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Abstract. For a finite group G to be used in the MOR public key cryp-
tosystem, it is necessary that the discrete logarithm problem(DLP) over
the inner automorphism group Inn(G) of G must be computationally
hard to solve. In this paper, under the assumption that the special con-
jugacy problem of G is easy, we show that the complexity of the MOR
system over G is about log |G| times larger than that of DLP over G in
a generic sense. We also introduce a group-theoretic method, called the
group extension, to analyze the MOR cryptosystem. When G is consid-
ered as a group extension of H by a simple abelian group, we show that
DLP over Inn(G) can be ‘reduced’ to DLP over Inn(H). On the other
hand, we show that the reduction from DLP over Inn(G) to DLP over
G is also possible for some groups. For example, when G is a nilpotent
group, we obtain such a reduction by the central commutator attack.
Key words:MOR cryptosystem, discrete logarithm problem, group ex-
tension, central commutator attack

1 Introduction

At Crypto 2001, Paeng et al. [8] proposed the MOR public key cryp-
tosystem using finite non-abelian groups. For a group G to be used in
the MOR public key cryptosystem, it is necessary that the discrete log-
arithm problem(DLP) over the inner automorphism group Inn(G) of G
must be computationally hard to solve, and there must be an efficient way
to represent group elements as products of the specified generators of G.
Furthermore, we expect the security of the MOR system to be something

? Supported in part by KRF grant #2004-070-C00001 and BK21 Project in 2004.
† Partially supported by NSRI.



383

‘mor(e)’ than that of DLP over G. Also it should be noted that the dif-
ficulty of DLP depends not only on the algebraic structure of the group,
but also on how elements of the group are represented.

Despite of many cryptographic advantages(see [8]) of the MOR cryp-
tosystem, the groups proposed so far have turned out to be unsatisfac-
tory(see [7, 9, 14]).

In this paper, we are not trying to suggest new candidates for the
groups G to be used in the MOR cryptosystem. We would rather intend
to reveal the reasons why it is not easy to find good candidates for G.
Thus, we hope that this paper helps searching for suitable groups for the
MOR system.

First, in Section 2, we compute the complexity of finding the secret
keys of MOR system in a generic sense. Under the assumption that the
special conjugacy problem of G is easy, we show that the complexity of
MOR system over G is about log |G| times larger than that of DLP over G
in a generic sense. This result is somewhat unexpected, since our intuitive
expectation for the generic complexity of MOR system is about |Z(G)|
times larger than that of DLP over G.

Next, in Section 3, using the well-known theory of group extensions,
we show that it is possible to ‘reduce’ the problem of finding the secret
keys of MOR system over G to that of the MOR system over (smaller)
subgroupsH of G. Our method is a generalization of various attacks given
in [7, 9, 14].

In Section 4, we intend to find a reduction algorithm, which reduces
MOR system over G to DLP over G. (If this reduction were efficient
enough, MOR system would have less advantage in security than other
public key cryptosystem based on DLP over G.) We show that this reduc-
tion is possible for the groups which are nilpotent or ‘nearly’ nilpotent.
We call our reduction the central commutator attack and we note that
this attack is generic.

In this paper, we use the following standard notations : If N is a nor-
mal subgroup of G and g ∈ G, the order of g is denoted by |g| and the
image of g in G/N is denoted by g. We let Inn(g) be the inner automor-
phism of G induced by g, that is,

Inn(g)(x) = g−1xg, (x ∈ G)

and we let Inn(G) = {Inn(g) | g ∈ G} be the subgroup of inner automor-
phisms in Aut(G). We note that Inn(G) ≈ G/Z(G), where

Z(G) = {z ∈ G | zg = gz for all g ∈ G}
is the center of G.
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2 MOR Cryptosystem

2.1 Description of MOR Cryptosystem

The MOR cryptosystem [8] is described as follows.

– Bob’s Public key : (Inn(g), Inn(gs))
– Bob’s Secret key : An integer s(mod |g|), where g ∈ G/Z(G)

It should be noted that for a fixed generating set {γi | i ∈ I} of G, a
public key (Inn(g), Inn(gs)) = (ϕ,ϕs) is described by the data {ϕ(γi)}
and {ϕs(γi)}.

Encryption

1. Alice chooses a random integer r and computes (Inn(gs))r = Inn(gsr).
2. Alice computes E = Inn(gsr)(M).
3. Alice computes µ = (Inn(g))r = Inn(gr).
4. Alice sends (E,µ) to Bob.

Decryption

1. Bob computes µ−s = Inn(g−sr).
2. Bob recovers M = µ−s(E).

2.2 MOR Cryptosystem and Related Problems

For simplicity, let us write DLP(G) for DLP over G. Thus DLP(Inn(G))
stands for DLP over the inner automorphism group Inn(G) of G.

The security of MOR system is related with the following problems :

– [Special Conjugacy Problem] : For a given ϕ ∈ Inn(G), find h ∈ G such
that Inn(h) = ϕ.

– [DLP(Inn(G))] : Given ϕ,ϕs ∈ Inn(G) for some s ∈ Z, find s(mod |ϕ|).
Throughout this paper, let us assume(agree(?)) that the special con-

jugacy problems over G are not hard to solve. (Otherwise, one can ex-
ploit the cryptosystem using the hardness of the special conjugacy prob-
lem over G.) Therefore, for given Inn(g), we may find g ′ ∈ G satisfying
Inn(g) = Inn(g′). It means that g′ = gz for some z ∈ Z(G). In this case,
DLP(Inn(G)) can be restated as follows :

Find an integer s(mod |g|) for given g, gsz ∈ G, where z ∈ Z(G),

or
Find an integer s(mod |g|) for given g, g

s ∈ G/Z(G).

It means that DLP(Inn(G)) is equivalent to DLP(G/Z(G)).
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In particular, if |Z(G)| is sufficiently large, there is little possibility
that gsz is contained in the cyclic subgroup 〈g〉 for a randomly chosen z ∈
Z(G). Hence, existing algorithms for solving DLP(G) do not seem to be
directly applied to DLP(Inn(G)). On the contrary, if |Z(G)| is too large,
then Inn(G) becomes too small to be used for MOR system. Therefore,
we conclude that the appropriate size of Z(G) is crucial in MOR system.

2.3 Central Attack

The crucial role of Z(G) gives rise to the following intrinsic attack against
MOR system.

Assume that |Z(G)| = m is known. For given g and gsz for some
s ∈ Z and z ∈ Z(G), we get h1 = gm and h2 = (gsz)m = (gm)s. Now,
solving DLP(〈gm〉) or DLP(G), we get s(mod |gm|), which gives a partial
information of the secret key s. Of course, gm may be the identity of G
in the extreme case(for example, see [8, p. 477]).

2.4 Complexity of Generic Algorithm on MOR System

Since middle of 90’s, a lot of works [11, 4–6] have been done on generic
algorithms for DLP and their lower bounds of complexity. Algorithms
which do not exploit any particular property of representations of the
group are called generic, and the baby-step giant-step algorithm is one
of the generic algorithms for DLP. In generic algorithms for DLP, only
group operations and equality tests are used.

Let {γi | i ∈ I} be a given generating set of G for MOR system, and a
public key (ϕ,ϕs) be given by {ϕ(γi)} and {ϕs(γi)}. Assuming that the
special conjugacy problem over G is not difficult as before, we get g and
gsz for some unknown z ∈ Z(G).

Let MulG(·, ·), InvG(·) and EquG(·, ·) denote the group operation
(multiplication and inversion) oracles and the equality test oracle of G,
respectively. Now, consider the factor group G/Z(G). The generic opera-
tions of G/Z(G) can be realized using those of G as follows.

• Group operation oracle of G/Z(G) :

MulG/Z(G)(g1, g2) = MulG(g1, g2),

InvG/Z(G)(g) = InvG(g).

• Equality test oracle of G/Z(G) :

EquG/Z(G)(g1, g2) =

{

True (if g1g
−1
2 γi = γig1g

−1
2 for all i ∈ I),

False (otherwise).
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One equality test in G/Z(G) requires at most (2|I|+1) calls of MulG,
1 call of InvG and |I| calls of EquG. Under the assumption that |I| =
O(log |G|), we have the following result as a direct application of the
Pohlig-Hellman algorithm in [10].

Theorem 1. Let a public key of MOR system (Inn(g), Inn(gs)) be given,
and let |g| =

∏k
i=1 p

ei

i , where pi are distinct primes. Under the assump-
tion that |I| = O(log |G|) and that the special conjugacy problem over G
is easy, the secret key s can be computed by O(

∑
ei(log |g| + pi) log |G|)

group operations and equality tests of group elements. If a memory space
for storing d√pe group elements(where p is the largest prime factor of
|g|) is available, the running time can be reduced to O(

∑
ei(log |g| +√

pi log pi) log |G|).

Proof. By the above discussion, one equality test between two elements
of G/Z(G) requires O(log |G|) group operations and equality tests of el-
ements of G. The second assertion follows directly from [10]. ut

Thus, in a generic sense, the complexity of computing the secret key
of MOR system is about log |G| times larger than that of solving DLP(G).

This result is somewhat unexpected, since our intuitive expectation
for the generic complexity of MOR system is about |Z(G)| times larger
than that of DLP over G. (If the equality test oracle of G/Z(G) were ;
“check if g1 = g2z for each z ∈ Z(G)”, then we would obtain the result
matching our intuition. So, the point is that one equality test between
two elements of G/Z(G) requires only O(log |G|) group operations and
equality tests of elements of G.)

3 Group Extensions and MOR Cryptosystem

Since it does not seem easy to find a good candidate for MOR cryptosys-
tem from the list of well-known finite groups, we consider an inductive
argument as follows. Suppose that the group G is good for MOR system,
and suppose that G has the smallest order among good candidates. Then
we think of G as a group extension of a maximal normal subgroup H of
G, which is not suitable for MOR system by the hypothesis.

In this section, generalizing the various ideas of [7, 9, 14], we show
that it is possible to w-reduce(see the definition below) DLP(Inn(G)) to
DLP(Inn(H)), where H is a maximal normal subgroup of G.

Definition 2 Given ϕ,ϕs ∈ Inn(G) with a secret key s(mod |ϕ|), if we
can compute ψ,ψs for some ψ ∈ Inn(H), we say DLP(Inn(G)) can be
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w-reduced (weakly-reduced) to DLP(Inn(H)). In this case, note that we
can recover s(mod |ψ|), provided DLP(Inn(H)) is not hard to solve. (Of
course, |ψ| may be 1 in the extreme case.)

Although the theory of group extension(see, for example, [2, § 15.1] or
[13, § 2.7]) is quite standard and well-known, we briefly sketch the proofs
for some results of group extensions to prepare for our proof of Theorem
10.

3.1 Group Extensions

Definition 3 For given two groups H and F , if H / G and G/H ∼= F ,
then we call G a group extension of H by F.

Theorem 4. (See [2, 13].) If G is a group extension of H by F, there
exist functions T : F → Aut(H) and f : F × F → H satisfying the
following conditions :
(1) T (τ) ◦ T (σ) = Inn(f(σ, τ)) ◦ T (στ), for σ, τ ∈ F ,
(2) f(σ, τρ) f(τ, ρ) = f(στ, ρ)T (ρ)(f(σ, τ)), for σ, τ, ρ ∈ F ,
(3) f(1, 1) = 1.

Proof. Let t : F → G give rise to a bijection between F and a complete
set of coset representatives of H in G such that t(1) = 1 (t is called a
transversal). Next, we define two functions T : F → Aut(H) and f :
F × F → H by

(a) T (σ)(h) = t(σ)−1h t(σ), for σ ∈ F, h ∈ H,
(b) f(σ, τ) = t(στ)−1 t(σ) t(τ), for σ, τ ∈ F .

Then, T and f satisfy the conditions (1)–(3). ut

Remark 5 If T and f satisfy the conditions (1)–(3) of Theorem 4, then
we call f a factor set belonging to T. If a factor set f is obtained from
G as (a) and (b) in the proof of Theorem 4, then we call f a factor set
associated with the extension G.

Theorem 6. (See [2, 13].) Let f : F×F → H be a factor set belonging to
T : F → Aut(H). Then there exists a group G which is a group extension
of H by F such that f is a factor set associated with G.

Proof. Put G = { t(σ)a | σ ∈ F, a ∈ H} and define a binary operation ∗
on G by

[t(σ)a] ∗ [t(τ)b] = t(στ) f(σ, τ)T (τ)(a) b, (σ, τ ∈ F, a, b ∈ H).
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Then,G becomes a group extension ofH by F . Moreover, t(σ)1 is actually
a transversal and (T, f) satisfies the conditions (a) and (b) in the proof
of Theorem 4. ut

Corollary 7 (See [2, 13].) The group extension G is uniquely determined
by T and f . In this case, we denote G = [H,F, T, f ].

We note that semi-direct products are group extensions with the triv-
ial factor sets. In [7, 9], it is shown that DLP over inner automorphism
groups of semi-direct products can be reduced to DLP over inner auto-
morphism groups of individual groups. For group extensions, a similar
result can be derived.

Theorem 8. Assume the group extension data G = [H,F, T, f ] is known.
If F is non-abelian, then DLP(Inn(G)) can be w-reduced to DLP(Inn(F )).

Proof. Let ϕ = Inn(g) and g = t(σ)a, where σ ∈ F, a ∈ H. For any
x = t(τ)b ∈ G, we have

ϕ(x) = [(t(σ)a)−1] ∗ [t(τ)b] ∗ [t(σ)a]

= [t(σ−1)d] ∗ [t(τ)b] ∗ [t(σ)a], (where T (σ)(d) = f(σ−1, σ)−1a−1)

= [t(σ−1τ) f(σ−1, τ)T (τ)(d) b] ∗ [t(σ)a]

= t(σ−1τσ) f(σ−1τ, σ) · T (σ)(f(σ−1, τ)T (τ)(d) b) · a.

Similarly there exists A ∈ H such that ϕs(x) = t(σ−sτσs)A. Let Ψ =
Inn(σ). Then, the problem of finding s from given ϕ,ϕs ∈ Inn(G) can be
w-reduced to that of finding s from Ψ, Ψ s ∈ Inn(F ). ut

Theorem 8 implies that the smaller order σ ∈ F/Z(F ) has, the less
information about s is exposed. Therefore, it is reasonable to take F to be
abelian. The next theorem is useful when we investigate group extensions
by finite cyclic groups.

Theorem 9. (See [2, § 15.3].) If G is a group extension of H by Zn,
then G is uniquely determined by χ ∈ Aut(H) and α ∈ H satisfying the
following conditions :
(1) χn = Inn(α) ∈ Inn(H),
(2) χ(α) = α.

Proof. Write Zn = {0, 1, . . . , n − 1}. We choose a coset representative 1

of 1, and define a transversal t : Zn → G by t(i) = 1
i
for 0 ≤ i ≤ n− 1.

Then, 1
n

= α for some α ∈ H. Therefore χ := Inn(1)|H ∈ Aut(H). Then
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χ and α satisfy conditions (1) and (2). Conversely, if χ and α are given,
we define T : Zn → Aut(H) and f : Zn × Zn → H by

T (i) = χi, (0 ≤ i ≤ n− 1)

f(i, j) =

{

1 if i+ j < n,

α if i+ j ≥ n.

Then T and f satisfy the conditions (1)–(3) of Theorem 4. ut

3.2 MOR System and Group Extensions

Let G be given by a group extension of H by F . The case, for which F
is non-abelian, is not desirable since DLP(Inn(G)) can be w-reduced to
DLP(Inn(F )) by Theorem 8.

Furthermore, since every finite group has a composition series, we may
regard G as a group extended by finite simple groups for finitely many
times. Therefore, in this section, we analyze the case when F = Zp for
some prime p. Now we have the main result of the present section.

Theorem 10. If the group extension data G = [H,Zp, T, f ] is known,
then DLP(Inn(G)) can be w-reduced to DLP(Inn(H)).

Proof. LetG = [H,Zp, T, f ]. Then, by Theorem 9, there exist χ ∈ Aut(H)
and α ∈ H satisfying the following conditions :

T (i) = χi, (0 ≤ i < p),

f(i, j) =

{

1 if i+ j < p,

α if i+ j ≥ p,

χp = Inn(α) ∈ Inn(H).

Now, we compute Z(G). If t(i)a ∈ Z(G), then for all j ∈ Zp and b ∈ H,
we have

[t(i)a] ∗ [t(j)b] = [t(j)b] ∗ [t(i)a].

Therefore,

t(i+ j) f(i, j)χj(a) b = t(j + i) f(j, i)χi(b) a

and hence this implies χj(a) = a and b = a−1 χi(b) a. Note that this is
equivalent to χ(a) = a and χi = Inn(a−1). Hence we conclude that

Z(G) = { t(i)a | χ(a) = a, χi = Inn(a−1)}.
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Since χp = Inn(α) ∈ Inn(H) and p is prime, we note that the order of χ
in Out(H) = Aut(H)/ Inn(H) is 1 or p.

Case 1. |χ| = 1.

We prove this case by showing that there is a computable isomorphism
between G/Z(G) and H/Z(H). If |χ| = 1, then χ = Inn(h) for some
h ∈ H. Since χi = Inn(hi) = Inn(a−1), there exists zi ∈ Z(H) such
that hi = a−1zi (i.e., hia ∈ Z(H)). Then h commutes with a and thus
χ(a) = Inn(h)(a) = a. Therefore,

Z(G) = { t(i)a | hia ∈ Z(H)}

and we have
|Z(G)| ≥ |Z(H)|.

Next, we find an isomorphism between G/Z(G) and H/Z(H). Since χp =
Inn(hp) = Inn(α), we have α = hpz for some z ∈ Z(H). We define
Ψ : G→ H/Z(H) by

Ψ(t(i)a) = hia, (a ∈ H, i ∈ Zp).

Then we can show the followings.

1. Ψ is a group homomorphism :

Ψ([t(i)a] ∗ [t(j)b]) = Ψ
(
t(i+ j) f(i, j)χj(a) b

)

=

{

hi+j χj(a) b = hi+j h−j a hj b = hia hjb, if i+ j < p

hi+j−p hp z χj(a) b = z hi a hj b = hia hjb, if i+ j ≥ p

= Ψ(t(i)a)Ψ(t(j)b).

2. Ψ is surjective : For g ∈ H/Z(H), where g ∈ H, we have

Ψ(t(i)h−ig) = hih−ig = g.

3. Ker Ψ = Z(G) : t(i)a ∈ Ker Ψ ⇔ hia ∈ Z(H) ⇔ t(i)a ∈ Z(G).
Hence, by the first isomorphism theorem, we have

Ψ : G/Z(G)
≈−→ H/Z(H).

Note that Ψ is computable since h can be derived from χ = Inn(h).

Case 2. |χ| = p.

If |χ| = p, i should be 0 in order that the equation χi = Inn(a−1) holds.
Moreover, since χ0(b) = b = aba−1 for all b ∈ H, a must be contained in
Z(H). Therefore, we have

Z(G) = { t(0)a | χ(a) = a, a ∈ Z(H)} ≤ Z(H).
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For given Inn(t(i)a) and Inn ((t(i)a)s), under the assumption that the
special conjugacy problem of G is easy, we can find t(j)c and t(l)d such
that Inn(t(i)a) = Inn(t(j)c) and Inn ((t(i)a)s) = Inn(t(l)d). Then we
must have i ≡ j (mod p) and c = az for some z ∈ Z(H) with χ(z) = z.
Similarly, we get is ≡ l (mod p). Consequently, we obtain s ≡ r ′ (mod p)
and thus we may put s = pr + r′ for some integer r. Since

(t(i)a)p =

p-times
︷ ︸︸ ︷

[t(i)a] ∗ [t(i)a] ∗ · · · ∗ [t(i)a]

=

(p−1)-times
︷ ︸︸ ︷

[t(i)a] ∗ [t(i)a] ∗ · · · ∗ [t(i)a] ∗ [t(2i) f(i, i)T (i)(a) a]

=

(p−2)-times
︷ ︸︸ ︷

[t(i)a] ∗ · · · ∗ [t(i)a] ∗ [t(3i) f(i, 2i)T (2i)(a) f(i, i) T (i)(a) a]

= t(0)

p−1
∏

j=0

f(i, ij)T (ij)(a)

= t(0)Φ,

where Φ =

p−1
∏

j=0

f(i, ij)T (ij)(a), we have

Inn ((t(i)a)p) = Inn(t(0)Φ)

and

Inn ((t(i)a)s) ◦ Inn
(

(t(i)a)−r′
)

= Inn ((t(i)a)pr) = Inn (t(0)Φr) .

We may consider Inn(t(0)Φ)|H and Inn (t(0)Φr) |H as elements of Inn(H),
and we conclude that DLP(Inn(G)) is w-reduced to DLP(Inn(H)). ut

Example 11 Let Λ be the graph automorphism of order 2 of SLn(q)(see
[12, § 10]). The group extension G = [SLn(q),Z2, Λ, 1] belongs to Case 2.
In this case, the order of Z(G) is the same as that of SLn(q).

Example 12 A metacyclic group(for example, see [3, p. 99]) is a semi-
direct product and belongs to Case 2. In this case, the order of the center
of the group decreases.

In Case 1, since we can find a computable isomorphism

Ψ : G/Z(G)
≈−→ H/Z(H),

we see that DLP(Inn(G)) can be completely reduced to DLP(Inn(H)) in
this case.
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Example 13 (See [8].) Let G = SL2(p) ×θ Zp, where

θ = Inn ◦ θ1 : Zp → Aut(SL2(p)),

and θ1 is an isomorphism from Zp to 〈α〉, α ∈ SL2(p). Then

Z(G) = { t(i)a | hia = ±I, a ∈ SL2(p)}.

Note that |Z(G)| > |Z(H)| and hence this example belongs to Case 1.
Therefore, we have

G/Z(G) ∼= SL2(p)/Z(SL2(p)) ∼= PSL2(p).

Remark 14 Moreover, all semi-direct products using inner automor-
phisms are of Case 1. This is the reason why the authors of [7, 9] search
for outer automorphisms.

Remark 15 As in [8, 9], even when the message space is restricted to
{ t(0)h | h ∈ H}, a similar reduction is possible and we omit the proof.

Remark 16 Since we can only w-reduce DLP(Inn(G)) to DLP(Inn(H)),
we may not succeed in recovering full information about the secret keys.
However, we note that there are many choices of maximal normal sub-
groups H in G. Thus, we may conclude that the group extension data
G = [H,Zp, T, f ] should not be easily obtained in order to have a secure
MOR system. This should be kept in mind when we search for suitable
groups for MOR system.

4 Central Commutator Attack

As we have mentioned in Section 2, DLP(Inn(G)), which is the underlying
problem of MOR system, depends a lot on the center Z(G) of G. We are
thus naturally led to consider the lower central series of G. Especially, we
are interested in the nilpotent groups of which the length of lower central
series are finite.

In this section, we show that there is a reduction algorithm for MOR
system on a nilpotent group.

4.1 Central Commutator Attack

As before, for g ∈ G, we assume a public key (Inn(g), Inn(gs)) = (ϕ,ϕs)
is given.
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Lemma 17 Suppose we can find h, z ∈ G such that z = ϕ(h−1)h =
g−1h−1gh 6= 1 and ϕ(z−1)z = g−1z−1gz = 1, then zs can be computed
from ϕs.

Proof. Observe the following computation :

ϕs(h−1)h = g−sh−1gsh = g−s(h−1gh)s = g−s(gz)s = zs. ut

Thus, if we can find such h and z and can solve DLP(〈z〉) from z and
zs, we get s(mod |z|). To find such h and z, assume G is nilpotent and
consider the lower central series of G ;

G = G0 > G1 > · · · > Gk−1 > Gk = 〈1〉,

where Gi = [G,Gi−1]. We have k ≥ 2 because we are assuming G is
non-abelian. Since Gk−2 6≤ Z(G) and Gk−1 ≤ Z(G), there exists h ∈
Gk−2\Z(G). Letting z = g−1h−1gh ∈ Gk−1, z is contained in Gk−1 ≤
Z(G) and thus z commutes with g. This technique is called the central
commutator attack, since z and zs ∈ Z(G) are central commutators.

However, when z is the identity of G, we do not get any information
about s, and the condition z 6= 1 is not guaranteed here. The next algo-
rithm settles this problem and it can be applied to any nilpotent group.

Lemma 18 Let G be a nilpotent group of nilpotency (k − 1) with k ≥ 2.
Then the Algorithm-1 below outputs z and zs with z 6= 1(and n in the
Algorithm-1 satisfies n ≤ k).

Algorithm-1

Input: ϕ = Inn(g) and ϕs = Inn(gs) such that ϕ 6= 1.

Step 1: Define σ(x) := ϕ(x−1)x = g−1x−1gx and
choose x0 such that σ(x0) 6= 1.

Step 2: For m ∈ N, define xm := σ(xm−1) and
let n be the smallest integer such that xn = 1.

Step 3: Put h = xn−2, z = xn−1 and compute zs = ϕs(h−1)h.

Output: z and zs with z 6= 1.

Proof. For Inn(g) to be used for an encryption, there should exist x0

which is not trivially encrypted, i.e., ϕ(x0) 6= x0 and g−1x0 g x0
−1 6= 1.

Since G is a nilpotent group of nilpotency (k − 1), we have the following
lower central series of G ;

G = G0 > G1 > · · · > Gk−1 > Gk = 〈1〉,
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where Gi = [G,Gi−1]. Define σ and xm as in the Algorithm-1. We note
that xm ∈ Gm for m = 1, . . . , k and thus xk = 1. Therefore we see
that n ≤ k. Since n is the smallest integer such that xn = 1, we have
z = xn−1 6= 1. Now, if we put h = xn−2, then h and z satisfy the
conditions of Lemma 17 and thus we get ϕs(h−1)h = zs. ut

Thus by solving DLP(〈z〉), one can compute some partial information
of the secret, i.e., s(mod |z|). Moreover, we will show that one can recover
s completely, if DLP over prime order subgroups of G are easy.

Let m = |g| =
∏k

i=1 p
ei

i be the order of g in G/Z(G), where pi are dis-
tinct primes. Then the following algorithm is nothing but an application
of the Pohlig-Hellman algorithm [10] to MOR system.

• Step A : For a fixed i, compute s(mod pj
i ) for j = 1, . . . , ei, inductively.

• Step B : Compute s(mod pi
ei) for each i = 1, . . . , k.

• Step C : Using the Chinese remainder theorem, compute s(modm).

We note that only the Step A is essential here : Fix a prime factor p
of m, and let e be the exponent of p in m. Let

s(mod pe) =

e−1∑

j=0

sjp
j, (0 ≤ sj ≤ p− 1).

First, compute
ψ := (Inn(g))m/p = Inn(gm/p)

and
ψ0 := (Inn(gs))m/p = Inn(gm/p)s = Inn(gm/p)s0 = ψs0 .

Since gm/p is not contained in Z(G), we have ψ(γ−1
i )γi 6= 1 for some i,

where {γi | i ∈ I} is a given generating set ofG. Applying the Algorithm-1
to ψ and ψ0, we get h, z and zs0 such that

z = (g−m/p)h−1(gm/p)h and (g−m/p)z−1(gm/p)z = 1.

Observe that |z| = p. Solving DLP(〈z〉), we obtain s0. Now, assume that
we have obtained s0, . . . , s`−1 for some ` < e. Next, we compute

ψ` :=(Inn(gs) ◦ Inn(g)−
P`−1

j=0
sjpj

)m/p`+1

=(Inn(gs−
P`−1

j=0
sjpj

))m/p`+1

=Inn(gm/p)s` .

Again applying the Algorithm-1 to ψ and ψ`, and solving DLP(〈z〉), we
obtain s`. By induction we can compute s(mod pe). In summary, we have
the following result.
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Theorem 19. Let G be a finite nilpotent group. For given Inn(g) and
Inn(gs), by solving DLP over prime order subgroups of G, one can recover
s(mod |g|) completely. In other words, DLP(Inn(G)) can be completely
reduced to DLP over prime order subgroups of G.

We mention here that the central commutator attack is generic in the
sense that the algorithm does not use particular property of representa-
tions of the group but uses only group operations and equality tests of
group elements.

Even when G is not nilpotent, the Algorithm-1 can be applied. First,
observe the following.

Lemma 20 For x ∈ G define τx : G→ G by

τx(y) = x−1y−1xy, (y ∈ G).

Then G/Z(G) has nontrivial center if and only if there exists x ∈ G\Z(G)
such that τx(G) ⊆ Z(G).

Proof. Elementary(see, for example, [1, p. 70]).

When the center of G/Z(G) is non-trivial, there exists x ∈ G such that
[x,G] ⊆ Z(G). Thus, given ϕ = Inn(g), we have τx(g) = x−1ϕ(x) ∈ Z(G)
and ϕ(x−1)x ∈ Z(G). Now we see that Algorithm-1 works. Therefore, we
might say that Algorithm-1 is valid if G is ‘nearly’ nilpotent.

When the center of G/Z(G) is trivial, G has the trivial upper central

series and perhaps is secure against the central commutator attack. But
we expect this kind of groups would be ‘similar’ to simple groups or semi-
simple linear groups which are usually not suitable for MOR system.

5 Conclusion

The security of the MOR cryptosystem using a group G is based on
the hardness of DLP(Inn(G)) and is related with the size of Z(G). In a
generic sense, the complexity of DLP(Inn(G)) is about log |G| times larger
than that of DLP(G), since Pohlig-Hellman or the baby-step giant-step
algorithm can be applied to MOR system, provided the special conjugacy
problem of G is easy.

Since every finite group G has a composition series, we may regard G
as a group extended by finite simple groups for finitely many times. This
leads us to analyze a group extension G of H by Zp for some prime p,
and it is shown that DLP(Inn(G)) can be w-reduced to DLP(Inn(H)).
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We note that there are many choices of maximal normal subgroups
H in G. Thus, we may conclude that the group extension data G =
[H,Zp, T, f ] should not be easily obtained in order to have a secure MOR
system. This should be kept in mind when we search for suitable groups
for MOR system.

We also analyzed MOR systems on finite nilpotent groups. If G is
nilpotent, or Z(G/Z(G)) 6= 1, using central commutator attacks, it is
shown that DLP(Inn(G)) can be completely reduced to DLP(G).

Finally, it should be noted again that MOR system and DLP highly
depend on the representations (or presentations) of groups.
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