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Abstract. We present generic frameworks for constructing efficient broad-
cast encryption schemes in the subset-cover paradigm, introduced by
Naor et.al., based on various key derivation techniques. Our frameworks
characterize any instantiation completely to its underlying graph decom-
positions, which are purely combinatorial in nature. This abstracts away
the security of each instantiated scheme to be guaranteed by the generic
one of the frameworks; thus, gives flexibilities in designing schemes. Be-
hind these are new techniques based on (trapdoor) RSA accumulators
utilized to obtain practical performances.
We then give some efficient instantiations from the frameworks. Our first
construction improves the currently best schemes, including the one pro-
posed by Goodrich et.al., without any further assumptions (only pseudo-
random generators are used) by some factors. The second instantiation,
which is the most efficient, is instantiated based on RSA and directly
improves the first scheme. Its ciphertext length is of order O(r), the key
size is O(1), and its computational cost is O(n1/k log2 n) for any (arbi-
trary large) constant k; where r and n are the number of revoked users
and all users respectively. To the best of our knowledge, this is the first
explicit collusion-secure scheme in the literature that achieves both ci-
phertext size and key size independent of n simultaneously while keeping
all other costs efficient, in particular, sub-linear in n. The third scheme
improves Gentry and Ramzan’s scheme, which itself is more efficient than
the above schemes in the aspect of asymptotic computational cost.

Keywords: Broadcast Encryption, Revocation Scheme, Subset-cover,
Optimal Key Storage

1 Introduction

Broadcast encryption (BE) involves 1 broadcaster and n receivers. Each receiver
is given a unique private key. The broadcaster is given a private broadcaster
key. The broadcaster wishes to broadcast messages to a designated set P ⊆ N =
{1, ..., n} of receivers. Any receivers in P should be able to decrypt the broadcast
message using only its private key while a coalition F ⊆ N r P (revoked users)
should not be able to do so. Such a scheme is motivated largely by pay-TV



systems, the distribution of copyrighted materials such as CD/DVD. Broadcast
encryption schemes were first formalized by Fiat and Naor [13]. Since then, many
variants of the basic problem were proposed. The arguably most challenging
variant is the one which considers the case where P can be an arbitrary subset
in N while the collusion is considered the full one, N r P , and also that the
private key stored by each user is fixed from the initialization time (stateless
receiver). The main goal is to construct efficient schemes that satisfy the above
variant and require only small size of both the header of broadcast and the
private key as a function of n or r := n − |P |. The header is the encapsulation
of session key that is used to encrypt data.

An efficient solution which is considered a ground work to many consequences
is the Complete (binary) Subtree scheme (CS) by Naor et al. [18]. Schemes which
were considered the current state of the art (before two very recent works, see
below) are: (i) Pseudo-random sequences generator (PRSG) based schemes such
as the Subset Difference scheme (SD) [18], its refinement–the Layered SD scheme
(LSD) [14], and their somewhat generalizations in [4]. (ii) RSA accumulator
based schemes such as Asano’s scheme [2], and its optimal generalizations in [3,
11]. See Table 1 for the efficiency comparison. No scheme above could achieve
simultaneous small header size independent of n, small key size of order O(log n),
while keeping computational cost and all other costs grow only sub-linear in n.

More recently, Goodrich et al. [12] and Wang et al. [20] independently pro-
pose more efficient schemes that break the above barrier. In particular, they
achieve simultaneously header size of order O(r) and key size of O(log n), and
computational cost of O(n1/k) for arbitrary constant k. (In fact, in [20] only the
case when k = 1, 2 is considered).

In this paper, we propose generic frameworks for constructing broadcast en-
cryption and give some efficient instantiations. One of our instantiations (Instantia-
tion 2 in Table 1) achieves not only small header size as of order O(r) but also
small key size as O(1) with no extra non-secret storage, while keeping compu-
tational cost O(n1/k log2 n) which grows only sub-linear in n. Thus this is the
first scheme that achieves header and private key size independent of n while
keeping computational cost sub-linear in n, with no extra non-secret storage.
The contributions in more detail are described below.

1.1 Our Contributions

In the general subset-cover paradigm of [18], which includes almost all of the
above schemes, it has been implicitly understood that one can separate the design
of such a scheme into two seemingly orthogonal problems namely: designing
combinatorial set system which enables subset covering (this step determines the
header size), and defining computational key derivation (this step determines the
private key size and computational cost). This is first explicitly characterized by
Gentry-Ramzan [11] for the case of Akl-Taylor’s RSA based key derivation [1].

Framework. In this paper, we characterize the two orthogonal components
in general. We then explicitly present three generic sub-frameworks for com-
putational key derivation component (generic as arbitrary set systems are ap-



Table 1. Comparison among previous schemes and our instantiations. (k is an arbitrary
parameter, a is an arbitrary constant)

Header size Priv. key size Comp. cost (bit complexity)
Complexity ≤ Prime-gen Others

CS [18] O(r log(n
r
)) log n + 1 - O(log log n)

PRSG or OWF -based ↓
SD [18] O(r) 2r−1 O(log2 n) - O(log n)

LSD [14] O(r) 2kr−k O(log1+1/k n) - O(log n)

GST04 [12] O(r) 4kr 2 log n - O(n1/k)

WNR04 [20] O(r) 4r 2 log n - O(n1/2)

Instantiation 1 O(r) 2kr ≤ log n + 1 - O(n1/k)

RSA Accumulator -based ↓
Asano [2] O(r loga(n

r
)+r) 1 O(2a log5

a n) O(2a log2
a n)

GR04 [11] O(r loga(n
r
)+r) 1 O(a log5

a n) O(a log2
a n)

Instantiation 3 O(r loga(n
r
)+r) 1 O(1) O(a log n)

(SD)acc O(r) 2r−1 1 O(n log4 n) O(n)

Instantiation 2 O(r) 2kr 1 O((log5 n)/k5)O((n1/k log2 n)/k)

plicable): PRSG based technique (re-formalizing from [4] so as to be consistent
with presentations here), non-trapdoor- and trapdoor- RSA Accumulator based
techniques. The non-trapdoor RSA based one is a new optimal generalization of
Akl-Taylor’s technique and is further improved by the trapdoor RSA based one.

The main issue is that we characterize three sub-frameworks so that such
instantiations in these frameworks and their resulting efficiencies will depend
solely on properties related to graph decompositions of the set systems being
instantiated; while in the same time the security will be guaranteed automatically
from the general frameworks. The PRSG based framework will be based on
tree decomposition, and the two RSA based frameworks will be based on chain
decomposition; both are purely combinatorial. Therefore the whole paradigm
abstracts away the computational security issues and reduces the problem to
only pure combinatorics. Moreover it allows modularity in designing a scheme:
it is a matter of finding a set system which yields a good header size in the first
step, and then finding a graph decomposition of that set system that yields a
good private key size and computational cost.

As for the generic efficiency characterization, both RSA based frameworks
achieve key size of O(1) for all instances. One generic property of the trapdoor
based framework that makes it superior to the non-trapdoor based one is that
when restricting to the same asymptotic resources and instantiating the same
set system (or to be more precise, its hierarchical version and itself respectively),
if the non-trapdoor based one allows n users in the scheme, then the trapdoor
based one will allow nk users for any (arbitrary large) constant k. Indeed, the
costs due to prime generation are exactly the same (not only asymptotically).

Efficient Instantiations. For the combinatorial set system component, all of
our schemes are based on new set systems we call Subset Incremental chain (SIC)
and Layered-SIC (LSIC) which are designed so to achieve small header size as
being O(r) while intrinsically have graph decompositions with good properties.



For the computational key derivation component, we instantiate the LSIC set
system by presenting their graph decompositions, resulting in various concrete
schemes upon each sub-framework as follows. We use the notation (X)y to denote
an instantiation of the set system X using the y-based framework. Denote LSIC[k]
as LSIC with parameter k. Note that LSIC[1] = SIC.

Instantiation 1 : (LSIC[k])prsg. This scheme directly improves the scheme of [12,
20] (and it is fair to compare with since the same assumption, PRSG, or equiva-
lently one-way function, was used). In particular it can reduce some overheads,
albeit only within constant terms in the worst case: the worst-case key sizes are
half of those in [12, 20]. Indeed the key size in our scheme is non-uniform among
users; some users are even required to store only constant-size keys (cf. Theo-
rem 4, 6, and Eq.(4)). Our scheme also reduces the computational cost from [12],
but only in the average case (the worst-case costs are asymptotically the same).

Instantiation 2 : (LSIC[k])acc, (LSIC[k])tacc. Note that (t)acc is for (trapdoor) ac-
cumulator. The performance of this scheme is as mentioned previously. It is the
first scheme that achieves header and private key size independent of n while
keeping computational cost sub-linear in n, with no extra non-secret storage.
The number of primes used per user is optimal as being O(log n) for (LSIC[k])acc

and further reduced to O((log n)/k) for (LSIC[k])tacc (so that the on-the-fly
prime generation cost is O((log5 n)/k5)). Had one used the non-optimal Akl-
Taylor’s framework as put forth to the context of BE by [2, 3, 11], it would be
O(n1/k log n) which is super-logarithmic (and the prime generation cost would
be O(n1/k log5 n)).

Instantiation 3 : (LSIC[loga n])tacc. This scheme improves Gentry and Ramzan’s
scheme [11], which itself is more efficient than the above schemes in the aspect
of asymptotic computational cost. Our scheme reduces poly-logarithmic cost due
to prime generation, which was the dominant cost, to only a constant one with-
out affecting the other parameters. Among the constant-key-size schemes with
header size O(r loga(n/r) + r) and no extra non-secret storage, this is the first
one in the literature that achieves O(log n) overall computational cost. (And in
fact, ours uses only a constant number of primes). The previous improvement
for this class of schemes was done by [11] to improve [2] but only in the constant
term involving a. (See Table 1).

1.2 Other Related Works

Very recently, Boneh et.al. [7] propose a public-key broadcast encryption scheme
which achieves size O(1) for both header and private key. However, the size of
the public key to be used by an encrypter, which is also the non-secret storage
needed for the decrypter, is O(n). Moreover, the computational cost is O(n −
r) (albeit with small coefficient). The second scheme in [7] reduces the non-
secret storage size to O(

√
n) but with the price of the increased header size

as O(
√

n), and not independent of n anymore. Boneh and Silverberg [6] show
that n-linear maps can be used to construct an optimal public-key scheme with



constant private key, public key, and header size. However, there are currently
no known constructions for such a map for n > 2. Most recently, Jho et.al. [15]
propose some efficient schemes with small header size when r is not too small.
However, their schemes do not enjoy practical asymptotic performances as either
the header size is c1r + c2n = O(n) (for some constant c1, c2) or the key size is(
n−1

k

)
= O(nk) (where k ≥ 2) for their best two schemes.

2 Framework and Some Preliminaries

2.1 Framework

We refer to [18] for the definitions and the security notions for private-key broad-
cast encryption. Now we recap the subset-cover framework [18] separately into
two components as follows.

Combinatorial Set System Component We first redefine a set system which
is useful for such a scheme in this framework called complement-cover set system.
Such a set system is a family of subsets of a universe with the property that
every subset of the universe can be efficiently partitioned to a union of some
collection of subsets in the family.

Definition 1 (Complement-Cover Set System) For a map c : Z2
>0 → Z>0,

a set system S = {S1, ..., Sm} over a base set N = {1, ..., n} is c-complement-
cover if there is a polynomial-time algorithm such that upon input any subset
R ⊂ N , outputs {Si1 , ..., Sit} for some 1 ≤ i1, . . . , it ≤ m such that N r R =⋃t

j=1 Sij and that t ≤ c(n, |R|). ¤
As usual n, r is the number of all users and revoked users respectively. Such a

c(n, r)-complement-cover set system yields a broadcast encryption scheme in the
subset-cover framework with the header size c(n, r). The scheme is as follows.
The broadcaster defines a subset key for each subset in the family. Each user
stores a set of keys in such a way that he can derive all the keys of subsets (in
the family) that he is a member. (Thus, the easiest way to do is to store them
all. However to reduce the storage of keys, it would be better to store only some
and derive the others from those stored keys on the fly. Such derivation patterns
are predefined by the broadcaster.) To revoke the set R of users, the broadcaster
just let a header to be a session key encrypted with each key of subsets in the
partition of N rR. Thus the header size is c(n, r). We often denote cX(n, r) for
c(n, r) of the set system SX, where X is the name of that set system.

Computational Key Derivation Component We formalize the specification
on key derivations in the context of access control scheme as the following.
Denote by k(S) the subset key for S ∈ S and p(u) the private key of u ∈ N .
Informally, the security of such a scheme requires that with p(u), one can derive
k(S) if and only if u ∈ S; moreover, the collusion N r S cannot derive it.

Definition 2 (Access Control Scheme, AC) An Access Control Scheme AC
for a set system S over a base set N is a 2-tuple of polynomial-time algorithms
(Keygen, Derive), where:



Keygen(1λ): Takes as input a security parameter 1λ. It returns all k(Si)’s, all
p(u)’s, and public parameter pub.

Derive(〈u, p(u)〉, Si, pub): Takes as input u ∈ N , the key p(u), Si ∈ S, and pub.
It returns k(Si) if u ∈ Si, or special symbol ⊥ otherwise. ¤

Naor et al. [18] proved that BE in the subset-cover paradigm whose the access
control component is secure in the sense of Key-Indistinguishability (KIND) is
secure in the standard notion, namely IND-CCA1. Dodis and Katz [10] use the
technique involving multiple encryption to obtain a generic scheme which is
IND-CCA2-secure. Key-Intractability (KINT) can be defined analogously. These
definitions are captured in the full version of this paper due to limited space
here. Also note that there is a simple conversion from KINT-secure scheme to
KIND-secure one. Thus KIND or KINT is sufficient for the security of the scheme.

Denote (X)y to be the access control scheme for set system SX that is con-
structed via AC framework y. Denote KeySize(X)y(u) to be the number of keys of
u (i.e., |p(u)|, when p(u) is treated as a set) and CompCost(X)y to be the worst-
case computational cost for Derive. We also refer (X)y as a BE scheme via the
complement-cover set system SX. For any y, HeaderSize(X)y(n, r) = cX(n, r).

2.2 Some Terminology

Viewing Set system as Poset. A set system is partially ordered by the
inclusion relation (⊂). Interpreting a set system as a partially ordered set (poset)
is useful when defining key derivations in AC. Intuitively, Derive algorithm implies
that whenever Si ⊂ Sj , anyone who can access k(Si) is allowed to access k(Sj).

Terminology for Posets, Graphs. The terminology for posets and graphs
used in this paper is quite standard one (cf.[9]) (with some exceptions, see below).
Here we review some. A graph is a pair G = (V,E) of sets satisfying E ⊆ (

V
2

)
. V is

the set of vertices (or nodes), usually denoted V (G), E is the set of edges, usually
denoted E(G). Often, we abuse notation v ∈ G to mean v ∈ V (G). A tree is a
connected acyclic graph. We often denote x = parentT (y) if x is the parent of y
in tree T . A directed graph is a pair G = (V,E) of sets satisfying E ⊆ V ×V , i.e.,
an edge is an ordered pair. A directed acyclic graph (DAG) is a directed graph
with no directed cycle in it. A notation of chain x → y → z means a directed
graph which E = {x, y, z}, V = {(x, y), (y, z)} and is generalized naturally.

An inclusion poset S can be represented by a DAG G by setting V = S,
E = {(S, S′) : S ⊂ S′; S, S′ ∈ S}. This is called the maximal representation,
denoted DAGmax(S). The minimal representation, denoted DAGmin(S), is the one
with E = {(S, S′) : S ⊂c S′; S, S′ ∈ S} where we say S ⊂c S′ iff there is no
S′′ ∈ S such that S ⊂ S′′ ⊂ S′.

In our context1, a graph decomposition (often denoted G) of a poset S is
a family of connected subgraphs whose sets of nodes partition the set of all
nodes in the DAGmax(S). (Thus we sometimes say G is a graph decomposition of
DAGmax(S)). When each subgraph is a tree whose edges are directed away from

1 Our notions for tree and chain decompositions are not standard ones (cf.[9]). Instead
the notions introduced here might be named as tree cover and path cover, resp.



the root, we call it a tree decomposition (often denoted T ). When each graph is a
directed chain whose edges are directed in the same direction, we call it a chain
decomposition (often denoted C). An induced graph decomposition is one in
which each subgraph is an induced subgraph. Fig.1 shows graph decompositions
of the set system for toy example 1, Stoy1 = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3},
{2, 4}, {3, 4}, {1, 2, 3}}. From now we abuse some notations, often in figures,
e.g., writing 12 or 1, 2 instead of {1, 2} if it causes no confusion. Note that every
chain decomposition is a tree decomposition.
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DAG      (S     )max toy1 A tree decomposition A chain decomposition

Fig. 1. Toy example 1 and its graph decompositions

We will fix BT to be the complete binary tree of n leaves labeled 1, ..., n from
left to right. The level of node in BT is the distance from root to it. For a fixed
node, its left (resp., right) nodes are those nodes with the same level and appear
on the left (resp., right). BT will be used only to help defining set systems and
should not be confused with the graph representations of posets of set systems.

3 New Set Systems

3.1 Subset Incremental Chain (SIC) Set System
The SIC Set System. For i, j ∈ N = {1, ..., n} and i < j, denote

i⇀j := {{i}, {i, i + 1}, . . . , {i, . . . , j}},
i↽j := {{j}, {j, j − 1}, . . . , {j, . . . , i}},

and (i⇀i) = (i↽i) := {{i}}. Consider the binary tree BT. For a node v in BT,
let lv (resp., rv) be the leftmost (resp., rightmost) leaf under v. We define the
set system SIC (of n users) by letting

SSIC =
⋃

v∈BTL

(lv +1↽rv) ∪
⋃

v∈BTR

(lv ⇀rv−1) ∪ (1⇀n) ∪ (2↽n), (1)

where BTL (resp., BTR) are the set of internal nodes which are left (resp., right)
children. An informal visual view of SSIC is shown in Fig.2, where the union of
all the collections written there is the only important information.

Theorem 1 SSIC is (2r)-complement-cover set system.

Proof. We call a set of the form {i, i+1, . . . , j} for some i ≤ j a consecutive set.
We first claim that any consecutive set, say A = {i, . . . , j}, can be partitioned to
no more than 2 sets in SSIC; then prove it as follows. Let a be the least common
ancestor node of the leaves i and j in BT, denoted lca(i, j) = a. Let s be the
least ancestor of a which is in BTL if a ∈ BTR and which is in BTR if a ∈ BTL.
Let x, y be the left and right children of a. First if i = 1 then A ∈ (1⇀n) ⊆ SSIC;
else if j = n then A ∈ (2 ↽ n) ⊆ SSIC (since 2 ≤ i). Now assume i 6= 1, j 6= n.
We list all possible cases of (i, j) as follows. Let ∗ be an unspecified value.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BTR

BTL

∈

∈

2↽2 3⇀3 6↽6 7⇀7 10↽10 11⇀11 14↽14 15⇀15

2↽4 10↽125⇀7 13⇀15

2↽8 9⇀15

1⇀162↽16

Fig. 2. Set system SIC defined by the union of all the collections written at each node

1. If (i = la; j = ∗; a ∈ BTL) then A ∈ (ls ⇀ rs − 1) ⊆ SSIC (since i = ls; j <
rs − 1; and s ∈ BTR),

2. If (i = ∗; j = ra; a ∈ BTR) then A ∈ (ls+1↽rs) ⊆ SSIC (since j = rs; ls+1 <
i; and s ∈ BTL),

3. If (i = la; j 6= ra; a ∈ BTR) then A ∈ (la ⇀ra − 1) ⊆ SSIC (since j ≤ ra − 1),
4. If (i 6= la; j = ra; a ∈ BTL) then A ∈ (la + 1↽ra) ⊆ SSIC (since la + 1 ≤ i),
5. If (i 6= la; j 6= ra; a ∈ ∗) then A = P ∪ Q; P = {i, . . . , rx}, Q = {ly, . . . , j},

and we have P, Q ∈ SSIC (since
– lca(i, rx) = x, thus (i, rx) will fall to the case 2 or 4 and P ∈ SSIC;
– lca(ly, j) = y, thus (ly, j) will fall to the case 1 or 3 thus Q ∈ SSIC).

These proved the claim. Now we are back to the proof, it is obvious that N rR
can be partitioned to no more than r consecutive sets if 1 or n ∈ R; or to no
more than r+1 such sets otherwise. In the former case, the partition size to sets
in SSIC is ≤ 2r; while in the latter case (where {1, ..., s} and {t, ..., n} for some
s, t are included in the partition), it is ≤ 1(1) + 2(r − 1) + 1(1) = 2r. ut

Intuitively, SIC has graph decompositions with good properties since each
collection in the union of Eq.(1) forms a chain of subset. This will become clearer
in the next section. The set system LSIC below generalizes SIC.

3.2 Layered SIC (LSIC) Set Systems

The LSIC[k] Set System. We view BT consisting of subtrees (also binary and
complete) of n1/k leaves so that there are exactly k layers of such subtrees, where
k| log n. We will call such subtree an “atomic” subtree (to distinguish from other
kinds of subtrees in BT). Informally, each atomic subtree contributes sets to
SLSIC as in the SIC set system for that subtree, albeit each leaf in the subtree
represents all the leaves under it in BT. More formally, for node z in BT, let
Az := {lz, lz + 1, ..., rz} (i.e., all the leaves under z). Let us consider the leaves
u, v in an atomic subtree where v is some node on the right of u. We denote
u(+1), u(+2) (and so on) be the next one, two (and so on) right leaves to u in
that atomic subtree. Denote u(−1), u(−2) analogously. Denote

u⇀v := {Au, Au ∪Au(+1) , . . . , Au ∪ · · · ∪Av},
u↽v := {Av, Av ∪Av(−1) , . . . , Av ∪ · · · ∪Au}.

Let l′w, r′w be the leftmost and rightmost leaves under w in the atomic subtree
and not w itself; for example, l′root = a, r′root = d and l′a = 1, r′a = 4 in Fig.3. Let



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2↽2 3⇀3 6↽6 7⇀7 10↽10 11⇀11 14↽14 15⇀15

2↽4 10↽125⇀7 13⇀15

b↽b c⇀c

a⇀db↽d

1⇀3 6↽8 9⇀11 14↽16a b c d

A∈

Fig. 3. Set system LSIC[k], k = 2, as the union of all collections written at each node

A be the set of all nodes which are the roots of atomic subtrees but excluding
the root of BT. We define LSIC[k] analogously to Eq.(1) by letting

SLSIC[k] =
⋃

v∈BTL∪A

(l′v
(+1)

↽r′v) ∪
⋃

v∈BTR∪A

(l′v ⇀r′v
(−1))

∪ (l′root ⇀r′root) ∪ (l′(+1)
root ↽r′root). (2)

Intuitively, each v ∈ A has two collections (l′v
(+1)

↽ r′v), (l′v ⇀ r′v
(−1)) attached

since it is the root of an atomic subtree, which SIC applies (cf. Eq.(1) and Fig.2).

Theorem 2 SLSIC[k] is (2kr)-complement-cover set system for a constant k ; and
SLSIC[loga n] is O(r loga(n/r)+ r)-complement-cover set system for a constant a.

Note that when k = loga n, from the former claim we already have that SLSIC[loga n]

is (2r loga n)-complement-cover, but the claim above gives a sharper bound.

Proof. First we will prove that SLSIC[k] is (2kr)-complement-cover. Let STR de-
note the Steiner tree of a set of leaves R ⊆ N , i.e., the subtree of BT that
consists of all paths from the root to each leaf in R. We call a node v spe-
cial if v ∈ A. We “color” a node if it is special but is not in STR and all of
its special ancestors are in STR. Denote C the set of all color nodes. Hence
N r R =

⋃
v∈C Av =

⋃k
j=1

⋃
v∈Lj∩C Av where we denote Lj to be the set

of all special nodes in the j-th special layer away from root (i.e., at distance
j(log n)/k from the root). It suffices to prove that for each special layer j, the
set Yj :=

⋃
v∈Lj∩C Av can be partitioned to at most 2r sets in the family SLSIC.

Denote xi to be the number of uncolored special nodes in the i-th atomic sub-
trees from left to right in this j-th layer. From Theorem 1, it is easy to deduce
that Yj can be partitioned to at most 2(x1 + x2 + · · ·+ xp) sets in SLSIC, where
p is the last atomic subtree in this layer (in fact, p = n(j−i)/k). But we have
x1 + · · · + xp ≤ r since the Steiner tree of r leaves passes through all these
uncolored special nodes. This proves the claim.

Next we will prove that SLSIC[loga n] is O(r loga(n/r) + r)-complement-cover.
We first give the definition of Stratified Subset-Difference set system with each
atomic subtree of a leaves (SSDa): SSSDa = {AurAv : u is an ancestor of v in the
same atomic subtree}. It is known [11] that SSSDa is (O(r loga(n/r)+r))-comple-
ment-cover. Using a similar approach as when proving Theorem 1, it is not hard
to see that each AurAv can be partitioned to at most 2 sets in SLSIC[loga n]. (The
proof is omitted here due to space). Combining these we have that LSIC[loga n]
has cLSIC[loga n](n, r) = 2cSSDa(n, r) = O(r loga(n/r) + r). ut



4 Key Derivation based on PRSG

4.1 Reformalize the PRSG based Framework of [4]

Framework Idea (review). In this framework, we use pseudo-random sequence
generators to derive keys from one subset to another. The correctness of access
control schemes allows this to be done only if the first set is included in the latter
(e.g.,{1} ⊂ {1, 2}). Thus such derivations can be defined in correspondence with
directed edges in a graph decomposition of DAGmax(S), in which all the inclusion
relations in S are included. One exception is that there should be no node with
indegree > 1 in any graph in the decomposition since it would imply a collision
of PRSG, which should be computable by neither broadcasters nor adversaries.
Therefore, all the valid decompositions are tree decompositions, of which the
class includes all graph decompositions of the poset that allow indegree ≤ 1 for
all nodes. Each user then stores keys for subsets which he is in and are closest
to the root of that tree. For the toy example 1 in Fig.1, our paradigm with the
tree decomposition in the figure namely Ttoy1 allows the user 2 to store only the
keys at 2, 24.

Note that in order to be provably secure in the KIND sense, it is mandatory
to make an adaptation so that keys are not derived from another key directly.
Instead, one should use intermediate keys denoted t(S) for S ∈ S; how to use
this is explained in the construction. This was neglected in many recent schemes
that use similar one-way derivation approaches.

The Construction (X)prsg. This is based solely on a tree decomposition, say
T , of the poset SX. The scheme applies to an arbitrary complement-cover set
system X.

Keygen : (Subset keys) At a root S of a tree in T , let t(S) ← {0, 1}λ. For
each node S (either root or non-root of a tree in T ) whose all children are
Si1 , ..., Sid

where d is the outdegree of S, we define the following recurrence
relation:

t(Si1)‖ · · · ‖t(Sid
)‖k(S) ← PRSGd+1(t(S)), (3)

where |t(Si1)| = · · · = |t(Sid
)| = |k(S)| = λ bits; PRSGj : {0, 1}λ → {0, 1}jλ.

(User keys) For u ∈ N , we define p(u) = {t(S)|u ∈ S; u 6∈ parentG(S), G ∈ T }.
Derive : Find the tree where S is in and then use Eq.(3) to derive k(S).

Characterizing Efficiency. Let RNT (u) = |{S | u ∈ S; u 6∈ parentG(S), G ∈
T }| and call it the reachability number of u in T (since it is the minimal number of
sufficient nodes such that when traversing from these nodes in the edge direction
we meet all S ∈ S such that u ∈ S). Let DDT = the depth of the deepest trees.
We have

KeySize(X)prsg(u) = RNT (u), CompCost(X)prsg = DDT . (4)

Theorem 3 ([4]) (X)prsg is secure in the sense of KIND assuming secure PRSG.



4.2 PRSG based Instantiation for SIC, LSIC

Instantiating SIC. It suffices to define a tree decomposition of SSIC and the
concrete scheme will follow automatically from the general construction of the
framework. We choose the following natural one and prove that it is the optimal
decomposition for SIC. For i ≤ j ∈ N , define a graph G(i ⇀ j) as {i} →
{i, i + 1} → · · · → {i, ..., j}; G(i↽j) as {j} → {j, j − 1} → · · · → {j, ..., i}. Let

TSIC = {G(lv+1↽rv)|v ∈ BTL}∪{G(lv ⇀rv−1)|v ∈ BTR}∪{G(1⇀n),G(2↽n)}
(5)

Let 〈x〉 denotes the binary representation of x. We have the following theorem.

Theorem 4 The tree decomposition TSIC yields minimal maxu∈N RNT (u), in-
deed we have

RNTSIC
(u) =

{
log n + 2− f(〈u− 1〉) ; 2 ≤ u ≤ n
1 ; u = 1,

where f(y) := the number of the same consecutive least significant bits of y. In
particular, maxu∈N RNTSIC

(u) = log n + 1. We also have DDTSIC
= n.

Proof. We define Fv = lv + 1↽rv if v ∈ BTL and lv ⇀rv − 1 if v ∈ BTR. TSIC is
really a tree decomposition since {Fv : v ∈ BTL ∪ BTR} ∪ {(1⇀n), (2↽n)} can
be proved to be a pairwise non-intersecting family (somewhat straightforwardly).
Next we prove the formula for RNTSIC

(u). For u ∈ N r {1}, only possible trees
in TSIC that u appears are those graphs G(Fv) for internal nodes v on the path
from the leaf u to the root in BT, and G(1⇀n), G(2↽n). Each graph G(·) that
u appears contribute one key for u. Thus RNTSIC

(u) is at most (log n−1)+2. Let
u,w1, ..., wlog n, root be the nodes on that path. Due to symmetry, we assume
w.l.o.g. that w1, ..., wz−1 ∈ BTL and wz ∈ BTR. Now it is easy to see that

for 1 ≤ j ≤ z − 1 : G(Fwj ) = G(lwj + 1↽rwj ) does not contain u(= lwj );
for j = z : G(Fwj ) = G(lwz ⇀rwz − 1) contains u(= lwz );
for z < j ≤ log n : G(Fwj ) contains u (since lwj < u < rwj ),

and that z = f(〈u− 1〉). Thus RNTSIC
(u) = (log n− 1) + 2− (f(〈u− 1〉)− 1) as

desired. Now we prove that TSIC is optimal (obtaining minimal (maxu∈N RNT (u))
among all T of SIC). Observe that for all T of SIC,

∑
u∈N RNT (u) =

∑
S∈SSIC

|{u :
u ∈ S, u 6∈ parentG(S), G ∈ T }| ≥ |SSIC| = n log n + 1. Hence maxu∈N RNT (u) ≥
dn log n+1

n e = log n + 1. Our decomposition matches this bound. ut
The number of keys at each user is not uniform as recorded in the corollary

below. While sharing some similarities with our scheme, the basic schemes in [12,
20] assign one-way chains in both left and right directions at each node in BT
while we use only one direction and exploit some symmetries. This can be an
intuition as to why we can reduce key size at least 2 times (and up to log n
in the best case, user 1). Those schemes can be considered as instantiations in
our framework, but with storage-redundancies in the sense that the set systems
extracted from their schemes are sets with repetition. Moreover, the scheme
of [12] can also be shown to be derivation-redundant since its derivation graph
as exposed in our framework contains loop edges. (See our full paper).



Corollary 5 In the scheme (SIC)prsg, there are exactly 2x users who store exactly
x + 2 keys for 0 ≤ x ≤ (log n)− 1 and exactly 1 user who stores 1 key.

Instantiating LSIC. Before describing our default tree decomposition of SLSIC,
denoted TLSIC[k], we first describe a more straightforward one, denoted T ′LSIC[k],
which is constructed, informally, as the union of all TSIC applied to each atomic
subtree in BT. More formally, we can define G(u ⇀ v) for u, v which are leaves
in the same atomic subtree, analogously as before, by letting G(u⇀v) = Au →
Au ∪ Au(+1) → · · · → (Au ∪ · · · ∪ Av), and analogously for G(u ↽ v). Without
going into details, we can define T ′LSIC[k] from Eq.(2) in an analogous way when
we defined TSIC in Eq.(5) from Eq.(1).

Now TLSIC[k] is constructed by an observation that G(l′v ⇀r
′(−1)
v ) and G(v ⇀∗)

can be combined into one chain (and in particular, one tree) since the maximum
element in the former, Al′v ∪· · ·∪A

r
′(−1)
v

, is included in Av, the minimum element
of the latter. For v ∈ BTR ∪ {root}, let w1, ..., wm be the sequence of nodes in
BTL ∩ A such that w1 = l′v; for 1 ≤ i ≤ m − 1, wi+1 = l′wi

; and lv = l′wm
, then

define Ḡ(l′v ⇀ x) := G(l′wm
⇀ r

′(−1)
wm ) → · · · → G(l′w1

⇀ r
′(−1)
w1 ) → G(l′v ⇀ x)

where x is some right node of l′v. (Here, ‘→’ means to connect the chains). The
definition for Ḡ(x↽r′v) for v ∈ BTL ∪ {root} can be done analogously. Now we
define

TLSIC[k] = {Ḡ(l′(+1)
v ↽r′v)|v ∈ BTL} ∪ {Ḡ(l′v ⇀r′(−1)

v )|v ∈ BTR}
∪ {Ḡ(l′root ⇀r′root), Ḡ(l′(+1)

root ⇀r′root)}. (6)

The abstraction of this decomposition may disguise the simplicity of the scheme;
in Fig.4 we thus give an explicit example when n = 16 and k = 2 (cf. Fig.3).

G(1⇀3)

G(a⇀d)
G(a⇀d)

1
1,2

1,2,3

2 3 4

2,3,4
1  4
1  8

1  12
1  16

..

..
..
..

3,4
5

5,6
5,6,7

6 7 8

6,7,8
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7,8
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10  12
9  12..

11,12
13

13,14
13  15

14 15 16
15,16

.. .. .. 14  16..
13  16..
9  16
5  16..

..

Fig. 4. The tree decomposition TLSIC[k] of the set system LSIC[k] (see Fig.3). A more
simple decomposition T ′LSIC[k] is the one without the thick red edges.

The following theorem and corollary can be proved by an elementary counting
argument based on Theorem 4. We omit the proof to the full version of this paper.

Theorem 6 The tree decomposition TLSIC[k] yields

RNTLSIC[k](u) = log n + 1 + k − gk(〈u− 1〉)
where gk(〈x〉) := f(0||〈x1〉) + f(b1||〈x2〉) · · ·+ f(bk−1||〈xk〉) where we parse 〈x〉,
with padding of 0s on the left so to have length log n bits, as 〈x1〉|| · · · ||〈xk〉 so
that each 〈xi〉 has length (log n)/k bits; bj is the least significant bit of 〈xj〉. In
particular, maxu∈N RNTLSIC[k](u) = log n + 1. We also have DDTLSIC[k] = kn1/k.



As an example, user 4 will store 2 keys: k(1234), k(4) (see Fig.4). This can be
calculated as |p(4)| = 4+1+2− (f(0||00)+f(0||11)) = 2 (Note 〈4−1〉 = 0011).

Corollary 7 In (LSIC[k])prsg, exactly
∑x−1

j=0

(
k
j

)
C(x−1, j, (log n)/k)2x−1−j users

store exactly x keys for 2 ≤ x ≤ (log n)+1 and exactly 1 user stores 1 key where
C(a, b, c) is the number of integer compositions (ordered partitions) of a into b
positive integers, each ≤ c.2

5 Key Derivation based on Non-Trapdoor RSA

5.1 The New Non-Trapdoor RSA based Framework

Framework Idea. We first briefly review the access control scheme of Akl-
Taylor [1]. There, each S ∈ S is assigned a publicly known prime. The key
of S is defined as k(S) = s

Q
T :S 6→T pT modulo an RSA modulus, where s is a

secret; and S 6→ T means (S, T ) is not an edge in DAGmax(S). Each user u just
stores k({u}). The terms in the exponents are arranged so that even any collusion
cannot compute keys that are not supposed to be computable by them. However,
the number of primes used in the above schemes are too large as |S|. Such
primes will be stored as non-secret storage or derived on-the-fly.3 We propose a
new paradigm which makes uses of prime powers so that the number of primes
used becomes optimal. We will see shortly that assigning prime powers depends
essentially on a chain decomposition of DAGmax(S). Indeed, the number of primes
used will be exactly the number of chains; and each node in the same chain will
correspond to the same prime but with a distinct power. For the toy example
1 in Fig.1, our new paradigm with the chain decomposition Ctoy1 will result in
only 5 primes used while the Akl-taylor’s needs 9 primes. We will describe how
to assign those powers over primes by an incidence matrix. We formalize the
notion of incidence matrices that admit a secure scheme as maximin matrix :

Maximin Matrix. An n×m matrix {aij} where aij ∈ Z≥0 is called a maximin
matrix for set system X if for all S ∈ SX, there exists j: 1 ≤ j ≤ m such that
maxi∈S aij < mini∈NrS aij . We give a formal treatment of RSA functions as

accumulators and our construction first, then explain later.

RSA Accumulators. We fix a function f : Uf × Ef → Uf to be an RSA
function: f(x, e) := xe mod η where η = pq, p = 2p′+1, q = 2q′+1 and p, q, p′, q′

are distinct odd primes. We restrict that Uf is the set of quadratic residues and
Ef is the set of primes not equal to p′, q′. We say f is generated from an RSA
function generator GRSA(1λ). The function f is an instance of RSA accumulators,

2 For example C(5, 3, 2) = 3 since 5 = 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1. The exact
formula of C(a, b, c) is quite complicated and is shown in [19].

3 In the latter, a sequence of integers {xj} is pre-specified by the broadcaster and
pi is defined to be the first prime in [xi, xi+1); the program to recognize {xj} has
negligible size (cf. [2]). More primes imply more computational cost on-the-fly.



first proposed in [5], which has a quasi-commutative property: for all x ∈ Uf ,
and e1, e2 ∈ Ef , f(f(x, e1), e2) = f(f(x, e2), e1). If E = {e1, ..., eh} where each
ei ∈ Ef , then we denote f(x,E) := f(f(...f(x, e1), ...), eh). Note that a set E is
threaten as a multi-set, where the repetition of members is important. We thus
denote a repetition of a member e which occurs te times as te C e. For example,
f(x, {s C e1, t C e2}) = x(es

1·et
2).

The Construction (X)acc.

Keygen : Run a GRSA to obtain a description of f : Uf × Ef → Uf . Pick a random
secret s ∈ Uf . For 1 ≤ j ≤ m, pick an element pj ∈ Ef . Let pub consist of all
pj ’s and {aij}; indeed we let user derive prime pj only when necessary by
predetermining the intervals of those primes (see below). Let

p(u) = f(s, {auj C pj : 1 ≤ j ≤ m}),
k(S) = f(s, {(maxi∈S aij) C pj : 1 ≤ j ≤ m}). (7)

for user u ∈ N and set S ∈ SX.
Derive : Compute k(S) = f(p(u), {(maxi∈S aij − auj) C pj : 1 ≤ j ≤ m}).
Theorem 8 (X)acc is KINT-secure assuming the strong RSA assumption.

First it is easy to see that the correctness holds: Derive is computable. Next
we will give an intuition as to why for each S ∈ S, the collusion of all users
from N r S cannot compute the key of S. Informally, the best they can do is to
obtain the value with the same base s and the exponent term being GCD of all
the exponent terms of the keys for users in N r S, which is

∏m
j=1 p

mini∈NrS aij

j

(by the well-known trick involving using the extended Euclid’s algorithm). To
be able to compute the key of S, it must divide

∏m
j=1 p

maxi∈S aij

j . But this will
not happen due to the property of the maximin matrix.
Constructing a Maximin Matrix. Consider a chain decomposition C =
{G1, ..., Gm} of SX. For each chain Gj : S1 → · · · → Sl, construct j-th col-
umn by letting

aij :=





0 if i ∈ S1

w if i ∈ Sw+1 r Sw

l otherwise
(8)

Proposition 9 The above construction is a maximin matrix. Moreover, C with
the minimum number of chains will imply the maximin matrix with the minimum
m, the number of all primes used.

Proof. We will prove that the construction by Eq.(8) is a maximin matrix for X.
Consider arbitrary S ∈ S, observe that there is a chain Gj : S1 → · · · → Sl and
some w, 0 ≤ w ≤ l − 1, such that S = Sw+1 (since C is a chain decomposition).
For all i ∈ S we have 0 ≤ aij ≤ w by the construction. For all i′ ∈ NrS we have
w > ai′j also by the construction. This implies maxi∈S aij ≤ w < mini′∈NrS ai′j
which is what we wanted to prove. To prove the second claim, it is sufficient to
prove the converse of the first claim: from any maximin matrix for X one can
construct a a chain decomposition in which the number of chains is less than or
equal to the number of columns of the matrix. The proof idea is essentially the
same as the first, thus we omit the detail to the full version of this paper. ut



Characterizing Efficiency. We will generate primes on the fly using the tech-
nique in [2] (cf. footnote 3). Without going into detail, this technique requires
computational cost O(log4 P ) to generate one prime, and produces each prime
of size O(P log P ), where P is the number of all primes needed in such a scheme.
In our scheme, P = m. Note that only when P = O(1), it is worthless to use
this technique; we just store the least P primes (which requires only negligible
storage) so the cost for prime generation in this case is O(1).

Using the notation defined earlier, we have that RNC(u) represents the num-
ber of chains in C that u appears; and DDC represents the length of the longest
chain in C. The number of all chains in C is |C| (and= m). We obtain:

KeySize(X)acc(u) = 1, CompCost(X)acc = O(MCacc
C + PCacc

C ),

where MCacc
C (u),PCacc

C (u) are the cost due to Modular exponentiation and on-
the-fly Prime generation for user u respectively and MCacc

C := maxu∈N MCacc
C (u),

PCacc
C := maxu∈N PCacc

C (u). Such costs depend solely on C and can be character-
ized as:

MCacc
C (u) = O(DDC · (log |C|) · RNC(u)), PCacc

C (u) = O((log4 |C|) · RNC(u)).

The analysis are as follows. The cost of modular exponentiation for computing
Derive is logarithm in the exponent term which is

∏m
j=1 p

(maxi∈S aij−auj)
j . To

determine its complexity, observe that maxi∈S aij = auj for all but only RNC(u)
terms of j due to Eq.(8) and the fact that u appears only RNC(u) chains. Also,
observe that maxi∈S aij − auj ≤ DDC due to Eq.(8). Each pj is O(m log m),
hence has bit length O(log m). Combining these, we get MCacc

C (u) as above. The
cost for prime-generation above follows from the fact that the number of primes
to be generated when deriving keys are RNC(u).

Remark 1. The MC of our scheme is asymptotically optimal among all non-
trapdoor RSA-accumulator based paradigms (if there are any others) since it
matches the lower bound in [11], which states that the optimal MC is of the
same order as the number of subsets (in the set system) that one user is in,
albeit here we calculate in bit complexity which includes the size of primes.

Remark 2. The Akl-Taylor’s scheme [1] is a special case of our framework where
the trivial chain decomposition (the collection of all one-node chains) is used.

5.2 Non-Trapdoor RSA based Instantiation for SIC, LSIC

Instantiating SIC, LSIC. We will state the result for LSIC so that the result for
SIC can be obtained by setting k = 1. It suffices to define a chain decomposition
of SLSIC[k] and the concrete scheme will follow automatically. We choose a chain
decomposition CLSIC[k] = TLSIC[k] defined in Eq.(6). (Note that it is obvious that
TLSIC[k] was also a chain decomposition). A concrete example for (SIC)acc is shown
in Fig.5 for n = 8. As an example, the subset key k(567) = s(p6

1p1
2p1

3p3
4p2

5p1
6p1

7p3
8).

The following result follows directly from Theorem 4, 6 and the generic effi-
ciency characterization of the framework with the fact that |CLSIC[k]| = n.
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Fig. 5. Instantiating SIC (n = 8) by the non-trapdoor RSA accumulator based framework

Corollary 10 MCacc
CLSIC[k]

= O(kn1/k log2 n) and PCacc
CLSIC[k]

= O(log5 n).

Scheme (LSIC[k])acc has computational cost O(max{kn1/k log2 n, log5 n}). For
trillion users (n = 1012), choose k as low as 4 we have 4n1/4 log2 n < log5 n so
that the computational cost is dominant by the latter, which is roughly as in
Asano’s scheme (but ours enjoy exceptionally lower header size).

Remark 3. If we instantiate with with Akl-Taylor’s, its chain decomposition
has maxu∈N hu = O(n1/k log n), and m = O(2k · n1/k(log n)/k). Thus PC =
O(n1/k log5(n)), which is much worse than ours, O(log5 n). Moreover, this cost
always dominates over the optimal MC for LSIC, O(n1/k log2 n).

6 Key Derivation based on Trapdoor RSA Accumulator

6.1 The New Trapdoor RSA based Framework

Framework Idea. The framework in this section is applicable to a class of
posets that we call tree-stratifiable posets. Informally, such a poset of this type
is defined as one which can be considered as formed by a tree hierarchy of
atomic posets (not necessarily homogeneous), as shown in Fig.6. There, the graph
decomposition G = {Gx, Gy, Gz, ...} is said to form a hierarchy represented by
tree H where V (H) = {x, y, z, ...}. Intuitively, such a graph decomposition is
said to form a hierarchy if all the inclusion relations from every node in a lower
subgraph (one with a lower index in the hierarchy), say Gy in the figure, to the
next upper one in the hierarchy, Gx, are via a unique minimal node in that upper
subgraph. Denote this minimal node as MGy . We will put a “dummy node” in
each subgraph so that it will be the “representative” of that poset to reach that
unique minimal node in the upper poset. (In the figure, the dummy node is DGy

for subgraph Gy to reach MGy ).
The idea for key derivations are as follows. First we define the key for each

node in the highest sub-poset in the hierarchy by using the RSA-based framework
in the last section. Recursively in a top-down fashion, we will define the set of
keys corresponding to each lower sub-poset in the hierarchy. At some point,
the set of keys for the nodes in Gx are defined. Then we define the “dummy
key” for the dummy node in a next lower level sub-poset by applying a random
permutation perm (w.l.o.g we will use the reverse direction) to the key of the
minimal element in that upper sub-poset that it connects, that is, k(DGy ) =
perm−1(k(MGy )). To define keys for the other nodes in this lower sub-poset (at
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Fig. 6. The underlying idea for the trapdoor RSA based framework

Gy), we will again use the RSA-based framework for that sub-poset. However,
this time the key for the dummy node has been already determined, while all
the keys must agree with the relations of (G′y)acc, where G′y is the modified
subgraph that includes the dummy node, i.e., the relation of keys as defined in
Eq.(7) instantiated to a poset that has G′y as its representation. To solve this, it
suffices to use the trapdoor of RSA. In this way, we can define keys recursively
until reaching the lowest sub-posets. Users, on the other hand, do not have to
use trapdoor since they only compute keys in the bottom-up fashion. Note that
(perm, perm−1) is a public permutation, such as any block cipher with a fixed
known key. We will model perm as an ideal random permutation in the security
proof (the random permuation model).

The idea of reducing the whole poset by instantiating RSA-based framework
in each sub-poset results in the use of only small number of primes for the overall
scheme since the same set of primes can be used across different instantiations
for different sub-posets.

To formalize this, we first define some more notations. For a directed graph G,
denote Vmin(G) the set of all minimal elements of poset S such that DAGmin(S) =
G. Vmax(G) is defined analogously. The definition below captures what we have
explained in the framework idea. Essentially, the bijection π below maps Gx 7→ x.

Definition 3 (Tree-Stratifiable Poset) An inclusion poset S is called tree-
stratifiable poset iff there exist an induced graph decomposition G of S and a tree
H with a bijection π : G → V (H) such that for each G ∈ G if we define G′ by
letting V (G′) = V (G) ∪ {DG} and E(G′) = E(G) ∪ {(S, DG) : S ∈ Vmax(G)}
where DG is a dummy node; define MG :=

⋃
S∈Vmax(G) S; and define a graph

W by letting V (W) =
⋃

G∈G V (G′) and E(W) =
⋃

G∈G
(
E(G) ∪ {(DG,MG)}),

then we have that (1) for all G ∈ G, MG ∈ Vmin(π−1(parentH(π(G)))) and (2)
E(DAGmin(S)) ⊆ E(DAGmax(W)). ¤

Trapdoor RSA Accumulators. A trapdoor RSA function generator GtRSA is
the one that works exactly the same as GRSA but in addition also outputs the
trapdoor td which is φ(η) where φ is the Euler’s phi function. With td, given the
description of f, any y ∈ Uf , and a (multi-)set of accumulated values E, one can
efficiently compute x ∈ Uf such that f(x,E) = y. Denote such x by ftd(y, E−1).

Towards formalizing the construction, we “normalize” each sub-poset G ∈ G
so that its base set will be BG = {1, ..., |Vmin(G′)|} as follows. Construct γ :



V (G′) → 2BG by first picking an injective map γ̃ : Vmin(G) → BG then define
for S ∈ V (G′), γ : S 7→ {γ̃(U) : U ∈ Vmin(G), U ⊆ S}. Let SG = γ(V (G′)) (the
set of all images by γ from V (G′)) be the set system with the base set BG.

The Construction (X)tacc. For simplicity we will consider homogeneously
stratifiable poset, i.e., each SG is isomorphic to each other (in the sense that its
corresponding DAG is isomorphic), say the set system Y. Let {aij}1≤i≤d,1≤j≤m

be a maximin matrix for set system Y, where d is the cardinality of its base set.

Keygen : Run a GtRSA to obtain a description of f : Uf × Ef → Uf and trapdoor
td. For 1 ≤ j ≤ m, pick an element pj ∈ Ef . Let perm and perm−1 be a
publicly available permutation mapping Uf → Uf . Let pub consist of all pj ’s
and {aij}. Pick a random t ∈ Uf . Define keys recursively in a top-down
fashion in the tree H:

[Top]. At the subgraph Groot ∈ G, where root is the root of H, by definition
we have N = MGroot . We let k(N) = k(MGroot) = t.
[Intermediate]. At each atomic subgraph G ∈ G, the key k(MG) is previ-
ously determined. Define the key for the dummy node: k(DG) = perm−1(k(MG)).
By using the trapdoor td and k(DG), we solve Eq.(11) by setting S = DG

(thus γ(S) = BG) to determine the secret sG, i.e.,

sG = ftd(k(DG), {(max
i∈BG

aij) C pj : 1 ≤ j ≤ m}−1). (9)

Then we define the key at each element in this subgraph, S ∈ V (G), by:

k(S) = f(sG, {aγ̃(S),j C pj : 1 ≤ j ≤ m}) (for S ∈ Vmin(G)), (10)
k(S) = f(sG, {( max

i∈γ(S)
aij) C pj : 1 ≤ j ≤ m}) (for S ∈ V (G)). (11)

[Bottom]. For each u ∈ N , we let p(u) = k({u}).
Derive : Compute from the relations given in Eq.(9),(10),(11) but in the bottom-

up fashion by using applications of f(·, ·), perm(·) starting from f(p(u), ·).
Note that td is not required to do this.

Theorem 11 (X)tacc is KINT-secure in the random permutation model (perm
as an ideal random permutation), assuming the strong RSA assumption.

Characterizing Efficiency. If the set system X of n users is tree-stratifiable
homogeneously into a set system Y of d users with the tree H then

KeySize(X)tacc(u) = 1, CompCost(X)tacc = O(MCtacc
X + PCtacc

X ),

where the cost from modular exponentiation and prime generation are depended
solely on both H, Y and only Y respectively, and can be characterized as:

MCtacc
X = hH ·MCacc

CY
, PCtacc

X = PCacc
CY

, (12)

where hH is the deepest depth of H. The first claim follows from the fact that a
user has to compute Eq.(11) for at most hH times. The second claim is from the
fact that we reuse the same set of primes across sub-posets. There is also the
cost due to applications of perm, which is O(hH), but this is suppressed by MC.
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Fig. 7. Instantiating LSIC[k] (n = 16, k = 2, see Fig.3) by trapdoor RSA based framework

Generic Application. We now confine our interest to the case where H is the
balanced completed n1/k-ary tree of depth hH = k. This forces the base sets of
Y and X to have cardinality n1/k and n respectively. In this case we say X =
hierk(Y). The operation hierk is well-defined and can be thought as the converse
direction of tree-stratification; thus, from any poset Z one can construct a tree-
stratifiable poset, namely hierk(Z), by first scaling down the cardinality of the
base set of Z to n1/k. (Since usually any set system is originally defined in term of
n). We write Z(n1/k) to emphasize the cardinality of base set. The point is that
when k is a constant, Eq.(12) allows one to construct a full scheme of n users but
with exactly the same asymptotic performances as those of (Z(n1/k))acc, which is
a “scaled-down” scheme, in both parameters MC, PC! Moreover, if cZ(n)(n, r) =
O(r) then we can show that chierk(Z(n1/k))(n, r) = O(kr) = O(r) (by exactly the
same proof as that of Theorem 2); therefore, HeaderSize is also unaffected.

6.2 Trapdoor RSA based Instantiation for LSIC

It is easy to see that LSIC[k] is tree-stratifiable since LSIC[k] = hierk(SIC(n1/k)).
(We could have define LSIC via hier operation rather than directly in Sec.3.2).
An example is shown in Fig.7. From the efficiency characterization we have:

Corollary 12 (i) MCtacc
LSIC[k] = O(n1/k(log2 n)/k), PCtacc

LSIC[k] = O((log5 n)/k5).
(ii) MCtacc

LSIC[loga n] = O(a log a log n), PCtacc
LSIC[loga n] = O(1).

Proof. See that MCacc
C

SIC(n1/k)
= O((n1/k log2 n)/k2), PCacc

C
SIC(n1/k)

= O((log5 n)/k5);

and MCacc
CSIC(a)

= O(a log2 a), PCacc
CSIC(a)

= O(1). (In fact, for the case SIC(a), the
maximum number of primes used per user is log a + 1, a small constant). ut

7 Concluding Remarks
We presented three generic frameworks for constructing broadcast encryption
and give some efficient instantiations. Almost all subset-cover broadcast encryp-
tion schemes based on PRSG (or one-way function) or RSA accumulator in the
literature can be rewritten as instantiations in our paradigms. In fact, [18, 14,
17, 4, 12, 20, 15] can be viewed as PRSG-instantiated schemes and [2, 3, 11] are
non-trapdoor-RSA-instantiated schemes from our frameworks.

The whole paradigm abstracts away the computational security issues and
reduces the problem to only pure combinatorics. We leave as an open problem



the question of showing any combinatorial bound from the efficiency charac-
terization in each sub-framework. Note that the previous bounds for broadcast
encryption [16] are done in the setting where no key derivation is involved.
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