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Abstract. Understanding what construction strategy has a chance to
be a good hash function is extremely important nowadays. In TCC’04,
Maurer et al. [13] introduced the notion of indifferentiability as a gen-
eralization of the concept of the indistinguishability of two systems. In
Crypto’2005, Coron et al. [5] suggested to employ indifferentiability in
generic analysis of hash functions and started by suggesting four con-
structions which enable eliminating all possible generic attacks against
iterative hash functions. In this paper we continue this initial suggestion
and we give a formal proof of indifferentiability and indifferentiable at-
tack for prefix-free MD hash functions (for single block length (SBL) hash
and also some double block length (DBL) constructions) in the random
oracle model and in the ideal cipher model. In particular, we observe that
there are sixteen PGV hash functions (with prefix-free padding) which
are indifferentiable from random oracle model in the ideal cipher model.

1 Introduction

The notion of indifferentiability was first introduced by Maurer et al. [13] and
is a stronger notion than indistinguishability. For example, assume a cryptosys-
tem P(G) based on a random oracle G is secure. Now, to prove the security of
P(HF ) based on Merkle-Damgard (MD) hash function H where the underlying
compression function is a random oracle, we need to prove something different
than indistinguishability. In fact, we need to prove that HF is indifferentiable (as
was introduced in [13]) from a random oracle. Informally, HF is indifferentiable
from random oracle if there is no efficient attacker (or distinguisher) which can
distinguish F and the hash function based on it from a random oracle R and
an efficient simulator of F . Here R is a random oracle with (finite) domain and
range same as that of H. In case of Indistinguishability, the distinguisher only
needs to tell apart H from G without any help of oracle F . Thus, the notion
of indifferentiability is important when we consider attacks on a cryptosystem



based on some ideal primitive where the attacker has some access on the com-
putation of the primitive. In the case of hash function HF , the attacker can also
compute F as it is a random oracle which can be computed publicly. So this
new notion is important for stronger attackers. If the attacker does not have
that access (to the random oracle) then merely indistinguishability will suffice
to preserve the security of the cryptosystem.

Recently, Coron et al. [5] suggested to employ the notion for analysis of hash
functions and they proved that the classical MD iteration is not indifferentiable
with random oracle when the underlying compression function is random ora-
cle. They have also stated indifferentiability for prefix-free MD hash functions
or some other definition of hash functions like HMAC, NMAC, chop-MD hash
function. They also have stated indifferentiability for Davis-Meyer construction
(which is one of the classical PGV construction [17]) in the ideal cipher model.

Our Results: In this paper we extend the use of indifferentiability in analyzing
hash functions, and we present a proof methodology for determining indifferen-
tiability. We discuss indifferentiability of several known hash constructions with
the random oracle model including the prefix free MD hash function. We con-
sider all collision secure PGV hash functions in the ideal cipher model [2] (there
are twenty such hash functions). It is easy to check that under ideal cipher
model the underlying compression function is not indifferentiable with random
oracle. So we can not use the indifferentiability result directly for prefix-free MD
hash function (where we need the underlying compression function as a ran-
dom oracle). But we will show that out of twenty, sixteen hash functions with
prefix free padding are indifferentiable from random oracle. We also prove the
indifferentiability of some known Double length hash functions in the random
oracle model for the underlying single length compression function. Finally, we
will also show several differentiability attacks on block-cipher based on double
length hash function namely, PBGV, LOKI-DBH, MDC2 etc.

Organization: The organization of this paper is as follows. In section 2, we
define notations and describe the security notion of indifferentiability with some
mathematical background and notations which will help to prove the security
later. In section 3, we provide formal proofs of prefix-free single length MD
hash functions, PGV hash functions, and double length hash function. Then, in
section 4, we show the differentiability of some SBL and DBL hash functions.
Finally we conclude.

2 Preliminaries and Related Work

In this section, we briefly describe random oracle and ideal cipher model and
we review how the adversary works in these model. Then some designs of hash
functions are stated.



2.1 Ideal Model and Iterated structure

Random Oracle Model : f is said to be a random oracle from X to Y
if for each x ∈ X the value of f(x) is chosen randomly from Y . More pre-
cisely, Pr[f(x) = y | f(x1) = y1, f(x2) = y2, . . . f(xq) = yq] = 1

M , where
x /∈ {x1, . . . , xq}, y, y1, · · · , yq ∈ Y and |Y | = M . There is an equivalent way to
look a random function: Consider Map(X → Y ), the set of all mappings from
X to Y . f is said to be a random oracle if it is chosen uniformly from the set
Map(X → Y ). The adversary A can only query f adaptively, say by inputting
x1, · · ·xq, where q is the total number of queries. Let y1, · · · yq be the responses of
these queries, i.e., f(x1) = y1, · · · , f(xq) = yq. Since an adversary makes queries
adaptively, the ith query xi only depends on previous query-responses (in short,
q-r) (x1, y1), · · · , (xi−1, yi−1) and on the random coins selected by the adversary.

Ideal Cipher Model : Ideal cipher model is the one dating back to Shannon [19]
and used, e.g., in [7, 10, 20]. Let Bloc(K, X) = {E : K × X → X; E(k, ·) is a
permutation for each k ∈ K}. As above, a function E is chosen uniformly from the
set Bloc(K, X). As E(k, ·) (we also use the notation Ek(·)) is a permutation, an
adversary A can have access to two oracles E and E−1. Thus, the q-r’s look like
(σ1, k1, x1, y1), · · · , (σq, kq, xq, yq), where σi = ±1 and Eki(xi) = yi, i ≤ i ≤ q.
If σi = 1 then adversary makes E query with input (ki, xi) and response is
yi and if σi = −1 then adversary makes E−1 query with input (ki, yi) and
response is xi. Now one can check that, for each k, Ek(·) behaves like a random
permutation (i.e., Pr[Ek(x) = y | Ek(x1) = y1, . . . , Ek(xq) = yq] = 1

M−q , where
x /∈ {x1, . . . , xq}, y /∈ {y1, · · · , yq} ⊆ Y and |Y | = M) and for different choices of
keys k1, . . . , kl, Ek1(·), . . . , Ekl

(·) are independently distributed. See [2] for more
details and discussions about black-box models.

Iterated Hash Function : Now given a function F : Y × B → Y , one can
define an iterated function F ∗ : Y ×B∗ → Y as follows :

F ∗(x,m1,m2, · · · , ml) = F (· · ·F (x,m1), · · · ,m`),mi ∈ B, x ∈ Y

where B∗ = ∪i≥0B
i. Let M be a message space (finite) and g : M :→ B∗

be any function called a padding rule. Then the MD-Hash function based on
a compression function F , a fixed initial value IV ∈ Y and a padding rule g(·)
is MDF

g (M) = F ∗(IV, g(M)). A padding rule is called a prefix-free if M1 6=
M2 ⇒ g(M1) is not a prefix of g(M2). Coron et al. [5] considered prefix-free MD
iteration and suggested indifferentiability from random oracle model.

Given a compression function F : Y × B → Y , one can also define a wide
compression function W : Y ′ × B′ → Y ′, where Y ′ is a bigger set than Y .
For example, in case of a double length compression function Y ′ = Y × Y .
An example of a general class of double length compression functions due to
Nandi [15] is as follows : W (x1, x2,m) = F (x1 ‖ x2,m) ‖ F (p(x1 ‖ x2),m),
where x1, x2 ∈ Y, m ∈ B′, F : Y × (Y × B′) → Y and p is a permutation on
Y × Y so that it does not have any fixed point (y is called fixed point of p if
p(y) = y).



2.2 Known Results on Indifferentiability

In this section we give a brief introduction of indifferentiability and state some
known results on it.

Definition 1. [5] A Turing machine C with oracle access to an ideal primitive
F is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive G if there
exists a simulator S such that for any distinguisher D it holds that :

|Pr[DC,F = 1]− Pr[DG,S = 1] < ε

The simulator has oracle access to G and runs in time at most tS . The distin-
guisher runs in time at most tD and makes at most q queries. Similarly, CF is
said to be (computationally) indifferentiable from G if ε is a negligible function
of the security parameter k (for polynomially bounded tD and tS).

In this paper, we will mainly consider C = HF , where H is MD (or prefix-free
MD) hash function based on the random oracle model (or ideal cipher model) F
and G is a random oracle with same domain and range as the hash function. In
case of ideal cipher model the distinguisher can access both F and F−1 oracles
and the simulator has to simulate both.

The following Theorem [13] due to Maurer et al. is related to this paper. We
explain the theorem for random oracle model of hash functions. Suppose a hash
function (in some design of iteration) H based on a random oracle (or an ideal
cipher) F is indifferentiable from a random oracle G. Then a cryptosystem P
based on the random oracle G is at least as secure as the cryptosystem P based
on the hash function H in the random oracle model (or an ideal cipher model)
F . Here, F is the underlying compression function of H (or block-cipher in case
of block cipher based hash function). The original theorem as stated below is a
more general statement.

Theorem 1. [13] Let P be a cryptosystem with oracle access to an ideal prim-
itive G. Let H be an algorithm such that HF is indifferentiable from G. Then
cryptosystem P is at least as secure in the F model with algorithm H as in the
G model.

Coron et al. stated the indifferentiability of prefix free MD construction in
random oracle (or in ideal cipher model in the case of block-cipher based con-
struction). In [5] the following theorems are stated.

Theorem 2. [5] The prefix-free MD construction is (tD, tS , q, ε)-indifferentiable
from a random oracle, in the random oracle model for the compression function,
for any tD, with tS = ` ·O(q2) and ε = 2−n · `2 ·O(q2), where ` is the maximum
length of a query made by the distinguisher D.

Theorem 3. The Davis-Meyer Hash function (based on the compression func-
tion f(x,m) = Em(x) ⊕ x and a prefix free padding g) MDf

g is (tD, tS , q, ε)-
indifferentiable from a random oracle, in the ideal cipher model, for any tD,
with tS = ` ·O(q2) and ε = 2−n · `2 ·O(q2), where ` is the maximum length of a
query made by the distinguisher D.



2.3 Adversary in the random oracle model

A binary relation R on (X×B, X) is a subset of X×B×X. A relation is called
functional relation (or partial functional relation) if for each (x,m) ∈ X×B there
exists at most one y ∈ X such that (x,m, y) ∈ R. Thus, a partial functional
relation is uniquely characterized by a partial function f : X×B → X (a partial
function may have some points on domain where the functional value is not
defined). Now given a relation R on (X × B) ×X, one can define a functional
closure relation R∗ on (X ×B∗)×X which is a minimal relation containing R
such that following are true:

1. (x1,M1, x2), (x2,M2, x3) ∈ R∗ =⇒ (x1, M1 ‖ M2, x3) ∈ R∗.
2. (x1,M1 ‖ M2, x3), (x1, M1, x2) ∈ R∗ =⇒ (x2,M2, x3) ∈ R∗.

Thus, if R corresponds to a partial function f : X × B → X, then R∗
corresponds to the partial function f∗ which is obtained from the partial function
f iteratively. Sometimes, we use a more appealing notation x1 →M1 x2 ∈ R
(or x1 →M1 x2 when the relation is clear from the context) to denote that
(x1,M1, x2) ∈ R∗. Thus, in terms of this notation, R∗ is the minimal relation
containing R with the following conditions:

1. If x1 →M1 x2 →M2 x3, then x1 →M1‖M2 x3 (transitive property).
2. If x1 →M1 x2 and x1 →M1‖M2 x3, then x2 →M2 x3 (substitute property).

Let D be a distinguisher (or an adversary) in the indifferentiable attack. He
has an access to two oracles O1 and O2. In this scenario, either (O1,O2) = (H, f)
or (O1,O2) = (Rand, S), where H = MDf

g (prefix free MD hash function with
fixed initial value IV), S is any simulator, f and Rand are random oracles
from X × B to X and from M to X respectively. Distinguisher is making
successive queries of O1 or O2. Suppose the ith query is an O1 query with
the message M ∈ M and the response of the query is h (say), then we write
ri = IV →g(M) h. Otherwise, ri = h1 →m h2 for O2 query (h1, m) with response
h2. Let Ri = {r1, · · · , ri} be the relation characterizing the query-response after
the ith query and R∗i be the functional closure of Ri characterizing the view of
the distinguisher after ith query. Thus, Q = (R1,R2, · · · ,Rq) be the complete
query-response tuple and V = (R∗1,R∗2, · · · ,R∗q) be the complete view of the
distinguisher D, where q is the total number of queries. Now we define some
terminology which will be useful in this context.

1. Define support of a relation Ri by a subset of X, Supp(Ri) = {h : h →m

h1 ∈ Ri} ∪ {h : h1 →m h ∈ Ri} ∪ {IV}. Note that, Supp(Ri) = Supp(R∗i ).
2. We say, ri is a trivial query if ri ∈ R∗i−1. Since g is a prefix-free padding, ri

can be trivial query only if any one of the following holds :
(a) ri = IV →g(M) h`, where IV = h0 →m1 h1 →m2 . . . h`−1 →m`

h` ∈ R∗i−1

and g(M) = m1 ‖ . . . ‖ m`.
(b) ri = h`−1 →m`

h`, where IV = h0 →m1 h1 →m2 . . . h`−1, IV →g(M) h` ∈
R∗i−1 and g(M) = m1 ‖ . . . ‖ m`.



(c) ri is a repetition query i.e. ri = rj for some j < i. For simplicity, we can
assume that there is no repetition query as distinguisher’s point of view
it doest not help anything.

3. We say V is not collision free (or in short ¬ CF) if for some i, ri = h →M h′

is non trivial and h′ ∈ Supp(Ri−1) ∪ {h}.

3 Security Analysis

In this section, we explain how to obtain a formal proof of indifferentiability of
prefix-free single length or double length or block-cipher based MD hash func-
tions. Let E be an event which is only a function of the view of the distinguisher.
In this case we consider complement of the collision-free event (¬ CF). Thus,
there are events E1 and E2 for E when D interact with (H, f) and (Rand, S),
respectively. If this event is defined carefully so that

1. (H, f) and (Rand, S) are identically distributed conditioned on the past view
of the distinguisher and E does not occur, and

2. if Pr[E1], Pr[E2] ≤ max, where max is some negligible function.

Because of item 1, Pr[DH,f → 1 | ¬ E1] = Pr[DR,S → 1|¬E2]. Then, one can
show the indifferentiability of H with the random oracle model. More precisely,

Adv(D) = | Pr[DH,f → 1]− Pr[DR,S → 1] |
= | Pr[DH,f → 1 | E1]× Pr[E1] + Pr[DH,f → 1 | ¬E1]× Pr[¬E1]
−Pr[DR,S → 1 | E2]× Pr[E2]− Pr[DR,S → 1 | ¬E2]× Pr[¬E2] |

≤ max× | Pr[DH,f → 1 | E1]− Pr[DR,S → 1 | E2] |
+Pr[DH,f → 1 | ¬E1]× | Pr[¬ E1]− Pr[¬ E2] | · · · · · · (1)

= max× | Pr[DH,f → 1 | E1]− Pr[DR,S → 1 | E2] |
+Pr[DH,f → 1 | ¬E1]× | Pr[E1]− Pr[E2] | · · · · · · (2)

≤ max× | Pr[DH,f → 1 |E1]− Pr[DR,S → 1 |E2] |
+max× Pr[DH,f → 1 |¬E1]

≤ 2×max

In (1), Pr[DH,f → 1 | ¬ E1] = Pr[DR,S → 1|¬E2] and in (2), Pr[¬ E2] −
Pr[¬ E1] = Pr[E1]− Pr[E2]. Thus we have,

Adv(D) ≤ 2×max{Pr[E1], Pr[E2]} · · · · · · (3)

Similarly, if H is based on the block cipher E, we have three set of oracles
(HE , E,E−1) or (Rand, S, S−1). Then we can proceed as like above.

3.1 Indifferentiability of prefix free single length MD hash functions

Now we define a simulator S which simulates f so that no distinguisher can
distinguish (R,S) with (H, f), where R and f are assumed to be random oracles
and H is the prefix-free hash function based on f .



Simulator : The simulator keeps the relations (R1, . . . ,Ri−1). Initially,R0 = ∅.
On the ith query (hi, xi), the response of S is as follow

1. If ∃ IV →N hi ∈ Ri−1, g(M) = N ‖ xi, then run Rand(M) and obtain the re-
sponse h∗.Ri = Ri−1∪{hi →xi

h∗} and return h∗. For more than one choices
of M , return a random string h∗ (this will never happen if (R1, . . . ,Rq) is
collision-free).

2. Else return a random string h∗ and Ri = Ri−1 ∪ {hi →xi
h∗}.

If distinguisher is making at most q queries then one can design the above
simulator so that it runs in time O(`q). In the worst case, simulator has to back
track to initial value to check whether condition (1) is satisfied or not and this
is needed at most O(`q) time. Note that in [5] time complexity for simulator is
O(`q2).

Distribution of oracles : Here, we study the conditional distribution of all
oracles given the past view of the distinguisher and the collision-freeness of the
view.

LetQi be the set of all query-response after i queries. Let CF1 and CF2 denote
that the complete view V is collision free (CF) in case of (H, f) and (Rand, S)
queries, respectively. Given Qi−1∧CF, the ith query ri is a trivial query in (H, f)
if and only if so is in (Rand, S) and the response of the trivial query is uniquely
determined by the previous view. So, output of H or S is same as output of
Rand or S respectively. So assume that ri is not a trivial query.

Lemma 1. Given Qi−1 ∧ CF, the conditional distribution of H, f, Rand and S
on ith query (hi, xi) is uniformly distributed on the set X \ (Supp(Ri−1) ∪ {hi})
provided it is not a trivial query (hi = IV for O1 oracle query).

Proof. In case of Rand and S, as CF2 is not true the output is drawn randomly
outside the set Supp(Ri−1)∪{hi}. In case of Rand query M , since ri is a nontrivial
query, Rand(M) hash has not been queried before even by the simulator. So,
condition on CF2 the distribution of Rand(M) is uniformly distributed on the
set X \ (Supp(Ri−1)∪ {IV}). In case of S query (hi, xi) query, the output is not
random only if it is trivial query (where the case (1) of the simulator occurs
and for the corresponding message M Rand(M) has been queried before by the
distinguisher). So it is true for both Rand and S. Now we will prove it for H.

Let Si = Supp(Ri−1) ∪ {hi}. If we can prove that for all a 6= a′ /∈ Si,
Pr[H(M) = a | Qi−1 ∧ CF1] = Pr[H(M) = a′ | Qi−1 ∧ CF1] then we are done
since for all other choices of a the probability is zero because of condition of CF1.
Given a and a′, Let A = {f : X × B → X : Hf (M) = a ∧ f satisfies Qi−1}.
Similarly define A′ for a′. Now one can define a bijection φ between A and A′ in
the following way.

1. If f ∈ A then φ(f)(h, x) = f(h, x) if {f(h, x), h} ∩ {a, a′} = φ



2. φ(f)(a, x) = f(a′, x) if f(a′, x) /∈ {a, a′}. Similarly, φ(f)(a′, x) = f(a, x) if
f(a, x) /∈ {a, a′}.

3. If h /∈ {a, a′} but f(h, x) = a then φ(f)(h, x) = a′. Similarly, f(h, x) = a′

then φ(f)(h, x) = a.
4. There are four other possibilities i.e.

(a) if f(a, x) = a then φ(f)(a′, x) = a′.
(b) if f(a, x) = a′ then φ(f)(a′, x) = a.
(c) if f(a′, x) = a then φ(f)(a, x) = a′.
(d) if f(a′, x) = a′ then φ(f)(a, x) = a.

Now it is easy to check that φ(f) is well defined and it belongs to A′. Here,
we mainly interchange the role of a and a′ in all possible cases of input and
output keeping other values the same. Thus, given Hf (M) = a, we should have
Hφ(f)(M) = a′ keeping all other equalities fixed (in Qi−1). Now it is also easy
to check that this is a bijection as we can define the inverse function similarly.
Thus, | A | = | A′ | and hence the probabilities are equal. We can prove similarly
for the distribution of f . So we skip the proof of this.

Now we bound the probability of collision events for both cases.

Lemma 2. Pr[¬CF1] = O( l2q2

2n ) and Pr[¬CF2] = O( q2

2n ), where l is the maxi-
mum number of blocks in H-query and |X| = 2n.

Proof. We first assume that there is no trivial query. If it is there, then we have
less probability as it does not help in collision. Now we compute the probability
where all outputs (including the intermediate hash values for different messages)
and inputs of f are distinct. Now any choices of input-outputs satisfying the
above give all different inputs to f . Thus, the probability of any such choice
is 1/2nq′ , where q′ is the total number of inputs of f . Number of choices of
above tuples is at least (|X| − 1)(|X| − 3) · · · (|X| − 2q′ + 1). Thus, Pr[CF1] =
(|X| − 1)(|X| − 3) · · · (|X| − 2q′ + 1)/2nq′ = 1 − O( l2q2

2n ). In case of Pr[CF2],
the probability is O( q2

2n ) as output of simulator and Rand is random except for
nontrivial query. As nontrivial can not make collision we have the above collision
probability.

Combining the lemmas and Equation (3) we obtain the following main the-
orem of this section.

Theorem 4. Prefix-free single length MD hash functions in a fixed-size random
oracle model is (tD, tS , q, ε)-indifferentiable from a random oracle, for any tD,
with tS = l · O(q) and ε = 2−n+1 · l2 · O(q2), where l is the maximum length of
a query made by the distinguisher D.

3.2 Indifferentiability of prefix free PGV hash functions

Now we consider all collision secure PGV hash functions. We will show, in the
prefix-free mode, that sixteen (indexed by 1 ∼ 16 in table 1 of Appendix A)



out of twenty are also indifferentiable with random oracle. Others (indexed by
17 ∼ 20 in table 1 of Appendix A) are not indifferentiable from random oracle.
It is easy to check that any PGV compression functions are not indifferentiable
with random oracle.

Thus, we can not apply the previous theorem directly. First we consider the
previous example f(hi−1, mi) = Emi

(hi−1)⊕ hi−1. Coron et al. also considered
this example and stated indifferentiability in [5]. We will define a simulator which
simulates both E and E−1. On query (1, ·, ·) it simulates E and on query (−1, ·, ·)
it simulates E−1.

Simulator Like the previous simulator, it also keeps the relations (R1, . . . ,Ri−1).
Initially, R0 = ∅. Let {Px}x∈X be a family of random permutation. Now the re-
sponse of S is as follow:

1. On query (1, hi, xi),
(a) If IV →N hi and g(M) = N ‖ xi then run Rand(M) and obtain the

response h∗. Return h∗ ⊕ hi and Ri = Ri−1 ∪ {hi →xi h∗} (otherwise
behave randomly and similar to previous simulator this does not occur
if collision-free occurs).

(b) Else return Pxi(hi) = h∗,Ri = Ri−1 ∪ {hi →xi h∗ ⊕ hi}.
2. On query (−1, yi, xi),

(a) For each IV →N h such that g(M) = N ‖ xi, run Rand(M) = h∗. If
h∗ ⊕ h = yi, return h and Ri = Ri−1 ∪ {hi →xi h∗}. If there is more
than one such M we say the event BAD occurs and return randomly.

(b) Else return P−1
xi

(yi) = h (say) and Ri = Ri−1 ∪ {hi →xi h∗ ⊕ hi}. .

The time complexity of the simulator is O(lq2). The worst case occurs to
search all choices of IV →M h in the case of S−1 query. We define the COLL as
defined in previously or BAD occurs. Let D be a distinguisher keeping relations
Ri andR∗i . Note that, (Ex(y) = z ⇔ h →m h′) ⇐⇒ m = x, h = y and h′ = z⊕y.
Now for a random permutation either z or y is chosen randomly.

1. For E query, define Si = Supp(Ri) ⊕ hi ∪ Pxi [i], where Px[i] is the set
of all images of Px obtained from Px or P−1

x -query till ith query of the
distinguisher.

2. For E−1 query, Si = Supp(Ri) ∪ (Supp(Ri) ⊕ yi) ∪ P−1
xi

[i], where P−1
x [i] is

the set of all images of P−1
x .

3. Define, Wi = {h ⊕ h∗ : IV →M h →m h∗ ∈ R∗i−1 and M ‖ m = g(X) for
some X}. This set is related to the BAD event.

4. Finally we define, Zi = Si ∪Wi ∪ {hi} (for R query hi = IV, for E−1 query
we can ignore {hi}).
Now we say that Vi is not collision-free if for for some j ≤ i, the output of

O2 oracle (in jth query) is in Wi and it is not a trivial query. This definition is
a modified definition of previous collision-free. Here we change the collision set
to Wi. Similar to the previous results we have the following lemma and main
theorem of this section.



Lemma 3. The conditional distribution of H, E,E−1Rand, S and S−1 on ith

query, given Qi−1 ∧ CF is uniformly distributed on the set X \Wi provided it is
not a trivial query, where hi = IV for O1 query or (hi, xi) be the query for O2.
In case of trivial query all distribution are degenerated.

Proof. If the query is non-trivial query and collision free is true then Rand, S,
S−1, E and E−1 are uniformly distributed on the set X \Wi. In case of HE , the
hash function, we can prove that Pr[HE(Mi) = a1] = Pr[HE(Mi) = a2], where
a1, a2 ∈ X \Wi. While we count all possible functions E, we interchange the roll
of a1 and a2 in the inputs and outputs of E (as in Hf ). We skip the detail of
the proof as it is similar to Lemma 1.

If collision free is true the response of trivial query is completely determined
by the past view (for all possible oracles). For example, if it is S−1 query then
note that there are not more than one choice of M (or h, see case (1)) as BAD
events is included in the event ¬ CF. Thus, there is exactly one h which is
completely determined by the past view and this is the response of this query.
Other cases also can be checked.

Lemma 4. Pr[¬CF1] = O( l2q2

2n ) and Pr[¬CF2] = O( q2

2n ), where l is the maxi-
mum number of blocks in H-query.

Proof. The proof of the lemma is similar to lemma 2 except when BAD event
occurs. For each query it will happen with probability O(q/2n) as R(M)⊕h = yi

has probability 1/2n and there can be at most 2n such M ’s.

Theorem 5. Prefix-free single length MD hash functions in a fixed-size random
oracle model is (tD, tS , q, ε)-indifferentiable from a random oracle, for any tD,
with tS = l · O(q2) and ε = 2−n+1 · l2 · O(q2), where l is the maximum length of
a query made by the distinguisher D.

Indifferentiability of sixteen PGV hash functions.
Now we consider all collision secure PGV hash functions. We will show, in

the prefix-free mode, that sixteen (indexed by 1 ∼ 16 in table 1 of Appendix A)
out of twenty are also indifferentiable with random oracle. Others (indexed by
17 ∼ 20 in table 1 of Appendix A) are not indifferentiable from random oracle.
Till now we have shown for the case-1 of Appendix A. For other cases one can
make similar analysis. For example, hi = f(hi−1,mi) = Ewi(mi) ⊕ hi−1. So,
(Ek(x) = y ⇔ h →m h′) ⇐⇒ m = x, h = x ⊕ k and h′ = k ⊕ x ⊕ y. One can
also define the simulator for other PGV functions similarly. The proof of the
indifferentiability will follow similarly.

1. On query (1, ki, xi) i.e. Eki(xi),
(a) If IV →N hi and g(M) = N ‖ xi then run Rand(M) and obtain the

response h∗. Return h∗ ⊕ ki ⊕ xi and Ri = Ri−1 ∪ {(ki ⊕ xi) →xi h∗}
(otherwise behave randomly and similar to previous simulator this does
not occur if collision-free occurs).

(b) Else return Pki(xi) = h∗,Ri = Ri−1 ∪ {ki ⊕ xi →xi h∗ ⊕ ki ⊕ xi}.



2. On query (−1, ki, yi), i.e., E−1
ki

(yi)
(a) For each IV →N h such that g(M) = N ‖ ki ⊕ h, run Rand(M) = h∗. If

h∗⊕h = yi, return h⊕ki and Ri = Ri−1∪{h →ki⊕h h∗}. If there is more
than one such M we say the event BAD occurs and return randomly.

(b) Else return P−1
ki

(yi) = h (say) and Ri = Ri−1∪{h⊕ki →xi h∗⊕h⊕ki}.

3.3 Indifferentiability of Double Length hash functions

Now we consider the double length construction. A 2n-bit hash value xl = (hl, gl)
is computed from κl-bit message (m1,m2, · · · , ml) as follows. For i = 1, 2, · · · , l,
F (xi−1,mi) = (hi, gi) such that

hi = f(hi−1, gi−1,mi)
gi = f(p(hi−1, gi−1),mi)

where p is a permutation on 2n bits and p has no fixed point and p(g, h) 6=
(h, g) for any h, g. Further we assume that p2(·) is an identity permutation. One
example would be p(x) = x, where x is the bitwise complement. We define an
equivalence relation, w ≡ w∗ if w = p(w∗) or w = w∗. Like previous simulator
we define the simulator as follows:

Simulator : The simulator keeps the relations (R1, . . . ,Ri−1). Initially,R0 = ∅.
On the ith query (hi, gi, xi), the response of S is as follow:

1. If the ith query is same as a previous query, output same output of the
previous query.

2. Else if ∃ IV →N h||g ∈ Ri−1, g(M) = N ‖ xi where h||g ≡ hi||gi, then
run Rand(M) and obtain the response h∗||g∗. For more than one choices of
M , return a random string h∗||g∗ (this will never happen if (R1, . . . ,Rq) is
collision-free).

(a) If h||g = hi||gi then return h∗.
(b) If h||g = p(hi||gi) then return g∗.
(c) If (p(hi||gi), xi) has been queried before then

i. If h||g = hi||gi then Ri = Ri−1 ∪ {h||g →xi h∗||g∗}.
ii. If h||g = p(hi||gi) then Ri = Ri−1 ∪ {h||g →xi g∗||h∗}.

3. Else return a random string h∗. If (p(hi||gi), xi) has been queried before and
response is g∗ then Ri = Ri−1 ∪ {hi||gi →xi h∗||g∗} ∪ {p(h||g) →xi g∗||h∗}.
If distinguisher is making q queries at most then one can design the above

simulator so that it runs in time O(lq). In the worst case simulator has to back
track to initial value to check whether condition (1) is satisfied or not and this
needs at most O(lq) time. Similar to previous results we have the following
lemma and main theorem of this section. Similar to prefix free MD construction,
we can define support and collision free.



1. Define support of a relation Ri by a subset of X, Supp(Ri) = {h||g, p(h||g) :
h||g →m h1||g1 ∈ Ri} ∪ {h||g, p(h||g) : h1||g1 →m h||g ∈ Ri} ∪ {IV}. Note
that, Supp(Ri) = Supp(R∗i ).

2. We say, ri is a trivial query if ri ∈ R∗i−1. Since g is a prefix-free padding, ri

can be trivial query only if any one of the following holds :

(a) ri = IV →g(M) h`||g`, where IV = h0||g0 →m1 h1||g1 →m2 . . . h`−1||g`−1 →m`

h`||g` ∈ R∗i−1 and g(M) = m1 ‖ . . . ‖ m`.
(b) ri = h`−1||g`−1 →m`

h` or p(h`−1||g`−1) →m`
g`, where IV = h0||g0 →m1

h1||g1 →m2 . . . h`−1||g`−1, IV →g(M) h`||g` ∈ R∗i−1 and g(M) = m1 ‖
. . . ‖ m`.

(c) ri is a repetition query i.e. ri = rj for some j < i. For simplicity we can
assume that there is no repetition query as distinguisher’s point of view
it doest not help anything.

3. We say V is not collision free (or in short ¬ CF) if for some i one of followings
hold :

(a) In case of O1 query : ri = hi||gi →M h′||g′ is non trivial and h′||g′ ∈
Supp(Ri−1) ∪ {hi||gi}.

(b) In case ofO2 query : ri = hi||gi →mi h′ is non trivial andO2(p(hi||gi), xi) =
g′ has been queried before and h′||g′ or g′||h′ ∈ Supp(Ri−1) ∪ {hi||gi} ∪
{p(hi||gi)}.

Lemma 5. Given Qi−1∧CF, the conditional distribution of H, f, Rand and S on
ith query is uniformly distributed on the set X \ (Supp(Ri−1)∪{hi||gi}) provided
it is not a trivial query, where hi||gi = IV for O1 query or (hi||gi, xi) be the query
for O2.

Proof. Given a(= a1 ‖ a2) and a′(= a′1 ‖ a′2) /∈ X \ (Supp(Ri−1)∪{hi||gi}), Let
A = {f : X × B → X : Hf (M) = a ∧ f satisfies Qi−1}. Similarly define A′ for
a′. Similar to prefix free MD construction, we can define a bijection φ between
A and A′ similar to the Lemma 5.

1. If f ∈ A then φ(f)(b, x)||φ(f)(p(b), x) = f(b, x)||f(p(b), x) if {f(b, x)||f(p(b), x), b}∩
{a, a′} = φ

2. φ(f)(a, x)||φ(f)(p(a), x) = f(a′, x)||f(p(a′), x) if f(a′, x)||f(p(a′), x) /∈ {a, a′}.
Similarly, φ(f)(a′, x)||φ(f)(p(a′), x) = f(a, x)||f(p(a), x) if f(a, x)||f(p(a), x) /∈
{a, a′}.

3. If b /∈ {a, a′} but f(b, x)||f(p(b), x) = a then φ(f)(b, x)||φ(f)(p(b), x) = a′.
Similarly, f(b, x)||f(p(b), x) = a′ then φ(f)(b, x)||φ(f)(p(b), x) = a.

4. There are four other possibilities i.e.

(a) if f(a, x)||f(p(a), x) = a then φ(f)(a′, x)||φ(f)(p(a′), x) = a′.
(b) if f(a, x)||f(p(a), x) = a′ then φ(f)(a′, x)||φ(f)(p(a′), x) = a.
(c) if f(a′, x)||f(p(a′), x) = a then φ(f)(a, x)||φ(f)(p(a), x) = a′.
(d) if f(a′, x)||f(p(a′), x) = a′ then φ(f)(a, x)||φ(f)(p(a), x) = a.



Now it is easy to check that φ(f) is well defined and it belongs to A′. Here, we
mainly interchange the roll of a and a′ in all possible cases of input and output
keeping others same. Thus, given Hf (M) = a, we should have Hφ(f)(M) = a′

keeping all other equalities fixed (in Qi−1). Now it is also easy to check that this
is a bijection as we can define the inverse function similarly. Thus, | A | = | A′ |
and hence the probabilities are equal. We can prove similarly for the distribution
of f . So we skip the proof of this.

Now we bound the probability of collision events for both cases.

Lemma 6. Pr[¬CF1] = O( l2q2

22n ) and Pr[¬CF2] = O( q2

22n ), where l is the maxi-
mum number of blocks in H-query and |X| = 22n.

Proof. The proof is also similar to the Lemma 2. So we skip the proof.

Theorem 6. Let F be above double length hash function. Then for any prefix-
free function g, MDF

g in a single-size random oracle model is (tD, tS , q, ε)-
indifferentiable from a random oracle, for any tD, with tS = l · O(q) and ε =
2−2n+1 · l2 · O(q2), where l is the maximum length of a query made by the dis-
tinguisher D.

4 Attack on Some SBL and DBL Hash Functions

In this section we define PGV and PBGV hash functions. We give some indif-
ferentiable attacks on some of these hash functions. We show only attacks with
one-block padded message. More than one block, we can attack similarly.

The Preneel-Govaerts-Vandewalle (PGV) schemes [17]

Let x0 be the initial value and κ = N . E is N -bit block cipher with an N -bit
key. An N -bit hash value xl is computed from κl-bit message (m1,m2, · · · ,ml)
as follows. For i = 1, 2, · · · , l,

F (xi−1, mi) = xi = Ea(b)⊕ c

where a, b, c ∈ {xi−1,mi, v, xi−1 ⊕mi}. Here, v is a constant.

Among 20 collision resistant PGV schemes, even we use prefix-free padding
g, we show that 4 schemes are differentiable from random oracle. 4 schemes are
F1(hi−1,mi) = Ehi−1(mi)⊕mi, F2(hi−1,mi) = Ehi−1(mi ⊕ hi−1)⊕mi ⊕ hi−1,
F3(hi−1,mi) = Ehi−1(mi)⊕mi⊕hi−1, and F4(hi−1, mi) = Ehi−1(mi⊕hi−1)⊕mi.
Here, we consider F1. Similarly, we can show the insecurity of other 3 cases.

– distinguisher D can access to oracles (O1,O2) where (O1,O2) is (H, E,E−1)
or (Rand, S, S−1).
• make a random query M such that g(M) = m and |m| = n. then give

the query M to oracle O1 and receive z.



• make an inverse query (−1, x0, z ⊕m) to O2 and receive m∗.
• if m = m∗ output 1, otherwise 0.
• Since any simulator S can know random m only with probability 2−n,

|Pr[DH,E,E−1
= 1]− Pr[DR,S,S−1

= 1]| = 1− 2−n

This is not negligible. So MDF1
g is differentiable from random oracle.

The Preneel-Bosselaers-Govaerts-Vandewalle (PBGV) scheme [16]

Let x0 = (h0, g0) be initial value and N = 2n and κ = N . E is N -bit block cipher
with an N -bit key. A N -bit hash value xl = (hl, gl) is computed from κl-bit
message m = (m1,m2, · · · ,ml) where mi = (mi,1, mi,2) and |mi,1| = |mi,2| = n.
For i = 1, 2, · · · , l, F (xi−1,mi) = (hi, gi) is defined as follows.

hi = Emi,1⊕mi,2(hi−1 ⊕ gi−1)⊕mi,1 ⊕ hi−1 ⊕ gi−1

gi = Emi,1⊕hi−1(mi,2 ⊕ gi−1)⊕mi,2 ⊕ hi−1 ⊕ gi−1

The following is the indifferentiable attack for the PBGV scheme.

– distinguisher D can access to oracles (O1,O2) where (O1,O2) is (H, E,E−1)
or (Rand, S, S−1).
• make a random query M such that g(M) = m1 = m1,1||m1,2 and |m1| =

2n. Then give the query M to oracle O1 and receive x1 = (h1, g1).
• make an inverse query (−1,m1,2 ⊕ h0 ⊕ g0 ⊕ g1,m1,1 ⊕ h0) to O2 and

receive out.
• if out = m1,2 ⊕ g0 output 1, otherwise 0.
• Since any simulator S can know random m1,2 only with probability 2−n,

|Pr[DH,E,E−1
= 1]− Pr[DR,S,S−1

= 1]| = 1− 2−n

This is not negligible. So MDF
g is differentiable from random oracle.

By using the same idea one can find indifferentiability attack on QG-I, LOKI
DBH, MDC-2 and some of the Hirose’s double length hash constructions.

5 Conclusion

As hash function is at times a popular candidate for approximation of a random
oracle, the notion of indifferentiability is important to study. In this paper we
have studied many known designs of hash function in term of indifferentiability.
Some of them are secure and against some of them we have found attack. So
there are many designs, for example sixteen PGV hash functions, which are
secure beyond the collision security. This paper also presents an unified way
to prove the indifferentiability for many designs of hash functions. Finally we
note that there are still many designs whose security analysis in the view of
indifferentiability are open.
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Appendix A : Table of twenty PGV Hash Functions

Case PGV Case PGV

1 Emi(hi−1)⊕ hi−1 11 Emi(hi−1)⊕ v

2 Emi(wi)⊕ wi 12 Ewi(hi−1)⊕ v

3 Emi(hi−1)⊕ wi 13 Emi(hi−1)⊕mi

4 Emi(wi)⊕ hi−1 14 Ewi(hi−1)⊕ wi

5 Ewi(mi)⊕mi 15 Emi(wi)⊕ v

6 Ewi(hi−1)⊕ hi−1 16 Emi(wi)⊕mi

7 Ewi(mi)⊕ hi−1 17 Ehi−1(mi)⊕mi

8 Ewi(hi−1)⊕mi 18 Ehi−1(wi)⊕ wi

9 Ewi(wi)⊕ v 19 Ehi−1(mi)⊕ wi

10 Ewi(mi)⊕ wi 20 Ehi−1(wi)⊕mi

Table 1. 20 Collision Resistant PGV Hash Functions in the Ideal Cipher Model.
(wi = mi ⊕ hi−1)


