
Efficient Instantiations of Tweakable Blockciphers and

Refinements to Modes OCB and PMAC

Phillip Rogaway

Dept. of Computer Science, University of California, Davis CA 95616 USA, and
Dept. of Computer Science, Chiang Mai University, Chiang Mai 50200 Thailand

rogaway@cs.ucdavis.edu www.cs.ucdavis.edu/∼rogaway

Abstract. We describe highly efficient constructions, XE and XEX,
that turn a blockcipher E: K×{0, 1}n → {0, 1}n into a tweakable block-

cipher eE: K×T ×{0, 1}n → {0, 1}n having tweak space T = {0, 1}n× I

where I is a set of tuples of integers such as I = [1 .. 2n/2]× [0 .. 10]. When
tweak T is obtained from tweak S by incrementing one if its numerical
components, the cost to compute eET

K(M) having already computed some
eES

K(M ′) is one blockcipher call plus a small and constant number of el-
ementary machine operations. Our constructions work by associating
to the ith coordinate of I an element αi ∈ F

∗
2n and multiplying by αi

when one increments that component of the tweak. We illustrate the use
of this approach by refining the authenticated-encryption scheme OCB
and the message authentication code PMAC, yielding variants of these
algorithms that are simpler and faster than the original schemes, and yet
have simpler proofs. Our results bolster the thesis of Liskov, Rivest, and
Wagner [10] that a desirable approach for designing modes of operation
is to start from a tweakable blockcipher. We elaborate on their idea, sug-
gesting the kind of tweak space, usage-discipline, and blockcipher-based
instantiations that give rise to simple and efficient modes.

1 Introduction

Liskov, Rivest and Wagner [10] defined the notion of a tweakable blockcipher and
put forward the thesis that these objects make a good starting point for doing
blockcipher-based cryptographic design. In this paper we describe a good way
to build a tweakable blockcipher Ẽ out of an ordinary blockcipher E. Used as
intended, our constructions, XE and XEX, add just a few machine instructions
to the cost of computing E. We illustrate the use of these constructions by
improving on the authenticated-encryption scheme OCB [15] and the message
authentication code PMAC [4].

Tweakable blockciphers. Schroeppel [16] designed a blockcipher, Hasty
Pudding, wherein the user supplies a non-secret spice and changing this spice
produces a completely different permutation. Liskov, Rivest, and Wagner [10]
formally defined the syntax and security measures for such a tweakable blockci-
pher, and they suggested that this abstraction makes a desirable starting point
to design modes of operation and prove them secure. They suggested ways to

17

build a tweakable blockcipher Ẽ out of a standard blockcipher E, as well as
ways to modify existing blockcipher designs to incorporate a tweak. They il-
lustrated the use of these objects. Formally, a tweakable blockcipher is a map
Ẽ: K × T × {0, 1}

n
→ {0, 1}

n
where each ẼT

K(·) = Ẽ(K, T, ·) is a permutation
and T is the set of tweaks.

Our contributions. We propose efficient ways to turn a blockcipher E: K ×
{0, 1}

n
→ {0, 1}

n
into a tweakable blockcipher Ẽ: K × T × {0, 1}

n
→ {0, 1}

n
.

(See Appendix A for the best constructions formerly known.) Our powering-up

constructions, XE and XEX, preserve the key space and blocksize of E but
endow Ẽ with a tweak space T = {0, 1}n × I where I is a set of tuples of
integers, like I = [1 .. 2n/2] × [0 .. 10]. The XE construction turns a CPA-secure
blockcipher into a CPA-secure tweakable blockcipher, while XEX turns a CCA-
secure blockcipher into a CCA-secure tweakable blockcipher. (CPA stands for
chosen-plaintext attack and CCA for chosen-ciphertext attack.) The methods
are highly efficient when tweaks arise in sequence, with most tweaks (N, i) being
identical to the prior tweak (N, i′) except for incrementing a component of i.

As an illustrative and useful example, consider turning a conventional blockci-
pher E: K×{0, 1}n → {0, 1}n into a tweakable blockcipher Ẽ: K×T ×{0, 1}n →

{0, 1}n by defining ẼN i j
K (M) = EK(M ⊕∆) ⊕∆ where offset ∆ = 2i3j N and

N = EK(N). Arithmetic is done in the finite field F2n . For concreteness, assume

n = 128 and a tweak space of T = {0, 1}
n
× [1 .. 264]× [0 .. 10]. We show that Ẽ is

secure (as a strong, tweakable PRP) as long as E is secure (as a strong, untweak-

able PRP). Computing Ẽ N i j
K (X) will usually cost about 1 shift, 1 conditional,

and 3–4 xors more than computing EK(X).

We illustrate how the use of tweakable blockciphers during mode design, fol-
lowed by the instantiation of the tweakable blockcipher with an ordinary block-
cipher using one of our constructions, can give rise to modes that are simpler,
faster, and easier to prove correct than what designing directly from a blockcipher
has delivered. We do this by refining two already-optimized modes, OCB [15]
and PMAC [4], yielding new modes, OCB1 and PMAC1, that are are easier
to understand, easier to implement, and faster. Computing offsets in the new
modes does not involve Gray-code sequence or counting the number of trailing
zero bits in successive integers. OCB1 eliminates the utility of preprocessing,
saving a blockcipher call.

Intuition. The idea behind the powering-up constructions can be explained
like this. Apart from Gray-code reordering, PMAC authenticates an m-block
message using a sequence of offsets L, 2L, 3L, . . . , (m − 1)L, where multiplica-
tion is in the finite field F2n and L = EK(0n) is a variant of the underlying
key K. When a special kind of offset is needed, a value huge ·L is added (xored)
into the current offset, where huge is so large that it could never be among
{1, 2, . . . , m − 1}. What we now do instead is to use the easier-to-compute se-
quence of offsets 21L, 22L, . . . , 2m−1L. We insist that our field be represented
using a primitive polynomial instead of merely an irreducible one, which ensures
that 21, 22, 23, . . . , 22n

−1 will all be distinct. When a special offset is needed we

18

can no longer add to the current offset some huge constant times L and expect
this never to land on a point in 21L, 22L, . . . , 2m−1L. Instead, we multiply the
current offset by 3 instead of 2. If the index of 3 (in F∗

2n) is enormous relative
to the base 2 then multiplying by 3 is equivalent to multiplying by 2huge and
2i3L won’t be among of 21L, 22L, . . . , 2m−1L for any reasonable value of m. The
current paper will make all of the ideas of this paragraph precise.

Further related work. Halevi and Rogaway [7] used the sequence of off-
sets 2L, 22L, 23L, . . . , in their EME mode. They give no general results about
this construction, and EME did not use tweakable blockciphers, yet this offset
ordering was our starting point.

2 Preliminaries

The field with 2n points. Let F2n denote the field with 2n points and let F∗
2n

be its multiplicative subgroup. We interchangeably think of a point a ∈ F2n as
an n-bit string, a formal polynomial of degree n−1, or as an integer in [0 .. 2n−1].
To represent points select a primitive polynomial, say the lexicographically first
one among the degree n polynomials having a minimum number of nonzero
coefficients. For n = 128 the indicated polynomial is p128(x) = x

128 + x
7 +

x
2 + x + 1. Saying that pn(x) is primitive means that it is irreducible over F2

and 2 (i.e., x) generates all of F∗
2n . It is computationally simple to multiply

a ∈ {0, 1}
n

by 2. To illustrate for n = 128, 2a = a<<1 if firstbit(a) = 0 and
2a = (a<<1)⊕012010413 if firstbit(a) = 1. One can easily multiply by other small
constants, as 3a = 2a⊕ a and 5a = 2(2a)⊕ a and so forth.

Blockciphers and tweakable blockciphers. We review the standard defi-
nitions for blockciphers and their security [2] and the extension of these notions to
tweakable blockciphers [10]. A blockcipher is a function E: K×{0, 1}

n
→ {0, 1}

n

where n ≥ 1 is a number and K is a finite nonempty set and E(K, ·) =
EK(·) is a permutation for all K ∈ K. A tweakable blockcipher is a function

Ẽ: K×T ×{0, 1}
n
→ {0, 1}

n
where n and K are as above and T is a nonempty

set and Ẽ(K, T, ·) = ẼT
K(·) is a permutation for all K ∈ K and T ∈ T . For

blockciphers and tweakable blockciphers we call n the blocksize and K the key

space. For tweakable blockciphers we call T the tweak space.
Let Perm(n) be the set of all permutations on n bits. Let Perm(T , n) be the

set of all mappings from T to permutations on n bits. In writing π
$

← Perm(n) we

are choosing a random permutation π(·) on {0, 1}
n
. In writing π

$

← Perm(T , n)
we are choosing a random permutation π(T, ·) = πT (·) on {0, 1}n for each T ∈ T .
If E: K × {0, 1}

n
→ {0, 1}

n
is a blockcipher then its inverse is the blockcipher

D = E−1 where D: K×{0, 1}
n
→ {0, 1}

n
is defined by D(K, Y) = DK(Y) being

the unique point X such that EK(X) = Y . If Ẽ: K × T × {0, 1}
n
→ {0, 1}

n
is

a tweakable blockcipher then its inverse is the tweakable blockcipher D̃ = Ẽ−1

where D̃: K × T × {0, 1}
n
→ {0, 1}

n
is defined by D̃(K, T, Y) = D̃T

K(Y) being

the unique point X such that ẼT
K(X) = Y .

19

An adversary is a probabilistic algorithm with access to zero or more oracles.
Without loss of generality, adversaries never ask a query for which the answer
is trivially known: an adversary does not repeat a query, does not ask DK(Y)
after receiving Y in response to a query EK(X), and so forth. Oracles will have
an implicit domain of valid queries and, for convenience, we assume that all
adversarial queries lie within that domain. This is not a significant restriction
because membership can be easily tested for all domains of interest to us.

Definition 1 (Blockcipher/tweakable-blockcipher security). Let E: K×

{0, 1}
n
→ {0, 1}

n
be a blockcipher and let Ẽ: K × T × {0, 1}

n
→ {0, 1}

n
be a

tweakable blockcipher. Let A be an adversary. Then Advprp
E (A), Adv±prp

E (A),

Advgprp
eE

(A), and Adv±gprp
eE

(A) are defined by:

Pr[K
$

←K : AEK(·)⇒ 1]− Pr[π
$

← Perm(n) : Aπ(·)⇒ 1]

Pr[K
$

←K : AEK(·) DK (·)⇒ 1]− Pr[π
$

← Perm(n) : Aπ(·) π−1(·)⇒ 1]

Pr[K
$

←K : A
eEK(·,·)⇒ 1]− Pr[π

$

← Perm(T , n) : Aπ(·,·)⇒ 1]

Pr[K
$

←K : A
eEK(·,·) eDK(·,·)⇒ 1]− Pr[π

$

← Perm(T , n) : Aπ(·,·)π−1(·,·)⇒ 1] 2

Of course D and D̃ denote the inverses of blockciphers E and Ẽ. In writing
A⇒ 1 we are referring to the event that the adversary A outputs the bit 1.

In the usual way we lift advantage measures that depend on an adver-
sary to advantage measures that depend on named resources: Advxxx

Π (R) =
maxA{Advxxx

Π (A)} over all adversaries A that use resources at most R. The
resources of interest to us are the total number of oracle queries q and the total
length of those queries σ and the running time t. For convenience, the total length
of queries will be measured in n-bit blocks, for some understood value of n, so a
query X contributes |X |n to the total, where |X |n means max{|X |/n, 1}. Run-
ning time, by convention, includes the description size of the algorithm relative
to some standard encoding. When we speak of authenticity, the block length of
the adversary’s output is included in σ.

3 The XE and XEX Constructions

Goals. We want to support tweak sets that look like T = {0, 1}
n
× I where I

is a set of tuples of integers. In particular, we want to be able to make I the
cross product of a large subrange of integers, like [1 .. 2n/2], by the cross prod-
uct of small ranges of integers, like [0 .. 10] × [0 .. 10]. Thus an example tweak
space is T = {0, 1}

n
× [1 .. 2n/2] × [0 .. 10] × [0 .. 10]. Tweaks arise in some se-

quence T1, T2, . . . and we will obtain impressive efficiency only to the extent that
most tweaks are an increment of the immediately prior one. When we say that
tweak T = (N, i1, . . . , ik) is an increment of another tweak we mean that one
of i1, . . . , ik got incremented and everything else stayed the same. The second
component of tweak (N, i1, . . . , ik), meaning i1, is the component that we ex-
pect to get incremented most often. We want there to be a simple, constant-time

20

procedure to increment a tweak at any given component of I. To increment a
tweak it shouldn’t be necessary to go to memory, consult a table, or examine
which number tweak this in in sequence. Incrementing tweaks should be endian-
independent and avoid extended-precision arithmetic. Efficiently incrementing
tweaks shouldn’t require precomputation. Tweaks that are not the increment
of a prior tweak will also arise, and they will typically look like (N, 1, 0 . . . , 0).
Constructions should be reasonably efficient in dealing with such tweaks.

We emphasize that the efficiency measure we are focusing on is not the cost
of computing ẼT

K(X) from scratch—by that measure our constructions will not

be particularly good. Instead, we are interested in the cost of computing ẼT
K(X)

given that one has just computed ẼS
K(X ′) and T is obtained by increment-

ing S at some component. Most often that component will have been the second
component of S. It is a thesis underlying our work, supported by the design of
OCB1 and PMAC1, that one will often be able to arrange that most tweaks are
an increment to the prior one.

Tweaking with ∆ = 2i N. Recall that we have chosen to represent points
in F2n using a primitive polynomial, not just an irreducible one. This means
that the point 2 is a generator of F2n : the points 1, 2, 22, 23, . . . , 22n

−2 are all
distinct. This property turns out to be the crucial one that lets us construct
from a blockcipher E: K × {0, 1}

n
→ {0, 1}

n
a tweakable blockcipher Ẽ: K ×

({0, 1}n × [1 .. 2n − 2])× {0, 1}n → {0, 1}n by way of

ẼN i
K (M) = EK(M ⊕∆)⊕∆ where ∆ = 2i N and N = EK(N).

The tweak set is T = {0, 1}
n
× I where I = [1 .. 2n − 2] and the tweakable

blockcipher just described is denoted Ẽ = XEX[E, 2I] . When computing the

sequence of values ẼN 1
K (M1), . . . , Ẽ

N m−1
K (Mm−1) each ẼN i

K (Mi) computation
but the first uses one blockcipher call and one doubling operation. Doubling
takes a shift followed by a conditional xor. We call the construction above, and
all the subsequent constructions of this section, powering-up constructions.

Tweaking by ∆ = 2i3j N. To facilitate mode design we may want tweaks that
look like (N, i, j) where N ∈ {0, 1}

n
and i is an integer from a large set I, like

I = [1 .. 2n/2], and j is an integer from some small set J, like J = {0, 1}. To get the
“diversity” associated to the various j-values we just multiply by 3 instead of 2.
That is, we construct from a blockcipher E: K × {0, 1}

n
→ {0, 1}

n
a tweakable

blockcipher Ẽ: K × ({0, 1}
n
× I× J)× {0, 1}

n
→ {0, 1}

n
by way of

ẼN i j
K (M) = EK(M ⊕∆)⊕∆ where ∆ = 2i3j N and N = EK(N).

The tweakable blockcipher just described is denoted Ẽ = XEX[E, 2I3J]. Incre-
menting the tweak at component i is done by doubling, while incrementing the
tweak at component j is done by tripling.

The XEX construction. Generalizing the two examples above, we have the
following definition.

21

Definition 2 (XEX). Let E: K × {0, 1}n → {0, 1}n be a blockcipher, let

α1, . . . , αk ∈ F∗
2n , and let I1, . . . , Ik ⊆ Z. Then Ẽ = XEX[E, αI1

1 · · ·α
Ik

k] is the

tweakable blockcipher Ẽ: K× ({0, 1}
n
× I1×· · ·× Ik)×{0, 1}

n
→ {0, 1}

n
defined

by ẼNi1...ik

K (M) = EK(M⊕∆)⊕∆ where ∆ = αi1
1 αi2

2 · · ·α
ik

k N and N = EK(N).

The XE construction. As made clear in the work of Liskov, Rivest, and Wag-
ner [10], constructions of the form ẼT

K(M) = EK(M ⊕∆) ⊕∆ aim for chosen-
ciphertext attack (CCA) security, while for chosen-plaintext attack (CPA) secu-
rity one can omit the outer xor. Thus we consider the construction EK(M ⊕∆).
This is slightly more efficient than XEX, saving one xor.

Definition 3 (XE). Let E: K×{0, 1}
n
→ {0, 1}

n
be a blockcipher, α1, . . . , αk ∈

F∗
2n , and I1, . . . , Ik ⊆ Z. Then Ẽ = XE[E, αI1

1 · · ·α
Ik

k] is the tweakable blockcipher

Ẽ: K × ({0, 1}n × I1 × · · · × Ik) × {0, 1}n → {0, 1}n defined by ẼNi1...ik

K (M) =

EK(M ⊕∆) where ∆ = αi1
1 αi2

2 · · ·α
ik

k N and N = EK(N). 2

4 Parameter Sets Yielding Unique Representations

It is easy to see that the XE and XEX constructions can only “work” if αi1
1 · · ·α

ik

k

are distinct throughout (i1, . . . , ik) ∈ I1 × · · · × Ik. This motivates the following
definition.

Definition 4 (Unique representations). Fix a group G. A choice of pa-

rameters is a list α1, . . . , αk ∈ G of bases and a set I1 × · · · × Ik ⊆ Zk of

allowed indices. We say that the choice of parameters provides unique rep-

resentations if for every (i1, . . . , ik), (j1, . . . , jk) ∈ I1 × · · · × Ik we have that

αi1
1 · · ·α

ik

k = αj1
1 · · ·α

jk

k implies (i1, . . . , ik) = (j1, . . . , jk). 2

In other words, representable points are uniquely representable: any group ele-
ment αi1

1 · · ·α
ik

k that can be represented using allowed indices can be represented
in only one way (using allowed indices).

For tweak spaces of practical interest, discrete-log calculations within F∗
2n

can be used to help choose and verify that a given choice of parameters provides
unique representations. The following result gives examples for F∗

2128 .

Proposition 1. [Can use 2, 3, 7 when n = 128] In the group F∗

2128 the

following choices for parameters provide unique representations:

(1) α1 = 2 and I1 = [−2126 .. 2126].

(2) α1, α2 = 2, 3 and I1 × I2 = [−2115 .. 2115]× [−210 .. 210].

(3) α1, α2, α3 = 2, 3, 7 and I1× It× I3 = [−2108 .. 2108]× [−27 .. 27]× [−27 .. 27].

Proof. For statement (1) recall that 2 is a generator of the group (by our choice
of irreducible polynomial) and the order of the group F∗

2128 is 2128 − 1 and so
2i = 2j iff i = j (mod 2128− 1) and so any contiguous range of 2128− 1 or fewer
integers will provide unique representations with respect to base 2.

22

To prove statement (2) we need to compute log2 3 in the group F∗

2128 :

log2 3 = 338793687469689340204974836150077311399 (decimal)

This and subsequent discrete logs were computed using a Maple-implementation
combining the Pohlig-Hellman [11] and Pollard-rho [12] algorithms. (A naive im-
plementation computes discrete logs in F∗

2128 in a few hours.) Now note that

2a3b = 2a′

3b′ iff 2a2b log2 3 = 2a′

2b′ log2 3 iff 2a+b log2 3 = 2a′+b′ log2 3 iff a +
b log2 3 = a′+b′ log2 3 (mod 2128−1) because 2 is a generator of the group F∗

2128 .

Thus 2a3b = 2a′

3b′ iff a−a′ = (b′−b) log2 3 (mod 2128−1). If b, b′ ∈ [−210 .. 210]
then ∆b = b′ − b ∈ [−211 .. 211] and computer-assisted calculation then shows
that the smallest value of ∆b log2 3 (mod 2128 − 1) for ∆b ∈ [−211..211] and
∆b 6= 0 is 1600 log2 3 = 00113a0ce508326c006763c0b80c59f9 (in hexadecimal)
which is about 2116.1. (By “smallest” we refer to the distance from 0, modulo
2128 − 1, so 2100 and (2128 − 1) − 2100 are equally small, for example.) Thus if
a, a′ are restricted to [−2115 .. 2115] and b, b′ are restricted to [−210 .. 210] then
∆a = a − a′ ≤ 2116 can never equal ∆b log2 3 (mod 2128 − 1) > 2116 unless
∆b = 0. This means that the only solution to 2a3b = 2a′

3b′ within the specified
range is a = a′ and b = b′.

To prove statement (3) is similar. First we need the value

log2 7 = 305046802472688182329780655685899195396 (decimal)

Now 2a3b7c = 2a′

3b′7c′ iff a−a′ = (b′−b) log2 3+(c′−c) log2 7 (mod 2128−1). The
smallest value for ∆b log2 3 + ∆c log2 7 (mod 2128 − 1) when ∆b, ∆c ∈ [−28 .. 28]
and at least one of these is non-zero is −48 log2 3 + 31 log2 7 (mod 2128 − 1) =
00003bfabac91e02b278b7e69a379d18 (hexadecimal) which is about 2109.9. So re-
stricting the index for base-2 to [−2108 .. 2108] ensures that a − a′ ≤ 2109 while
(b′ − b) log2 3 + (c′ − c) log2 7 > 2109 unless b = b′ and c = c′ and a = a′. 2

We emphasize that not just any list of bases will work. Notice, for example, that
32 = 5 in F∗

2n so the list of bases 2, 3, 5 does not give unique representations,
even for a tiny list of allowed indices like I1 × I2 × I3 = {0, 1, 2}3.

Similar calculations can be done in other groups; here we state the analogous
result for F∗

264 .

Proposition 2. [Can use 2, 3, 11 when n = 64] In the group F∗

264 the

following choices for parameters provide unique representations:

(1) α1 = 2 and [−262 .. 262].

(2) α1, α2 = 2, 3 and [−251 .. 251]× [−210 .. 210].

(3) α1, α2, α3 = 2, 3, 11 and [−244 .. 244]× [−27 .. 27]× [−27 .. 27]. 2

This time 2, 3, 7 does not work as a list of bases, even with a small set of
allowed indices like [1 .. 64]×{0, 1, 2}×{0, 1, 2}, due to the fact that 264 = 32 · 7
in this group. Machine-assisted verification seems essential here; a relation like
that just given is found immediately when computing the possible values for
∆b log2 3 + ∆c log2 7 (mod 264 − 1) but it might not otherwise be anticipated.

23

5 Security of XE

The following result quantifies the security of the XE construction.

Theorem 1. [Security of XE] Fix n ≥ 1 and let α1, . . . , αk ∈ F∗
2n be base

elements and let I1 × · · · × Ik be allowed indices such that these parameters

provide unique representations. Fix a blockcipher E: K × {0, 1}
n
→ {0, 1}

n
and

let Ẽ = XE[E, αI1
1 · · ·α

Ik

k]. Then Advgprp
eE

(t, q) ≤ Advprp
E (t′, 2q) + 4.5 q2

2n where

t′ = t + ckn(q + 1) for some absolute constant c. 2

In English, the XE construction promotes a CPA-secure blockcipher to a CPA-
secure tweakable blockcipher, assuming that the chosen base elements and range
of allowed indices provide unique representations. The proof is in [14].

6 Security of XEX

Some added care is needed to address the security of XEX. Suppose, to be
concrete, that we are looking at XEX[E, 2I] and I = [0 .. 2n−2]. Let the ad-
versary ask a deciphering query with ciphertext C = 0n and tweak (0n, 0).
If the adversary has a construction-based deciphering oracle then it will get a
response of M = D̃0n 0

K (0n) = DK(∆) ⊕ ∆ = DK(N) ⊕ N = 0n ⊕ N = N,
where N = EK(0n) = ∆. This allows the adversary to defeat the CCA-security.
For example, enciphering 2M = 2N with a tweak of (0n, 1) and enciphering
4M = 4N with a tweak of (0n, 2) will give identical results (if the adversary has
the construction-based enciphering oracle). Corresponding to this attack we ex-
clude any tweak (N, i1, . . . , ik) for which (i1, . . . , ik) is a representative of 1—that
is, any tweak (N, i1, . . . , ik) for which αi1

1 . . . αik

k = 1. In particular, this condi-
tion excludes any tweak (N, 0, . . . , 0). The proof of the following is omitted, as
Theorem 3 will be more general.

Theorem 2 (Security of XEX). Fix n ≥ 1 and let α1, . . . , αk ∈ F∗
2n be base

elements and let I1×· · ·×Ik be allowed indices such that these parameters provide

unique representations. Assume αi1
1 · · ·α

ik

k 6= 1 for all (i1, . . . , ik) ∈ I1×· · ·× Ik.

Fix a blockcipher E: K × {0, 1}
n
→ {0, 1}

n
and let Ẽ = XEX[E, αI1

1 · · ·α
Ik

k].

Then Adv±gprp
eE

(t, q) ≤ Adv±prp
E (t′, 2q) + 9.5 q2

2n where t′ = t + ckn(q + 1) for

some absolute constant c. 2

7 An Almost-Free Alternative to Key Separation

When combining two blockcipher-based cryptographic mechanisms into a com-
posite mechanism, it is, in general, essential to use two different keys. Either
these two keys together comprise the key for the joint mechanism, or else each
key is obtained from an underlying one by a key-derivation technique. The first
possibility increases the key length in the composite mechanism while the second
involves extra computation at key setup. Both possibilities incur the inefficiency

24

of blockcipher re-keying when the combined mode runs. For all of these reasons,
some new “composite” modes of operation have gone to considerable trouble in
order to make do (for their particular context) with a single blockcipher key. Ex-
amples include EAX, CCM, and OĊB [3, 13, 17]. Using a single key complicates
proofs—when the mechanism works at all—because one can no longer reason
about generically combining lower-level mechanisms.

Tweakable blockciphers open up a different possibility: the same underlying
key is used across the different mechanisms that are being combined, but one
arranges that the tweaks are disjoint across different mechanisms. In this way
one retains the modularity of design and analysis associated to using separate
keys—one reasons in terms of generic composition—yet one can instantiate in
a way that avoids having extra key material or doing extra key setups. Because
the tweak space for XE and XEX is a Cartesian product of ranges of integers,
it is easy, for these constructions, to separate the different tweaks.

8 Combining XE and XEX

Some blockcipher-based constructions need CCA-security in some places and
CPA-security in other places. One could assume CCA-security throughout, later
instantiating all blockcipher calls with a CCA-secure construction, but it might
be better to use a CPA-secure construction where sufficient and a CCA-secure
one where necessary. Regardless of subsequent instantiation, it is good to be able
to talk, formally, about where in a construction one needs what assumption.

To formalize where in a construction one is demanding what, we tag each
blockcipher call with an extra bit. We say that a tweakable blockcipher Ẽ: K×
T × {0, 1}

n
→ {0, 1}

n
is tagged if T = {0, 1} × T ∗ for some nonempty set T ∗.

Think of T ∗, the effective tweak space, as the tweak space actually used by the
mode. The extra bit indicates what is demanded for each tweak. A first bit of 0
indicates a demand of CPA security, and 1 indicates a demand for CCA security.
For a given T ∈ T one should be asking for one or the other.

An adversary A launching an attack on a tagged blockcipher is given two
oracles, e(·, ·) and d(·, ·), where the second oracle computes the inverse of the
first (meaning d(T, Y) is the unique X such that e(T, X) = Y). The adversary
must respect the semantics of the tags, meaning that the adversary may not
make any query d(T, Y) where the first component of T is 0, and if the adversary
makes an oracle query with a tweak (b, T ∗) then it may make no subsequent
query with a tweak (1 − b, T ∗). As always, we insist that there be no pointless
queries: an adversary may not repeat an e(T, X) query or a d(T, Y) query, and
it may not ask d(T, Y) after having learned Y = e(T, X), nor ask e(T, X) after
having learned X = d(T, Y). The definition for security is now as follows.

Definition 5 (Security of a tagged, tweakable blockcipher). Let Ẽ: K×
T × {0, 1}n → {0, 1}n be a tagged, tweakable blockcipher and let A be an

adversary. Then Adv
[±]gprp
eE

(A) is defined as Pr[K
$

←K : A
eEK (·,·) eDK (·,·)⇒ 1] −

Pr[π
$

← Perm(T , n) : Aπ(·,·) π−1(·,·)⇒ 1] 2

25

Naturally D̃, above, is the inverse of Ẽ. Security in the p̃rp-sense and security
in the ±p̃rp-sense are special cases of security in the [±]p̃rp sense (but for the
enlarged tweak space).

If we combine XE and XEX using our tagging convention we get the tagged,
tweakable blockcipher XEX∗.

Definition 6 (XEX∗). Let E: K × {0, 1}
n
→ {0, 1}

n
be a blockcipher, let

α1, . . . , αk ∈ F∗
2n , and let I1, . . . , Ik ⊆ Z. Then Ẽ = XEX∗[E, αI1

1 · · ·α
Ik

k] is the

tweakable blockcipher Ẽ: K× ({0, 1}× {0, 1}
n
× I1 · · · × Ik)×{0, 1}

n
→ {0, 1}

n

defined by Ẽ0 N i1...ik

K (M) = EK(M ⊕∆) and Ẽ1 N i1...ik

K (M) = EK(M ⊕∆)⊕∆

where ∆ = αi1
1 αi2

2 · · ·α
ik

k N and N = EK(N). 2

9 Security of the Combined Construction

We now specify the security of the XEX∗ construction. The result encompasses
that XE is p̃rp-secure and XEX is ±p̃rp-secure. The proof is in [14].

Theorem 3 (Security of XEX∗). Fix n ≥ 1 and let α1, . . . , αk ∈ F∗
2n be base

elements and let I1×· · ·×Ik be allowed indices such that these parameters provide

unique representations and such that αi1
1 · · ·α

ik

k 6= 1 for all (i1, . . . , ik) ∈ I1×· · ·×

Ik. Fix a blockcipher E: K×{0, 1}n → {0, 1}n and let Ẽ = XEX∗[E, αI1
1 · · ·α

Ik

k].

Then Adv
[±]gprp
eE

(t, q) ≤ Adv±prp
E (t′, 2q) + 9.5 q2

2n where t′ = t + ckn(q + 1) for

some absolute constant c. 2

10 The OCB1 Authenticated-Encryption Scheme

We recast OCB [15] to use a tweakable blockcipher instead of a conventional
blockcipher. Liskov, Rivest, and Wagner first did this [10], but our formulation
is different from theirs. First, guided by what we have done so far, we choose
a tweak space of T = {0, 1} × {0, 1}n × [1 .. 2n/2] × {0, 1}. The first bit of the
tweak is the tag; the effective tweak space is T ∗ = {0, 1}n × [1 .. 2n/2] × {0, 1}.
Second, we want tweaks to increase monotonically, and so we switch the “special”
processing done in OCB from the penultimate block to the final block. The
resulting algorithm is shown in Fig. 1. Algorithm OCB1 is parameterized by a
tweakable blockcipher Ẽ: K × T × {0, 1}

n
→ {0, 1}

n
and a number τ ∈ [0 .. n].

For clarity, we write π
N
i for Ẽ 1 N i 0

K and πN
i for Ẽ 0 N i 0

K and π̄N
i for Ẽ 0 N i 1

K .
The security of OCB1[Perm(T , n)] is much simpler to prove than the se-

curity of OCB[Perm(n)]. (Liskov, Rivest, and Wagner [10] had made the same
point for their tweakable-blockcipher variant of OCB.) To state the result we
give a couple of definitions from [15]. For privacy of a nonce-based encryption
scheme Π = (K, E ,D) we use the notion of indistinguishability-from-random-

strings, which defines Advpriv
Π (A) as Pr[K

$

←K : AEK(·,·)⇒ 1]−Pr[A$(·,·)⇒ 1].
Here $(·, ·) is an oracle that, on input (N, M), returns |M | random bits. The ad-
versary is not allowed to repeat a nonce N . For authenticity we use the nonce-
based notion of integrity of ciphertexts: the adversary is given an encryption

26

M1

π
N
3π

N
2π

N
1

ΣM2 M3

C1 C2 C3 Tag

len

πN
4 π̄N

4

Pad

C4

M4

Algorithm OCB1.EncryptN
K (M)

Partition M into M [1] · · ·M [m]
for i ∈ [1 .. m− 1] do C[i]← π

N
i (M [i])

Pad← πN
m(len(M [m]))

C[m]←M [m] ⊕ Pad

C ← C[1] · · ·C[m]
Σ ←M [1] ⊕ · · · ⊕M [m − 1]⊕

C[m]0∗ ⊕ Pad

Tag ← π̄N
m(Σ)

T ← Tag [first τ bits]
return C← C ‖ T

Algorithm OCB1.DecryptN
K (C)

Partition C into C[1] · · ·C[m] T

for i ∈ [1 .. m− 1] do M [i]←
`
π

N
i

´−1
(C[i])

Pad← πN
m(len(C[m]))

M [m]← C[m]⊕ Pad

M ←M [1] · · ·M [m]
Σ ←M [1] ⊕ · · · ⊕M [m− 1] ⊕C[m]0∗ ⊕ Pad

Tag ← πN
m(Σ)

T ′ ← Tag [first τ bits]
if T = T ′ then return M

else return Invalid

Fig. 1. OCB1[eE, τ] with a tweakable blockcipher eE: K × T × {0, 1}n → {0, 1}n and
tweak space T = {0, 1} × {0, 1}n × [1 .. 2n/2] × {0, 1} and tag length τ ∈ [0 .. n]. We

write π
N
i and πN

i and π̄N
i for eE1 N i 0

K and eE0 N i 0
K and eE0 N i 1

K .

oracle EK(·, ·) and is said to forge if it outputs an (N, C) that is valid and C

was not the result of any prior (N, M) query. The adversary is not allowed to
repeat a nonce N while it queries its encryption oracle. We write Advauth

Π (A) for

Pr[K
$

←K : AEK(·,·) forges]. We have the following theorem for the information-
theoretic security of OCB1. The proof is in [14].

Theorem 4 (OCB1 with an ideal tweakable blockcipher). Fix n ≥ 1, τ ∈
[0 .. n], and T = {0, 1}×{0, 1}

n
× [1 .. 2n/2]×{0, 1}. Let A be an adversary. Then

Advpriv
OCB1[Perm(T ,n),τ](A) = 0 and Advauth

OCB1[Perm(T ,n),τ](A) ≤ 2n−τ/(2n − 1). 2

Note that the authenticity bound is close to 2−τ ; in particular, 2n−τ/(2n− 1) ≤
1/(2τ − 1) for all τ ≥ 2. The bounds do not degrade with the number of queries
asked by the adversary, the length of these queries, or the time the adversary
runs. For the complexity-theoretic analog we have the following.

27

Algorithm OCB1.EncryptN
K (M)

Partition M into M [1] · · ·M [m]
∆← 2 EK(N)
Σ ← 0n

for i ∈ [1 .. m− 1] do

C[i]← EK(M [i] ⊕∆) ⊕ ∆

∆← 2∆

Σ ← Σ ⊕M [i]
Pad← EK(len(M [m])⊕∆)
C[m]←M [m]⊕ Pad

C ← C[1] · · ·C[m]
Σ ← Σ ⊕ C[m]0∗ ⊕ Pad

∆← 3∆

Tag ← EK(Σ ⊕∆)
T ← Tag [first τ bits]
return C← C ‖ T

Algorithm OCB1.DecryptN
K (C)

Partition C into C[1] · · ·C[m] T

∆← 2 EK(N)
Σ ← 0n

for i ∈ [1 .. m− 1] do

M [i]← E−1
K (C[i] ⊕∆) ⊕ ∆

∆← 2∆

Σ ← Σ ⊕M [i]
Pad← EK(len(C[m]) ⊕∆)
M [m]← C[m]⊕ Pad

M ←M [1] · · ·M [m]
Σ ← Σ ⊕ C[m]0∗ ⊕ Pad

∆← 3∆

Tag ← EK(Σ ⊕∆)
T ′ ← Tag [first τ bits]
if T = T ′ then return M

else return Invalid

Fig. 2. OCB1[E, τ] with a conventional blockcipher E: K × {0, 1}n → {0, 1}n and a tag

length τ ∈ [0 .. n]. This coincides with OCB1[eE, τ] where eE = XEX[E, 2[1 .. 2n/2]3{0,1}].

Corollary 1 (OCB1 with a tweakable blockcipher). Fix n ≥ 1, τ ∈ [0 .. n],

T = {0, 1} × {0, 1}n × [1 .. 2n/2] × {0, 1}, and Ẽ: K × T × {0, 1}n → {0, 1}n

a tagged, tweakable blockcipher. Then Advpriv

OCB1[eE,τ]
(t, σ) ≤ Advgprp

eE
(t′, σ) and

Advauth
OCB1[eE,τ]

(t, σ) ≤ Adv
[±]gprp
eE

(t′, σ) + 2n−τ/(2n − 1), where t′ = t + cnσ for

some absolute constant c. 2

The proof requires CPA-security for privacy but authenticity uses the notion
that combines CPA- and CCA-security (Definition 5). It is here that one has
formalized the intuition that the first m−1 tweakable-blockcipher calls to OCB1
need to be CCA-secure but the last two calls need only be CPA-secure.

To realize OCB1 with a conventional blockcipher E: K × {0, 1}n → {0, 1}n,

use XEX∗, instantiating OCB1[Ẽ, τ] by way of Ẽ = XEX∗[E, 2I3J] where I =
[1 .. 2n/2] and J = {0, 1}. Overloading the notation, we write this scheme as
OCB1[E, τ]. The method is rewritten in Fig. 2.

Corollary 2 (OCB1 with a blockcipher). Fix n ≥ 1 and τ ∈ [0 .. n]. Assume

that 2, 3 provide unique representations on [1 .. 2n/2]×{0, 1} and 2i3j 6= 1 for all

(i, j) ∈ [1 .. 2n/2]× {0, 1}. Let E: K × {0, 1}n → {0, 1}n be a blockcipher. Then

Advpriv
OCB1[E,τ](t, σ) ≤ Advprp

E (t′, 2σ) +
4.5σ2

2n
and

Advauth
OCB1[E,τ](t, σ) ≤ Adv±prp

E (t′, 2σ) +
9.5σ2

2n
+

2n−τ

2n − 1

where t′ = t + cnσ for some absolute constant c. 2

28

Propositions 1 and 2 establish that n = 128 and n = 64 satisfy the requirement
for unique representations. They also guarantee that there is no representative
of 1 within [1 .. 2n/2] × {0, 1}. To see this, note that the propositions imply
that (0, 0) is the only representative for 1 within a space I1 × I2 that includes
[1 .. 2n/2]× {0, 1}, and so there can be no representative of 1 within a subspace
of I1 × I2 that excludes (0, 0).

Blockcipher-based OCB1 is more efficient than OCB. With OCB one expects
to use preprocessing to compute a value L = EK(0n) and a collection of 2iL-
values. This is gone in OCB1; preprocessing is not useful there beyond setting up
the underlying blockcipher key. Beyond this, with OCB processing the jth block
involved xoring into the current offset a value L(i) = 2iL where i = ntz(j) was
the number of trailing zero-bits in the index j. In the absence of preprocessing,
offset-calculations were not constant time. This too is gone.

The previous paragraph notwithstanding, the time difference or chip-area
difference between optimized implementations of OCB and OCB1 will be small,
since the overhead of OCB over a mode like CBC was already small. The larger
gain is that the mode is simpler to understand, implement, and prove correct.

11 The PMAC1 Message Authentication Code

As with OCB, one can recast PMAC [4] to use a tweakable blockcipher and,
having done so, one can instantiate the tweakable blockcipher, this time with
the XE construction. The resulting algorithm, PMAC1, is simpler and more
efficient than PMAC. In the latter construction one had to xor into the current
offset a value L(i) = 2iL where i was the number of trailing zero-bits in the
current block index j. This is gone in PMAC1, and an implementation no longer
needs to concern itself with Gray codes, precomputing L(i)-values, or finding
the most efficient way to bring in the right L(i) value. Details are in [14].

To make an authenticated encryption scheme that handles associated-data,
combine OCB1 and PMAC1 [13]. Encrypt message M under key K, nonce N ,
and header H by OCB1.EncryptNK(M)⊕PMAC1K(H) where the ⊕ xors into the
end. Omit the ⊕ PMAC1K(H) if H = ε. We call this scheme AEM.

12 Comments

Under the approach suggested by this paper, to get good efficiency for a design
that uses a tweakable-blockcipher, the designer must accept certain design rules.
In particular, the tweak space needs to look like {0, 1}

n
× BIG × SMALL for

appropriate sets BIG and SMALL, and one needs to arrange that most tweaks
be obtained by incrementing the prior one. It is a thesis implicit in this work
that these restrictions are not overly severe.

Besides simplifying the design and proof for OCB and PMAC, we have im-
proved their efficiency. The improvement are not large (the modes were already
highly efficient), but performance improvements, of any size, was not a benefit
formerly envisaged as flowing from the tweakable-blockcipher abstraction.

29

Somewhat strangely, our constructions depend on the relative easiness of
computing discrete logarithms. I know of no other example where one needs to
compute discrete logs in order to design or verify a mode of operation.

I end this paper by acknowledging that everyone writes block cipher, not
blockcipher. Still, the time has come to spell this word solid. I invite you to join
me.

Acknowledgments

Thanks to David Wagner for pointing out an oversight in an early draft. Useful
comments were also received from John Black and the anonymous referees.

This research was supported by NSF 0208842 and by a gift from Cisco Sys-
tem. Thanks to the NSF (particularly Carl Landwehr) and to Cisco (particularly
David McGrew) for their kind support of my research.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treat-
ment of symmetric encryption: Analysis of the DES modes of operation. Sympo-

sium on Foundations of Computer Science, FOCS ’97, IEEE Computer Society,
pp. 394–403, 1997.

2. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System Sciences,
vol. 61, no. 3, Dec 2000. Earlier version in CRYPTO ’94.

3. M. Bellare, P. Rogaway, and D. Wagner. The EAX Mode of operation. Fast

Software Encryption, FSE 2004. Lecture Notes in Computer Science, vol. 3017,
Springer-Verlag, pp. 389–407, 2004.

4. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. Advances in Cryptology — Eurocrypt ’02. Lecture Notes
in Computer Science, vol. 2332, Springer-Verlag, pp. 384–397, 2002.

5. V. Gligor and P. Donescu. Fast encryption and authentication: XCBC en-
cryption and XECB authentication modes. Fast Software Encryption, FSE 2001.
Lecture Notes in Computer Science, vol. 2355, Springer-Verlag, pp. 92–108, 2001.

6. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer

and System Sciences, vol. 28, April 1984, pp. 270–299.

7. S. Halevi and P. Rogaway. A parallelizable enciphering mode. Topics in Cryp-

tology — CT-RSA 2004. Lecture Notes in Computer Science, vol. 2964, Springer-
Verlag, pp. 292–304, 2004.

8. J. Kilian and P. Rogaway. How to protect DES against exhaustive key search
(an analysis of DESX). J. of Cryptology, vol. 14, no. 1, pp. 17–35, 2001.

9. C. Jutla. Encryption modes with almost free message integrity. Advances in

Cryptology — EUROCRYPT 2001. Lecture Notes in Computer Science, vol. 2045,
Springer-Verlag, pp. 529–544, 2001.

10. M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. Advances

in Cryptology — CRYPTO ’02. Lecture Notes in Computer Science, vol. 2442,
Springer-Verlag, pp. 31–46, 2002.

30

11. S. Pohlig and M. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Transactions on Information

Theory, vol 24, pp. 106–110, 1978.
12. J. Pollard. Monte Carlo methods for index computation (mod p). Mathematics

of Computation, vol. 32, pp. 918–924, 1978.
13. P. Rogaway. Authenticated-encryption with associated-data. ACM Conference

on Computer and Communications Security 2002, CCS 2002. ACM Press, pp. 98–
107, 2002.

14. P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. Manuscript, 2004. Full version of this paper, available
from the author’s web page.

15. P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of opera-
tion for efficient authenticated encryption. ACM Transactions on Information and

System Security, vol. 6, no. 3, pp. 365–403, 2003. Earlier version, with T. Krovetz,
in CCS 2001.

16. R. Schroeppel. The hasty pudding cipher. AES candidate submitted to NIST,
1998.

17. D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM).
Network Working Group RFC 3610. The Internet Society, September 2003.

A Tweakable Blockciphers Implicit in Prior Work

When tweaks increase in sequence, the most efficient constructions formerly
known for a tweakable blockcipher are those implicit in earlier modes [4, 5, 9, 15],
recast in view of Liskov, Rivest, and Wagner [10]. In particular:

Jutla [9] might be seen as suggesting a construction (among others) of

Ẽ: (K × K′) × ({0, 1}n × Z+
p) × {0, 1}n → {0, 1}n by way of ẼN,i

KK′(X) =
EK(X ⊕∆)⊕∆ where ∆ = i` mod p and ` = EK′(N) and p is the largest
prime less than 2n.

Gligor and Donescu [5] might be seen as suggesting constructions like

Ẽ: (K× {0, 1}
n
)× [1 .. 2n − 1]→ {0, 1}

n
by Ẽi

K,r(X) = EK(X + δ) where
δ = ir and addition is done modulo 2n.

Rogaway, Bellare, and Black [15] might be seen as implicitly suggesting

making a tweakable blockcipher Ẽ: K × ({0, 1}
n
× [0 .. 2n−2])× {0, 1}

n
→

{0, 1}
n

from an ordinary blockcipher E: K × {0, 1}
n
→ {0, 1}

n
by way of

ẼN,i
K (X) = EK(X ⊕ ∆) ⊕ ∆ where ∆ = γiL ⊕ R and L = EK(0n) and

R = EK(N ⊕ L) and γi is the i-th Gray-code coefficient.

Black and Rogaway [4] might be seen as making Ẽ: K × [0 .. 2n−2] ×

{0, 1}
n
→ {0, 1}

n
out of E: K×{0, 1}

n
→ {0, 1}

n
by Ẽi

K(X) = EK(X⊕∆)
where ∆ = γiL and L = EK(0n) and γi is as before.

The last two definitions ignore the “special” treatment afforded to blocks
modified by xoring in 2−1L. The implicit intent [4, 15] was to use this
mechanism to enlarge the tweak space by one bit, effectively taking the
cross product with {0, 1}.

