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Abstract. An untraceable fair network payment protocol is proposed by
Wang in Asiacrypt’03, which employs the existent techniques of the off-
line untraceable cash and a new technique called restrictive confirmation
signature scheme (RCSS). It is claimed that the fair payment protocol
has both the fairness such that the buyer obtains the digital goods if and
only if the merchant gains the digital cash and the untraceability and
unlinkability such that no one can tell who is the original owner of the
money. In this paper we show that the fairness is breached under a simple
colluding attack, by which a dishonest merchant can obtain the digital
money without the buyer obtaining the goods. We also apply the attack
to some of the schemes of fair exchange of digital signatures proposed
by Ateniese in ACM CCS’99. Our study shows that two of them are
subjected to the attack. A countermeasure against the attack is proposed
for the fair exchange of digital signatures. However, we are unable to fix
the fair payment protocol if the untraceability and unlinkability are the
required features.

1 Introduction

In Asiacrypt 2003, Wang proposed an untraceable fair network payment proto-
col, which is claimed to have untraceability, unlinkability and fairness [25]. The
protocol is for online purchasing of digital goods with digital money. A buyer
withdraws untraceable and unlinkable digital cash from a bank and buys some
digital goods from an online merchant with the digital cash. The fairness is a
feature that prevents either the buyer or the merchant from taking the advan-
tage of the other. It guarantees that the buyer can obtain the goods if and
only if the merchant gains the money. The protocol combines the techniques
of the untraceable offline e-coin ([8], [9]) and a new primitive called restrictive
confirmation signature scheme (RCSS). By RCSS, a signature confirmed by a
designated confirmer can only convince some specified verifiers. In this paper we
present a colluding attack where a dishonest merchant can breach the fairness
such that he can obtain the money without the buyer obtaining the goods. The
problem with the protocol is that the money is the untraceable and unlinkable
e-coin, which has no link with the buyer’s ID and hence can be separated from
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the RCSS-signed order agreement. That is the vulnerable point our attack ex-
ploits. The attack does not work if the digital money is internally linked to the
buyer’s ID. But the untraceability and unlinkability would be lost in that case.

We can also apply a similar colluding attack to the schemes of fair exchange
of digital signature proposed by Ateniese in [4]. There are six schemes in [4]
for fair exchange of 1) RSA signatures; 2) Gennaro-Halevi-Rabin signatures;
3) Cramer-Shoup signatures; 4) Guillou-Quisquater signatures; 5) Schnorr (or
Poupard-Stern) signatures; and 6) ElGamal (or DSA) signatures, respectively.
We show that 5) and 6) are subject to the attack, while 1), 2), 3) and 4) are
not. The schemes 1), 2) and 3) have the same principle as Boyd-Foo scheme in
[7], where TTP performs different converting functions for different users. The
colluding attack does not apply to such schemes. The scheme 4) is an improved
version of Bao-Deng-Mao scheme in [5]. A flaw of [5], which was first pointed out
in [7], is removed in 4). The reason why 5) and 6) are subject to the attack is that
Schnorr signatures and ElGamal signatures have a special feature, which Guillou-
Quisquater signatures do not have. The feature does not affect the security
requirements of digital signature. However, it is the key point in determining
whether the attack works. The feature will be discussed later in this paper. The
attack works only if the system allows new users to register at any time.

The rest of the paper is organized as follows. In Section 2, we describe the
untraceable fair payment protocol proposed in Asiacrypt’03. In Section 3, we
present a colluding attack breaching the fairness of the protocol and explain why
the attack works. In Section 4, we describe the two schemes of fair exchange of
digital signatures proposed in ACM CCS’99. In Section 5, we discuss the special
feature of digital signatures that we exploit and present the colluding attack to
the two schemes. We also give the countermeasure against the attack. Section 6
concludes the paper.

2 Untraceable Fair Network Payment Protocol

In this section we describe the untraceable fair network payment protocol pro-
posed in [25]. For simplicity, we skip the details of the building-block RCSS
(restrictive confirmation signature scheme) and put it in the Appendix A for
interested readers. We also simplify the description of the protocol by assuming
that the payment is in one e-coin instead of n e-coins as in [25].

Entities

U — the buyer, who buys soft goods from the merchant.
M — the merchant, who sells the soft goods to the buyer.
B — the bank, who issues e-coins to the buyers.
TTP — the trusted third party, who resolves dispute in payment protocol.

System Parameters and Cryptographic Keys

p, q, g — p, q large primes, q|p− 1, g a generator of the subgroup Gq of order
q of Z

∗
p.
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yB, xB — B’s public and private keys, yB = gxB mod p.
yTTP , xTTP — TTP’s public and private keys, yTTP = gxTTP mod p.
g1, g2 — two elements of Gq published by B, for e-coin scheme.

Two Building-Block Techniques

RCSS — restrictive confirmation signature scheme. In RCSS, a signature
signed by a signer S can be confirmed by a confirmer C, and C can convince
only some specified verifiers G that the signature is valid and truly signed by S.
RCSS is the main technique designed for the fair payment protocol in [25]. It is
denoted by SignRCSS(S, C,G, m).

BP — interactive bi-proof of equality. In BP either logα Y = logβ Z or
logα Y 6= logβ Z is proved. The proof system is denoted by BP (α, Y, β, Z) in
[25], where no detailed description of BP is presented but the reader is referred
to [16] and [19].

The untraceable fair network payment protocol consists of five processes, namely
account opening, withdrawal, payment, dispute and deposit. The details are as
follows.

Account Opening

The buyer U randomly selects u1 ∈ Zq and transmits I = g1
u1 mod p to B

if Ig2 6= 1. The identifier I used to uniquely identify U can be regarded as the
account number of U . Then B publishes g1

xB (we omit mod p here) and g2
xB

so that U can compute z = (Ig2)
xB = (g1

xB)u1g2
xB for himself.

Withdrawal

The buyer U performs the following protocol to withdraw an e-coin from the
bank:

1. B randomly selects w ∈ Z
∗
q and sends e1 = gw and e2 = (Ig2)

w to U .
2. U randomly selects s, x1, x2 ∈ Z

∗
q and computes A = (Ig2)

s, B = g1
x1g2

x2

and z′ = zs. U also randomly selects u, v, tc ∈ Z
∗
q and computes e′1 =

e1
ugv , e′2 = e2

suAv and (ac, bc) = (gtc , yTTP
tc). Then U sends c = c′/u

mod q to B, where c′ = H(A, B, z′, e′1, e
′
2, bc) + ac mod q, where H is a

collision-free hash function to Z
∗
q . Note that (ac, bc) is a pair of confirmation

parameters.
3. B sends r = cxB + w mod q to U .
4. U verifies whether gr = yTTP

ce1 and (Ig2)
r = zce2. If the verification holds,

U accepts and computes r′ = ru + v mod q. Note that < A, B, (z′, e′1, e
′
2, r

′,
ac, bc) > represents a pseudo e-coin.

Payment

The Buyer U and the merchant M exchange the e-coin and the soft goods
in this protocol. In the original protocol multiple e-coins are traded for the soft
goods. We present a simplified version of one e-coin without loss of generality.

1. U selects goods and signs an order agreement θ = SignRCSS(U ,M, TTP, OA),
where OA = {IDU , IDM, purchase data/information, goods description,
(A, B)}.
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2. U sends the pseudo e-coin < A, B, (z′, e′1, e
′
2, r

′, ac, bc) > and θ to M
3. M verifies the pseudo e-coin and θ. If all of them are valid and A 6= 1, then

he sends d = H(A, B, IDM, date/time) to U .
4. U sends k1 = du1s + x1 mod q and k2 = ds + x2 mod q to U . In addition,

U must run the interactive protocol of bi-proof BP (g, ac, yTTP , bc) with M
to show logg ac = logyTT P

bc.
5. M accepts the pseudo e-coin and the payment transcripts < A, B, (z ′, e′1, e

′
2,

r′, ac, bc), (d, k1, k2) > if the following verifications hold:
gr′

= yB
H(A,B,z′,e′

1
,e′

2
,bc)+ace′1

Ar′

= z′
H(A,B,z′,e′

1
,e′

2
,bc)+ace′2

g1
k1g2

k2 = AdB
If the above verifications pass, M sends the soft goods to the buyer U .

6. U checks the soft goods delivered by M. If it matches the description in OA,
U releases tc to M. Since each one can check ac = gtc and bc = yTTP

tc by
himself, the coin < A, B, (z′, e′1, e

′
2, r

′, ac, bc, tc), (d, k1, k2) > (i.e., the pseudo
e-coin plus tc) denotes a true e-coin that can be directly cashed from the
bank.

Disputes

If U refuses to send tc to the merchant M, M begins the dispute process in
which TTP can convert the pseudo e-coin into the true e-coin.

1. M sends the order agreement OA, the RCSS signature θ, the soft goods and
the pseudo e-coin < A, B, (z′, e′1, e

′
2, r

′, ac, bc), (d, k1, k2) > to TTP.
2. The TTP checks the validity of the soft goods, pseudo e-coin and signa-

ture θ. If the pseudo e-coin is constructed properly, the soft goods from M
is consistent with the description in OA, and θ is valid, TTP sends M a
transformation certificate TCer = (Ec, Tc), where Ec = ac

σ (σ is a random
number selected by TTP) and Tc = σ+xTTP F (ac, Ec) mod q (F is a public
collision-free hash function). The transformation certificate can be used to
verify the relation of ac and bc by the following equation:

ac
Tc = Ecbc

F (ac,Ec)

3. TTP sends the soft goods to the buyer U .

Deposit

In a normal case, M forwards the payment transcript and the true e-coin
< A, B, (z′, e′1, e

′
2, r

′, ac, bc, tc), (d, k1, k2) > to the bank for deposit. Neverthe-
less, if U maliciously aborts the payment process, M can start the dispute
process to acquire the TCer from TTP. In this situation, the pseudo e-coin
< A, B, (z′, e′1, e

′
2, r

′, ac, bc), (d, k1, k2) > plus TCer = (Ec, Tc) can be the valid
token for deposit. We can also regard < A, B, (z′, e′1, e

′
2, r

′, ac, bc), (d, k1, k2), (Ec,
Tc) > as a true e-coin with different form.

3 Analysis of the Fair Payment Protocol

Before presenting our analysis, we copy the claimed security features of the fair
payment protocol, which are expressed in the form of propositions and lemmas
in [25].



416

Unforgeability. No one except U can create his own pseudo e-coin < A, B, (z ′,

e′1, e
′
2, r

′, ac, bc), (d, k1, k2) >.

Indistinguishability. No one can distinguish between a valid pseudo e-coin and

a simulated one without the help of the buyer or TTP.

Convertibility. If M accepts the pseudo e-coin, it is guaranteed that TTP can

later convert the pseudo e-coins into the true e-coins which can be directly de-

posited in the bank.

Fairness. If the above unforgeability, indistinguishability and convertibility hold

for the proposed payment protocol, it can be guaranteed that at the end of the

transaction, the buyer U can obtain the soft goods if and only if the merchant

M can gain the equivalent true e-coin.

Untraceability. No one except M and TTP can confirm the signature θ. That

means only M and TTP can be convinced that the order agreement OA is valid.

Unlinkability. The bank or other parties cannot link a coin < A, B, (z ′, e′1, e
′
2, r

′,

ac, bc) > to the original owner.

Idea of the Colluding Attack

In the fair payment protocol, the merchant M colludes with his conspirator
C. After M receives the pseudo e-coin from the buyer U , M brings the pseudo
e-coin to TTP but claims that the trade is between C and M. Then the TTP will
convert the e-coin to an equivalent true e-coin for M and send the soft goods to
C, while U will gain nothing. Next we present the attack in details and explain
why there is no solution against the attack.

Attack Details and Explanation

1. The malicious merchant M honestly implements the Payment protocol till
step 5. After the verifications pass, he halts the protocol. That is, he obtains
the valid pseudo e-coin without giving the soft goods.

2. Then M asks his conspirator C to sign a forged order agreement between M
and C, θ′ = SignRCSS(C,M, TTP, OA′) where OA′ = {IDC , IDM, purchase
data/information, goods description, (A, B)}.

3. M starts the Dispute process by sending the order agreement OA′, the RCSS
signature θ′ on OA′, the soft goods and the pseudo e-coin < A, B, (z′, e′1, e

′
2,

r′, ac, bc), (d, k1, k2) > to TTP. Note that TTP has no way to tell whether
OA′ and θ′ are consistent with the pseudo e-coin or not because of the
unlinkability and untraceability. Note that the d in the pseudo e-coin is d =
H(A, B, IDM, date/time) instead of d = H(A, B, IDM,IDU , date/time). If
d is replaced with d = H(A, B, IDM, IDU , date/time), the attack does not
work anymore but the unlinkability and untraceability would disappear.

4. TTP converts the pseudo e-coin into a true e-coin for M and forwards the
soft goods to C. The buyer U is left without obtaining anything.

5. The problem of the fair payment protocol is that the e-money is in the form
of digital cash, which is generated with the bank’s private key and has no
link with the buyer U . If the e-money is in the digital cheque form that is
generated with U ’s private key, the attack would not work.



417

6. The protocol cannot be fixed by asking U to sign a pre-contract to indicate
that the trade is between U and M or by any other means. The conspirator
C can just simulate U by doing everything U does. No one can distinguish C
from U since the money is unlinkable and untraceable.

4 Fair Exchange of Digital Signatures

Fair exchange protocols have been studied by many researchers in recent years
in [1], [2], [3], [4], [5], [6], [7], [11] [12], [15], [20], [26] and many other papers.
Among them, [2], [4] and [5] have the same principle in employing verifiable
encryption schemes (VES) of digital signatures. In [4], six schemes are proposed
in its sections 4.1, 4.2, 4.3, 4.4, 4.6 and 4.7, respectively. The first three schemes
are actually not by VES but by the same method of [7]. The latter three schemes
exploit the VES of Guillou-Quisquater signatures, VES of Schnorr signatures and
VES of ElGamal signatures, respectively. We describe the latter two here in the
same denotations as in [4]. Before our description, we introduce a technique that
is the main building-block for the schemes.

Building-Block EQ DLOG(m; g1
x, g2

x; g1, g2)
EQ DLOG(m; y1, y2; g1, g2) is a non-interactive proof system for proving

Dlogg1
y1 = Dlogg2

y2 without disclosing the value x = Dlogg1
y1 = Dlogg2

y2.
The proof is associated with a message m. Here g1, y1 ∈ group G1, g2, y2 ∈
group G2, and at least one of G1 and G2 has an unknown order with bit-length
l. Let H be a hash function {0, 1}∗ → {0, 1}k and ε > 1 be a security parameter.
The proof EQ DLOG(m, y1, y2; g1, g2) is implemented as follows.

Prover: randomly choose t ∈ [−2ε(l+k), 2ε(l+k)], compute c = H(m||y1||y2||g1||g2||
g1

t||g2
t) and s = t−cx (in integer Z). (s, c) is the proof/signature of EQ DLOG

(m; y1, y2; g1, g2).

Verifier: given (s, c) and (m, y1, y2, g1, g2), check if c = H(m||y1||y2||g1||g2||g1
sy1

c||
g2

sy2
c) and s ∈ [−2ε(l+k), 2ε(l+k)]. If both hold, the verification is passed.

4.1 Fair Exchange of Schnorr Signatures

Settings

• System parameters: The system parameters are p, q and α, where p, q are
primes and q|p − 1, α is an element of order q of Z

∗
p.

• TTP: TTP has a pair of public/private keys (n, g)/(factors of n) for ei-
ther Naccache-Stern encryption scheme [18] (or Okamoto-Uchiyama encryption
scheme [21]). The encryption of M under the public key (n, g) is gM mod n (or
hrgM mod n). M can be computed if the factors of n are known. It is claimed
in [4] that both schemes can be adopted but for the sake of simplicity Naccache-
Stern encryption scheme is employed.

• Alice: Alice has a pair of public/private keys y/a for Schnorr signature
scheme where y = αa mod p.
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• Bob: Bob also has a pair of public/private keys for signature. Bob’s signa-
ture on message M is denoted by SBob(M).

• Message: m is a message, on which Alice and Bob are exchanging their
signatures.

Fair Exchange by Verifiable Encryption

1. Alice generates her signature SAlice(m) = (s, e), where r = αk mod p, e =
H(m||r) and s = k + ea mod q, for a randomly chosen k from Zq . The
verification of SAlice(m) is to check if e = H(m||αsy−e). Alice encrypts s
with TTP’s public key (n, g) by setting the ciphertext to be C = gs mod n.
The e is left in plaintext, from which no one else can compute s. Since Alice
knows s, she can implement EQ DLOG(m; V, C; α, g) for V = αs mod p.
Then Alice sends the verifiable encryption of SAlice(m) to Bob. That is
(C, e, V ) plus the proof of EQ DLOG(m; V, C; α, g).

2. Bob checks the proof of EQ DLOG(m; V, C; α, g) and e = H(m||V y−e), if
valid, sends SBob(m) to Alice, otherwise does nothing.

3. Alice verifies Bob’s signature and, if valid, sends SAlice(m) to Bob.

4. If Bob does not receive anything or if Alice’s signature is invalid, then he
sends the verifiable encryption of SAlice(m) and SBob(m) to TTP. This pro-
vides a vehicle for TTP to understand whether the protocol was correctly
carried out. If this is the case, TTP sends SAlice(m) to Bob and SBob(m) to
Alice.

4.2 Fair Exchange of ElGamal Signatures

The settings are exactly the same as in the fair exchange of Schnorr signatures
in Section 4.1. The scheme of fair exchange of ElGamal signatures is as follows.

1. Alice generates her signature SAlice(m) = (s, r), where r = αk mod p and
s = kH(m)+ar mod q, for a randomly chosen k from Zq . The verification of
SAlice(m) is to check if αs = rH(m)yr mod p. Alice encrypts s with TTP’s
public key (n, g) by setting the ciphertext to be C = gs mod n. The r is
left in plaintext, from which no one else can compute s. Since Alice knows
s, she can implement EQ DLOG(m; V, C; α, g) for V = αs mod p. Then
Alice sends the verifiable encryption of SAlice(m) to Bob. That is (C, r, V )
plus the proof of EQ DLOG(m; V, C; α, g).

2. Bob checks the proof of EQ DLOG(m; V, C; α, g) and V = rH(m)yr mod p,
if valid, sends SBob(m) to Alice, otherwise does nothing.

3. Alice verifies Bob’s signature and, if valid, sends SAlice(m) to Bob.

4. If Bob does not receive anything or if Alice’s signature is invalid, then he
sends the verifiable encryption of SAlice(m) and SBob(m) to TTP. This pro-
vides a vehicle for TTP to understand whether the protocol was correctly
carried out. If this is the case, TTP sends SAlice(m) to Bob and SBob(m) to
Alice.
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5 Colluding Attacks and Countermeasures

5.1 A Feature of Digital Signatures

The digital signatures we consider here are those that consist of two parts, such
as the (s, e) of Schnorr scheme, the (s, r) of ElGamal scheme, the (d, D) of
Guillou-Quisquater scheme and similar signatures of many other schemes. Let
us denote a signature on message m with public/private keys PK/SK by (X, Y ),
and the verification formula of the signature by

Vef (m, X, Y, PK) = 1 (1)

The security requirement of digital signature demands that, for given PK, it is
infeasible to compute m and (X, Y ) such that (1) holds without knowing SK.
(That is the unforgeability in passive attack model. In active attack model, the
security requirment is that it is infeasible to forge a valid signature without
knowing SK even given a signing oracle.) However, the following feature is not
prohibited for the security of signatures, while it plays an important role in our
colluding attack.

Feature. Given m, (X, Y ), PK that satisfy (1), it is easy to find Y ′ 6= Y
and PK ′ 6= PK such that Vef(m, X, Y ′, PK ′) = 1 without knowing
SK.

Schnorr Signature. Given a signature (s, e) on message m such that e =

H(m||αsy−e), we can always find e′ 6= e and y′ 6= y such that e′ = H(m||αsy′−e′

).
We just take e′ = H(m||αsαt) for a randomly chosen t ∈ Zq , and then set

x′ = −t/e′ mod q and y′ = αx′

mod p. Hence Schnorr signatures have the
feature.

ElGamal Signature. Given a signature (s, r) on message m such that αs =

rH(m)yr mod p, we can find r′ 6= r and y′ 6= y such that αs = r′
H(m)

y′r
′

mod p. We take r′ = (αs/αt)(1/H(m) mod q) for a randomly chosen t ∈ Zq , and

then set x′ = t/r′ mod q and y′ = αx′

mod p. Hence ElGamal signatures have
the feature.

Guillou-Quisquater Signature. In Guillou-Quisquater scheme, n = pq is gen-
erated by a trusted center, where p and q are safe primes. A large prime v is
selected, and n and v are published as system parameters. The p, q are recom-
mended to be destroyed after that. (It is also allowed that n is generated by
each signer. In that case different signer has different n, v.) The public/private
keys J/B have relation BvJ = 1 mod n. A signature (d, D) can be generated
with the private key B by setting T = rv , d = H(m||T ) and D = rBd, where
r is randomly chosen from Zn. The verification of (d, D) is d = H(m||DvJd).

To generate d′ 6= d, J ′ 6= J such that d′ = H(m||DvJ ′d
′

) is not as simple as the
problems for Schnorr and ElGamal signatures. We cannot solve the problem of
computing the d′th-root mod n since the factorization of n is not known.
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5.2 Attack to Fair Exchange of Schnorr and ElGamal Signatures

Attack to Fair Exchange of Schnorr Signature by Dishonest Bob

1. Alice generates her signature SAlice(m) = (s, e), where e = H(m||r) and
s = k + ea mod q for randomly chosen k ∈ Zq and r = αk mod p. The
verification formula of SAlice(m) is e = H(m||αsy−e). Alice encrypts s with
TTP’s public key (n, g) by setting the ciphertext to be C = gs mod n. Then
she implements EQ DLOG(m; V, C; α, g) for V = αs mod p and C = gs

mod n. After that Alice sends the verifiable encryption of SAlice(m) to Bob,
i.e., (C, e, V ) plus the proof of EQ DLOG(m; V, C; α, g).

2. Bob checks the proof of EQ DLOG(m; V, C; α, g) and e = H(m||V y−e), if

valid, halts the protocol. Then he computes e′, y′ such that e′ = H(m||V y′−e′

),
i.e., e′ = H(m||V αt) for t ∈R Zq and y′ = α(−t/e′ mod q) mod p, and asks
his conspirator Cathy to register y′ as her public key. Bob can ask Cathy to
sign (C, e′, V ) and any other things that could be signed by Alice for any
possible authentication.

3. Bob sends (C, e′, V ), the proof of EQ DLOG(m; V, C; α, g) and SBob(m) to
TTP and claims that the exchange is between Cathy and Bob.

4. TTP first verifies the proof of EQ DLOG(m; V, C; α, g), then decrypts s and
verifies whether (s, e′) is a valid signature of Cathy and whether SBob(m) is a
valid signature of Bob. If all the verifications pass, TTP sends SCathy(m) =
(s, e′) to Bob and SBob(m) to Cathy. Hence Bob obtains Alice’s signature
(s, e) without Alice obtaining anything.

Attack to Fair Exchange of ElGamal Signature by Dishonest Bob

1. Alice generates her signature SAlice(m) = (s, r), where r = αk mod p and
s = kH(m) + ar mod q for a randomly chosen k from Zq . The verifica-
tion formula of SAlice(m) is αs = rH(m)yr mod p. Alice encrypts s with
TTP’s public key (n, g) by setting the ciphertext to be C = gs mod n.
Then she implements EQ DLOG(m; V, C; α, g) for V = αs mod p. Finally
Alice sends the verifiable encryption of SAlice(m) to Bob, which is (C, r, V )
plus the proof of EQ DLOG(m; V, C; α, g).

2. Bob checks the proof of EQ DLOG(m; V, C; α, g) and αs = rH(m)yr mod p,

if valid, halts the protocol. Then he computes r′, y′ such that αs = r′
H(m)

y′r
′

mod p, i.e., r′ = (V/αt)(1/H(m) mod q) for t ∈R Zq and y′ = α(t/r′ mod q)

mod p, and asks his conspirator Cathy to register y′ as her public key. Bob
can ask Cathy to sign (C, r′, V ) and any other things that could be signed
by Alice for authentication.

3. Bob sends (C, r′, V ), the proof of EQ DLOG(m; V, C; α, g) and SBob(m) to
TTP and claims that the exchange is between Cathy and Bob.

4. TTP first verifies the proof of EQ DLOG(m; V, C; α, g), then decrypts s
and verifies if (s, r′) is a valid signature of Cathy and if SBob(m) is a valid
signature of Bob. If the verifications all pass, TTP sends SCathy(m) = (s, r′)
to Bob and SBob(m) to Cathy. Hence Bob obtains Alice’s signature (s, r)
without Alice obtaining anything.
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For some applications it is possible that message m implies the two parties to
be Alice and Bob instead of Cathy and Bob. However TTP is not supposed to
semantically understand the content of m. TTP only confirms that the m in the
EQ DLOG proof is identical to the m in the signatures.

5.3 Countermeasures

Before presenting our countermeasure, we show an interesting fact that the at-
tack does not apply to DSA signatures. In DSA scheme, a signature (s, r) under
public key y satisfies rs = αH(m)yr mod p. Although it is also simple to com-

pute r′, y′ such that r′
s

= αH(m)y′r
′

mod p, the attack does not work anymore
because the commitment V is different from that of ElGamal signatures. In El-
Gamal scheme V = αs while in DSA V = rs. Therefore, in DSA the proof
is EQ DLOG(m; V, C; r, g). Recall that the proof of EQ DLOG(m; V, C; r, g)
is (c, σ) satisfying c = H(m||V ||C||r||g||rσV c||gσCc). That is, r is included in
the verification of (c, σ). An r′ 6= r would make (c, σ) fail to pass the verifica-
tion. Forging a new proof of EQ DLOG(m; V, C; r′, g) is impossible since it is
equivalent to knowing s.

Now it is easy to see that the countermeasure is quite simple: Alice includes
her ID (or her public key) into the proof, i.e., EQ DLOG(m||IDAlice; V, C; α, g).
Even better, she includes more detailed information I about the exchange in the
proof, i.e., EQ DLOG(m||I; V, C; α, g). In such case, I is like a label that cannot
be removed and replaced. While attaching SAlice(I) is like a label stick from
outside and can be replaced, and therefore is useless. The ASW fair exchange
scheme in [2] is not subject to the attack since a similar label is adopted.

Such label technique would destroy the untraceability and unlinkability, there-
fore cannot be adopted to fix the fair payment protocol.

6 Conclusions

In this paper we present a colluding attack to breach the fairness of an untrace-
able fair payment protocol and two schemes of fair exchange of digital signatures.
Their fairness actually has no problem in the situation where only the entities
described in the protocols exist. The cryptographic techniques employed are also
secure and efficient. However, the security flaws appear if we consider the real
situation where more entities exist.

As many security experts have pointed out, security does not equal to cryp-
tography and good cryptographic algorithms do not automatically guarantee the
security of application systems. Every component is secure does not necessarily
mean that the whole system is secure. For complex systems, security should be
studied under various attacks from various angles very carefully. It takes long
time and big effort before being able to make an assertion.

Another viewpoint reflected from the result of this paper is that the concrete
implementation is very critical to security. We show that a tiny difference, such
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as whether to include r in EQ DLOG(m; V, C; r, g), could make a big difference
in security. Hence engineers who implement the security schemes should be very
carefully in following every step of the schemes.
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A Restrictive Confirmation Signature Scheme

In [25], RCSS is designed as follows.

– System Setup. The parameters p, q and g, where p, q are primes such that
q|p−1 and g is an element of Z

∗
p of order q. F1, F2 are two collision resistant

functions. The private/public key pairs of the signer S, the confirmer C,
the recipient R and the verifier V are (xS , yxS

S mod p), (xC , yxC

C mod p),
(xR, yxR

R mod p) and (xV , yxV

V mod p), respectively.
– Signing Protocol. Assume the signer has signed an undeniable signature

(a, b, δ) on message m related to the confirmer’s public key, i.e., a = gt

mod p, b = yC
t mod p and δ = (F1(m||a)+b)xS mod p, where t is randomly

chosen by S. For delegating C the ability of confirming this signature, the
signer randomly selects k, u, v1, v2 and constructs a proof of

(w, z, u, v1, v2) = ProofDV LogEQ(c, g, yS , F1(m||a) + b, δ, yV ),

where c = (c1||c2), c1 = guyV
v1 mod p, c2 = guyC

v2 mod p, w = F2(c||g||yS ||
F1(m||a) + b||δ||gk||(F1(m||a) + b)k) and z = k − xS(w + u) mod q. Thus,
the RCSS on m denotes SignRCSS(S, C, V, m) = (a, b, u, v1, v2, w, z, δ).

– Proof by the Signer. The confirmer C also plays the role of the recipient
R. That means C will be convinced that he is able to prove the validity
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of the signature to V in this procedure. C checks the proof by computing
c = ((guyV

v1 mod p)||(guyC
v2 mod p)) and verifying if

w = F2(c||g||yS ||F1(m||a) + b||δ||gzyS
(w+u)||(F1(m||a) + b)zδ(w+u))

To prove the relation of a and b, the signer needs to run the interactive
protocol of bi-proof BP (g, a, yC , b) to show logg a = logyC

b.
– Confirmation Protocol. The confirmer C can prove the validity of the

signature to V by running the interactive protocol bi-proof BP (g, yC , a, b)
with V to show logg yC = loga b. The verifier V needs to check whether the
signature (a, b, u, v1, v2, w, z, δ) is created properly, and he can be convinced
that the signature is valid if he accepts the proof of BP (g, yC , a, b).

– Conversion Protocol. The confirmer can convert the designated confirmer
signature to a general non-interactive undeniable signature. Since the signer
has constructed the designated verifier proof in a non-interactive way, V can
check the validity of the signature by himself. The verifier V no longer needs
to ask C to help him verify the signautre. Here, C randomly selects σ ∈ Z

∗
q

and computes E = aσ mod p and T = σ + xCF (a, E) mod q, where F is
also a hash function. The confirmer sends (E, T ) to the verifier V , thus, V
can verify if aT = EbF (a,E) [10].


