP we will upper-
bound the number of bad values a by 22k0+1, compared to the former bound
22k0+6. Regarding to RSA-Paillier, we will give an explicit reduction algorithm
based on the work of Catalano et al. [CNS02]. We will achieve reduction time
2t + O((log N)3ε−2) and advantage ε′ > ε2/5 where t and ε are the time and
the advantage of the Hensel-lifting oracle, respectively.

4.1 Application to RSA-OAEP

In section 2.1 we have described the reduction proof given by Fujisaki et al.
[FOPS01]. Remember that they have constructed the following congruence

ax = y + c mod N, c = (v − ua) · 2k0 mod N, (6)

where u and v are built of the k − k0 most significant bits of m or ma mod
N , respectively. In the RSA-OAEP case we call (x, y) a small solution of the



congruence (6) iff 0 ≤ x, y < 2k0 holds. The congruence (6) is known to have the
small solution (r, s), where r is built from the remaining k0 least significant bits
of m.

In section 2.1 we have already seen that the lattice based method only works
if the randomly chosen value a yields an l- good lattice. In contrast, algorithm
Lin Cong always finds a small solution, provided a small solution exists at all.
But it has to be stressed, that referring to the lattice method the choice of a good
value a ensures that there exists exactly one small solution. This is an important
property, because if the small solution (r, s) is not unique, there is of course no
warrant that the solution computed with our algorithm is the correct one. A
possible way out is to use algorithm Lin Cong All instead, which computes all
small solutions, and to test each of them. But this is only efficient if the set of
small solutions is not too big. Let l be a “sufficiently” small natural number. We
want to bound above the probability that the number of small solutions does not
exceed l. As we have seen in subsection 3.2, each small solution is of the shape
(x̂+kx0, ŷ+ky0), where (x̂, ŷ) is the special solution computed by the algorithm
Lin Cong and (x0, y0) is either the shortest element of {(x, y)|ax = y mod N, 0 <
x, y < 2k0} or (x0, y0) is the shortest element of {(x, y)|ax = y mod N, 0 < x <
2k0 ,−2k0 < y < 0}. Hence there are at most l small solutions of (6), iff the
congruence ax = y mod N has no solution (x, y), where

0 < x < 2k0/l,−2k0/l < y < 2k0/l. (7)

We call a a bad value, if there exists a solution of ax = y mod N fulfilling the
size constraints (7). If (7) holds for (x, y), then there is exactly one a such that
(x, y) is a solution of ax = y mod N , namely a = x−1y mod N . Note that due
to the size constraints no problems of computing modular inverses occur. Hence
there are at most 22k0+1/l2 bad values of a. The maximal number is 22k0+1 for
l = 1.

Therefore, in case of using the lattice solution the probability to choose a bad
value a is at least 25 times greater compared with the corresponding probability
in case of using algorithm Lin Cong All. We finish with the following theorem:

Theorem 3. Assume there is an adversary that on input N, e,me mod N re-
turns the k−k0 most significant bits of m with advantage ε and in time t, where
N is a k-bit RSA modulus, e is a public key belonging to N and 2k0 < k holds. Let
l ≤ (log N)2 be any natural number. Then with advantage ε′ > ε(ε−22k0+1−k/l2)
and in time 2t +O((log N)3) we can compute a set S with m ∈ S and #S ≤ l.

If we set l = 1 we get the following corollary:

Corollary 1 Assume there is an adversary that on input N, e,me mod N re-
turns the k−k0 most significant bits of m with advantage ε and in time t, where
N is a k-bit RSA modulus, e is a public key belonging to N and 2k0 < k holds.
Then we can break the RSA problem related to (N, e) with advantage at least
ε(ε− 22k0+1−k) and in time 2t +O((log N)3).



Note that this achievement is the more valuable the smaller the difference
k− 2k0 is. However, in the case of PKCS #1 v2.0, k0 is much smaller than k/2,
therefore in this case the result is rather of theoretical nature.

4.2 Application to RSA-Paillier Cryptosystem

In section 2.2 we have described the reduction proof given by Catalano et al.
[CNS02]. Remember that they have constructed the following congruence

Ax = y mod N2, A = a(1 + zN)−1 = a(1− zN) mod N2, (8)

which is known to have the solution (r, µ), where r, µ are elements of Z/NZ
and r is the sought-after RSA message. Hence (r, µ) is a small solution of (8) as
described in subsection 3.2, where we have seen how to find all small solutions.
To be concrete, Lin Cong on the input (A,N2 − A,N2, N) finds the smallest
non-zero solution of (8) and all other small solutions come as integer multiples
of this special solution.

We describe the explicit reduction algorithm as follows:

OW RSA Paillier
Input: (N, e) RSA Public-key, c ciphertext, ORSAP Hensel-Lifting oracle
Output: Message r such that c = re mod N or an integer divisor of r
1. obtain t = ORSAP (c)
2. generate random a ∈ (Z/NZ)×

3. obtain s = ORSAP (aec mod N)
4. compute v = taes−1 mod N2

5. compute z = (v−1)
N e−1 mod N

6. compute A = a(1− zN) mod N2

7. compute (x̂, ŷ) =Lin Cong(A,N2 −A,N2, N)
8. return x̂ + 1

Obviously, the running time of this algorithm is O((log N)3) plus the time
needed for calling the Hensel-Lifting oracle twice. To receive the original value
r, we have to test if (kr)e = c mod N , where the multiplier k runs from 1 to (the
unknown number) gcd(r, µ). In the following, we upper-bound the probability
that gcd(r, µ) is not sufficiently small. We exploit the following estimate (see
[NZM91]):

π2

3

(
2N2 − 2N

4N2 + 4N + 1

)
<

N∑

i=1

1
i2

<
π2

3

(
2N2 + 2N

4N2 + 4N + 1

)
.



Hence we have

#{(a, b) ∈ [1, . . . , N ]2|gcd(a, b) > B} <

N∑

i=B+1

N2

i2

<
N2π2

3

(
2N2 + 2N

4N2 + 4N + 1
− 2B2 − 2B

4B2 + 4B + 1

)

<
N2π2

3

(
1
2
− 2B2 − 2B

4B2 + 4B + 1

)
.

As a simple computation shows that

1
2
− 2B2 − 2B

4B2 + 4B + 1
<

1
B

,

we finally conclude

#{(a, b) ∈ [1, . . . , N ]2|gcd(a, b) > B} <
4N2

B
.

The values r and µ are independently chosen and uniformly distributed ele-
ments of Z/NZ. Replacing 5ε−2 for B, we therefore deduce that the probability
that gcd(r, µ) exceeds 5ε−2 is bounded above by 4ε2/5.

This leads to the following theorem:

Theorem 4. Let ORSAP be the Hensel-lifting oracle that computes re mod N2

for given re mod N with advantage ε and in time t. Using ORSAP as a subrou-
tine, we can break the RSA problem (N, e) with advantage ε′ > ε2/5 and in time
2t +O((log N)3ε−2).

An Example of OW RSA Paillier We present a small example of reduction
algorithm OW RSA Paillier. We choose the public-key of the RSA-Paillier cryp-
tosystem as (e,N) = (7, 9359629). In our case N2 is equal to 87602655017641.
Let c = 2592708 be the target ciphertext. We intend to find the integer r such
that c = re mod N using the oracle ORSAP .

In step 1 we ask c to oracle ORSAP , and we obtain t = ORSAP (c) =
37278188147938. In step 2, a random integer a ∈ (Z/NZ)× is generated, and
we choose a = 5973500. In step 3, we compute µe = aec mod N , ask it to oracle
ORSAP (µe mod N), then we obtain µe mod N2 = 59913274976876. In step 4
and 5, integer z such that ar = µ(1 + zN) mod N2 is computed, and in our
case z = 9040417. In step we obtain the linear equation Ar = µ mod N2 for
A = 35049167803493 and two unknown variables 0 < r, µ < N .

In the following, we solve this linear equation using algorithm Lin Cong. We
list up the intermediate values of N ′, a′, c′ and y′, where N ′, a′ and c′ are initial-
ized with N2, A and N2−A. The while loop terminates if y′ < N holds. Step 10
and 11 of Lin Cong are dedicated to compute the output values x̂ and ŷ, which
in our case equal r − 1 and µ.



N ′ a′ c′ y′

87602655017641 35049167803493 52553487214148 35049167803493
35049167803493 17544848392838 17504319410655 17544848392838
17544848392838 40528982183 17504319410655 40528982183

40528982183 4200892401 36328089782 4200892401
4200892401 1479941827 2720950574 1479941827
1479941827 238933080 1241008747 238933080
238933080 192589733 46343347 192589733
53559692 7216345 46343347 7216345 ← loop exit

The output values are (1835097, 7216345) = (r − 1, µ). Namely, we success-
fully find r = 1835098.

5 Conclusion

In this paper we investigated several security reduction algorithms related to
RSA-OAEP and RSA-Paillier cryptosystems. These algorithms require to solve
a linear modular equation with a small solution The standard algorithms for
solving this task are Gaussian reduction and Euclidean reduction. We proposed
an efficient alternative algorithm and showed its preferences. In the case of RSA-
OAEP we were able to enhance the advantage of the reduction proof. Referring
to RSA-Paillier, the use of our new algorithm provides us the complete secu-
rity reduction proof, including explicit bounds for time costs and the achieved
advantage.

References

[BR95] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption - how to
encrypt with RSA. In Advances in Cryptology - EUROCRYPT 84, volume
950 of Lecture Notes in Computer Science, pages 92–111. Springer-Verlag,
1995.

[CGHGN01] D. Catalano, R. Gennaro, N. Howgrave-Graham, and P. Nguyen. Paillier’s
cryptosystem revisited. In The 8th ACM conference on Computer and
Communication Security, pages 206–214, 2001.

[CNS02] D. Catalano, P. Nguyen, and J. Stern. The hardness of Hensel lifting:
The case of RSA and discrete logarithm. In Advances in Cryptology -
ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science,
pages 299–310, Berlin, 2002. Springer-Verlag.

[FOPS01] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is
secure under the RSA assumption. In Advances in Cryptology - CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science, pages 260–274,
2001.

[GM97] M. Girault and J.-F. Misarsky. Selective forgery of RSA signatures using
redundancy. In Advances in Cryptology - EUROCRYPT 97, volume 1233
of Lecture Notes in Computer Science, pages 495–507. Springer-Verlag,
1997.

[HW79] G. Hardy and E. Wright. An Introduction to The Theory Of Numbers.
Oxford Press, fifth edition edition, 1979.

[JC86] W. De Jonge and D. Chaum. Attacks on some RSA signatures. In Ad-
vances in Cryptology - CRYPTO 85, volume 218 of Lecture Notes in Com-
puter Science, pages 18–27. Springer-Verlag, 1986.



[Kat01] S. Katzenbeisser. Recent Advances in RSA Cryptography. Kluwer Aca-
demic Publishers Group, 2001.

[MG02] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems – A
Cryptographic Perspective. Kluwer Academic Publishers Group, 2002.

[NZM91] I. Niven, H.S. Zuckerman, and H.L. Montgomery. An Introduction to the
Theory of Numbers. John Wiley & Sons, Inc., 1991.

[SF] C. P. Schnorr and R. Fischlin. Gittertheorie und algorithmische Ge-
ometrie. available from http://ismi.math.uni-frankfurt.de/schnorr/

lecturenotes/gitter.pdf.
[Sho02] V. Shoup. OAEP reconsidered. Journal of Cryptology, (15):223–249, 2002.
[ST02] K. Sakurai and T. Takagi. New semantically secure public-key cryptosys-

tems from the RSA primitive. In Public Key Cryptography, 5th Interna-
tional Workshop on Practice and Theory in Public Key Cryptosystems,
PKC 2002, volume 2274 of Lecture Notes in Computer Science, pages
1–16. Springer, 2002.

A Proof of Lemma 1

Before starting the remaining proof of lemma 1, we recapitulate the notations
given in section 3: We write (x̂, ŷ) for the unique x-minimal solution of the con-
gruence ax = y + c mod N w.r.t. the bound B. The variables yi, ai, Ni and ci

constitute the corresponding values produced by the algorithm Lin Cong (Out-
line) in the ith iteration of the while loop, and the value xi is computed from
ai−1, ci−1, ŷ and Ni−1 by xi = ai−1xi−1−ŷ−ci−1

Ni−1
. The linear modular congruence

aix = y + ci mod Ni is abbreviated by congi.

At first, we introduce a kind of “solution lifting”:

Proposition 1 Let (x, y) be a solution of congi+1. Then the pair
(

y+ci+xNi

ai
, y

)

is a solution of congi. If in addition 0 ≤ x, y < Ni+1 holds then 0 ≤ y+ci+xNi

ai
≤

Ni is fulfilled.

Proof. Note that the value ai = Ni−1 cannot be zero, since otherwise iteration
(i+1) would not have been reached. First, we show y+ci+xNi

ai
∈ Z. The recursion

formulas define Ni+1 = ai and ci+1 = ci mod Ni+1 = ci mod ai. Hence there is
an integer l such that ci+1 equals ci + lai. As (x, y) is a solution of congi+1 we
conclude

ai | y + ci+1 − xai+1 = y + (ci + lai)− x(−Ni mod ai) ⇒ ai | y + ci + xNi

It follows immediately that
(

y+ci+xNi

ai
, y

)
is an integer solution of congi.

Now assume 0 ≤ x, y < Ni+1 = ai. We have

y + ci + xNi ≤ y + ci + (ai − 1)Ni < ai + Ni + (ai − 1)Ni = ai + aiNi

Therefore we conclude y+ci+xNi

ai
< Ni + 1, which finishes the proof.



Now we are prepared to prove lemma 1.

Lemma 1. Let (xi, ŷ) be the x-minimal solution of congi w.r.t. B and let xi > 0.
Then (xi+1, ŷ) is the x-minimal solution of congi+1 w.r.t. B. In particular, the
y-value of the current x-minimal solution w.r.t. B does not change during the
transformation fLin Cong, as long as xi is non-negative.

Proof. Assume that (xalt, yalt) is a solution of congi+1 where 0 ≤ xalt < Ni+1

and 0 ≤ yalt < B. Our goal is to show xalt ≥ xi+1 ≥ 0.
First we prove that xi+1 is non-negative. Note that ai > 0 must hold because
otherwise the iteration (i + 1) of the while loop would not have been reached.
From the definition of xi+1 = aixi−ŷ−ci

Ni
and the condition xi > 0 we therefore

conclude ŷ + ci + xi+1Ni > 0. Assume xi+1 < 0. Hence we have

ŷ + ci > Ni ⇒ ŷ > Ni − ci ≥ −ci mod Ni = yi.

Thus (0, yi) is a solution of congi with yi < B. This contradicts the preconditions,
namely that (xi, ŷ) is the x-minimal solution of congi w.r.t. B and xi > 0.
Consequently, we must have xi+1 ≥ 0.

From proposition 1 we conclude that the pair
(

yalt + ci + xaltNi

ai
, yalt

)

is a solution of congi, in particular we have 0 ≤ yalt+ci+xaltNi

ai
≤ Ni. As (xi, ŷ)

is the x-minimal solution of congi w.r.t. B, we conclude

yalt + ci + xaltNi

ai
− xi ≥ 0

⇒ xalt ≥ aixi − yalt − ci

Ni
. (9)

In the case of yalt ≤ ŷ this immediately leads to the desired result xalt ≥ xi+1 =
aixi−ŷ−ci

Ni
. Thus we consider the case yalt > ŷ. Looking at the difference between

xi+1 and the right side of (9) we observe

xi+1 − aixi − yalt − ci

Ni
=
−ŷ + yalt

Ni
<

B

Ni
< 1. (10)

Note that the last inequality must hold since in the case of Ni ≤ B the iteration
(i + 1) of the while loop would not have been reached. Therefore we finally
conclude xalt ≥ xi+1 from (9), (10), and the fact that both of xalt and xi+1 are
integers.


