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Abstract. This paper reconsiders the established Merkle-Damg̊ard de-
sign principle for iterated hash functions. The internal state size w of an
iterated n-bit hash function is treated as a security parameter of its own
right. In a formal model, we show that increasing w quantifiably improves
security against certain attacks, even if the compression function fails to
be collision resistant. We propose the wide-pipe hash, internally using a
w-bit compression function, and the double-pipe hash, with w = 2n and
an n-bit compression function used twice in parallel.
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1 Introduction

A cryptographic hash function H : {0, 1}∗ → {0, 1}n maps an infinite set of
inputs to the finite set of n-bit hash values. While collisions (inputs X 6= Y with
H(X) = H(Y )) necessarily exist, a hash function should be collision resistant :
given H, it should be infeasible for an adversary to actually find any collisions.
But what if a hash function fails to be collision resistant? This paper deals with
failure-friendly hash functions providing some security even if collision resistance
has failed. It has been inspired by recent advances in collision finding [25–28, 1].

The design of today’s cryptographic hash functions ubiquitously follows the
Merkle/Damg̊ard (MD) structure [16, 6], iterating some underlying compression
function. The hash function is collision resistant, if the compression function
is. However, if computing a compression function collision is somehow feasible,
the hash function may fail worse than expected. E.g., finding multiple collisions
should be way more expensive than finding plain (2-)collisions – but Joux [11]
disproved this for the MD design. Also, MD hash functions completely fail to
defend against 2nd collision attacks: If H(M) = H(N) for any two messages
M , N , then H(M ||S) = H(N ||S) for all S ∈ {0, 1}n. (Technically, this assumes
M and N to be “extended messages”, see below.) In other words, given a single
collision, an adversary can easily construct many more collisions. This has long
been known, but recently been exploited to turn “random” collisions (as, e.g.,
for MD5 [26]) into “meaningful” ones [12, 17, 14, 15]. Even a 2nd preimage like
scenario is possible [7]: given any two texts T1 and T2, Daum and Lucks presented
two corresponding PostScript files with identical MD5 hashes.



Our Contributions. This paper describes and analyses failure-friendly iter-
ated hash functions. The goal is to defend against certain classes of attacks
even if collision resistance fails. We propose and analyse variants of the Merkle-
Damg̊ard design, increasing the internal state to w > n bits. The wide-pipe hash
is quite similar to the Merkle-Damg̊ard hash, except for using a “largish” w-bit
compression function to finally generate n < w bits of output. The double-pipe
hash sets w = 2n and employs one single n-bit compression function, used twice
in parallel for each message block. In random and standard model settings, we
prove the security of our schemes against K-collision attacks (for K ≥ w), and
K-way preimage and 2nd preimage attacks (for K ≥ 1). Additionally, we
discuss and semi-formally verify the resistance against 2nd collision attacks.
Related Proposals. The double-pipe hash may remind the readers of the
RIPEMD-family of hash functions [22, 8], also calling two compression functions
in parallel. The hash functions specified in [22, 8] combine both n-bit compres-
sion values into a single n-bit state, strictly following the Merkle-Damg̊ard design
principle, thus being as failure-unfriendly as any Merkle-Damg̊ard hash func-
tion. But [8] also outlines some double-width variants of RIPEMD-128 and -160,
which we refer to as RIPEMD-256 and -320. RIPEMD-256 and -320 can almost
be viewed as instantiation of our design principle – except for the following:

– By outputting both compression values at the end, RIPEMD-256 and -320
use the two n-bit compression functions like a single 2n-bit compression func-
tion – again following the Merkle-Damg̊ard design, thus, e.g., being entirely
vulnerable to 2nd collision attacks.

– RIPEMD-256 and -320 were proposed as a a convenience feature for applica-
tions requiring a 2n-bit hash “without needing a larger security level” [8]. On
the other hand, our double-pipe construction has been designed to improve
the security against certain attacks.

We propose a generic and failure-friendly design principle providing provable
security under reasonable assumptions. Assuming a “good” n-bit compression
function,1 our analysis would justify the usage of, say, a failure-friendly variant
of RIPEMD-320 with 2n = 320 internal state bits and n = 160 output bits.

Recently, Coron et al. [5] also analysed variants of the Merkle-Damg̊ard de-
sign in a fashion similar to the current paper. One of the proposals in [5] is
rather similar to our wide-pipe design. However, [5] aims for variably-sized ran-
dom oracles, based on an (extremely strong) ideal compression function (i.e., a
fixed-size random oracle). This is orthogonal to our approach of taking possible
compression function weaknesses into account. Nandi et. al. [18] proposed and
analysed a rather different “2/3 rate double length compression function”. Both
[5] and [18] restrict their analysis to the random and Shannon oracle, while the
current paper also provides some analyses in the standard model. Also, none of
the constructions in [5, 18] resemble the current paper’s double-pipe hash design.
1 Note that [8] took great care to ensure that both compression functions behave

“differently enough”. Somewhat surprisingly, our results indicate that it would even
be OK to use the same compression function twice, instead of two different functions.



Road map. We first describe Merkle-Damg̊ard hashing and introduce notations,
abstractions, and attacks. Section 2 describes and analyses the wide-pipe hash,
a modified Merkle-Damg̊ard design with an extended internal state size. Section
3 modifies the wide-pipe hash, introducing and analysing the double-pipe hash.
Section 4 investigates the security of a “weakened” double-pipe hash, based on a
common construction for compression functions; see Appendix A for the proofs.
Section 5 deals with extension attacks and Section 6 discusses our results and
their implications. Appendix B provides examples for our hash constructions.

1.1 The Merkle-Damg̊ard (MD) Principle for Iterated Hashing

A hash function H takes a message M ∈ {0, 1}∗ to compute H(M) ∈ {0, 1}n.
(In practice, the length |M | of M may be bounded by some huge constant.) An
iterated hash H is based on a compression function C with a fixed number of
input bits and splits M into fixed-sized chunks M1, M2, . . . , ML ∈ {0, 1}m. The
final chunk ML may contain additional information, such as |M |. (M1, . . . ML) is
the “expanded message”. Assume a compression function C : {0, 1}n×{0, 1}m →
{0, 1}n and a fixed initial value H0. Given M ∈ {0, 1}∗, one computes the MD
hash as follows:

– Expand M to (M1, . . . ,ML) ∈ {0, 1}mL. (MD strengthening: The last block
ML takes the length |M | in bits. Thus, if |M | 6= |M ′|, then ML 6= M ′

L′ .)
– For i ∈ {1, . . . , L}: compute Hi := C(Hi−1,Mi).
– Finally: output HL.
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M[2]

CC
H[L]H[L−1]

M[L]

C
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Fig. 1. The Merkle-Damg̊ard (MD) Hash

Note that the MD hash function does not provide any resistance against 2nd
collision attacks: consider messages M 6= M ′ with expansions (M [1], . . . ,M [L])
and (M ′[1], . . . ,M ′[L]). If M and M ′ collide, then H[L] = H ′[L] for H[L] =
C(·,M [L]) and H ′[L] = C(·,M ′[L]), and therefore all expanded messages (M [1],
. . . , M [L], S[1], . . . , S[T ]) and (M ′[1], . . . , M ′[L], S[1], . . . , S[T ]) also collide.

1.2 Notation, Abstractions, and Attacks

Random Oracles. A fixed-size random oracle is a function f : {0, 1}a →
{0, 1}b, chosen uniformly at random. For interesting sizes a and b, it is infeasible
to implement f , or to store its truth table. Thus, we assume a public oracle
which, given x ∈ {0, 1}a, computes y = f(x) ∈ {0, 1}b. A variably-sized random
oracle is a random function g : {0, 1}∗ → {0, 1}b, accessible by a public oracle.



Equivalently, g is an infinite set of fixed-size random oracles ga : {0, 1}a → {0, 1}b

for a ∈ {0, 1, 2 . . .}. We view a fixed-size random oracle as an ideal compression
function, and a variably-sized random oracle as an ideal hash function.
Shannon Oracle. An ideal block cipher is some invertible random oracle E :
{0, 1}n × {0, 1}m → {0, 1}n, such that for each M ∈ {0, 1}m, for the function
E(·,M) = EM (·) an inverse E−1(·,M) exists. Apart from that, E is uniformly
chosen at random. Given x and M , one can ask a Shannon oracle for y =
E(x, M), and, given y and M , one can ask the oracle for x = E−1(y, M).
Adversary. As usual in the context of the Shannon and random oracle models,
we consider a computationally unbounded adversary with access to either a
Shannon or a random oracle. The adversary’s “running time” is determined by
her number of oracle queries. Our adversaries are probabilistic algorithms, and
we concentrate on the expected running time (i.e., the expected number of oracle
queries). We will describe the running time asymptotically. When necessary for
clarity, we use the symbols O (“big-Oh”, for “the expected running time is
asymptotically at most”) and Ω (“big-Omega”, for “. . . at least”). 2

Classes of Attacks. Informally, a real hash function H should behave like an
ideal one (i.e., like a random oracle). This would not be useful for a formal
definition, though (see [4]). Instead, one considers somewhat simpler security
goals for H : {0, 1}∗ → {0, 1}n. We consider the following classes of attacks:

K-collision for K ≥ 2: Find K different M i, with H(M1) = · · · = H(MK).
K-way (2nd) preimage for K ≥ 1: Given Y (or M with H(M) = Y ), find K

different messages M i, with H(M i) = Y (and M i 6= M).
2nd collision: Given any collision A 6= B with H(A) = H(B), find C,D with

C 6∈ {A,B,D} and H(C) = H(D).

The first two classes include “traditional” 2-collisions, 1-way preimages and
1-way 2nd preimages. Some applications need protection against the large-K-
variants, e.g., [10, 23, 3]. The third class deals with a very natural assumption
for “good” hash functions: even if the adversary somehow – with a great deal of
luck, by doing much computational work, or by a mixture of both – has found
one collision, it should still be hard to find another one. The poor defence of
established hash functions against such attacks has been elaborated above.
Facts. Our analysis uses the following facts:

1. Fact: Finding a K-collision for a fixed size random oracle C : {0, 1}n+m →
{0, 1}n or for a variably-sized random oracle Model H : {0, 1}∗ → {0, 1}n

takes time Ω(2(K−1)n/K), and finding a K-way preimage or a K-way 2nd
preimage for H or C takes time Ω(K2n).

2. Fact: Given a collision A 6= B with C(A) = C(B) for a fixed size random
oracle C{0, 1}n+m → {0, 1}n (or H(A) = H(B) for a variably-sized random
oracle H{0, 1}∗ → {0, 1}n), finding a 2nd collision C 6= D, C 6∈ {A,B} for
C (or H) takes time Ω(2n/2).

2 Recall f = O(g), if a constant c exists, such that f(n) ≤ cg(n) holds for all large
enough n, and f = Ω(g), if a c exists such that f(n) ≥ cg(n) for all large enough n.



Initial Values. Like the MD hash, our hash functions depend on the compres-
sion function(s) and an initial value (IV). One can set the IV to some fixed
(“random”) constant. But for our analysis, we will even allow the adversary to
actually choose the IV.3 This makes our results all the more meaningful.

Standard Model Formalism. For a fixed hash function H : {0, 1}∗ → {0, 1}n,
trivial algorithms to “find” collisions exist: given any M 6= M ′ with H(M) =
H(M ′), output M and M ′. Collision resistance implies the non-existence of
algorithms to “find” collisions. Thus, for a standard model proof of collision
resistance, we must refine our formalism. Instead of a fixed hash function, we
actually consider a hash function family H : I × {0, 1}∗ → {0, 1}n. Here, I is
a finite nonempty set of indices (or “keys”). We assume an index i∗ ∈ I being
chosen uniformly at random, write H(·) instead of H(i∗, ·) and consider the fixed
hash function H : {0, 1}∗ → {0, 1}n as a random member of its family.

Fix some RAM model of computation. In any attack game, the adversary
is given i∗ as its first input. We measure the adversary’s expected running time
over uniformly distributed random i∗ (and the adversary’s internal coin flips, if
applicable). To capture a trivial adversary using huge tables, the running time
of any program is assumed to be at least linear in the program size.

We formalise compression functions C exactly like hash functions: assume
a family C : IC × {0, 1}α → {0, 1}β and an index iC ∈ IC chosen uniformly
at random, write C(·) instead of C(iC , ·), and consider the fixed compression
function C : {0, 1}α → {0, 1}β as a random member of its family. An adversary’s
running time is taken over random iC . If H is defined by iterating C, a random
member of the hash family H is defined by iC and some random initial value H0,
i.e., i∗ = (iC ,H0). Similarly, if H is constructed by applying C ′ and C ′′, then
i∗ = (iC

′
, iC

′′
,H0). Recall that in our attacks we even allow the adversary to

choose H0. The adversary can make this choice after being given iC or (iC
′
, iC

′′
).

2 The Wide-Pipe Hash: A Modified MD Hash

Constructing a collision-resistant compression function with w > n output bits
may be simpler than constructing an n-bit compression function with the same
level of collision resistance. The wide-pipe hash uses such a w-bit compression
function to generate an n-bit hash value at the end. 4 This approach defeats
Joux’ attack – and even provides security against all generic K-collision attacks
(which treat the compression function as a random oracle). Let H0 ∈ {0, 1}w be
a (random) initial value. Using two compression functions

C ′ : {0, 1}w × {0, 1}m → {0, 1}w and C ′′ : {0, 1}w → {0, 1}n,

we compute the wide-pipe hash H:

– For i ∈ {1, . . . , L}: compute Hi := C ′(Hi−1,Mi).
– Finally: set H(M) = C ′′(HL).
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Fig. 2. The Wide-Pipe Hash

For technical reasons, we need to distinguish between different kinds of col-
lisions. Consider M 6= N with H(M) = H(N). M and N are expanded to
sequences (M1, . . . ,ML) 6= (N1, . . . , NL′). Denote HM

i and HN
j for the internal

hash values when computing H(M) and H(N). We define

Final collisions: HM
L 6= HN

L′ but C ′′(HM
L ) = C ′′(HN

L′).
Internal collisions: HM

L = HN
L′ . (Note that an internal collision implies a col-

lision for C ′, i.e., (HM
i ,Mi) 6= (HN

i , Ni) with C ′(HM
i ,Mi) = C ′(HN

i , Ni).)
Final K-collisions: Any K-collision M1, . . . , MK (with H(M1) = · · · =

H(MK)) is final, if all 2-collisions (M i,M j) (with i 6= j) are final.

2.1 Resistance Against K-Collision Attacks

Observe that Joux finds 2k-collisions in time min{k ∗ 2w/2, 2n(2k−1)/2k}. This
tightly describes the security of H, up to the (logarithmic) factor k. Define the
composition f ′′ : {0, 1}w × {0, 1}m → {0, 1}n of C ′ and C ′′ by f ′′(H,M) =
C ′′(C ′(H,M)), as indicated in Figure 2. Make the following two assumptions:

1. C ′ is collision resistant, and 2. f ′′ is K-collision resistant.

Under these assumptions, we prove the K-collision resistance of H.5 For the
concrete security analysis, we assume that finding a collision for C ′ takes at
least time T ′, and finding a K-collision for f ′′ at least time T ′′(K).

Lemma 1 An adversary needs Ω(min{T ′, T ′′(K)}) units of time to find a K-
collision for the wide-pipe Hash H, even if she can choose H0.

Proof. Any final K-collision is equivalent to a K-collision for f ′′. On the other
hand, if a K-collision for H is not a final K-collision, then an internal collision
has been found. For all H0, finding an internal collision is equivalent to finding
a collision for C ′. Thus, finding a K-collision for H is at least as hard as finding
either a K-collision for f ′′, or a collision for C. ut
3 This is similar to the “aSec” and “aPre” notions of hash function security from [24].
4 This idea has independently been proposed by Finney in a mailing list [9].
5 It would seem natural to assume the K-collision resistance of C′′. Indeed, f ′′ is K-

collision resistant if C′ is collision resistant and C′′ is K-collision resistant. But even
if C′′ is K-collision vulnerable, f ′′ can still be K-collision resistant. E.g., model C′

as a random oracle and set C′′ to be the plain truncation of w-bit inputs to n-bit
outputs. For log2(K) ≤ w − n, C′′ is trivially K-collision weak, but f ′′ is not.



In the random oracle model, H is as secure against multi-collision attacks
as an ideal hash for w ≥ 2n.

Theorem 2. Consider the wide-pipe hash H. Allow the adversary to choose H0.

1. Model C ′ and C ′′ as independent random oracles. The adversary needs time
Ω(min{2w/2, 2n(K−1)/K}) to find a K-collision for H.

2. Define C ′′ : {0, 1}w → {0, 1}n, C ′′(x1, . . . , xw) = (x1, . . . , xn) as the n-bit
truncation of its w-bit input. Model C ′ as a random oracle. The adversary
needs time Ω(min{2w/2, 2n(K−1)/K}) to find a K-collision for H.

Proof. Due to Lemma 1, finding a K-collision takes time Ω(min{T ′, T ′′(K)}).
By Fact 1, T ′ = Ω(2w/2). If C ′′ is an independent random oracle, then T ′′(K) =
Ω(2n(K−1)/K). If C ′′ just truncates, then f ′′ can be viewed as a random oracle
with n output bits. Again, this gives T ′′(K) = Ω(2n(K−1)/K). ut

2.2 Resistance Against K-way (2nd) Preimage Attacks

Joux’ (2nd) preimage attack also works for the wide-pipe hash. Its time O(k ∗
2w/2 +2n) tightly bounds the security of H, up to the (logarithmic) k. Let T ′ be
a lower bound for finding collisions for C ′ (as before) and assume that finding
K-way preimages for f ′′ takes at least time P ′′(K).

Lemma 3 Consider the wide-pipe hash H. Allow the adversary to choose H0.

1. The adversary needs time Ω(P ′′(1)) to find a single preimage for H.
2. She needs time Ω(min{T ′, P ′′(K)}) to find a K-way preimage for H.

Proof. Finding a preimage for H implies finding a preimage for f ′′. Finding a
K-way preimage for H either implies finding at least one internal collision – and
thus a collision for C ′ – or a K-way preimage for f ′′. ut

In the random oracle model, we also consider 2nd preimage attacks.

Theorem 4. Consider the wide-pipe hash H. Model C ′ and C ′′ as independent
random oracles. An adversary allowed to choose H0 needs

1. time Ω(2n) to find a single preimage for H,
2. time Ω(min{2w/2}) to find a K-way preimage for H, and
3. time Ω(min{2w/2,K2n}) to find a K-way 2nd preimage for H.

Proof. The first two bounds are direct consequences of Lemma 3 and Fact 1.
Now consider 2nd preimages: given a random X ∈ {0, 1}w, we are searching
for one or more different Xi ∈ {0, 1}w with C ′′(X) = C ′′(Xi). We choose an
arbitrary message M with the expansion M1, . . . , ML, query the C ′-oracle for
the internal hash values H1, . . . , HL, and define

C ′′′ : {0, 1}w → {0, 1}n :

C ′′′(HL) = C ′′(X),
C ′′′(X) = C ′′(HL),
C ′′′(Z) = C ′′(Z) if Z 6∈ {X, HL}.



Note that with overwhelming probability X 6= HL. Now we run the adversary to
find single or multiple 2nd preimages for M , replacing C ′′ by C ′′′. Observe that
X is a random value, and, since C ′ is a random oracle, HL is random, too. Thus,
C ′′′ is a uniformly distributed random function just like C ′′ – the adversary
can’t distinguish between C ′′ and C ′′′. Our little manipulation (replacing C ′′ by
C ′′′ for the adversary) does not affect the adversary’s probability of success or
running time. We write H ′′′ for the wide-pipe hash function using C ′ and C ′′′.

If the adversary succeeds, she finds 2nd preimage(s) M i with H ′′′(M) =
H ′′′(M i). We write Li for the length of the expansion of M i (in chunks). Consider
the inputs Hi

Li for C ′′′. If Hi
Li = HL, we have found a collision for C ′. Else, Hi

Li

is a 2nd preimage for C ′′. ut

Increasing w improves the security of H against multiple (2nd) preimage
attacks. But an adversary whose running time exceeds 2w/2 can still run Joux’
attack and benefit from the iterated structure of H. In fact, no hash function
with some fixed internal state size w can be as secure against multiple (2nd)
preimage attacks as an ideal hash.

3 The Double-Pipe Hash

There is one drawback for the wide-pipe design: its compression function C ′

needs a larger output and finding collisions for C ′ must be much harder than
finding collisions for the hash function itself. It would be interesting to use a
compression function which only has to satisfy essentially the same security
requirements as the hash. For instance, if we assume the internal compression
function of, SHA-1, RIPEMD-160, or SHA-256 to be as secure as an ideal 160-bit
(256-bit for SHA-256) compression function, can we construct some variant to
improve security? Note that the SHA-1 and RIPEMD-160 compression functions
can be written as C : {0, 1}160×{0, 1}512 → {0, 1}160, their SHA-256 counterpart
as C : {0, 1}256 × {0, 1}512 → {0, 1}256. Thus, the following construction would
be applicable to all of them: Using one single narrow-pipe compression function
C : {0, 1}n×{0, 1}n+m → {0, 1}n, with m ≥ n and two distinct (random) initial
values H ′

0 6= H ′′
0 ∈ {0, 1}n, we compute the double-pipe hash Hd:

– For i ∈ {1, . . . , L− 1}: compute
• H ′

i := C(H ′
i−1,H

′′
i−1||Mi) and

• H ′′
i := C(H ′′

i−1,H
′
i−1||Mi)

– Finally: Hd(M) := C(H ′
L−1,H

′′
L−1||ML)

So in Hd(M), we have replaced the wide-pipe chaining values Hi−1 ∈ {0, 1}w

by pairs (H ′
i−1,H

′′
i−1) ∈ ({0, 1}n)2. In each iteration, the value H ′

i = C(H ′
i−1,

H ′′
i−1||Mi) – one half of the new chaining value – functionally depends on both

halfs H ′
i−1 and H ′′

i−1 of the old chaining value (similarly for H ′′
i ). This is vital

for the security of the double-pipe hash. Otherwise, Hd(M) would degenerate
into the cascade of two hash functions, thus being vulnerable to Joux’ attack.
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Fig. 3. The Double-Pipe Hash

3.1 Security Against Multiple Collision Attacks

In principle, the double-pipe hash is a special case of the wide-pipe hash with
w = 2n and C ′(H ′,H ′′||M) = ( C(H ′

i−1,H
′′
i−1||Mi), C(H ′′

i−1,H
′
i−1||Mi) ), where

C ′′(H ′,H ′′) = H ′ simply truncates 2n input bits to n output bits. (Thus, we
do not need to compute the value H ′′

L := C(H ′
L−1,H

′′
L−1||ML), as indicated

in Figure 3.) Similarly to our analysis of the wide-pipe design, we distinguish
internal collisions from final ones. The improved security of the wide-pipe hash
over the plain MD hash depends on internal collision resistance being much
stronger than final collision resistance. Unfortunately, this reasoning does not
hold for the double-pipe construction. Finding internal collisions with H ′ = H ′′

and G′ = G′′ may be as “easy” as finding collisions for C, i.e., as finding final
collisions. To deal with this, we define two special cases of internal collisions, in
addition to considering K-collisions, and make the following three assumptions:

1. It is infeasible to find a strict (internal) collision for C, i.e., two triples
(H ′,H ′′,M) 6= (G′, G′′, N) with H ′ 6= H ′′ and G′ 6= G′′, but
C(H ′′,H ′||M) = C(G′′, G′||N) and C(H ′,H ′′||M) = C(G′, G′′||N).

2. It is infeasible to find an (internal) cross collision for C: a triple (H ′,
H ′′, M), with H ′ 6= H ′′ but C(H ′,H ′′||M) = C(H ′′,H ′||Mi).

3. It is infeasible to find K-collisions for C.

We will prove Hd to be secure under the above three assumptions. While
dealing with strict or cross collisions is unusual in cryptography, these assump-
tions appear to be natural and reasonable. We analyse the feasibility of finding
strict or cross collisions for a random oracle C. For the concrete security analy-
sis, we assume that finding strict collisions takes at least time Ts, finding cross
collisions at least time Tx, and finding K-collisions at least time T (K).

Theorem 5. If we model the compression function C as a random oracle, then
finding cross collisions for C needs time Tx = Ω(2n), and finding strict collisions
for C needs time Ts = Ω(2n),

Proof. First, consider Tx. Any triple (H ′,H ′′,M) can only be part of a cross
collision, if H ′ 6= H ′′ and C(H ′,H ′′||M) = C(H ′′,H ′||M), i.e., with a probability



of 2−n (for H ′ 6= H ′′). Thus, we expect to make Tx = Ω(2n) oracle queries to
find a cross collision.

Now consider Ts. For any triple (G′, G′′,M) with G′ 6= G′′, the pair (H ′,H ′′) ∈
{0, 1}2n with H ′ = C(G′, G′′||M) and H ′′ = C(G′′, G′||M) is a uniformly dis-
tributed 2n-bit random value, chosen independently from all the other C(·, ·||·)-
values. If the adversary chooses q different triples (G′, G′′,M) and makes q
queries to the C-oracle, then her probability to succeed is

∑
0≤j<q j/22n =

Ω(q2/22n). Thus, we expect to make Ts = q = Ω(2n) oracle queries to find
a strict collision. ut

Lemma 6 Consider Hd. Allow the adversary to choose H ′
0 6= H ′′

0 .

1. Any internal collision for Hd reduces to a strict or to a cross collision.
2. The adversary needs time Ω(min{Ts, Tx, T (K)}) to find a K-collision.

Proof. For the first claim, observe that the initial values H ′
0 and H ′′

0 are different.
Any non-strict internal collision implies a triple (H ′

i−1, H ′′
i−1, Mi) with H ′

i−1 =
H ′′

i−1. This implies the existence of a cross-colliding triple (H ′
j , H ′′

j , Mj+1), with
j ≤ i−2, H ′

j 6= H ′′
j , and H ′

j+1 = C(H ′
j ,H

′′
j ||Mj+1) = C(H ′′

j ,H ′
j ||Mj+1) = H ′′

j+1.
Thus, any non-strict internal collision implies a cross collision.

For claim 2, we argue as in the proof of Lemma 1. A K-collision for Hd either
reduces to a final K-collision (taking time T (K)), or to an internal collision. By
the first claim, an internal collision is either strict (taking time Ts), or is a cross
collision (taking time Tx). ut

Theorem 7. Consider Hd, and model C as a random oracle. An adversary
who can choose H ′

0 6= H ′′
0 needs time Ω(2n(K−1)/K) to find K-collisions.

Proof. The result follows from Theorem 5, Lemma 6, and Fact 1. ut

3.2 Resistance Against K-way (2nd) Preimage Attacks

Our treatment of K-way (2nd) preimage attacks is quite similar to Section 2.2.
Let Ts and Tx be defined as above and assume finding preimages for C to take
at least time P (1).

Lemma 8 Consider Hd. Allow the adversary to choose H ′
0 6= H ′′

0 .

1. To find a single preimage, the adversary needs time Ω(P (1)).
2. To find K-way preimages, the adversary needs time Ω(min{Ts, Tx, T (K)}).

Proof. Claim 1: See proof of Lemma 3 with f ′′(·, ·||·) := C(·, ·||·). Claim 2 follows
from claim 1 of Lemma 6. Note that a K-way preimage also is a K-collision. ut

Theorem 9. Consider the double-pipe hash Hd. Model the compression func-
tion C as a random oracle. An adversary who can choose H0 needs time Ω(2n)
for finding a single or K-way preimage or a single or K-way 2nd preimage.

The proof of Theorem 9 is quite similar to the proof of Theorem 12 below.
Our results indicate that in the random oracle model, the double-pipe hash

Hd is asymptotically as secure as the wide-pipe hash with w = 2n.



4 Davies-Meyer (DM) Compression Functions

If we trust an existing MD-hash to meet its security goal, it seems reasonable to
use its compression function as the building-block C for the double-pipe hash.
But most practical hash (or rather, compression) functions (including the SHA-
family of hash functions, see Table 1) suffer from a specific structural weakness:
They use a block cipher like function E : {0, 1}n+m×{0, 1}n → {0, 1}n, i.e., that
for each “key” K ∈ {0, 1}n+m the function E(K, ·) permutates over {0, 1}n, and
both E(M, ·) and its inverse can efficiently be computed. A DM compression
function C : {0, 1}n × {0, 1}n+m → {0, 1}n is defined as follows:

C(Hi−1,Mi) = E(Mi,Hi−1) + Hi−1.

(Here “+” is any group operation over {0, 1}n.) The ability to efficiently com-
pute E−1

M (·) can be useful for the adversary, see e.g. Kelsey and Schneier [13]
for examples. Thus, we have to extend our formalism for the security proofs
accordingly – by considering a Shannon oracle, instead of a random oracle.

4.1 Double-Pipe Hash with DM Compression Function

Some generic attacks against hash functions don’t apply in the random oracle
model, but are feasible in the Shannon model [13]. Fortunately, this does not pose
a problem for the double-pipe hash. Those parts of our analysis of the double-
pipe hash which do not assume random oracles are still relevant and applicable.6

However, trusting those parts of our analysis which treat C as a random oracle
would be risky. For this reason, we additionally analyse the double-pipe hash in
the Shannon-model. See Appendix A for the proofs of the Theorems below.

Theorem 10. Consider a DM compression function C. If we model E by a
Shannon oracle, then Tx = Ω(2n) and Ts = Ω(2n).

Theorem 11. Consider Hd with a DM compression function C. If we model
E by a Shannon oracle, then finding K-collisions takes time Ω(2(n−1)(K−1)/K).

Theorem 12. Consider Hd with a DM compression function C. If we model
E by a Shannon oracle, then finding a single or K-way preimage or a single or
K-way 2nd preimage takes time P (1) = Ω(2n).

5 Resistance Against 2nd Collision Attacks

Note that our definition of a 2nd collision attack assumes the adversary to be
given the first collision essentially “for free”. This is difficult to handle in the
standard model. Thus, we concentrate on the random oracle model.

6 Observe that the “DM compression function” is the function C with some specific
non-random property. Given such C, the definition of Hd is the same.



In general, our hash designs do not protect against 2nd collision attacks:
given an internal collision, attacking the wide-pipe or double-pipe hash is as easy
as attacking the MD hash. Our design rationale, however, has been to defend
against internal collisions, leaving final collisions as the “dotted line”, where the
hash function is likely to break (if it breaks at all). This is the foundation for
the security proofs in the previous sections. In the remainder of this section, we
thus focus on the specific case that the adversary is only given a final collision.

5.1 Wide-Pipe Hash: 2nd Collision Resistance

Consider the following attack: fix H0, choose two incomplete expanded messages
(M1, . . . , ML−1) and (N1, . . . , NL′−1), defining some pre-final internal states
HM

L−1 and HN
L′−1, receive a first collision and finally provide a 2nd collision. The

first collision is defined by ML, NL′ such that the hash collides, but C ′ does not:

f ′′(HM
L−1,ML) = f ′′(HN

L′−1, NL′−1) but C ′(HM
L−1,ML) = C ′(HN

L′−1, NL′−1)

In this section, we consider an attack game giving the adversary even more
freedom: choose any HM

L−1 and HN
L′−1, receive ML, NL′ for a first collision as

above, and provide any four messages A,B,C, D ∈ {0, 1}∗, A 6= B, C 6= D,
H(A) = H(B), H(C) = H(D), with C 6∈ {A,B,D}.

Theorem 13. Consider the wide-pipe hash H. Model C ′ as a random oracle. If
C ′′ either is an independent random oracle, or the n-bit truncation of its w-bit
input, the adversary needs time Ω(2n/2) to win the 2nd collision game for H.

Proof (Sketch). Recall that we have got a first collision for f ′′, but no collision
for C ′. Finding messages A,B,C, D ∈ {0, 1}∗ as required implies finding

– an internal collision (a collision for C ′), taking time Ω(2w/2) > Ω(2n/2),
– or a 2nd collision for f ′′, namely intermediate hashes HA, HB , HC , HD

∈ {0, 1}w, and final message blocks MA, MB , MC , MD ∈ {0, 1}m with
(HA,MA) 6= (HB ,MB),
(HC ,MC) 6∈ {(HA,MA), (HB ,MB), (HD,MD)},
f ′′(HA,MA) = f ′′(HB ,MB), and f ′′(HC ,MC) = f ′′(HD,MD).

We argue that finding a 2nd collision for f ′′ would take time Ω(2n). If the 2nd
collision for f ′′ includes a collision for C ′, then we need time time Ω(2w/2) to
find it. Else, the 2nd collision is still as hard to find as a 2nd collision for any
n-bit random oracle – both when C ′′ is an independent random oracle and when
C ′′ plainly truncates –, thus taking time Ω(2n/2), see Fact 2. ut

5.2 The Double-Pipe Hash: 2nd Collision Resistance

We adapt the attack game from above to the double-pipe hash: choose four
arbitrary pairs G′ 6= G′′,H ′ 6= H ′′ ∈ {0, 1}n, receive M,N ∈ {0, 1}m with
C(G′, G′′||M) = C(H ′,H ′′||N), and provide A,B,C, D ∈ {0, 1}∗, with A 6= B,
C 6= D, Hd(A) = Hd(B), Hd(C) = Hd(D), and C 6∈ {A,B,D}.



Theorem 14. Consider the double-pipe hash Hd. Model C as a random oracle.
The adversary needs time Ω(2n/2) to win the 2nd collision game for Hd.

Proof (Sketch). As above, finding such A,B,C, D ∈ {0, 1}∗ with A 6= B and
C 6∈ {A,B,D}, implies finding

– either an internal collision, taking time Ω(2n) (→ Lemma 6, Theorem 5)
– or intermediate hashes H ′

A, H ′′
A, H ′

B , H ′′
B , H ′

C , H ′′
C , H ′

D, H ′′
D ∈ {0, 1}n

and final message blocks MA,MB ,MC ,MD ∈ {0, 1}m with

(H ′
A,H ′′

A||MA) 6= (H ′
B ,H ′′

B ||MB),
(H ′

C ,H ′′
C ||MC) 6∈ { (H ′

A,H ′′
A||MA), (H ′

B ,H ′′
B ||MB), (H ′

D,H ′′
D||MD) },

C(H ′
A,H ′′

A||MA) = C(H ′
B ,H ′′

B ||MB), and
C(H ′

C ,H ′′
C ||MC) = C(H ′

D,H ′′
D||MD).

The intermediate hashes and message blocks constitute a 2nd preimage for C.
According to Fact 2, finding such a 2nd preimage takes time Ω(2n/2). ut

Theorem 15. Consider Hd with a DM compression function C. Model E by a
Shannon oracle. Winning the 2nd collision game takes time Ω(2n/2).

See Appendix A for a sketch of the proof.

6 Discussion

A Variant of the double-pipe hash. To reduce the set of cryptographic
assumptions, Preneel [21] proposed to use C : {0, 1} × {0, 1}n × {0, 1}n+m →
{0, 1}n with one extra bit of input. Set H ′

i := C(0,H ′
i−1,H

′′
i−1||Mi), H ′′

i :=
C(1,H ′′

i−1,H
′
i−1||Mi), and finally Hash(M) := C(0,H ′

L−1,H
′′
L−1||ML). Proofs of

security for this variant of the double-pipe hash are very similar to the proofs for
Hd itself, but without the need to assume finding cross collisions to be infeasible.
Two Independent Security Parameters. The main lesson from [11, 13] and
the current paper is that the internal state size w of an iterated hash function
should be seen as a security parameter of its own right.

Any security architect choosing parameters for a cryptographic hash should
choose both w and n according to her specific security requirements. For an
application where even a single hash collision would be the ultimate disaster,
w = n suffices. If, on the other hand, additional multi-collisions or (multiple or
single) preimages or 2nd preimages or feasible 2nd collisions would turn things
from bad to worse, w � n is recommendable, due to an improved failure mode.
2nd Collision Resistance. For applications such as digital signatures, 2nd
collision resistance can have a huge impact on practical security. Our construc-
tions are reasonably 2nd collision resistant. E.g., a double-pipe hash using the
MD5 compression function would fail collision resistance due to [26], but for the
double-pipe hash, this attack could only be used to generate final collisions. Ac-
cordingly, this double-pipe hash still defeats known exploits that make collisions
“meaningful” [12, 17, 14, 15, 7].



Cascading. The idea to improve the security of hash functions by cascading has
been discussed for a long time, see, e.g., [20]. Cascading looks like an obvious
technique to improve the security of hash functions – but due to Joux’ attack,
cascading iterated hash functions is not that useful. On the other hand, the
double-pipe construction can be seen as a cascade of compression functions. To
this end, our double-pipe construction provides a theoretically sound technique
to cascade compression functions instead of the complete hash functions.
Summary. This paper takes an abstract and proof-centric look at the design
of hash functions. Similarly to [2], we consider our work a “feasible and useful
step for understanding the security” of iterated hash functions, thereby com-
plementing the attack-centric approach [11, 13]. In the spirit of Merkle [16] and
Damg̊ard [6], this paper shows how to compose “good” hash functions, given
“good” compression functions. We provide standard model explanations, what
it means for the compression function to be “good”. Additionally, we analyse
the security of our constructions in the random oracle and Shannon model.
Acknowledgement. The author thanks Frederik Armknecht, John Kelsey, Ul-
rich Kühn, Arjen Lenstra, Bart Preneel, and the anonymous reviewers for their
suggestions, discussions, and inspirations.
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Appendix

A Security of Double-Pipe Hash with Davies-Meyer

A.1 Conventions

In this section, we analyse the security of the double-pipe hash with a Davies-Meyer
compression function. The adversary A has access to a Shannon oracle for E and E−1.
Similarly to [2], we assume:

– A never asks a query for which the response is already known. Namely, if A asks for
Ek(x) and receives y, she neither asks for E−1

k (y), nor for Ek(x) again. Similarly,
if she has asked for E−1

k (y) and received x.
– Recall that for the type of attacks we consider, a successful adversary always

outputs one or more messages M i, which either collide or constitute some (2nd)
preimages. Before finishing, the adversary makes all the oracle calls to compute all
hash values H(M i).

– We define a simulator, to respond to A’s oracle queries:
• Initially:



∗ set i := 0; clear the logbook;
∗ for all (k, x): mark Ek(x) as undefined;

• At any time, domain(Ek) denotes the set of points x where Ek(x) is still
undefined. Similarly we write range(Ek), for the set of points y where E−1

k (y)
is still undefined.

• Responding to an oracle query Ek(x):
∗ set i := i + 1
∗ randomly choose y from range(Ek)
∗ append (xi, ki, yi) := (x, k, y) to the logbook;
∗ respond y;

• Responding to an oracle query E−1
k (y):

∗ set i := i + 1
∗ randomly choose x from domain(Ek)
∗ append (xi, ki, yi) := (x, k, y) to the logbook;
∗ respond x;

For our proofs, we will discuss the logbook entries (xi, ki, yi).

This is without loss of generality: any adversary not following the first two con-
ventions can easily be transformed into an equivalent one following them. And an
adversary following the first two conventions cannot distinguish the simulator from a
“true” Shannon oracle.

A.2 Internal Collisions

Theorem 10. Consider a DM compression function C. If we model E by a Shannon
oracle, then Tx = Ω(2n) and Ts = Ω(2n).

Proof. For the proof, we assume that the adversary does not make more than q ≤ 2n−1

queries. This is technically correct, since 2n−1 = Ω(2n).
Time Tx to find cross collisions: a cross collision is described by H ′

i−1 6= H ′′
i−1, Mi

with
C(H ′

i−1, H
′′
i−1||Mi) = H ′

i = H ′′
i = C(H ′′

i−1, H
′
i−1||Mi). (1)

In time q, we can check at most q/2 such triples (H ′
i−1, H ′′

i−1, Mi) for cross collisions.
Now we argue that for q ≤ 2n−1, for each such triple the probability px to satisfy
Equation 1 is at most 1/2n−1. This implies that the expected number of oracle queries
we need to make before we get the first cross collision is Tx = Ω(2n), as claimed.

We still have to show px ≤ 2n−1. If the adversary’s answer involves a cross collision,
then, by the above conventions, the simulator’s logbook contains two triples (xa, ka, ya)
and (xb, kb, yb) with a 6= b,

xa = H ′
i−1, ka = (H ′′

i−1||Mi), ya = Eka(xa),
xb = H ′′

i−1, kb = (H ′
i−1||Mi), and yb = Ekb(xb).

Thus, we can rewrite Equation 1 as

ya︷ ︸︸ ︷
Eka(xa)+xa =

yb︷ ︸︸ ︷
Ekb(xb)+xb,

which corresponds to
ya + xa = yb + xb. (2)

If (w.l.o.g.) a < b, then either yb or xb is a uniformly distributed random value from a
huge subset of {0, 1}n:



– If the b-th oracle query has been Ekb(xb), then yb is a random value from range(Ekb).
– Else xb is a random value from domain(Ekb).

Since |range(Ekb)| = |domain(Ekb)| = 2n − b + 1 ≥ 2n − q, and due to q ≤ 2n−1, we
get px ≤ 1/2n−1, as claimed.

Time Ts to find strict collisions: for triples (G′, G′′, M) with G′ 6= G′′, we consider

pairs (H ′, H ′′) ∈ {0, 1}2n, where

H ′ = C(G′, G′′||M) and H ′′ = C(G′′, G′||M). (3)

A strict collision consists of such a triple (G′, G′′, M) and another triple (F ′, F ′′, N) 6=
(G′, G′′, M) with

C(F ′, F ′′||N) = H ′ and C(F ′′, F ′||N) = H ′′. (4)

After q oracle queries, there are Ω(q2) pairs ((G′, G′′, M),(F ′, F ′′, N)) of triples. We
claim that for q ≤ 2n−1, the probability ps to satisfy Equation 4 is ps ≤ 1/22(n−1).
Hence, the expected number of oracle queries to get a strict collision is Ts = Ω(2n).

It remains to prove ps ≤ 1/22(n−1). Consider a triple (xa, ka, ya) with xa = G′,
ka = (G′′||M), and ya = Eka(xa) from the simulator’s logfile. We only have a chance
for a strict collision if the logfile contains another triple (xb, kb, yb) with xb = G′′,
kb = (G′||M), and yb = Ekb(xb). Note that xb and kb are uniquely determined by xa

and ka, and vice versa. Equation 3 can then be rewritten as

H ′ = Eka(xa) + xa = ya + xa and H ′′ = Ekb(xb) + xb = yb + xb.

A strict collision implies another triple (F ′, F ′′, N) to satisfy Equation 4. This corre-
sponds to two more triples (xc, kc, yc) and (xd, kd, yd) on the server’s logfile with

H ′ = ya + xa = yc + xc (5)

H ′′ = yb + xb = yd + xd. (6)

Both equations are of the same type as Equation 2. As in that context, we argue that
due to q ≤ 2n−1 the probability for Eq. 5 to hold is no more than 1/2n−1; similarly
for Eq. 6. More importantly, the conditional probability to satisfy Eq. 6, assuming
Eq. 5 is at most 1/2n−1. Thus, the joint probability ps for both Eq. 5 and Eq. 6 is
ps ≤ 1/22(n−1). ut

A.3 Resistance Against K-Collision Attacks

Theorem 11. Consider Hd with a DM compression function C. If we model E by a
Shannon oracle, then finding K-collisions takes time Ω(2(n−1)(K−1)/K).

Proof. Due to the first claim of Lemma 6 and Theorem 10, we know that an internal
collision would take time Ω(2n). Thus, in time Ω(2(n−1)(K−1)/K) we cannot expect to
find any internal collision. The only chance to find a K-way collision for H is finding
a final K-collision, which takes time T (K). In the remainder of this proof, we show
T (K) = Ω(2(n−1)(K−1)/K). As in the proof of Theorem 10, we assume q ≤ 2n−1 =
Ω(2n).

A final K-collision consists of K different triples with (Gi, Hi, M i) with

C(G1, H1||M1) = · · · = C(GK , HK ||MK).



By the above conventions, this implies that there are K triples (x1, k1, y1), . . . , (xK ,
kK , yK) in the simulator’s logbook with

y1︷ ︸︸ ︷
Ek1(x1)+x1 = · · · =

yK︷ ︸︸ ︷
EkK (xK)+xK .

These are K sums xi + yi, and similarly to the proof of Theorem 10, for each such
sum either xi or yi has been chosen from a huge subset {0, 1}n. Since q ≤ 2n−1,
the size of this subset exceeds 2n − q ≥ 2n−1. For this reason, we expect to make
T (K) = Ω(2(n−1)(K−1)/K) Shannon oracle queries for a K-collision. ut

A.4 Resistance Against K-way (2nd) Preimage Attacks

Theorem 12. Consider Hd with a DM compression function C. If we model E by
a Shannon oracle, then finding a single or K-way preimage or a single or K-way 2nd
preimage takes time P (1) = Ω(2n).

Proof. As in some of the proofs above, we assume q ≤ 2n−1.
Finding K-way (2nd) preimages isn’t faster than finding single (2nd) preimages.

Thus, we concentrate on single ones.
First, we start with singe preimages. Due to Lemma 8, finding a single preimage

for the hash Hd takes time Ω(P (1)), i.e., is asymptotically not faster than finding a
preimage for the compression function C(K, X) = EK(X)+X. Let a target Z be given,
and an adversary is trying to find K and X with C(K, X) = EK(X) + X = Z. By the
above conventions, this corresponds to an entry (xi, ki, yi) in the simulator’s logbook
with xi + yi = Z, and either xi or yi has been chosen from a huge subset of {0, 1}n

of size > 2n − q ≥ 2n−1. Thus, for each query to the Shannon oracle, the probability
to find a preimage for Z is at most 2n−1, and we expect to make P (1) = Ω(2n) such
queries to find such a preimage.

Now consider 2nd preimages: assume an algorithm to find 2nd preimages for Hd.
Consider we are given (K, N) and searching for some 2nd preimage (K′, N ′) 6= (K, N)
with

C(K′, N ′) = EK′(N ′) + N ′ = EK(N) + N = C(K, N).

The following technique resembles the proof of Theorem 4. We choose some message
M , expand it to (M1, . . . , ML) and accordingly compute the internal hashes H ′

1, H ′′
1 ,

. . . , H ′
L−1, H ′′

L−1. Assume
(K, N) 6∈ {(H ′

i, H
′′
i ||Mi), (H

′′
i ||H ′

i||Mi) | 1 ≤ i < L} (this holds with overwhelming
probability).

Set N−1 := E−1
K (Z−N) and define the function E′ : {0, 1}n×{0, 1}n+m → {0, 1}n :

E′
K(N) = Z −N

E′
K(N−1) = EK(N)

E′
Q(R) = EQ(R) for (Q, R) 6∈ {(K, N), (K, N−1)}.

Now we run the adversary, replacing the (Shannon-) oracle for E and E−1 by an oracle
for E′ and its inverse. Observe that for the adversary Hd(M) = Z holds. Further, both
E and E′ are random permutations over {0, 1}n, so the adversary’s chances of success
are not affected by the change from E to E′.

Assume the adversary succeeds in finding a 2nd preimage M for M . Write (M1,
. . . , ML) for the expansion of M and H ′

1, H ′′
1 , . . . , H ′

L−1
, H ′′

L−1
for the internal hashes.



– If (H ′
L−1

, H ′′
L−1

, M
L
) = (H ′

L−1, H
′′
L−1, ML), then the adversary has found an in-

ternal collision. From above, we know that this needs time min{Tx, Ts} = Ω(2n).

– Otherwise, (H ′
L−1

, H ′′
L−1

, M
L
) is a preimage for Z. From above, we know that this

takes time P (1) = Ω(2n).

Thus, in order to find a 2nd preimage for H, the adversary either has to find an internal
collision, or a 2nd preimage for C, and solving either problem takes time Ω(2n). ut

A.5 2nd Collision Resistance

Theorem 15. Consider Hd with a DM compression function C. Model E by a Shan-
non oracle. Winning the 2nd collision game takes time Ω(2n/2).

Proof (Sketch). Recall the proof of Theorem 14. A 2nd collision for Hd either implies
an internal collision or a 2nd preimage for C. Finding an internal collision reduces to
strict or internal collisions, thus taking time Ω(2n) (→ Theorem 10).

We still have to show that finding 2nd collisions for C takes time Ω(2n/2). From
Theorem 11, we know that finding (first) collisions (i.e., K-collisions with K = 2)
takes time Ω(2n/2). In the proof of Theorem 11, finding such collisions for C is shown
equivalent to the following task:

find x1, k1, x2, k2 with Ek1(x1) + x1 = Ek2(x2) + x2,

and (x1, k1) 6= (x2, k2).

Similarly, finding 2nd collisions for C is equivalent to the task:

given xa, ka, xb, kb with Eka(xa) + xa = Ekb(xb) + xb

with (x1, k1) 6= (x2, k2),

find xc, kc, xd, kd with Ekc(xc) + xc = Ekd(xd) + xd,

and (xa, ka) 6= (xb, kb),

and (xc, kc) 6∈ { (xa, ka), (xb, kb), (xc, kc) }.

Regarding the second task, we replace the family E of permutations by a modified
family E′:

– Randomly choose xa, ka, xb, kb. Assume ka 6= kb (this is overwhelmingly probable).

– Compute y∗ := Ekb(xb) + xb − xa and x∗ := Eka(y∗).

– Set E′
ka

(xa) := y∗ and E′
ka

(x∗) := Eka(xa). Otherwise, E′ behaves identical to E.

– Observe E′
ka

(xa)+xa = E′
kb

(yb). Given such xa, ka, xb, kb, solve the second collision
task for E′ instead of E. The solution is xc, kc, xd, kd as above.

With significant probability, we have {(xc, kc), (xd, kd)} ∩ {(xa, ka), (x∗, ka)} = {}. In
this case, our 2nd collision for E′ is a first collision for E. Thus, our proof reveals
a technique to efficiently find collisions for C, if one can find 2nd collisions. Due to
Theorem 11, finding such collisions takes time Ω(2n/2). ut



B Examples

The SHA standard. Two of the five SHA-∗ hash functions [19], namely SHA-224
and -384, have already been designed according to this paper’s “wide-pipe” paradigm,
see Table 1. Of course, the authors of SHA-224 and -384 where to reuse existing com-
pression functions, but they could have done so – improving the hash function’s per-
formance – by truncating the internal hash values to 224 or 348 bit and extending
the message chunk size by 256-224=32 or 512-348=128 bit. Our results provides some
formal (“after the fact”) justification for the design of SHA-224 and -348.

final hash internal hash message chunk uses compression
size n [bit] size w [bit] size [bit] function from

SHA-1 160 160 512 (own)

SHA-224 224 256 512 SHA-256
SHA-256 256 256 512 (own)

SHA-384 384 512 1024 SHA-512
SHA-512 512 512 1024 (own)

Table 1. SHA standard hash functions and their parameters [19].

A natural choice for the parameters w and n would, however, be w = 2n. As an
example for the wide-pipe hash, we could set C′ := (SHA-512 compression function)
and C′′ := (SHA-256 compression function) to define a 256-bit hash with an internal
hash size of w = 512. For large messages, this 256-bit hash would be about as fast
as SHA-512. As an example for a 256-bit double-pipe hash, consider C := (SHA-256
compression function). The size of a SHA-256 message chunk is m+n = 512, so the size
of a double-pipe message chunk would be m = 512− n = 256 bit. For large messages,
double-piped SHA-256 would be about four times slower than plain SHA-256. Similarly,
a double-piped SHA-1 hash would be about three times slower than plain SHA-1.7

AES-based example for the double-pipe hash. Consider an AES-based MD hash
Hmd

aes, using the AES block cipher in Davies-Meyer mode. The block size of Hmd
aes is the

AES block size: 128 bit. For applications which do not require collision resistance, it
may be fine to use a 128-bit hash. But resistance against multi-collision attacks or 2nd
preimage attacks could be a concern for these applications – and from the Joux and
the Kelsey-Schneier attacks, we know that Hmd

aes is much less resistant against these
attacks than we would expect from a 128-bit hash. For a well funded and motivated
adversary, it is possible to find, say, a 216-collision for Hmd

aes. This weakness does not
much depend on the AES key size (either 128 bit, 192 bit, or 256 bit).

In contrast to Hmd
aes, its double-pipe counterpart (only defined for the AES key size

of 256 bit) provides much better protection against these attacks, assuming the AES
itself does not suffer from some still unknown cryptanalytic weaknesses. Even finding
a 3-collision for a double-pipe 128-bit hash would take more than 280 units of running
time and therefore seems to be infeasible today. The price for the improved security is
a performance penalty by a factor of four, similarly to double-piped SHA-256.

7 Note that sharing initial values between different hash functions is never recom-
mendable. Thus, H ′

0 and H ′′
0 should not be taken from [19].


