
A Near-Practical Attack against
B mode of HBB

Joydip Mitra

Managemant Development Institute
Post Box 60, Mehrauli Road
Sukhrali, Gurgaon, Haryana

India 122001
joydip@mdi.ac.in

Abstract. Stream cipher Hiji-Bij-Bij (HBB) was proposed by Sarkar at
Indocrypt’03. This cipher uses cellular automata (CA). The algorithm
has two modes: a basic mode (B) and a self-synchronizing mode (SS).
This article presents the first attack on B mode of HBB using 128 bit
secret key. This is a known-pliantext guess-then-determine attack. The
main step in the attack guesses 512 bits of unknown out of the 640 bits of
the initial internal state. The guesses are done sequentially and the attack
uses a breadth-first-search-type algorithm so that the time complexity is
250.

Keywords: cryptanalysis, known-plaintext attack, HBB, stream cipher.

1 Introduction

A typical stream cipher generates a long sequence of pseudo-random numbers,
known as key-streams, from a given seed (a secret key). The plaintext message
M is then XORed with the key stream to generate the ciphertext C. Thus, a
steam cipher handles each bit of plaintext separately.

In this article, we will concentrate on the stream cipher HBB, proposed by
Sarkar in Indocrypt’03 [1]. This is the first stream cipher replacing LFSR by
CA. This is a classical masking-type stream cipher, i.e. it evolves a linear and
a non-linear generator and XORs selected portions of these to produce the key
stream. Thus, the design methodology is classical and there are other ciphers like
SNOW which use the same principle. The non-linear part has some nice provable
properties. These are aimed at resisting correlation and low diffusion attacks.
The linear portion ensures a sequence of vectors with long period. Again, there
are ciphers like SNOW [4] and TURING [5] which use such sequence generators.
So, weakness in HBB is possibly in the way CA is used. The design has certain
flaws that are to be considered while suggesting new ciphers involving CA. Ours
is a guess-then-determine known-plaintext attack. The FSE’05 attack [2] was an
algebraic attack. The present attack exploits structural weaknesses in greater
depth than previously done. Some salient features of our attack are as follows:

(1) Exploits weakness in the use of CA. (2) Exploits the linearity in the mixing
of the linear part to the non-linear part. (3) Proves an interesting property of the
nonlinear update function: Fixing the first 32 bits of the output of the nonlinear
update function ensures that there are 224 choices for each of the four 32-bit
blocks of the input. While by itself this is not a weakness, this is combined with
the first two properties to get an efficient attack.

The HBB cipher has two modes: basic mode (B) and self-synchronizing mode
(SS). So far two articles have been found in the literature dealing with cryptanal-
ysis of HBB. (Other articles on this topic are not known to the author.) Joux
and Muller [2] have shown that the SS mode of HBB is not secured. They have
also attacked the B mode. Their attack requires more than 250 bits of known
plaintext and more than 2142 time. Vlastimil Klima [3] has presented another
attack, marginally faster than the one in [2], on B mode. His attack requires
34 blocks of known plaintext, i.e. 34 × 27 bits of known plaintext and its time
complexity is 2140. Thus, so far the B mode of HBB, using 128-bit secret key,
seemed secured. The present work attacks only the B mode of HBB. This attack
requires 225 blocks of consecutive plaintext to be known. It guesses 512 bits
of internal state in a sequential manner, so that the time complexity does not
exceed 250. Thus, the present attack is a near-practical one and shows that the
B mode of HBB using even 128 bit secret key is also not secured.

The rest of the article is organized as follows: Section 2 describes one round
of B mode of HBB. (Understanding of cellular automata (CA) is not required
to follow this attack. Hence CA is not discussed.) Section 3 describes our first
attack having time complexity 261 for finding the initial internal state of 640
bits. Next, in Section 4, we improve this attack to get the unknown 640 bits of
initial internal state in 250 time. Finally we present our conclusion in Section 5,
followed by references.

One reviewer has pointed out that some of the ideas used in the attack has
earlier occurred in [7–9].

2 One Round of HBB

We start by describing one round of B mode of HBB encryption. We use two
256-bit constants given by:

R0 = (80ffaf46977969e971553bb599be6b2b 4b3372952308c787b84c7cce36d501e6)16
R1 = (dd18c62b153df31ac98e86c1910fee24 2942d51b4201eb3dc1d1a85f57b8919b)16

And, a 128-bit string x will also be written as a 4× 32 matrix

x =

x0

x1

x2

x3

where, x = x0‖x1‖x2‖x3 and each xi is a 32-bit string.
One Round of HBB Encryption One round of HBB encryption, i.e. encryp-
tion of i-th message block Mi, i ≥ 0, is described as follows:

Algorithm 1. HBB Encrypt
Input: Plaintext Mi

Output: Ciphertext Ci

Internal State at the beginning of encryption:
a) Non-linear core : Ni−1 = Ni−1,0‖ . . . ‖Ni−1,3

b) Linear core : Li−1 = Li−1,0‖ . . . ‖Li−1,15

/* each substring is 32-bit long */
Update internal state and compute key stream Ki and ciphertext Ci

1. Update Linear Core /* Li = NextState(Li−1) */
1.1 LXi−1 = Li−1,0‖ . . . ‖Li−1,7 ; LYi−1 = Li−1,8‖ . . . ‖Li−1,15 ;
1.2 LXi = (LXi−1 � 1)⊕ (LXi−1 � 1)⊕ (LXi−1 ∧R0) ;
1.3 LYi = (LYi−1 � 1)⊕ (LYi−1 � 1)⊕ (LYi−1 ∧R1) ;
1.4 Li = LXi‖LYi ;

2. Half-update Non-Linear Core /* NZi = updateNLC(Ni−1) */
2.1 NVi = NLSub(Ni−1) ;/* replace each byte by its image */
2.2 NWi = Delta(NVi) ;

/* replace each word by XOR of other three words */
2.3 NXi = RotateLeft(NWi) ; /* rotate j-th word by 8 ∗ j + 4 bits */
2.4 NYi = FastTranspose(NXi) ;

/* replace each 4× 4 sub-matrix by its transpose */
2.5 NZi = NLSub(NYi) ;

3. Compute Key-Stream Ki

Ki,0 = NZi,0 ⊕ Li,0; Ki,1 = NZi,1 ⊕ Li,7;
Ki,2 = NZi,2 ⊕ Li,8; Ki,3 = NZi,3 ⊕ Li,15;

4. Compute Ni /* updated non-linear core */
Ni,0 = NZi,0 ⊕ Li,3; Ni,1 = NZi,1 ⊕ Li,4;
Ni,2 = NZi,2 ⊕ Li,11; Ni,3 = NZi,3 ⊕ Li,12;

5. Compute Ciphertext Ci

Ci = Mi ⊕Ki;
Internal State at the end of encryption: Ni and Li

3 A Simple Attack on HBB

Ours is a known-plaintext attack and we will assume that the key streams Ki

for 0 ≤ i ≤ 224 are known. (This is equivalent to knowing (Mi, Ci) pair for
0 ≤ i ≤ 224.) From the knowledge of these key streams, using a guess-then-
determine attack, we will determine the entire internal state (L0, N0) (related
to encryption of first message block M0). Sketch of our attack is given below.

Algorithm 2: Sketch of Attack against HBB
Assumption: Key streams Ki, for 0 ≤ i ≤ 224, are known.

1. Determine LX0 /* unknown 256 bits */
2. Determine LY0 /* unknown 256 bits */
3. Compute N0 = K0 ⊕ (L0,0‖L0,7‖L0,8‖L0,15)⊕ (L0,3‖L0,4‖L0,11‖L0,12)
4. Proceed forward and break the rest of the cipher.

So, the complexity of attack is really the complexity of finding the unknown
512 bits of the linear core L0. The method for determining LX0 and LY0 will
be similar and will have same time complexities. So, we will only discuss attack
against LX0. Time complexity of our attack will be twice the time complexity of
the attack against LX0. Idea behind the attack against LX0 is presented below.

Let us write LX0 = �‖b0b1 . . . b223 where � is a 32-bit string and each bi is a
bit. We first note that, knowing �‖b0 . . . bt−1 we can compute Li,0 for 0 ≤ i ≤ t
uniquely. (See Algorithm A1, Appendix A for pseudocode.) Since Ki,0 are known
for 0 ≤ i ≤ t, we also know NZi,0 = Li,0 ⊕Ki,0 for 0 ≤ i ≤ t. But if NZi,0 is
fixed, then Ni−1,0 can have only 224 possible choices. (This result is proved in
Section 3.1.) For every fixed i, the set of all such possible choices of Ni,0 will be
denoted by Ni,0. For every i = 0, . . . t − 1, from NZi,0 (unique) and Ni,0 (one
of 224 choices) we get Li,3 = NZi,0 ⊕Ni,0 (224 choices). The set of all possible
(224) choices of Li,3 will be denoted by Li,3. Thus, we have,

Li,3 = {NZi,0 ⊕Ni,0 : Ni,0 ∈ Ni,0}

Next we consider the update function of the linear core. Given a choice x of
Li,3, we know the middle 30 bits of corresponding choice y of Li+1,3. We will
write x⇒ y to denote this. So, given L0,3, an x1 is a valid choice of L1,3 only if
for some x0 ∈ L0,3 we get x0 ⇒ x1. But L1,3 is already obtained and we know
that x1 �∈ L1,3 is not a valid choice of L1,3. Hence, given L0,3 and L1,3, the valid
choices of L1,3 are given by the set

LV
1,3|L0,3 = {x1 ∈ L1,3 : x0 ⇒ x1 for some x0 ∈ L0,3}

The super-script “V ” stands for “valid”. Similarly, given L0,3, L1,3 and L2,3, the
valid choices of L2,3 will be given by the set

LV
2,3|L0,3 = {x2 ∈ L2,3 : x0 ⇒ x1 ⇒ x2 for some x0 ∈ L0,3, x1 ∈ L1,3}

=
{
x2 ∈ L2,3 : x1 ⇒ x2 for some x1 ∈ LV

1,3|L0,3

}

We now define the following sets

N V
i,0 =

{
x⊕NZi,0 : x ∈ LV

i,3|L0,3

}

As a convention, we take N V
0,0 = N0,0. Proceeding this way we can find N V

i,0 for
0 ≤ i ≤ t−1 and for a wrong choice of �‖b0 . . . b223, the set N V

223,0 will be empty.
This constitutes an attack against LX0. The idea is summarized below.

Algorithm 3: Idea behind first attack against LX0

Guess �‖b0 . . . bt−1

Compute L0,0 L1,0 . . . Lt−1,0 Lt,0 (unique choice)
Compute NZ0,0 NZ1,0 . . . NZt−1,0 NZt,0 (unique choice)
Compute N0,0 N1,0 . . . Nt−1,0 Nt,0 (224 choices)
Compute N V

0,0 N V
1,0 . . . N V

t−1,0 (shrinking sets)

Certain finer points are to be noted. First, if at any stage N V
i,0 = φ then

N V
223,0 = φ. So, we need not compute N V

223,0 to declare a choice �‖b0 . . . b223 of
LX0 to be wrong, and we can guess these bits in LX0 sequentially. Second, we
can compute N V

i,0 without computing LV
i,3|L0,3 and without explicitly computing

even Ni,0. (This computation and reason for doing this are explained in section
3.2.) Third point is a more important one. Suppose � in LX0 is fixed and suppose
for all possible choices of b0 . . . bt−1, we have computed the sets N V

t,0. These sets
can be kept in a binary tree T . Root of T will be �. For every other non-leaf node
y ∈ T , its left (right) child will be the string y‖0 (y‖1). The node represented
by x in T , with |x| = 32 + t bits, will contain the set N V

t−1,0 for x = �‖b0 . . . bt−1

only if N V
t−1,0 �= φ. Thus T may have 2t nodes at level t. The actual number

may be less if some of the sets N V
t−1,0 are empty. (Level of root is zero.) Now

from each of the sets N V
t−1,0 at level t of T , and for each choice of bt = 0, 1, we

will compute N V
t,0. But the resulting set will be added to the tree only if it is

non-empty. It will be argued that this breadth-first type processing of sets can
be done in 248 time giving LX0.

Below the two sections (3.1 and 3.2) contain our results and algorithms to
be used in the subsequently explained attack and its complexity (Section 3.3).

3.1 Determine Ni−1,0 from NZi,0

Suppose we know NZi,0 for some i ≥ 1. Since,

NYi,0 = NLSub−1(NZi,0)

we can find out NYi,0 = (y31 . . . y0). Since FastTranspose transposes every
4 × 4 sub-matrix of its input, it is an idempotent function. Thus using NYi =
FastTranspose(NXi) we get NXi = FastTranspose(NYi) and hence,

NXi =

y31

y30

y29

y28

∗
y27

y26

y25

y24

∗
y23

y22

y21

y20

∗
y19

y18

y17

y16

∗
y15

y14

y13

y12

∗
y11

y10

y9

y8

∗
y7

y6

y5

y4

∗
y3

y2

y1

y0

∗

where every “ ∗ ” represents an unknown 4 × 3 matrix of bits. But NXi was
calculated as RotateLeft(NWi) and so, NWi can be computed as

NWi = RotateRight(NXi)

where j-th word of NXi is given a circular rotation by 8 ∗ j + 4 bits. Hence,

NWi =

y3

y10

y17

y24

∗
y31

y6

y13

y20

∗
y27

y2

y9

y16

∗
y23

y30

y5

y12

∗
y19

y26

y1

y8

∗
y15

y22

y29

y4

∗
y11

y18

y25

y0

∗
y7

y14

y21

y28

∗

where every “∗” represents an unknown 4×3 matrix of bits. Next, we note that
“Delta” is also an idempotent operation, and hence, NVi = Delta(NWi). So, if
we write NVi,0 = v31 . . . v0 then,

v31 = y10 ⊕ y17 ⊕ y24

v27 = y6 ⊕ y13 ⊕ y20

v23 = y2 ⊕ y9 ⊕ y16

v19 = y30 ⊕ y5 ⊕ y12

v15 = y26 ⊕ y1 ⊕ y8

v11 = y22 ⊕ y29 ⊕ y4

v7 = y18 ⊕ y25 ⊕ y0

v3 = y14 ⊕ y21 ⊕ y28

Thus, given NZi,0, we know 8 specified bits of NVi,0. In particular, we know 2
bits of every byte of NVi,0. Finally note that, Ni−1,0 = NLSub−1(NVi,0) and
hence, given NZi,0 we know 8 bits of image (NLSub) of Ni−1,0. To make this
formal, let us define two functions g1(x), g2(x) : {0, 1}32 → {0, 1}8 as follows:

Function g1(x)
1. Compute y = NLSub(x) = y31 . . . y0

2. Compute a = y31y27y23y19y15y11y7y3

3. Return a

Function g2(x)
1. Compute y = NLSub−1(x) = y31 . . . y0

2. for j = 0, . . . , 7 do
3. aj = y14+4j ⊕ y21+4j ⊕ y28+4j (subscripts are computed mod 32)
4. end-do
5. Compute a = a7a6a5a4a3a2a1a0

6. Return a

Also, for a ∈ {0, 1}8, define the following sets:

N ∗(a) =
{
x ∈ {0, 1}32 : g1(x) = a

}
(1)

Then, using functions g1, g2 and sets N ∗(a), we have the following proposition:

Proposition 1. Given NZi,0, there are exactly 224 choices of Ni−1,0 given by:

Ni−1,0 = N ∗(g2(NZi,0))

In particular, every byte of Ni−1,0 can have 26 choices.

3.2 Compute N V
t+1,0 from N V

t,0

For k-bit strings x = xk−1 . . . x0 and r = rk−1 . . . r0, with k > 2, define the
following:

1. m(x) will denote the string obtained from x by deleting its MSB and LSB.

2. f(x, r) = (xk−2 . . . x0‖0)⊕ (0‖xk−1 . . . x1)⊕ (x ∧ r).

Using this notation, y′ ∈ LV
t+1,3|L0,3 if and only if y′ ∈ Lt+1,3 and, for some

choice x′ ∈ LV
t,3|L0,3, we get

m(f(x′, r)) = m(y′) (2)

with r chosen suitably from definition of EvolveCA function given in HBB [1].

Lemma 1. Fix y = y31 . . . y0. Then y ∈ N V
t+1,0 if and only if y ∈ Nt+1,0 and

for some x ∈ N V
t,0 and some ε31, ε0 ∈ {0, 1},

ε31‖m(f(x⊕NZt,0, r))⊕m(NZt+1,0)‖ε0 = y (3)

Proof. The proof follows using equation 2.

To check if y ∈ Nt+1,0, we use the fact that,

Nt+1,0 = N ∗(g2(NZt+2,0)) = {y : g1(y) = g2(NZt+2,0)}
So, we can compute N V

t+1,0 as follows: Initialize sets D1[j], 0 ≤ j < 256 as
empty sets. For each x ∈ N V

t,0 and for every ε31, ε0 ∈ {0, 1}, we compute y as in
equation 3. Then insert y to the set D1[g1(y)]. Once we have exhausted N V

t,0,
we set N V

t+1,0 as D1[g2(NZt+2,0)]. The pseudocode is given below.

Algorithm 4. Computation of N V
t+1,0 from N V

t,0

0. for v1 = 0 to 255 do
1. D1(v1)← φ /* set initialized by φ */
2. end-do
3. for every x ∈ N V

t,0 do
4. z ← m(f(x⊕NZt,0, r))⊕m(NZt+1,0)
5. for (ε31, ε0) ∈ {0, 1}2 do
6. Set y ← ε31‖z‖ε0
7. Add y to the set D1[g1(y)]
8. end-do
9. end-do
10.N V

t+1,0 ← D1[g2(NZt+2,0)]

This computation of N V
t+1,0 has two major advantages: First, we do not need

to maintain the set Nt+1,0 (having 224 elements) explicitly and hence no time is
required to handle such sets. Second advantage is that we can compute the sets
D1[v] for 0 ≤ v < 256 without the knowledge of NZt+2,0. This is going to be
useful while finding the value of LX0.

3.3 Algorithm to Determine LX0

All valid choices of LX0 will be found and will constitute a list FX. Writing
LX0 = L0,0‖b0b1 . . . b223, we can find FX as union of sets FX(�) that represents

all valid choices of LX0 with L0,0 = �. For a given value � of L0,0, we will now
construct the set FX(�). Suppose, we have a list F0(t) of tuples (y, n0, n1,D[y])
having the following interpretation:

1. n0 represents NZt,0 when �‖b0 . . . , bt = y,
2. n1 represents NZt+1,0 when �‖b0 . . . , bt = y, and
3. D[y] represents N V

t,0 when �‖b0 . . . bt = y.

Then, y is an invalid choice of �‖b0 . . . , bt if D[y] is empty. So, we also put the
restriction on F0(t) that it will contain only those tuples (y, n0, n1,D[y]) for
which D[y] is non-empty. With this interpretation, clearly FX(�) = F0(223).
If for some t < 223 the set F0(t) is empty, then the set F0(223) is also empty.
Hence, the following steps will compute FX(�) for L0,0 = �.

Step 1 Build list F0(0)
Using K = K0,0, compute n0 = NZ0,0 = L0,0 ⊕ K and, initialize the list
F0 by φ. Next take, K = K1,0 and for each b = b0 ∈ {0, 1}, set y ← �‖b,
compute L1,0 from �‖b, and then compute

n1 = NZ1,0 = L1,0 ⊕K

Define D[y] = N ∗(g2(n1)) and add the following tuple to the list F0(0):

(y, n0, n1, D[y])

provided the set D[y] is non-empty. Thus, F0(0) now looks like the following:

F0(0) = {(�‖0, n0, n1,D[�‖0]) , (�‖1, n0, n1,D[�‖1])}
The set D[�‖0] represents N V

0,0 for L0,0 = � and b0 = 0. The other sets in
the list F0(0) has similar interpretations. This completes our computation
of F0(0). In the remaining steps, we will build list F0(t + 1) from F0(t).

Step 2 Set t← 0.
Step 3 Compute F0(t + 1) from F0(t)

For each tuple in F0(t), we first generate sets D1(v1) for 0 ≤ v1 < 256
using Algorithm 3. Then for every value of b ∈ {0, 1}, we compute the
corresponding N V

t+1,0 as follows:
1. Compute Lt+2,0 from y‖b as in Algorithm A2, Appendix A.
2. Compute NZt+2,0 = Lt+2,0 ⊕Kt+2,0,
3. Set D[y‖b] = D1(g2(NZt+2,0)),
4. Add a tuple (y‖b, n1, NZt+2,0,D[y‖b]) to F0(t+1) only if D[y‖b] is non-

empty.
Note that, y‖b represents a valid choice of �‖b0 . . . btbt+1 if and only if the
set D[y‖b] is non-empty. For such valid choices of �‖b0 . . . btbt+1, the corre-
sponding tuples are put in a list F0(t + 1). Once, we have exhausted all the
elements in the list F0(t), we have generated F0(t + 1). Again, elements in
F0(t + 1) will have interpretations (similar to that) given in the beginning
of this step. Finally, this computation of F0(t + 1) from F0(t) is presented
in the following algorithm.

Algorithm 5. Compute F0(t + 1) from F0(t)
0. for each (y, n0, n1,D[y]) ∈ F0(t) do
1. Compute D1(0), . . . ,D1(255) from D[y] using Algorithm 3.
2. for b ∈ {0, 1} do
3. Compute n2 = NZt+2,0 from y, b and Kt+2,0.
4. Set D[y‖b] = D1[g2(n2)].
5. if D[y‖b] is non-empty
6. then Add tuple (y‖b, n1, n2,D[y‖b]) to F0(t + 1).
7. end-if
8. end-do
9. end-do

Step 4 t← t + 1
Step 5 Check for loop

If now t < 223 and the list F0(t) is non-empty, go to Step 3.
Step 6 Compute FX(�)

Set FX(�)← F0(t).

We now argue that this process does not lead to handling of infinite sets. We
have seen empirically that for every choice of NZ0,0, NZ1,0 and NZ2,0, the set
D[�‖b0b1] has less than 221 elements for each possible choice of �‖b0b1. In other
words, the size of D[�‖b0b1] is at most 1/8-th of the size of D[�‖b0]. But for every
b0, there are two choices of b1. Hence, if ηt denotes the total number of 32-bit
strings contained in the D[] sets of list F0(t), then

η1 ≤ 1
4
η0 = 2−2η0

Proceeding this way, we will have ηt ≤ 2−tη0. Note that, F0(0) contains two
tuples, each of which contains a set D[] of 224 elements. Thus, η0 = 224 + 224 =
225. So, the total number of 32-bit strings contained in all F0(t) for 0 ≤ t ≤ 223
is

223∑
t=0

ηt <
∑
t≥0

ηt = η0

∑
t≥0

2−2t < 226

Now, from Algorithms 4 and 5, it is clear that, during the computation of
F0(t + 1) from F0(t), each string from each set D[] in F0(t) will be processed
only once. And for each such processing, we will consider four possible choices
of ε31 and ε0. Hence the total number of computation of strings in the entire
process of finding FX(�) is given by

4×
223∑
t=0

ηt < 4× 226 = 228 (4)

Now note that there are 232 choices of � and so, we have proved the following:

Proposition 2. For every fixed value of �, the set FX(�) can be computed in less
than 228 time. And so, time complexity of finding the set FX is 232× 228 = 260.
In other words, time complexity of finding LX0 is 260.

Since each element in F0(t) gives rise to at most two tuples in F0(t + 1),
and since F0(0) has two tuples, number of tuples in F0(t) will be at most 2t+1.
The D[] sets in all these tuples will together contain ηt = 225−2t strings. Hence
for t > 8, some sets D[] are bound to be empty. For example, for k = 10, the
list F0 is supposed to contain at most 211 tuples, and the D[] sets will have
at most 25 strings. So, F0(10) can not contain more than 25 valid tuples (with
corresponding non-empty set D[]). Thus, the list F0() will go on shrinking for
t > 8. Hence, we are going to get a singleton set FX.

Complexity of First Attack against HBB: By Proposition 2, LX0 can be
found in 260 time. Time complexity for finding LY0 will be the same and so, time
complexity of our first attack against B–mode of HBB has time complexity:

260 + 260 = 261.

4 A Faster Attack

This attack is almost same as the first attack, except for computation of the set
N V

t,0. We first note the following: Fix t ≥ 0. Let Nt,0 = H‖L where H (L) is a
16-bit string and “‖” represents concatenation of strings. Then, by Proposition
1, H (L) will have 212 choices. We will denote the collection of all such choices
of H (L) by HN t,0 (LN t,0) and write Nt,0 = HN t,0‖LN t,0. We will now mimic
the computation of N V

t,0 from the sets Ni,0 0 ≤ i ≤ t + 1. In the same way, we
can compute the set HN V

t,0 from the sets HN i,0 0 ≤ i ≤ t + 1. The pseudocode
is given in Algorithm A3, Appendix A. Similarly, we can compute LN V

t,0. (For
pseudocode, see Algorithm A4, Appendix A.) Clearly, N V

t,0 will be a subset of
HN V

t,0‖LN V
t,0. If for any t, one of the sets HN V

t,0 or LN V
t,0 is empty, so will be

N V
t,0. So, we will only compute HN V

t,0 for t ≥ 0. The computation follows similar
steps as in Section 3.3. Thus, our faster attack can be described by the following
algorithm:

Algorithm 6. Sketch of faster attack

Guess �‖b0 . . . bt−1

Compute L0,0 L1,0 . . . Lt−1,0 Lt,0 (unique choice)
Compute NZ0,0 NZ1,0 . . . NZt−1,0 NZt,0 (unique choice)
Compute HN 0,0 HN 1,0 . . . HN t−1,0 HN t,0 (212 choices)
Compute HN V

0,0 HN V
1,0 . . . HN V

t−1,0 (shrinking sets)

For computations of HN V
t,0, we introduce the following functions:

Function g3(x) : {0, 1}16 → {0, 1}4
1. Compute y = NLSub(x) = y15 . . . y0

2. Compute a = y15y11y7y3

3. Return a

Function g4(x) : {0, 1}32 → {0, 1}4
1. Compute y = NLSub−1(x) = y31 . . . y0

2. for j = 0, . . . , 7 do
3. aj = y14+4j ⊕ y21+4j ⊕ y28+4j (subscripts are computed mod 32)
4. end-do
5. Compute a = a7a6a5a4

6. Return a

Function g5(x) : {0, 1}32 → {0, 1}4
1. Compute y = NLSub−1(x) = y31 . . . y0

2. for j = 0, . . . , 7 do
3. aj = y14+4j ⊕ y21+4j ⊕ y28+4j (subscripts are computed mod 32)
4. end-do
5. Compute a = a3a2a1a0

6. Return a

Now for a ∈ {0, 1}4, defining the sets J ∗(a) =
{
x ∈ {0, 1}16 : g3(x) = a

}
, we

get the following from Proposition 1:

HN i−1,0 = J ∗(g4(NZi,0)) and, LN i−1,0 = J ∗(g5(NZi,0))

where each set J ∗() contains 212 elements. The pseudocodes are given in Algo-
rithm A3 and A4 of Appendix A. We have seen empirically that, for t ≥ 0,

size of HN V
t+1,0

size of HN V
t,0

<
1

2
√

2
and,

size of LN V
t+1,0

size of LN V
t,0

<
1

2
√

2

So, in this revised faster attack, each initial tuple contains one set, of cardinality
212 (as opposed to 224 elements in the first attack). Define πt to be the sum of
cardinalities of all surviving HN V

t,0 sets, for all values of �‖b0 . . . bt with fixed �.
Then, πt ≤ 1√

2
πt−1. So, the complexity of finding FX(�) for a given � is

4×
223∑
t=0

πt < 4× 213 ×
223∑
t=0

(
1√
2

)t

≤ 217

as opposed to 228 (equation 4) for the first attack. So, this revised attack is faster
than the first attack by a margin of 211(= 228/217). In other words, the time
required to find L0 is given by: 261/211 = 250.

5 Conclusion

We have presented an attack against the B mode of HBB. The time complexity of
the attack is 250 requiring 225 blocks of plaintext to be known. Thus, HBB using
even 128-bit secret key is also not secured. We think there are certain design
weaknesses in HBB shown by our attack: (1) Improper use of CA generator.

knowing any p bits of the CA at any point of time ensures that one knows p− 2
bits of the CA in the next time point. This is crucial and previously unobserved
property of the CA. Compared to an LFSR, it is this property that makes CA
much more susceptible to guess-then-determine attacks. This is a lesson on the
secure CA usage. (2) The key stream is produced by XORing a portion of the
linear and the nonlinear part. Further the nonlinear part is updated by mixing
a separate portion of the linear part into it. While this mixing is necessary, the
manner in which it is done is not correct. The linear part is simple XORed
into the nonlinear part creating a weakness that can again be exploited in a
guess-then-determine attack. (This property allows the recent algebraic attack
on HBB.) On the other hand, SNOW also updates the nonlinear part by mixing
with the linear part. But this mixing is effected by an addition modulo 232. In
fact, as has been recently observed that if this addition is replaced by a XOR,
SNOW also becomes weak and susceptible to algebraic attacks [6]. (3) Too much
of the state is revealed by HBB. In order to achieve efficiency, the entire nonlinear
part is mixed with a portion of the linear part to produce the 128-bit keystream
block. Again this is an undesirable thing to do and makes the verification stage
of the guess-then-determine attack easier. Thus, to develop a cipher using CA,
a designer should avoid the above pitfalls.

If an LFSR is used instead of a CA, then the described attack will not hold.
Whether the attack can be modified to also hold for LFSR is still an open
problem. Implementation of the attack can be obtained from the author.

References

1. Palash Sarkar. Hiji-Bij-Bij: A New Stream Cipher with a Self-Synchronizing Mode
of Operation. In T. Johansson and S. Maitra, editors, Progress in Cryptology -
INDOCRYPT’03, volume 2904 of Lecture Notes in Computer Science, pages 36-51,
Springer Verlag.

2. Antoine Joux and Frederic Muller: Two Attacks against the HBB Stream Cipher.
In FSE’05, pages 341-353.

3. Vlastimil Klima: Cryptanalysis of Hiji-bij-bij (HBB). In Cryptology ePrint Archive:
Report 2005/003.

4. P. Ekdahl and T. Johansson: A new version of the stream cipher SNOW. In K. Ny-
berg and H Heys, editors, Selected Areas in Cryptography, 9th Annual International
Workshop, SAC 2002, volume 2595 of Lecture Notes in Computer Science, pages
47–61. Springer-Verlag, Berlin, 2003.

5. G. Rose and P. Hawkes: Turing: a fast software stream cipher. In Rump session of
Crypto 2002, http://people.qualcomm.com/ggr/QC/Turing.tgz

6. Olivier Billet, Henri Gilbert: Resistance of SNOW 2.0 Against Algebraic Attacks.
In CTRSA, pages 19-28.

7. J. Golic: Cryptanalysis of three mutually clock-controlled stop/go shift registers. In
IEEE Trans. Information Theory, vol. 46, pages 1081-1090, May 2000.

8. J. Golic, A. Clark and E. Dawson: Generalized inversion attack on nonlinear filter
generators. In IEEE Trans. Computers, vol. 49, pages 1100-1109, Oct. 2000.

9. J. Golic: Multibit cascades may be vulnerable to inversion attack. In Electronics
Letters, vol. 36(18), pages 1536-1538, Aug. 2000.

Appendix A

Algorithm A1. Compute Li,0 0 ≤ i ≤ t from �‖b0 . . . bt−1

1. R0,t ← most significant 32 + t bits of R0

2. x← �‖b0 . . . bt−1; L0,0 = � ;
3. for i = 0 to t− 1 do
4. x← (x� 1)⊕ (x� 1)⊕ (x ∧R0,t) ;
5. Li+1,0 = most significant 32 bits of x ;
6. end-do

Algorithm A2. Compute Lt+2,0 from �‖b0 . . . bt+1

1. x← �‖b0 . . . btbt+1;
2. for i = 0 to t + 1 do
3. x← (x� 1)⊕ (x� 1)⊕ (x ∧R0,t+1) ;
4. end-do
5. Lt+2,0 = most significant 32 bits of x ;

Algorithm A3. Computation of HN V
t+1,0 from HN V

t,0

1. for v1 = 0 to 15 do
2. HD1(v1)← φ /* set initialized by φ */
3. end-do
4. NZt+1,0 = nzt+1,1‖nzt+1,0 /* each sub-string has 16 bits */
5. NZt,0 = nzt,1‖nzt,0 /* each sub-string has 16 bits */
6. for every x ∈ HN V

t,0 do
7. z ← m(f(x⊕ nzt,1, r1))⊕m(nzt+1,1)
8. for (δ31, δ16) ∈ {0, 1}2 do
9. Set z∗ ← δ31‖z‖δ16

10. Add z∗ to the set HD1(g3(z
∗))

11. end-do
12. end-do
13. HN V

t+1,0 ← HD1(g4(NZt+2,0))

Algorithm A4. Computation of LN V
t+1,0 from LN V

t,0

1. for v1 = 0 to 15 do
2. LD1(v1)← φ /* set initialized by φ */
3. end-do
4. NZt+1,0 = nzt+1,1‖nzt+1,0 /* each sub-string has 16 bits */
5. NZt,0 = nzt,1‖nzt,0 /* each sub-string has 16 bits */
6. for every x ∈ LN V

t,0 do
7. z ← m(f(x⊕ nzt,0, r0))⊕m(nzt+1,0)
8. for (δ15, δ0) ∈ {0, 1}2 do
9. Set z∗ ← δ15‖z‖δ0

10. Add z∗ to the set LD1(g3(z
∗))

11. end-do
12. end-do
13. LN V

t+1,0 ← LD1(g5(NZt+2,0))

Here, r1 and r0 are chosen suitably from R0 (Section 2).

