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Abstract. In this paper, we revisit the famous Davies-Murphy crypt-
analysis of DES. First we improve its complexity down to the analysis
of 2*° chosen plaintexts, by considering 6 distributions instead of 7. The
previous improvement of the attack by Biham and Biryukov costed 2°°
known plaintexts. This new result is better than differential cryptanaly-
sis but slightly worse than linear cryptanalysis. Secondly, we explore the
link between this attack and other cryptanalysis techniques, in particular
linear cryptanalysis.

1 Introduction

DES (Data Encryption Standard) is a popular encryption algorithm published
in the late 70’s by the American National Bureau of Standards (NBS) for gov-
ernmental use [12]. DES is a block cipher encrypting blocks of data of length 64
bits under a secret key of length 56 bits. DES quickly became a popular cipher
and is still widely used today. Although it has been replaced by the more recent
AES [13], DES is still an attracting topic for cryptographers. Indeed 64-bit block
algorithms remain in use in many cryptographic devices and the migration to
AES is quite slow.

Given the large amount of research on the topic, DES has surprisingly well
resisted to cryptanalysis. In practice, the best way of attacking DES is by brute
force on the 56 bits of the key. This is feasible with large resources and can be
achieved using a dedicated hardware or a large cluster of standard machines [7].
Another topic of analysis has been the research of shortcut attacks (faster than
exhaustive search). Several results have been published since the early 90’s :

— Differential Cryptanalysis [4] has been the first published theoretical
cryptanalysis of DES. This technique, proposed by Biham and Shamir, re-
quires to encrypt (under the same key) 247 chosen plaintexts.

— Linear Cryptanalysis [11] was published shortly after by Matsui. It is
slightly more efficient than Differential Cryptanalysis, since it requires about
243 known plaintexts. This attack was implemented by Matsui and the ex-
perience was repeated afterwards and even slightly improved [8,9, 15].



— Bi-Linear Cryptanalysis [5] was published recently at Crypto 2004. It is
an extension of Linear Cryptanalysis using some particular quadratic ap-
proximations instead of linear ones. Its complexity is roughly the same as
Linear Cryptanalysis and the two techniques appear to be closely related.

— Davies-Murphy Cryptanalysis [6] is a dedicated attack against DES.
The starting point was the observation by Davies that adjacent pairs (and
triplets) of S-boxes in DES produced unbalanced output. At first, it was
believed the attack was slower than exhaustive search. However, in 1995,
Biham and Biryukov [3] demonstrated how to improve these results. Their
resulting attack costs 2°0 known plaintexts, which is worse than Linear or
Differential cryptanalysis, but still represents a theoretical break of DES.

— There exists other attacks like differential-linear attack or partitioning at-
tacks.

In this paper, we propose a further improvement of the Davies-Murphy crypt-
analysis. Our new attack requires to encrypt and process 2%° chosen plaintexts,
in order to recover the secret key. Therefore our results place the attack between
linear cryptanalysis and differential cryptanalysis in terms of complexity (see
Table 1).

Also, our improved attack is very closely related to linear cryptanalysis (we
use a biased linear combination of intermediate bits). It is already well known
(with Biham’s work [2] in particular) that Matsui’s attack and Davies-Murphy
attack are closely related. In Section 4, we further explore this relation in the
general case. We prove that linear distinguishers become almost optimal after
several convolutions, which explains the convergence observed between the com-
plexities of both attacks. It also shows that Davies-Murphy cryptanalysis cannot
significantly outperform linear cryptanalysis.

Table 1. Summary of Cryptanalysis of DES

Cryptanalysis Technique Time Complexity| Data Complexity
Exhaustive Search 2°¢ 1 known plaintext
Linear Cryptanalysis [11] 213 2% known plaintexts

Bi-Linear Cryptanalysis [5] ~ 213 ~ 2% known plaintexts
Differential Cryptanalysis [4] 217 217 chosen plaintexts
Davies-Murphy Cryptanalysis [3, 6] 250 250 known plaintexts
This paper 215 2%5 chosen plaintexts

2 DES and Davies-Murphy cryptanalysis

2.1 DES

DES [12] was published in 1977. It is a Feistel cipher (see Figure 1) with 16
rounds. DES operates on a 64-bit block of data, which is split in two halves of
equal length.
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Fig. 1. General Structure of a Feistel cipher

The round function F' of DES (also see Figure 2) first expands the state
from 32 to 48 bits using a linear expansion E. Then a 48-bit subkey K is added
bitwise to the state before a layer S of S-boxes is applied. This layer is built with
8 different S-boxes applied in parallel, each taking 6 input bits and producing
4 output bits. Therefore the layer S reduces the state size from 48 to 32 bits.
Finally the state is permuted with a function P. Therefore

F(z) =PoS(K® E(x))

Even though this round function is not bijective, the Feistel network remains
invertible by construction. However a consequence of the non-invertibility is that
for a given key, some outputs are produced more often than others by the round
function F'. This causes a natural imbalance in the cipher. The general idea of
Davies-Murphy cryptanalysis is to take advantage of this property.
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Fig. 2. The round function F' of DES




2.2 Pairs of adjacent S-boxes

Any pair of adjacent S-box of DES "shares" two input bits (see Figure 2). To
detail this phenomenon, we focus on the pair of S-boxes (57, .52) and call (Vi, V2)
the corresponding outputs. We want to observe the distribution of (Vi, V2) for a
fixed key and a random round input.

The output of adjacent S-boxes is not balanced

Let {2;}i=1..32 be the round input bits and {k;};=1.. 45 the bits of the subkey K.
It directly follows from the specifications of DES that the input of 57 - denoted
A= (a,...,a6) - is

A = (232,01, 22,23, %4, 75) ® (k1, ko, k3, ka, ks, k)
Similarly, the input of Ss - denoted B = (by, ..., bg) - is
B = (w4, x5, 6, 27,28, T9) ® (k7, ks, ko, k10, k11, k12)

An important observation is that x4 and x5 are used twice : once in A and once
in B. Suppose that the z;’s are random, then A and B are also random, except
they have to verify the constraints :

as © by = ks @ ky (1)
ag @ by = ke @ kg (2)

Hence for a pair of adjacent S-boxes, like (S1,52), the output distribution de-
pends on two key bits s = ks @ k7 and t = kg D ks.

The imbalance depends on 1 key bit only

DES S-boxes have a very particular form. Indeed, when the leftmost and right-
most input bits are fixed, each S; performs a permutation of the remaining 4
input bits. A subtle consequence of this property is that the distribution of
(V1, V) does not depend on (s,t) but only on s @ ¢. In this section, we explain
why this property is true.

Fix a target output called (z1,22). Each z; has exactly 4 preimages due to
the row structure of the DES S-boxes. Hence there are 4 inputs of S; (one in
each row of the S-box) such that Vi = z;. Similarly 4 inputs of Sy yield V2 = 2.
The total number of preimages of (21, z2) is thus 4 x 4 = 16 where each solution
is formed with an input of S; combined with an input of Sa. Let N(, ) be the
number among these 16 solutions that also satisfy the constraints (1) and (2) on
s and t. Clearly,

N(0,0) + N(O,l) + N(l,O) + N(l,l) =16 (3)

For a fixed key, the probability p(z1,22) to obtain the output (z1, 22) is related
to the quantity N, ;) by the formula

Ps.ty (21, 22) = Ng gy x 271



Besides we can use symmetry arguments : since the bit ag is used to index the
rows of the S-box Si, it is well balanced among all preimages. So exactly half
of the 4 S;-preimages of z; satisfy ag = 1. Since all preimages of (z1,22) are
obtained by choosing independently a Si-preimage of z; and a Se-preimage of
2o, then t = ag @ by is balanced among these 16 preimages and :

N0y + Na,0) = No,1) + Na,y =8 (4)
Using the same symmetry argument on the bit b; we see that

N,0) + No,1) = N0y + Ny =8 (5)
Putting together (4) and (5) we deduce :

No,o) = Na
No,1) = N1,0)

Hence the output distribution of adjacent S-boxes depends only on the key-
dependent bit & defined as

k=s®t=Fks Dke®Dkr D ks

An example

Two output distributions are therefore possible for (S57,.52) depending on the
key-dependent bit k. Call Dy (resp. D;) the distribution corresponding to the
case k = 0 (resp. k = 1). For instance D;(z1, 22) is the probability that the
output of (S1,52) is (21, 22) when k = 1.

The full distribution is represented in Table 2. It is interesting to notice that

Dy and D; are symmetric : they sum up to the uniform distributions. Denote
by a single variable x the eight bits of (21, 2z2). Then :

Do(z) +Dy(x) 1
2 256

Hence, although the output is not balanced for a fixed key, it is globally balanced
over all keys.

2.3 The resulting imbalance on 16 rounds

Since DES is a Feistel cipher, the XOR of plaintext and ciphertext is the XOR, of
8 round outputs (see Figure 1). We focus on the output of adjacent S-boxes, like
S1 and Sy.! For these 8 bits, unbalanced distributions (like the one described in
Table 2) are produced at each round. After XORing these outputs, the result is
a convolution of several distributions of the form Dy,.

At first, one could expect the convolution of ¢ output distributions to depend
on t key-dependent bits, i.e. one bit per distribution. However it can easily be

I after the permutation P, the corresponding bits are 2,9, 13,17, 18, 23,28 and 31
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Table 2. Output distributions for (S1,S52). Values in the table should be divided by
1024

shown that only the parity of these ¢ bits matters. For instance, consider the
distribution D; x D; obtained by the convolution of Dy with itself.

D1 x Dy(z) = ZD1((1) Di(a® z)

_ Z (2_26 —Do(a)) (2—26 —Do(a@x))
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So it is equivalent to compose Dy with itself or D; with itself. More generally
only matters the parity of the ¢ key-dependent bits involved. By extension, we
simply denote D (resp. D}) the distribution after ¢ convolutions when the parity
bit is O (resp. 1). If an attacker can efficiently distinguish these two distributions,
he learns one bit of information about the key. However, this analysis requires
a large amount of pairs (plaintext, ciphertext) because distributions are almost
uniform after a few convolutions.

2.4 Application to cryptanalysis

The problem of distinguishing two distributions is a classical topic in the litera-
ture, since it is related to many cryptanalysis problems (see [1] for example). In
the particular case of DES, the problem is to distinguishing D§ from Df. One
of these two distributions should be observed when XORing 8 appropriate bits
from the plaintext and the ciphertext.

Davies and Murphy estimated in [6] the number of samples necessary to
distinguish reliably theses 2 distributions. For several pairs of adjacent S-boxes,



these results are summarized in Table 3. The results depend highly on which pair
is considered. In particular, (S7,Ss) is the most favorable pair for the attack,
although it falls short above the 256 limit. Therefore it was first believed that
Davies-Murphy cryptanalysis could not break DES.

Pair of S-boxes|(1,2)|(2,3)[(3,4)[(4,5)|(5,6)|(6,7)|(7,8)|(8, 1)
‘266.0 ‘ 969.3 ‘ 985.6 ‘ 970.6 ‘ 9716 ‘ 966.0 ‘ 956.6 ‘ 9773

Complexity

Table 3. Number of known plaintext needed for a 97% success rate

Later, further improvements of Davies-Murphy cryptanalysis have been pro-
posed. Biham and Biryukov suggested to use 7 convolutioned distributions in-
stead of 8. So their approximation no longer takes into account the full DES but
only 15 rounds and accordingly an additional analysis is needed to handle the
first (or last) round. The resulting attacks works by processing only 2°° known
plaintexts, which is better than exhaustive search.

More recently, other extensions of Davies-Murphy Cryptanalysis were pub-
lished. Pornin analyzed how to improve the resistance against the attack [14],
and Kunz-Jacques et al. suggested to use the attack for side channel analysis [10].

3 Improving Davies-Murphy Cryptanalysis

In this section, we propose a new improvement of Davies-Murphy cryptanalysis.
Our general idea is to use the convolution of only 6 distributions of round out-
puts (Davies and Murphy used 8 distributions [6], Biham and Biryukov only 7
distributions [3]). Therefore we approximate the behavior of only 13 rounds of
DES. We take into account the 3 remaining rounds, but chosen plaintext is then
needed, and several additional algorithmic tricks must be used.

3.1 General Framework

Like many statistical cryptanalysis, our attack is decomposed in three main
phases.

— First we identify an internal object in the cipher that does not behave ran-
domly. This statistical imbalance can be used to distinguish its behavior
from a random one. Generally, such an object needs to be predictable from
the plaintext, the ciphertext and eventually several key bits.

— Then we encrypt a large number of (chosen) messages and remember only a
small part of information about each result. Typically, we store the number
of occurrences of a small pattern of plaintext/ciphertext bits.



— Finally, we reconstruct the internal object from the collected data. This
phase generally contains some partial exhaustive search and the statistical
properties of the object are used as a stopping condition. Eventually we want
to retrieve the secret key faster than exhaustive search.

3.2 The internal object

Davies-Murphy cryptanalysis targets the distribution of 8 bits from the round
output, which are obtained from 2 adjacent S-boxes. After ¢ convolutions, the
resulting distribution is denoted Df or D} depending on the value of a key-
dependent parity bit. Previous papers [3, 6] require to distinguish between these
two distributions. Our attack has two important differences.

First we need to distinguish one of these two distributions (it does not mat-
ter whether the parity bit is 0 or 1 due to symmetry properties) from a uniform
distribution. Secondly, to reduce the cost of the data collection, we propose to
focus on the linear combination of these 8 bits with the strongest bias. Natu-
rally, such a linear distinguisher cannot be more efficient than the optimal
distinguisher, but it requires the storage of only 1 bit of information (instead
of 8 bits) which turns out to be crucial for the data collection and data analysis
phase.

Table 4 compares the samples needed by the optimal distinguisher and the
best linear distinguisher for a fixed probability of success.

Pair of S-boxes (1,2)((2,3)](3,4)|(4,5)|(5,6)|(6,7)|(7,8)|(8,1)
Opt. Dist. t=1 24.4 24.1 26.8 24.7 25.4 25.1 24.2 25.7

Best. Lin. Dist. t = 1 28 28,83 210483 28‘83 28,83 28 26,83 29,66
Opt. Dist. t=6 247,9 249.6 262 25049 251.9 247.9 240.8 255.9
Best. Lin. Dist. ¢ = 6 2% | 257 | 29 | 259 | 259 | %8 | 941 | 958

Opt Dist. t=28 264 267.3 283.6 268.6 269.6 264 254.6 275.3
Best. Lin. Dist. t = 8 264 270.6 286.6 270.6 270.6 264 254.6 277.3

Table 4. Comparison of several distinguishers for Davies-Murphy cryptanalysis

The complexities obtained are very similar for both distinguishers. This com-
parison is further developed in Section 4. Here we are interested by ¢ = 6 and
target the most favorable pair of S-box, i.e. (57, Sg). We computed that the best
linear combination A is

AMX) =25 D7 @ 212 D T21 © T22 © Tay O T32
where X = (x1,...,232) is the output of the round function F. We have

PriA(X) =1] = 0.5 (1 £2734) = 0.5+ 0.046875



depending on the key. After 6 convolutions, we have

Prix(X) =1]=0.5 (1 £ (27%4)%) = 0.5 (1 £ 27209)
The amount of data needed for the corresponding distinguisher is about 24!
samples.

3.3 The data collection

In the following we do not take into account the initial and the final permutation
of DES. Let (pi);c; ¢4 denote the plaintext bits. The left branch of the plaintext
is called pr, = (p1,...,ps2) and the right branch pr = (pss,...,pes). Similar
notations are used for the ciphertext bits ¢;. In this data collection phase, we
encrypt n messages that verify

— The left branch of the plaintext py, is chosen at random

— 14 bits of the right branch are also random : (psg,...,pes). These bits are
involved only in S-boxes S5, S¢, S7 and Ssg.

— The 18 remaining plaintext bits are set to an arbitrary but constant value.

Given the degrees of freedom, n cannot exceed 246, For each encryption, we
store the following piece of information

— The bit A(pr) ® A(cr)

— The 14 bits (pso, - - -, pe3) from the plaintext, which are involved in the S-
boxes S5, Sg, S7 and Sg of the first round.

— The 10 bits (p1,pa4, .- .,p32) from the plaintext, which are involved in the
S-boxes S7 and Sg of the second round.

— The 10 bits (c1,ca4, . .., c32) from the ciphertext, which are involved in the
S-boxes S7 and Sg of the last round.

Hence we have a pattern of 1 + 14 + 10 + 10 = 35 bits to store. For sake of
efficiency, we only store the number of occurrences of each pattern in a table.
This requires a table of size 23°, where each entry in the table is a counter?.

This data collection phase is detailed in Figure 3. X and Y denote two
intermediate states in the right branch of the Feistel. U is the output of the
1-st round, V' the output of the 2-nd round and W the output of the 16-th
round. X @& Y is the XOR of 6 round outputs so A(X @ Y) is not uniformly
distributed according to the results of Section 3.2. However this object is not
directly accessible. The purpose of storing these pieces of information about each
message is to later predict A(X @ Y) in the data analysis phase.

2 two bytes should be sufficient to store the counter, since each pattern occurs in
average 2% x 273% = 1024 times
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Fig. 3. Summary of the data collection phase



3.4 The data analysis

We want to predict A(X @ Y') from the data collected previously. For that pur-
pose, we use the following relation :

AX @Y) = Apr) © Acr) @ AV) @ A(W) (6)

Notation U;, V; and W; is used to denote the bits from U, V and W,

The general idea of the attack is to perform an exhaustive search on a portion
of the key bits. The pattern bits previously stored allow to determine the value
of A(V) and A(WW) in each case. Hence we determine all the terms involved in
(6) and eventually predict how many times \(X @ Y) is equal to 1 among the
samples. For the correct guess, this number should be significantly far from half
of the samples.

Unfortunately, such a direct approach is way too expensive. Hence we need
to decompose the attack in several steps. At each step, we only guess a few key
bits, derive some intermediate information, and immediately get rid of what is
no longer needed in the initial pattern.

Let us detail the first step. The starting point is the table built in the
data collection phase. We refer to it as Ty. Guess the following 6 bits from
the secret key : (K7,KQl,KQQ,Kgg,K53,K63). They are XORed to the bits
(cos, €29, C30, C31, C32, ¢1) before S-box Ss at round 16. Hence we can determine
Sg’s output and in particular the combination W5 & Woy & Wa7, which is a por-
tion of the term A\(W). After this step, 4 bits from the ciphertext are no longer
needed. Thus we replace Ty by a new table T of size only 23! where the number
of occurrences of the following 31-bit pattern is stored :

The bit A(pr) ® Mcr) ® W5 @ Way @ Way

The 14 bits (pso, .. ., pe3) from the plaintext

The 10 bits (p1, p2a, - - ., p32) from the plaintext

The 6 bits (ca4, - - ., Ccag) from the ciphertext, which are involved in the S-box
S~ of the last round.

In the second step, we guess 6 additional key bits which are involved in S7
at round 16 : K4,K6,K23,K28,K29,K46. Up to this pOint, 12 key bits have
been guessed. Then we use the remaining 6 ciphertext bits in 77 to predict
W7 @ W19 @ Wao®Wsa. Now we know all of A\(W) and can get rid of all ciphertext
bits. Hence we replace T by a new table T where the number of occurrences of
the following 25-bit pattern is stored :

— The bit A(pr) ® Mcr) & A(W)
— The 14 bits (pso, - - ., pe3) from the plaintext
— The 10 bits (p1,p24, ..., p32) from the plaintext

Similarly, the next steps of the analysis allow us to predict the term A(V)
in relation (6). To that purpose, we first need to predict some bits of U. These
steps are detailed in Appendix A.

Table 5 summarizes the successive steps of this data analysis phase. At each
step, the complexity corresponds to the number of bits guessed multiplied by



Step| Key bits guessed |Total bits guessed|Old table|New table| Time complexity
O _ 0 _ 235 235
1 {7,21,22,39,53,63 6 2% 231 o4
2 | 4,6,23,28,29,46 12 231 2% 213
3 37,54 14 2% 223 239
4 5,30,47 17 223 219 210
5 15, 20, 38, 61 21 219 15 210
6 |13,14,31,45,55,62 27 15 ot 2142
7 3 internal bits 30 ot 27 o4t
8 4 internal bits 34 27 2! o4t

Table 5. Successive steps of the data analysis phase

the size of the table to manipulate. The maximal complexity reached during the
analysis is of 243,

After step 8, we have guessed a total of 34 bits, among which 27 are directly
key bits. So we know how many times A\(X @ Y") is equal to 1 using the relation
(6) and the content of table Ts. Then we can apply our statistical distinguisher
to determine the correct guess among the 23* — 1 wrong guesses.

3.5 Finishing the attack

How to finish the attack depends on the exact probability of success of the linear
distinguisher, and thus on the number of samples n. Generally one assumes that
both distributions occur with the same probability. Then, the probability Py,
of false alarm (i.e. the probability that a wrong guess is identified as correct)
is the same as the probability P,4 of non-detection of the correct key (i.e. the
probability that a correct guess is identified as wrong). But here we need to
identify one correct guess among 23* — 1 wrong guesses, so the crucial point is to
have a low probability of false alarms. Therefore we propose several trade-offs.
First, we set P,q to 50%. Then we have Pj, = ¢(v/d) where d is a parameter
computed from the number of samples n (see Section 4 for more details) and ¢

is defined as
1 s
t) = — e 2% du
o) =—=[

Secondly, we set P,q = 15.86%. This gives Py, = gb(\/E — 1). Table 6 presents
various numeric applications. The number of samples n cannot exceed 246 be-
cause we do not have enough degrees of freedom. It is not possible to completely
eliminate false alarms as Py, is always greater than 2734, But false alarms can
be discarded by guessing the remaining key bits and testing each candidate with



n | d|Case P, = Pnq|Pha = 50%|Png = 15.86%
2411 30.85% 15.86% 50%

242| 2 23.98% 7.86% 22.94%
2431 4 15.86% 2.28% 15.86%
248 7.86% 2874 3.37%
245 16 2.28% 2—14.95 2—9.53
246 32 2—8.74 2—26,95 2—19‘25

Table 6. Probability of false alarm depending on n and the scenario

a couple (plaintext, ciphertext). Since 34 key bits are guessed in the core of the
attack®, there are only 56 — 34 = 22 bits left to guess.

Suppose we pick n = 2%% samples and fix the probability of non-detection to
50%, then the number of false alarms is

Pfa X 234 — 219.05

Guessing the remaining 22 bits brings the complexity up to 2415 candidates.
One couple (plaintext, ciphertext) is then enough to identify the full secret key.

3.6 Summary

— The memory complexity of the attack is always the size of Tj, i.e a table
containing 22° entries of 2 bytes each.

— The time complexity of the attack is at least the complexity of the data
analysis, i.e. 2*3 steps of computation.

— The data complexity of the attack can range between n = 24! and n = 26
chosen plaintexts. In all cases, the key recovery is faster than exhaustive
search, but the exact complexity depends on n.

— For example, when n = 2%°, the full secret key can be recovered with proba-
bility of 50% after 24! trial DES encryptions. This is the trade-off we suggest
to use.

4 Link between Davies-Murphy Cryptanalysis and Linear
Cryptanalysis

It is known since Biham’s work [2] that there exists an underlying linear attack
with similar complexity as Davies-Murphy’s attack. In this paper, we also use a
biased linear combination of bits, in order to improve the Davies-Murphy attack.

3 7 are only intermediate bits, but they give a condition on a few key bits. Hence their
entropy is equivalent to 7 key bits in practice



Therefore a natural question is to explain the link between both techniques, in
the general case.

An important parameter is the data complexity ratio between the optimal
distinguisher (used in the Davies-Murphy original cryptanalysis) and the best
linear distinguisher for outputs of pairs of adjacent S-boxes. As seen in Table 4,
the more rounds are applied, the closer the complexities are. In this section, we
explain this phenomenon and account for the exact values of the ratios observed
in Table 4. We show that, due to the effects of the convolutions, the same phe-
nomenon will always be observed, independently of the original distribution. To
some extent, this shows that linear cryptanalysis is always optimal.

4.1 Optimal vs Best Linear Distinguishers

Suppose we have a random variable X that follows a distribution D or the
uniform distribution U. (in the Davies-Murphy case, D = D§ or D! for some t).
Let S = {0,...,2"} be the image set of X. Our goal is to distinguish between
theses two distributions. Basically, there are two approaches : we can use the best
(optimal) distinguisher, or we can restrict the analysis to linear distinguishers
only.

Optimal Distinguisher It is well known (see [1] for instance) that the optimal
distinguisher between D and U has probability of error

|

1,2
P, =— e 2% du
V2 /_Oo

when the number of samples n is related to the parameter d by

_d

A(D)

and A(D) is the Squared Euclidean Imbalance (SEI) of D from U. If for any
x € S, D(z) denotes the probability that X = x, the SEI is computed as

a@)= 1815 (P - Zi)

Linear Distinguisher Consider a linear combination A(X) of the bits of X.
Suppose that, when X follows D, it satisfies :

Pro[A(X) = 1] = %(1 +e)

then it is well known that about n = £2 samples are needed to detect this bias.
We introduce the usual notation

LP(\) = (Prp[A(X) = 1] — Prp[A(X) = 0])* = &2



The question is to determine the LP,,,, = maxy{LP(\)} of the best linear
distinguisher for a given distribution D. By definition, it requires more data
than the optimal distinguisher, but we are interested into the ratio between the
two complexities.

Relation between A(D) and LP,,,, Using the Fourier transform (see Sec-
tion 2.4 of [1]), one shows that

A(D) =) LP() (7)

A£0

Therefore we can derive the following bound for the ratio between the two data
complexities :
LPar < A(D) < (2" = 1)LPpax

It can be shown that both bounds are actually tight, so the best linear dis-
tinguisher can be significantly worse (up to a factor of 2") than the optimal
distinguisher. However, in Davies-Murphy cryptanalysis, we are dealing with
particular distributions.

4.2 The case of Davies-Murphy cryptanalysis

The target distribution D! in this case is obtained after ¢ convolutions. In prac-
tice, when ¢ grows, the ratio apparently gets small (see Table 4). In this Section,
we explain the ratios observed. Since linear biases are just multiplied after each
convolution, (7) can be re-expressed as :

AD) =) LPO) (8)

A#£0

where LP(-) are computed with respect to the base distribution D; (by symmetry
it does matter whether the parity bit 4 is 0 or 1).

Suppose now that there are m < 2™ — 1 linear forms whose LP is equal to
LP,,q:, and that all other A are such that

LP(\) < & LPoas
for some 0 < a < 1. Then (8) yields
M (LPpas)t < ADY) < (m+ (2" —1 —m)) (LPpaz)’
When t is big enough, then o < 1 and
A(D;) = m (LPpaa)’ (9)

We can compute LP,,,, and m in the case of DES. These results are summarized
in Table 7.



Pair of S-boxes (1,2)|(2,3)](3,2)|(4,5)|(5,6)|(6,7)|(7,8)|(8, 1)

m 1 10 8 4 2 1 1 4
log,(m) 0 |33] 3 2 1 0 0 2
LPous 98 | 98:83 [910.83|98.83 | 98.83 | 98 |6.83 | 99.66
Opt. Dist. A(D°) t — 6|27 9 [919.6 | 962 [950.9[ 9519 [547.9 [ 540.8 | 555.9

Best. Lin. Dist. LPS,, t=06] 218 | 253 | 205 | 253 | 253 | 248 | 9dl | 958
Expected value from (9) t=6 247.9 252.9 265 25249 25249 247.9 240.8 257.9
Opt. Dist. A(DS) t=28 264 267.3 283.6 26846 26946 264 254.6 275.3
Best. Lin. Dist. LPSWE t=28 264 270.6 286.6 27046 27046 264 254.6 277.3
264 270.6 286.6 270.6 270.6 264 254.6 277.3

Expected value from (9) ¢t = 8

Table 7. Difference Between Optimal and Linear Distinguisher Explained

In practice, the approximation of equation (9) accurately predicts the max-
imum linear bias and the loss between optimal and linear distinguishers. The
weakest couples of DES S-boxes w.r.t. linear distinguishers are the ones that
have a small number of linear forms reaching the maximum bias LP,,,,. For
the best pair of S-boxes (S7,Ss), LPqz is only reached once, so the ratio be-
tween both distinguishers is almost 1 after 6 convolutions. Hence, replacing the
optimal distinguisher with the best linear one does not result in a significant
deterioration.

4.3 Summary

A consequence of the convolutions involved in Davies-Murphy cryptanalysis is
that distributions become very quickly "smooth". Therefore the complexity of
the optimal distinguisher can increase very quickly after several rounds, while
the complexity of a linear distinguisher increases more regularly.

Hence, using a linear distinguisher becomes almost optimal after several con-
volutions. This explains the phenomenon that Biham observed in [2] and it
also explains why we obtained good results in this paper, while restricting our
analysis to linear distinguishers. This observation is independent of the initial
distribution, so it would make no difference if used other S-boxes for instance.
However, the linear characteristic used in our attack has some nice properties :

— it is iterative
— it uses only output bits of the round function
— the same linear form is used at every round

These properties allow us to concentrate on one half of the Feistel network, re-
ducing the effective number of rounds to consider down from 16 to 8 (algorithmic



tricks further reduce this number to 6). Therefore, although this linear charac-
teristic is not the best one known for DES, its a particular form may be helpful
to optimize the data analysis phase.

5 Conclusion

In this paper, we improve the famous Davies-Murphy cryptanalysis of DES, by
using 6 round output distributions (instead of 7 or 8 like in previous papers on
the topic [3,6]). Several trade-offs are possible, but we describe a key-recovery
attack with complexity of 2%° chosen plaintexts. This positions the attack at the
second rank of cryptanalysis of DES : slightly better than Biham and Shamir’s
differential cryptanalysis but slightly worse than Matsui’s linear cryptanalysis.
In addition, we have shown that using linear distinguishers for the Davies-
Murphy cryptanalysis was almost an optimal choice, because of the particular
structure of the attack. Therefore Davies-Murphy cryptanalysis is closely related
to a particular family of linear attacks, where the linear mask involves only the
round output. This allows for efficient optimizations of the data collection and
data analysis. At the same time, it shows that it is unlikely to (significantly)
outperform Matsui’s attack with further algorithmic improvements.
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A Detailed steps of the data analysis phase

A.1 Step 3

In the step number 3, we guess the key bits involved in S5 at the first round.
Luckily, 4 of these bits (K4, K22, Kas, K39) are already known. Thanks to the key
scheduling properties, only K37 and K54 need to be guessed. We know the plain-
text bits involved in S5 (part of it are arbitrary constants, the rest is contained
in the pattern of table 7). So we can predict S5’s output and in particular the
bit Us4. 2 plaintext bits are no longer needed and the new table 73 contains the
number of occurrences of the 23-bit pattern formed by :

— The bit A(pr) @ Mcgr) & A(W)

The 12 bits (psa, ..., pes) from the plaintext
The 9 bits (p1,pas, - - -, p32) from the plaintext
The intermediate bit pay B Uay

A.2 Step 4

In the step number 4, we guess the key bits involved in Sg at the first round.
Luckily, 3 of these bits (K23, Kog, K53) are already known. Thanks to the key
scheduling properties, only K5, K39 and K47 need to be guessed. We predict
Se’s output and in particular the bits Us7 and Uss. 4 plaintext bits are no longer
needed and the new table T4 contains the number of occurrences of the 19-bit
pattern formed by :

The bit A(pr) ® A(cr) & A(W)
The 8 bits (pse, . - ., pe3) from the plaintext

The 7 bits (p1,pas, P26, P2s; P29, P30; P31)
The 3 intermediate bits (pas ® Uag, par @ Uaz, ps2 & Usz)



A.3 Step 5

In the step number 5, we guess the key bits involved in S7 at the first round.
Luckily, 2 of these bits (K21, Kg3) are already known. Thanks to the key schedul-
ing properties, only K5, Koo, K35 and K1 need to be guessed. We predict S;’s
output and in particular the bit Usg. 4 plaintext bits are no longer needed and

the new table Ty contains the number of occurrences of the 15-bit pattern formed
by :

The bit A(pr) @ A(cr) ® A(W)
The 4 bits (pso, - - -, pe3) from the plaintext

— The 6 bits (p1, p2s, P26, P28, P29, P31)
The 4 intermediate bits (pas @ Uag, par @ Uar, pso @ Uso, p32 @ Uss)

A.4 Step 6

In the step number 6, we guess the key bits involved in Sg at the first round.
Hence we need to guess K3, K14, K31, K45, K55 and Kgz. Then we predict Sg’s
output and in particular the bit Uss. 4 plaintext bits are no longer needed and

the new table Ty contains the number of occurrences of the 11-bit pattern formed
by :

— The bit Mpr) ® Mcr) ® A(W)
— The 5 bits (p1, p26, P28, P20, P31)
— The 5 intermediate bits (pag ® Usag, pas @ Uss, par @ Uar, p3o @ Uso, ps2 @ Usa)

A.5 Step 7

In the step number 7, we guess the missing input bits of S-box S7 at the second
round. The actual input is

(P24 ® Uaa, . .., D20 @ Usg) & (K53, K13, K30, K55, K¢, K11)

Thanks to the key scheduling properties, we already know 4 of these key bits.
Besides we already know 3 intermediate bits of the form p; & U;. The missing
U;’s are not known but they depend only on the key and the fixed plaintext bits,
so their value is the same for all samples. So we can guess the 3 bits (Usg, U2g ®
K, Usg® K11) and predict S7’s output. Then, we determine V7 @ Vio @ Voo @ Vao.
The new table 77 contains the number of occurrences of the 7-bit pattern formed
by :

— The bit A(pr) ® Mcr) & AW) G V7 & Vig & Vas & Vi

— The 4 bits (p1, p2s, P29, P31)
— The 2 intermediate bits (pso ® Uso, ps2 ® Usz)



A.6 Step 8

In the step number 8, we guess the missing input bits of S-box Ss at the
second round. Thanks to the key scheduling properties, all key bits involved
(K5, K¢, Ko3, K37, K47 and K54) are already known. Hence we just need to guess
the 4 missing input bits : Uy, Uag, Uag, Usy. in order to predict Sg’s output and
in particular V5 @ Va1 @ Va7. Hence we know the value of A(V'). The new table
Ty contains the number of occurrences of the bit :

— The bit A(pr) ® Mcr) @ AXW) @& A(V)



