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Abstract. We revisit a long-lived folklore impossibility result for fac-
toring-based encryption and properly establish that reaching maximally
secure one-wayness (i.e. equivalent to factoring) and resisting chosen-
ciphertext attacks (CCA) are incompatible goals for single-key cryp-
tosystems. We pinpoint two tradeoffs between security notions in the
standard model that have always remained unnoticed in the Random
Oracle (RO) model. These imply that simple RO-model schemes such
as Rabin/RW-SAEP[+]/OAEP[+][+], EPOC-2, etc. admit no instantia-
tion in the standard model which CCA security is equivalent to factoring
via a key-preserving reduction. We extend this impossibility to arbitrary
reductions assuming non-malleable key generation, a property capturing
the intuition that factoring a modulus n should not be any easier when
given a factoring oracle for moduli n′ 6= n. The only known countermea-
sures against our impossibility results, besides malleable key generation,
are the inclusion of an additional random string in the public key, or en-
cryption twinning as in Naor-Yung or Dolev-Dwork-Naor constructions.

1 Introduction

The Paradox. When a proof is given that some cryptosystem is semanti-
cally secure under chosen ciphertext attack (IND-CCA) under some com-
plexity assumption, one generally checks whether one-wayness can be
guaranteed under a weaker assumption. In the case of simple cryptosys-
tems based on factoring large integers however, an inevitable tradeoff
seems to exist between one-wayness and chosen ciphertext security. This
incompatibility, which was observed for factoring-based signature schemes
as well [20,22,13], is folklore knowledge and dates back to the late eight-
ies. Despite early reasonings and attempts (later shown to be wrong) by
a number of authors to formally prove it, this so-called “paradox” [13,
Section 4] has remained essentially unexplored in a formal manner and,
surprisingly enough, overlooked by contributors.



It is well known that the one-wayness of Rabin encryption and vari-
ants thereof [22,4,8,5] is equivalent to factoring (FACT), meaning that
any efficient algorithm inverting encryption provides an efficient way to
factor the modulus. It turns out that the same algorithm can be used to
totally break the cryptosystem (i.e. factor the modulus) under a trivial
chosen ciphertext attack. This kind of attack has never been reported for
RSA. But the one-wayness of RSA has not been shown to be equivalent to
FACT. In fact, there is a separation result by Boneh and Venkatesan [6]
which roughly tells that if a reduction from FACT to low-exponent RSA
existed, then an efficient factoring algorithm could be constructed. Si-
multaneously, RSA-based cryptosystems such as OAEP [3] seem to resist
chosen-ciphertext attacks convincingly well in practice. This provides the
intuition that some sort of incompatibility must exist between achiev-
ing one-wayness under the weakest possible assumption (factoring) and
achieving chosen ciphertext security at all.

In an early attempt to capture this intuition, Williams [22] makes
the following (over)statement3: if the one-wayness of a factoring-based
cryptosystem E is equivalent to factoring then E can be totally broken
under chosen-ciphertext attack. A simple proof for this claim was later
shown to be incorrect by Goldwasser, Micali and Rivest [13], and the first
public-key encryption scheme fully IND-CCA-secure under the factoring
assumption was then discovered by Dolev, Dwork and Naor a few years
later [10]. However, the incompatibility seems to persist for factoring-
based encryption for which the public key consists of a single modulus.

Our Contributions. Our goal in this paper is to revisit [20,22,13] com-
pletely and clarify the conditions for such security incompatibilities to ex-
ist. We find that when properly formulated, certain security reductions for
one-wayness and chosen-ciphertext security are indeed incompatible when
considering single-key factoring-based encryption i.e. where the public key
is just made of one hard-to-factor modulus. We reformulate the paradox
observed by Williams in terms of key-preserving black-box reductions i.e.
reductions which always call the adversarial oracle with the public-key
they were given as input. We strengthen the original observation to show
that if one can provide a key-preserving reduction from factoring to the
(chosen-plaintext) semantic security of E , then E cannot fulfil plaintext-
checking security. Plaintext-checking attacks, introduced in [18], assume
that the attacker is given oracle access to a distinguishing oracle that

3 The paradox appearing in [20,22,13] is discussed in the context of factoring-based
signatures. This is a straightforward reformulation for factoring-based encryption.
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tells whether a given ciphertext encrypts a given plaintext. It follows
from combining these results that a wide class of factoring-based cryp-
tosystems admit no key-preserving black-box reduction from factoring to
breaking the security notions IND-CCA, OW-CCA and IND-PCA in the
standard model. This provides black-box separations with well-known se-
curity proofs standing in the RO model [2] such as the one of Rabin-SAEP
[5]. We provide later an explanation as to why these incompatibilities are
avoided in the case of Naor-Yung [17] and Dolev-Dwork-Naor [10] con-
structions where public keys are composed of two or more independent
moduli, as well as in the RO model.

Finally, we define the notion of non-malleable key generators, which
formally captures the property that the factorizations of two public mod-
uli n, n′ where n 6= n′ are somehow “computationally independent” from
one another. Similar notions of non-malleability for discrete logarithms
recently appeared in [14,16]. Using non-malleability, we extend the scope
of the previous impossibility results to arbitrary black-box reductions.
Our refined results state that simple and innocuous-looking RO-secure
factoring-based encryption schemes (e.g. Rabin-SAEP), when combined
with non-malleable key generation, black-box separate the RO model from
the standard model in a very strong sense: IND-CCA security is equiva-
lent to FACT in the RO model while no instantiation of these schemes
preserves such equivalence in the standard model.

We note that all impossibility results stated in this paper are easily
transposed (mutatis mutandis) to factoring-based signature schemes. We
do not treat the case of signatures here due to lack of space.

Roadmap. The paper is structured as follows. Section 2 gives preliminary
facts about black-box reductions, single-key factoring-based encryption
schemes and related security notions. Section 3 formally establishes the
tradeoff between one-wayness and chosen ciphertext security. We also put
forward a second tradeoff between semantic security against passive ad-
versaries and plaintext-checking security. In Section 4, we give a formal
definition of non-malleable instance generators and provide extended im-
possibility results. Section 5 discusses possible countermeasures such as
encryption twinning to overcome these tradeoffs. We finally conclude on
directions for further research in Section 6.

2 Preliminaries

Instance Generators. We define FACT as the problem of computing the
list of all prime factors factors(n) = (p1, . . . , pt) of a randomly chosen
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positive integer n. In cryptographic applications, one generally focuses
on a specifically chosen distribution of hard instances by defining an in-
stance generator Gen. Given a security parameter k, Gen(1k) generates
a hard-to-factor modulus n, as well as the side information factors(n). A
probabilistic algorithm A is said to (ε, τ)-break FACT [Gen] when

Pr
[
(n, factors(n))← Gen(1k) : A(n) = factors(n)

]
≥ ε ,

where the probability is taken over the random coins of A and Gen and A
halts after τ steps. FACT [Gen] is commonly referred to as the “factoring
problem” when Gen is specified implicitly. For readability reasons, we may
equivalently write (n, factors(n))← Gen(1k) or n← Gen(1k) to state that
n is drawn according to the distribution induced by Gen(1k). We note PKk

the range of n i.e. the set of integers n such that Pr
[
n← Gen(1k)

]
> 0 and

SKk = factors(PKk). Finally PK = ∪kPKk and SK = ∪kSKk. Here are
some instance generators commonly used in factoring-based encryption:

Rabin-Williams. Given 1k, select uniformly at random two dk/2e-bit primes
p and q such that p = 3 mod 8 and q = 7 mod 8. Set n = pq and out-
put (n, (p, q)).

OU. Given 1k, randomly select two dk/3e-bit primes p and q. Set n = p2q
and output (n, (p, q)).

RSA-e. Given a small integer e and 1k, randomly select two dk/2e-bit
primes p and q such that gcd(p− 1, e) = gcd(q− 1, e) = 1. Set n = pq
and output (n, (p, q)).

Sophie-Germain. Given 1k, randomly select two (dk/2e − 1)-bit primes p′

and q′ such that p = 2p′ + 1 and q = 2q′ + 1 are also primes. Set
n = pq and output (n, (p, q)).

Single-Key Factoring-Based Encryption. A single-key factoring-based en-
cryption scheme E with security parameter k can be described as the com-
bination of an instance generator Gen with a family of trapdoor functions
on Gen, namely a pair (Enc,Dec) such that for any n ∈ PK, Enc(n, ·, ·)
and Dec(factors(n), ·) are integer-valued functions

Enc( n, ·, · ) : Mn × Rn → Cn , Dec
(
factors(n), ·

)
: Cn → Mn

where Mn, Rn and Cn denote respectively the plaintext, random and
ciphertext spaces4. We impose that for any n ∈ PK, m ∈ Mn and
r ∈ Rn, Dec(factors(n),Enc(n, m, r)) = m. When Enc(n, Mn,Rn) ( Cn,
4 Rn is the empty set when encryption is deterministic.
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some elements of Cn are not proper ciphertexts. When c 6∈ Enc(n, Mn,Rn),
Dec(factors(n), c) returns a failure symbol ⊥ ∈ Mn. We impose that
Enc(n, ·, ·) and Dec(n, ·, ·) be efficiently computable for any arguments
i.e. can be evaluated in time at most poly (k) for n ∈ PKk. We identify
E = (Gen,Enc,Dec) to the three following probabilistic procedures:

E .keygen : Run Gen(1k) to get (n, factors(n)). The secret key is factors(n)
while the public key is n.

E .encrypt : Given a public key n and a message m ∈ Mn, select r ← Rn

uniformly at random and compute c = Enc(n, m, r). The output ci-
phertext is c ∈ Cn.

E .decrypt : Given the secret key factors(n) and a ciphertext c ∈ Cn, output
m = Dec(factors(n), c).

Examples of single-key factoring-based cryptosystems as defined above
are countless: RSA5 and its numerous variants OAEP [3], REACT-RSA
[18], PKCS#1 v1.5 [21], Rabin and related systems (Rabin-Williams [22],
Blum-Goldwasser [4], Chor-Goldreich [8], Rabin-SAEP [5]), Naccache-
Stern, Okamoto-Uchiyama and the EPOC family [12,11], Paillier [19] and
variants. Many elliptic-curve-based cryptosystems such as KMOV [15],
Vanstone-Zuccherato or Demytko [9] also fall into this category. We refer
the reader to the extensive literature on factoring and its applications to
cryptography for more detail.

Black-Box Reductions. Black-box reductions constitute a natural tool to
relate computational problems and capture the way most security proofs
are constructed. Given two computational problems P1 and P2, a black-
box reduction from P1 to P2 is a probabilistic algorithm R which solves
P1 with the help of an oracle solving instances of P2. R interacts with
the oracle strictly as defined by the specification of P2 and in particu-
lar has no view on the internal tapes of the oracle. The (extra) time of
R is the number of elementary steps required by R to complete given
that oracle calls count for one step by convention. A black-box reduction
is polynomial when it runs in polynomial extra time (in a security pa-
rameter). It is crucial to remind that R can be polynomial even when
no polynomial-time algorithm solving P2 is known to exist. We denote
by P1 ⇐ P2 the fact that P1 is polynomially black-box reducible to P2.
We write P1 ⇐R P2 when R is known to reduce P1 to P2. Polynomial
equivalence is denoted by P1 ≡ P2. Succ (P, τ) stands for the maximal
5 If the public exponent e is fixed (as usually done in practice), RSA decryption can

be performed given the factors of n only.
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success probability of probabilistic algorithms solving P in no more than
τ elementary steps. Similarly, Succ (P1 ⇐ P2, τ, ε, `) stands for the maxi-
mal success probability of probabilistic algorithms solving P1 in no more
than τ elementary steps and at most ` calls to an oracle solving P2 with
probability ε. All the reductions considered in this paper are black-box.

Security Notions for Factoring-Based Encryption. Security notions for
encryption schemes are obtained by combining an adversarial goal with
an attack model. (Goals) We say that an encryption scheme is unbreak-
able (UBK) when one cannot extract the secret key matching a pre-
scribed public key. The scheme is said to be one-way (OW) when no
adversary can recover a plaintext given its encryption. Indistinguishabil-
ity (IND, a.k.a. semantic security) relates to the hardness of deciding
whether a given ciphertext encrypts a given plaintext. (Attacks) We
consider three attack models in this paper. In a chosen-plaintext attack
(CPA), the adversary is given nothing more than the public key as input.
In a plaintext-checking attack (PCA), the adversary is given access to a
plaintext-checking oracle that tells whether a given ciphertext encrypts a
given plaintext [18]. In a chosen-ciphertext attack (CCA), the adversary
has access to a decryption oracle. Oracle access in OW-CCA, IND-PCA
and IND-CCA games is limited in the sense that the adversary is not
allowed to call the oracle on the challenge ciphertext itself. These defini-
tions are classical. We refer to [1,18] for more detail on security notions
for encryption schemes.

For convenience, we denote security notions in a positive fashion e.g.
OW-PCA [E ] denotes the problem of breaking the one-wayness of E un-
der plaintext-checking attack. This convention allows one to easily de-
scribe hierarchies between security notions using reductions. When the
focus is on an adaptive attack (i.e. either PCA or CCA), we denote by
`-GOAL-ATK[E ] the problem of breaking GOAL in no more than ` calls
to the resource defined by ATK. Thus, breaking `-IND-CCA [E ] autho-
rizes at most ` calls to the decryption oracle to break IND. We recall that
GOAL-CCA [E ]⇐ GOAL-PCA [E ]⇐ GOAL-CPA [E ] for any factoring-based
encryption scheme E and adversarial goal GOAL ∈ {UBK,OW, IND}. We
also have UBK-CPA [E ] ≡ FACT [E .keygen]. We plot on Fig. 1 the map of
security levels needed for the sake of this work.

3 Impossibility Results for Key-Preserving Reductions

In this section we focus on the standard-model security of single-key
factoring-based encryption schemes. All black-box reductions known for
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UBK-CCA [E ] ⇐ UBK-PCA [E ] ⇐ UBK-CPA [E ] ≡ FACT [E .keygen]

⇓ ⇓ ⇓

OW-CCA [E ] ⇐ OW-PCA [E ] ⇐ OW-CPA [E ]

⇓ ⇓ ⇓

IND-CCA [E ] ⇐ IND-PCA [E ] ⇐ IND-CPA [E ]

Fig. 1. Relations among security notions for single-key factoring-based encryption.

such schemes are key-preserving, meaning informally that they make ora-
cle calls to the adversary with the same key that they are given as input.
We properly formalize this particular class of reductions in our setting6.

3.1 Key-Preserving Black-Box Reductions

Definition. We define key preservation for arbitrary security games re-
lated to a single-key factoring-based encryption scheme E . Assume that
P1 [E ] and P2 [E ] are two computational problems (view P1 and P2 as se-
curity notions) associated to E . Consider a black-box reduction algorithm
R such that P1 [E ] ⇐R P2 [E ], meaning that R makes oracle calls to an
algorithm A breaking P2 [E ] to break P1 [E ]. Let Keys(n, aux, $) be the
list (n1, . . . , n`) of public keys given by R as input to A where (n, aux)
is the modulus and auxiliary input for which R has to break P1 [E ] and
$ ∈ {0, 1}poly(k) denotes the random tape of R. Here the auxiliary in-
put aux depends on the specification of P1. Note that the number ` of
oracle calls is a deterministic function of n, aux and $. R is said to be
key-preserving when for any aux, $ and n ∈ PKk, either ` = 0 or ni = n
for i ∈ [1, `].

Key-preservation is transitive. It is obvious that if P1 [E ]⇐R1 P2 [E ] and
P2 [E ] ⇐R2 P3 [E ] such that R1 and R2 are both key-preserving, then
there is a key-preserving reduction R3 such that P1 [E ]⇐R3 P3 [E ].

Reductions among security notions are key-preserving. We use later the
property that all the straightforward black-box reductions between the
classical security notions for E such as IND-CCA [E ] ⇐ IND-PCA [E ] and
IND-CPA [E ]⇐ OW-CPA [E ] and so forth [1], are key-preserving.
6 A similar class of reductions for RSA encryption called simple reductions was re-

cently considered by Brown [7].
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3.2 One-Wayness versus Chosen-Ciphertext Security

The following reformulates the observation made by Williams [22].

Theorem 1. Let E be a single-key factoring-based encryption scheme. If
there exists a polynomial key-preserving black-box reduction R such that
FACT [E .keygen]⇐R OW-CPA [E ], then UBK-CCA [E ] is polynomial.

Proof. The main idea of the proof is basically a one-line statement and
follows the reasoning of [22,13]. Let R be such a key-preserving reduction
algorithm, i.e. an algorithm that factors a modulus n randomly selected by
E .keygen with non-negligible probability εR and extra time τ given black-
box access to an adversary A breaking OW-CPA [E ] with probability at
least ε. We construct an adversary M against UBK-CCA [E ].

Upon reception of the public key n in the UBK-CCA game, M runs
R on input n and uses the decryption oracle to simulate the OW-CPA
adversary. Since by definition the decryption oracle decrypts any cipher-
text with probability 1 ≥ ε in one elementary step, the simulation of A
is perfect for any ε ∈ (0, 1). The simulation complies to the definition of
R because R is key-preserving. It is therefore crucial that this property
holds otherwise M can by no means satisfy the queries R makes to A.
R eventually returns the factorization of n with probability εR which

M then returns as output value. UBK-CCA [E ] can therefore be broken
with probability at least εR in extra time at most τ . ut

3.3 Indistinguishability versus Plaintext-Checking Security

Let us now consider IND-CPA [E ]. We know that there is a key-preserving
reduction IND-CPA [E ] ⇐ OW-CPA [E ] and also that key-preservation is
transitive. Therefore Theorem 1 implies that there is no key-preserving
reduction FACT [E .keygen]⇐ IND-CPA [E ] unless UBK-CCA [E ] is polyno-
mial. But precisely because IND-CPA [E ] is weaker than OW-CPA [E ], a
stronger incompatibility result can be found. We state:

Theorem 2. Let E be a single-key factoring-based encryption scheme. If
there exists a polynomial key-preserving black-box reduction R such that
FACT [E .keygen]⇐R IND-CPA [E ], then UBK-PCA [E ] is polynomial.

Proof. Let us first describe in more detail the game played by a key-
preserving reductionR such that FACT [E .keygen]⇐R IND-CPA [E ]. Given
a modulus n, R calls the adversarial oracle A breaking IND-CPA [E ] as
follows. When R calls A(find, n), A outputs two plaintexts m0,m1 ∈ Mn
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of equal length. R then encrypts mb for b ← {0, 1} as cb and calls
A(guess, cb). A then returns its guess b̂ ∈ {0, 1} to R and Pr[b̂ = b] ≥ ε.
We may assume w.l.o.g. that R never calls A(guess, cb) before calling
A(find, n) first and always calls A(guess, cb) immediately after A(find, n),
and that cb is always a proper encryption of m0 or m1. Let 2` be the total
number of calls to A. Overall R returns factors(n) with probability εR
and extra time τ .

We construct a trivial meta-reductionM which converts the key-pre-
serving black-box reduction R into an adversary against UBK-PCA [E ]
and works with identical success probability in similar time.M works as
follows. Given a public key n ← E .keygen, M runs R on input n and
simulates the distinguisher A using the plaintext-checking oracle of the
UBK-PCA game. When R calls A(find, n), M returns two randomly se-
lected plaintexts m0,m1 ← Mn of equal length. WhenR callsA(guess, cb),
M sends (m1, cb) to the plaintext-checking oracle and sends its output
back to R (recall that given (m, c) ∈ Mn × Cn, the plaintext-checking
oracle returns 1 if c encrypts m and 0 otherwise). Eventually R stops
and M forwards the output of R. By definition, the plaintext-checking
oracle distinguishes plaintext-ciphertext pairs with probability one and
M therefore provides a perfect simulation of A to R for any ε ∈ (0, 1).
Hence M outputs the factors of n with identical probability εR in time
τ + 2`ρ(k) where ρ(k) = poly (k) is the time needed to perform a random
selection in Mn. ut

3.4 Separation Results

Corollary 1. Let E be a single-key factoring-based encryption scheme.
Unless FACT [E .keygen] is polynomial, there is no polynomial key-preser-
ving black-box reduction FACT [E .keygen]⇐ IND-CCA [E ].

Proof. Assume that FACT [E .keygen] ⇐R1 IND-CCA [E ] for some polyno-
mial key-preserving black-box (PKPBB) reduction R1. Since there ex-
ists a PKPBB reduction R2 such that IND-CCA [E ] ⇐R2 OW-CPA [E ],
there must be a PKPBB reduction R3 such that FACT [E .keygen] ⇐R3

OW-CPA [E ] by transitivity, resulting in that UBK-CCA [E ] is polynomial
by Theorem 1. Moreover since IND-CCA [E ]⇐ UBK-CCA [E ], one gets that
IND-CCA [E ] is polynomial and therefore that FACT [E .keygen] is polyno-
mial as well. ut

Similar impossibility results are found for other security notions such
as OW-CCA [E ] and IND-PCA [E ] using Theorem 2.
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The Typical Example of Rabin-SAEP. We illustrate the importance of
Corollary 1 by deducing a uninstantiability result for Rabin-SAEP. We
first recall the definition of Rabin-SAEP [5]. Let sm, s0, s1 be security
parameters and k = sm + s0 + s1. H denotes a fixed-size hash function
H : {0, 1}s1 → {0, 1}sm+s0 . Here k plays the role of security parameter
and the security proofs in [5] view sm, s0, s1 as polynomial functions of k.

Rabin-SAEP.keygen : Given 1k, generate a (k +2)-bit RSA modulus n =
pq, |p| = |q| = dk/2e+ 1, p = q = 3 mod 4 and n ∈ [2k+1, 2k+1 + 2k).
The secret key is factors(n) = (p, q) while the public key is n.

Rabin-SAEP.encrypt : Given a public key n, the message space is Mn =
{0, 1}sm and the random space is Rn = {0, 1}s1 . For (m, r) ∈ Mn×Rn,
Enc(n, m, r) is defined as (((m ‖ 0s0)⊕H(r)) ‖ r)2 mod n. The cipher-
text space is Cn = Zn.

Rabin-SAEP.decrypt : Given c ∈ Cn and (p, q), compute zp = c(p+1)/4 mod
p and zq = c(q+1)/4 mod q. Output ⊥ if z2

p 6= c mod p or z2
q 6= c mod q.

Among the four values CRT(±zp,±zq), select the only one y such
that y < n/2 and y can be parsed as ((m ‖ 0s0) ⊕H(r)) ‖ r for some
(m, r) ∈ Mn×Rn. If this fails or can be done for more than one value
for y, output ⊥. Otherwise output m.

It is easily seen that Rabin-SAEP is a single-key factoring-based encryp-
tion scheme as per the definition of Section 2. We refer to [5, Section 4] for
a proof that Rabin-SAEP is chosen-ciphertext secure under the factoring
assumption in the RO model:

Theorem 3 (RO-model security of Rabin-SAEP [5]). Let us view
H as a random oracle. There exists a PKPBB reduction R such that
FACT [Rabin-SAEP.keygen]⇐R IND-CCA

[
Rabin-SAEPH

]
.

We now state that for any instantiation of H, Rabin-SAEP does not
admit a standard model counterpart of Theorem 3. This impossibility
result comes as a direct application of Corollary 1.

Theorem 4 (Standard-model security of Rabin-SAEP). Assum-
ing FACT [Rabin-SAEP.keygen] is intractable, there exists no PKPBB re-
duction FACT [Rabin-SAEP.keygen]⇐ IND-CCA [Rabin-SAEP].

Similar separations can be obtained for a wide range of factoring-based
encryptions which chosen-ciphertext security is shown to be equivalent to
factoring through key-preserving reductions in the RO model such as
Rabin/RW-SAEP[+]/OAEP[+][+]/REACT, EPOC-2 [11], etc.
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What Goes Wrong in the RO Model. Consider the meta-reductionM in
the proof of Theorem 1. M cannot make any appropriate use of a key-
preserving reduction R standing in the RO model. In a typical random-
oracle-based reduction, the random oracles of E are simulated by R. This
additional power is beneficial to R which introduces some form of cor-
relation between its own variables and the responses of the simulated
oracles. In a sense, R is not totally black-box i.e. does not only rely on
the input-output behavior of the OW-CPA adversary because R controls
the interactions between the adversary and the random oracles to increase
its success probability.

In the chosen-ciphertext security game, however, the decryption oracle
makes implicit calls (i.e. not controllable by any simulator) to the random
oracles. Therefore, the meta-reduction cannot influence the decryption
procedure by mimicking R and consequently, can by no means correlate
the internal variables of the decryption oracle to its own variables the
same way R does with the OW-CPA adversary. This explains why the RO
model is unaware of incompatibilities in a general sense.

4 Extended Results for Non-Malleable Key Generation

What we are after in this section is a way to strengthen the previous
impossibility results. Recall we had to restrict the scope of Theorems 1
and 2 to key-preserving security reductions because the meta-reduction
M was unable to simulate the adversary A when R makes oracle calls
to A with arbitrary moduli. Our approach is to explicitly assume, as
a property of the key generation of E , that calling A with n′ 6= n is
essentially of no help to R anyways. It appears that one faces definitional
options when capturing this in a formal way: what we provide hereafter
is the simplest definition that is strong enough for our purposes. This in
turn allows us to consider arbitrary black-box reductions at the expense
of making a complexity assumption on the key generation of E .

4.1 Defining Non-Malleable Generators

Intuition. An instance generator Gen is said to be malleable if factoring
a randomly selected instance n ← Gen(1k) becomes substantially easier
when given repeated access to an oracle which factors other instances n′ 6=
n for n′ ∈ PKk. A typical example of malleability is when PKk contains
integers of variable size and number of prime factors. It is indeed trivial
to factor n given an oracle that factors n′ = αn if it happens that both
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n and n′ are proper elements of PKk. We observe that most factoring-
based cryptosystems define instance generators which precisely tend to
avoid this malleability property by construction (see Section 2). What we
need for our purposes is to define non-malleability in a strong sense.

Definition. To properly capture non-malleability, we define two games in
which a probabilistic algorithm R attempts to factor n← Gen(1k) given
access to an oracle A(n, aux) solving with probability one some compu-
tational problem reducible to FACT [Gen]. Here, A models the computa-
tional resources R has access to and aux stands for any auxiliary input
given to the oracle A depending on how A is specified. We may write
A(n, ·) instead of A(n, aux) to notify that aux is chosen freely and arbi-
trarily byR whenA is called. Since we impose that oracleA be perfect, we
can abuse notations and identify A to the problem solved by A. A typical
example of computational resources modelled by A is when A is poly-
nomial (in which case R is given no extra power), but one may consider
problems reducible to FACT [Gen] that do confer a computational advan-
tage to R, such as distinguishing quadratic residues modulo n, extracting
e-th roots for gcd(e, φ(n)) = 1 and so forth. In any case, we require A to
be perfectly reducible to FACT [Gen] in polynomial time, that is, for any
n ∈ PKk and any admissible value for aux, A(n, aux) must be solvable
with probability one in time tA = poly (k) given factors(n). In Game 0,
the success probability of R is defined as

SuccGame 0
Gen (R,A, τ, `) = Pr

[
n← Gen(1k) : RA(n,·)(n) = factors(n)

]
where the probability is taken over the random tapes of R and A, R runs
in extra time at most τ and makes at most ` queries to A(n, ·). We further
define

SuccGame 0
Gen (A, τ, `) = max

R
SuccGame 0

Gen (R,A, τ, `)

where the maximum is taken over all probabilistic algorithms R playing
Game 0. This can be interpreted as the success probability of the best
reduction that makes use of A(n, aux) to factor n for the given reduction
parameters (τ, `). In Game 1, the reduction R is given, in addition to A,
access to an auxiliary oracle FACT(·) that factors integers n′ ∈ PKk \{n}
with probability one. Its success probability SuccGame 1

Gen (R,A, τ, `) is then

Pr
[
n← Gen(1k) : RA(n,·),FACT(·)(n) = factors(n)

]
where the probability is taken over the random tapes of R and A, R runs
in extra time at most τ , makes `A calls to A(n, ·) and `FACT calls of the
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type FACT(n′) with n′ ∈ PKk \ {n} such that `A + `FACT ≤ `. Let us
define

SuccGame 1
Gen (A, τ, `) = max

R
SuccGame 1

Gen (R,A, τ, `)

where the maximum is taken over all probabilistic algorithms R playing
Game 1. This measures the success probability of the best reduction that
uses simultaneously oracles A(n, ·) and FACT(·) to factor n in time τ and
totalling no more than ` oracle calls. We finally define the malleability of
Gen as

∆Gen (τ, `) = max
A⇐FACT[Gen]

∣∣∣SuccGame 1
Gen (A, τ, `)− SuccGame 0

Gen (A, τ, `)
∣∣∣ ,

where the maximum is now taken over all computational problems A
perfectly reducible to FACT [Gen] in polynomial time.

Remark 1. It is easily seen that ∆Gen (τ, 0) = 0 for any τ ≥ 0.

Definition 1 (Non-Malleable Instance Generators). We say that
an instance generator Gen is non-malleable when ∆Gen (τ, `) remains poly-
nomially negligible in k when τ = poly (k) and ` = poly (k).

Remark 2. The purpose of Game 0 is to include all key-preserving reduc-
tions R such that FACT [Gen] ⇐R A. Since the success probability ε of
the adversarial oracle plays no role in the proofs of Theorems 1 and 2,
these can be reformulated as follows. For any positive integers τ , `:

Th. 1: SuccGame 0
E.keygen (OW-CPA [E ] , τ, `) ≤ Succ (`-UBK-CCA [E ] , τ)

Th. 2: SuccGame 0
E.keygen (IND-CPA [E ] , τ, `) ≤ Succ (`-UBK-PCA [E ] , τ + 2`ρ(k))

4.2 A Fundamental Lemma

We now come back to our earlier discussion about extending the scope
of Theorem 1 and dealing with R calling A with arbitrary moduli n′ 6=
n. The oracle calls R makes to A are now of two types: calls with the
same modulus n (key-preserving calls) and calls with n′ 6= n (non-key-
preserving calls). Our definition of non-malleability allows us to limit the
computational advantage conferred to R by its non-key-preserving calls.

Lemma 1. Let Gen be an instance generator and let A be a computa-
tional problem perfectly reducible to FACT [Gen] in time tA. Then for any
positive integers τ, ` and any ε ∈ (0, 1),

Succ (FACT [Gen]⇐ A, τ, ε, `) ≤ SuccGame 1
Gen (A, τ + ` · tA, `) .
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Proof. Recall that A denotes a computational problem here. Assume R
(τ, ε, `)-solves FACT [Gen] ⇐ A i.e. factors n ← Gen(1k) in extra time τ
with no more than ` calls to an oracleAR solvingA with probability ε. Let
εR be the success probability of R. We construct an algorithmM which
plays Game 1 with respect to a perfect oracle AM for A and succeeds
with identical probability and similar running time. AlgorithmM works
as follows. Given a randomly selected modulus n ← Gen(1k), M runs
R on input n. Now when R calls AR(n, aux), M calls AM(n, aux) and
forwards the output to R. When R calls AR(n′, aux) for n′ ∈ PKk \ {n},
M calls FACT(n′) to get factors(n′) and solves A(n′, aux) in time tA. M
then returns the result toR.R eventually stops andM returns the output
of R. The simulation of AR is perfect for any ε ∈ (0, 1).M requires extra
time at most τ + ` · tA and makes at most ` calls to oracles AM and
FACT(·) altogether. ut

4.3 Extended Separation Results

Theorem 5. Let E be a single-key factoring-based encryption scheme and
assume E .keygen is non-malleable. If FACT [E .keygen]⇐ OW-CPA [E ] then
UBK-CCA [E ] is polynomial.

Proof. Let us consider A = OW-CPA [E ]. Obviously A is perfectly re-
ducible to FACT [E .keygen] since given any n ∈ PKk, aux = c ∈ Cn and
factors(n), A(n, aux) is solved by computing m = Dec(factors(n), c) in
time tA = poly (k). Applying Lemma 1, we get for any τ, ` and ε ∈ (0, 1):

Succ (FACT [E .keygen]⇐ OW-CPA [E ] , τ, ε, `)

≤ SuccGame 1
E.keygen (OW-CPA [E ] , τ + `·poly (k) , `)

≤ SuccGame 0
E.keygen (OW-CPA [E ] , τ + `·poly (k) , `) + ∆Gen (τ + `·poly (k) , `)

≤ Succ (`-UBK-CCA [E ] , τ + `·poly (k)) + ∆Gen (τ + `·poly (k) , `) .

We now extend asymptotically the above to τ, ` = poly (k). Since E .keygen
is non-malleable, the malleability term ∆Gen (τ + `·poly (k) , `) remains
negligible. Since Succ (FACT [E .keygen]⇐ OW-CPA [E ] , τ, ε, `) is non-ne-
gligible by assumption, Succ (`-UBK-CCA [E ] , τ + `·poly (k)) must be non-
negligible as well, thereby giving the result. ut

The same proof technique applies to IND-CPA [E ] and shows that there
exists no reduction FACT [E .keygen] ⇐ IND-CPA [E ] unless UBK-PCA [E ]
is polynomial or E .keygen is malleable. Based on a reasoning similar to
the proof of Corollary 1, we deduce from these incompatibilities that:
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Corollary 2. Let E be a single-key factoring-based encryption scheme
and assume E .keygen is non-malleable. There is no polynomial black-box
reduction FACT [E .keygen]⇐ IND-CCA [E ] unless FACT [E .keygen] is poly-
nomial.

To exemplify Corollary 2, we provide this extended impossibility result
for Rabin-SAEP.

Theorem 6 (Standard-model security of Rabin-SAEP, revisited).
Assume Rabin-SAEP.keygen is non-malleable. Then Rabin-SAEP admits
no instantiation in the standard model which is chosen-ciphertext secure
under the factoring assumption i.e. for any instantiation of H,

IND-CCA [Rabin-SAEP] 6≡ FACT [Rabin-SAEP.keygen] .

Similar uninstantiability results hold for single-key factoring-based en-
cryption schemes which chosen-ciphertext security is shown to be equiv-
alent to factoring in the RO model. Again, these stronger separations are
effective only when the underlying key generation is non-malleable. In
other words, either these encryption schemes do separate the RO model
from the standard model in a very strong sense, or their key generation
must be malleable along the lines of Definition 1.

5 Overcoming Uninstantiability

Keyed Paddings. At first look, including some additional key material
such as a random string in the public key seems to invalidate our im-
possibility results completely. Typically the extra parameter can serve
as a function index in a keyed family of hash functions. This seems to
be an efficient countermeasure for single-key factoring-based encryption
making use of encryption paddings which, unlike SAEP[+]/OAEP[+][+],
Fujisaki-Okamoto and REACT, include keyed hash functions.

Encryption Twinning. Naor and Yung [17] and Dolev, Dwork and Naor
[10] suggested transformations which when applied to IND-CPA-secure
encryptions such as Blum-Goldwasser [4] or Chor-Goldreich [8] may lead
to IND-CCA-secure schemes under the factoring assumption. The trans-
formed schemes use public keys containing two or more independently
generated moduli with respect to the basic scheme. This paradigm makes
it possible to generically construct a larger class of factoring-based cryp-
tosystems which IND-CCA-security can possibly be proven equivalent to
factoring, thereby escaping all incompatibility results described earlier.
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We comment that the cornerstone of Theorem 1 resides in that the de-
cryption oracle provided in the UBK-CCA game can serve as a factoring
algorithm when interfaced with the black-box reduction R. We now see
how encryption twinning prohibits such a use of the decryption oracle.
The public key in a Naor-Yung-transformed encryption scheme NY(E) is
(n1, n2, r) where n1, n2 ← E .keygen and r is a random string used to gen-
erate NIZK proofs during encryption. An encryption of m ∈ Mn1 ∩Mn2

is (c1 = Enc(n1,m, r1), c2 = Enc(n2,m, r2), π) where π is a proof that
c1 and c2 encrypt the same plaintext. Now assume (as typically the case
with single-key factoring-based encryption) there exists an efficient way to
generate a random-looking c1 such that its decryption Dec(factors(n1), c1)
leads to an immediate recovery of factors(n1). In a typical reduction R
from FACT [E .keygen] to breaking the OW-CPA security of NY(E),R takes
as input a modulus n1 ← E .keygen(1k) but generates by itself the second
key pair (n2, factors(n2))← E .keygen(1k) and r to constitute a public key
pk = (n1, n2, r). Since R fully controls the generation of n2 and r, R can
use the simulator of the underlying NIZK proof system to create a valid
encryption c = (c1, c2, π) for a random c1. Calling the OW-CPA adversary
will then provide Dec(factors(n1), c1), thus allowing R to factor n1. The
meta-reductionM playing the UBK-CCA game against NY(E) however, is
given some public key PK = (N1, N2, R) and a decryption oracle implic-
itly parameterized by PK. Since R takes as input a single modulus and
generates by itself the rest of the public key to be given to its adversarial
oracle, M cannot, even if R is run on input N1, use the decryption or-
acle to answer the request(s) ((N1, n2, r), (c1, c2, π)) made by R because
Pr [n2 6= N2 ∨ r 6= R] is overwhelming.

6 Are Key Generators Non-Malleable?

Our extended impossibility results apply to single-key encryption schemes
based on non-malleable key generation. We conjecture that most instance
generators are in turn non-malleable and expect to see further research
works based on this property in the future. A possible improvement of this
work would be to give a formal proof of non-malleability for commonly
referred generators such as RSA-3 or Sophie-Germain using computational
number theory. Another issue is the design of non-trivial examples of mal-
leable key generators.
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