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Abstract. We consider oblivious transfer protocols and their applica-
tions that use underneath semantically secure homomorphic encryption
scheme (e.g. Paillier’s). We show that some oblivious transfer protocols
and their derivatives such as private matching, oblivious polynomial eval-
uation and private shared scalar product could be subject to an attack.
The same attack can be applied to some non-interactive zero-knowledge
arguments which use homomorphic encryption schemes underneath. The
roots of our attack lie in the additional property that some semanti-
cally secure encryption schemes possess, namely, the decryption also re-
veals the random coin used for the encryption, and that the (sender’s
or prover’s) inputs may belong to a space, that is very small compared
to the plaintext space. In this case it appears that even a semi-honest
chooser (verifier) can derive from the random coin bounds for all or some
of the sender’s (prover’s) private inputs with non-negligible probability.
We propose a fix which precludes the attacks.
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1 Introduction

Oblivious Transfer (OT) [4, 30] protocols allow one party, called the sender to
send part of its inputs to a second party, called chooser, in such a manner that
the chooser does not receive more information than it is entitled and the sender
does not learn which part of the inputs the chooser received. Oblivious transfer
is used as a key component in many applications of cryptography.

Naor and Pinkas [26] proposed a way to use OT for polynomial evaluation.
Another application known as private matching solves the problem of two par-
ties who possess lists of items and want to compute their set-intersection or to
approximate the size of the intersection. Freedman et al. [16] have shown that
a simple reduction from oblivious transfer to private matching exists. The au-
thors of [16] used oblivious polynomial evaluation in their solution for the private
matching set intersection problem.



In this paper we will work in the semi-honest security model, in which the
parties follow the protocol, but may be curious. We do not consider malicious
parties who may deviate from the protocol. Often, there is no guarantee for the
privacy of the sender if the chooser is malicious, but we do not consider this
issue.
Our Contribution: We first describe an attack against an oblivious transfer
protocol; subsequently we apply the attack to certain protocols derived from
oblivious transfer, such as oblivious polynomial evaluation, private matching
(set cardinality and subset inclusion) and private (shared) scalar product. For
our attack we exploit the additional property that some semantically secure en-
cryption schemes possess, namely that the decryption reveals the random coin
used for encryption. We consider the case when the (sender’s) inputs belong to
a very small space compared to the plaintext space of the Paillier cryptosystem.
We show that from the random coin the chooser can derive certain informa-
tion (bounds) for all (or some) of the sender’s private inputs with non-negligible
probability. We extend the attack to certain non-interactive zero-knowledge pro-
tocols. We introduce the so-called irrational behavior of the chooser, meaning
that a semi-honest but curious chooser is “bluffing” in order to get the sender’s
inputs, i.e. the chooser is putting his privacy at risk. To the best of our knowl-
edge some of the protocols from the following papers [6, 12, 17, 19, 31] could be
subject to this attack when applied in this scenario. Finally we propose a fix
which precludes the attacks.
Organization of the paper: In the next section we introduce the notions of ho-
momorphic semantically secure cryptosystems, oblivious transfer, and different
applications of the oblivious transfer. Section 3 provides description of several
known protocols and in Sect. 4 the attack against them is proposed. We conclude
in Sect. 5.

2 Preliminary

Homomorphic Semantically Secure Cryptosystems.
Let Π = (GΠ , E, D) be a public-key encryption cryptosystem, where GΠ is the
key generation algorithm, E is the encryption algorithm and D is the decryption
algorithm. Let k be the security parameter, then the key generation algorithm
GΠ on input 1k generates a valid key pair (SK,K) of private and public keys
that corresponds to the security parameter k. The encryption algorithm E takes
as input a plaintext m, a random coin r and the public key K and outputs the
corresponding ciphertext EK(m, r). The decryption algorithm takes as input a
ciphertext c and the private key SK and outputs the corresponding plaintext
DSK(c). More formal: GΠ : 1k 7→ (SK, K); EK : (m, r) 7→ EK(m, r), DSK : c 7→
DSK(c) and DSK(c) = m if c = EK(m, r). It is required that DSK(EK(m, r)) =
m for any random coin r, key pair (SK,K) and plaintext m. It is said that Π is
homomorphic, if EK(m1, r1) ·EK(m2, r2) = EK(m1 +m2, r1 · r2). It then follows
that EK(m, r)s = EK(s ·m, rs).



For an algorithm A, define Advsem
Π,k (A) to be the advantage that A has over

random guessing when trying to distinguish random encryption of two elements,
chosen by herself. It is said that Π is semantically secure under an chosen plain-
text attack (IND-CPA secure) if for all PPT (probabilistic polynomial time)
algorithms A, the advantage Advsem

Π,k (A) is negligible in k.
Several homomorphic probabilistic encryption schemes are known: ElGamal

[14], Goldwasser and Micali [18], Benaloh [2], Okamoto and Uchiyama [28], Nac-
cache and Stern [25], Paillier [29] and its modifications [5, 13].

For the sake of simplicity, we will describe the protocols with the Paillier
cryptosystem (some of the protocols which we consider are indeed designed for
the Paillier cryptosystem), although most of the homomorphic semantically se-
cure cryptosystems can be used instead of Paillier’s. We present the Paillier
cryptosystem for completeness, but omit the number-theoretic justifications.

Key Generation: let N be an RSA modulus N = pq, where p, q are large
primes. The public key K is N and the secret key SK is λ(N) = lcm((p −
1), (q − 1)), where λ(N) is the Carmichael function. One can assume w.l.o.g.
that N > 2k, where the security parameter k ≥ 1024.

Encryption: to encrypt a plaintext m ∈ ZN , compute the ciphertext

c = EK(m, r) = (1 + mN)rNmod N2, with r ∈R Z∗
N .

Decryption: to decrypt a ciphertext c ∈ ZN2 , compute the plaintext

m = DSK(c) =
L(cλ(N) mod N2)

λ(N)
mod N, where L(u) =

u− 1
N

.

The Paillier cryptosystem possesses the following useful properties:

EK(m1, r1)EK(m2, r2) mod N2 = EK(m1 + m2 mod N, r1r2 mod N)
EK(m, r)s mod N2 = EK(sm mod N, rs mod N)

EK(m, r)(1 + N)c mod N2 = EK(m + c mod N, r).

In order to re-randomize a ciphertext c = EK(m, r), simply multiply it by
a random encryption of 0, i.e. compute crN

1 mod N2 = EK(m, rr1mod N) for
r1 ∈R Z∗

N .
It is well known (see [5]) that for Paillier’s cryptosystem DSK(c) = (m, r) if

c = EK(m, r), i.e. the result of the decryption of a ciphertext is the corresponding
plaintext and the random coin used for the encryption (usually the random coin
cannot be recovered efficiently). Indeed as Catalano et al. have shown there is
an alternative decryption process based on the observation that the ciphertext
c = EK(m, r) satisfies c = rNmod N . The latter can disclose r by an RSA
decryption (modulo N , with public exponent N). Now putting r in the original
ciphertext equation provides the plaintext m.

We stress here that the ability to efficiently disclose the random coin used
for the encryption, forms an essential point for our attack. We pose as an open
problem whether our attack can be extended to some of the other homomorphic
semantically secure cryptosystems.



2.1
(n
1

)
-Oblivious Transfer and Zero-Knowledge Arguments

During an
(
n
1

)
-Oblivious Transfer the sender maintains n items and the chooser

receives one item chosen by him. The sender does not know which item was
transferred. The security of an OT is usually defined in two parts. We will follow
the definitions of [22, 27]. Let k̃ be the security parameter.

Chooser-Privacy: Consider an algorithm A that executes the sender’s part
of the OT protocol; define AdvOT

Cho,k̃
(A) to be the probability that after ob-

serving an execution of the protocol, A can predict which choice was made by
the chooser. An OT protocol is said to be (computationally) chooser-private if
AdvOT

Cho,k̃
(A) is negligible for any PPT algorithm A. In all this protocols the

chooser-privacy (which holds even against a malicious sender) will be based on
the indistinguishability implied by the underlying semantically secure encryption
scheme.

Sender-Privacy: Consider an algorithm A executing the chooser’s part of the
OT protocol; define a simulator S that generates an output that is statistically
indistinguishable from the view of A that interacts with the honest sender. More
precisely, for an algorithm S define AdvOT

Sen,k̃
(A,S) to be the statistical difference

of the distributions of the S output and the view of A. An OT protocol is called
(statistically) sender-private if for every (not necessarily PPT) A there exists a
(not necessarily PPT) S, such that AdvOT

Sen,k̃
(A,S) is negligible in k̃. The sender-

privacy is called perfect if AdvOT
Sen,k̃

(A,S) = 0. In all this cases the sender-privacy
is based on a comparison with the ideal model.

Recently Damg̊ard et al. [12] have proposed a method to build non-interactive
zero-knowledge protocols from homomorphic encryption. Namely the authors
described a method for compiling a class of Σ-protocols (3-move public-coin
protocols) into non-interactive zero-knowledge arguments. In a zero-knowledge
proof system a prover convinces a verifier via an interactive protocol that some
statement is true. The verifier should learn nothing beyond the fact that the
assumption is valid. Σ-protocols are three-move protocols where conversations
are tuples of the form (a, e, z) where e is a random challenge sent by the verifier, a
is the prover’s input and z is the proof. There are several well-known techniques
for making Σ-protocols non-interactive [11, 15].

2.2 Applications of OT

As shown by Kilian [21] most cryptographic protocols can be based on oblivious
transfer. In this section we will describe several protocols built on top of OT.

An
(
n
1

)
-OT protocol sometimes needs to be sender-verifiable (or committed)

[7, 10] in the following sense: the sender commits to every item and sends these
commitments to the chooser; these commitments later can be used in various
zero-knowledge proofs and arguments.

The notion of conditional oblivious transfer (COT) was introduced by Di
Crescenzo et al. [9]. It is a variant of OT in which the two participants have
private inputs, say x and y respectively, and share a public predicate Q(·, ·). The



sender has a secret s, which is transferred to the chooser if and only if Q(x, y) = 1.
If Q(x, y) = 0, no information about s is transferred to the chooser. The chooser’s
private input and the value of the predicate remain computationally hidden from
the sender.

The notion of strong conditional oblivious transfer (SCOT) has been first in-
troduced by Di Crescenzo [8]; later Blake and Kolesnikov [3] have independently
defined the same notion. SCOT strengthens the COT definition, in the SCOT
setting – unlike the COT “all-or-nothing” approach – the sender possesses two
secrets s0 and s1 and transfers si if Q(x, y) = i (where i = 0 or 1). In addition to
the COT requirement that the chooser private input has to be computationally
hidden from the sender, the value of the predicate should also remain hidden for
both participants.

Consider the following problem: two parties possess lists (sets) of items and
they want to compute their set-intersection. Related problems are to approx-
imate the size of the intersection or to decide whether the intersection size is
greater than a threshold. Such problems are called private matching (PM) in
[16]. That is, if the chooser inputs X = {x1, . . . , xkc

} and the sender inputs Y =
{y1, . . . , yks

} then the chooser learns X ∩ Y = {xu : ∃v, xu = yv} ← PM(X, Y ).
The related variants are as follows: the chooser learns |X ∩ Y | ← PMC(X, Y )
for the intersection size problem or for the threshold intersection size problem he
gets 1← PMt(X, Y ) if PMC(X, Y ) > t and 0 otherwise. As shown by Freedman
et al. [16] a simple reduction from oblivious transfer to private matching exists.

In a simpler form of PM both lists contain just one item, thus the two parties
want to compare their private inputs without leaking it. Private equality test
(PET) allows the chooser to know whether his private input and the sender’s
private input are equal [16, 22].

Another kind of PM is the private subset inclusion. Namely, both participants
have sets X and Y as inputs and the chooser gets 0 if X ⊆ Y or 1 otherwise.
Laur et al. [24] have proposed a private subset inclusion protocol, based on an
improvement of the intersection size protocol by Freedman et al. [16].

Naor and Pinkas [26] proposed a way to use OT for polynomial evaluation
(OPE). Freedman et al. [16] used OPE in their solution for the PM set inter-
section problem. Recently Freedman et al. [17] proposed another OPE protocol
which is used as a building block for a keyword search protocol.

A protocol between two parties is called a scalar product (SP) protocol when
on private inputs of both parties x = (x1, . . . , xn) and y = (y1, . . . , yn) it outputs
their scalar product <x,y>=

∑n
i=1 xiyi. A protocol is called a shared scalar

product (SSP) protocol [19] when both parties receive as output of the protocol
uniformly distributed additive shares of the scalar product, i.e., the chooser gets
sc ∈ ZN and the sender gets ss ∈ ZN such that sc + ss =<x,y> mod N . These
protocols are called private if the inputs (i.e. x and y) are not disclosed.



3 The Protocols

This section describes the protocols to which our attacks can be applied. The
reader who is familiar with these protocols can skip this section and continue
with the attack described in Sect. 4.

Consider the standard OT setting, i.e. the chooser and the sender have their
private inputs. The chooser encrypts his input and sends it to the sender. The
sender applies a transformation to the encrypted chooser’s input and to his own
input (which could be also encrypted). The value obtained in this way is returned
to the chooser.

3.1
(n
1

)
-Oblivious Transfer

We will start with a short description of Homomorphic Oblivious Transfer and
the AIR protocol [1, 22].
Private Inputs:

– The sender has a vector µ = (µ1, . . . , µn), µi ∈ ZT and T ≤ N .
– The chooser has made a choice σ ∈ {1, . . . , n}.

Private Output: The chooser gets µσ.

1. The chooser generates a (private, public) key-pair (SK,K)← GΠ(1k). Then
generates a random coin r ∈R Z∗

N and computes
c← EK(σ, r). He sends K and c to the sender.

2. For i = 1, . . . , n the sender performs the following: generates random coins
ri, si ∈R Z∗

N and computes ci ← EK(µi, 1) (c EK(−i, 1))si EK(0, ri)mod N2.
He sends c1, . . . , cn to the chooser.

3. The chooser obtains µσ ← DSK(cσ).

Homomorphic
(
n
1

)
-Oblivious Transfer:

Aiello et al. [1] have proposed an OT protocol, which provides perfect sender-
privacy and computational chooser-privacy (AIR protocol, in short). This proto-
col has been slightly modified and generalized by Lipmaa [22] to a homomorphic
oblivious transfer (HOT) protocol. In [23] the authors fix some problems with
the scheme from [22] .

Since the encryption scheme is semantically secure, the sender cannot derive
σ from the ciphertext c (step 1), which guarantees the chooser-privacy. Using
the homomorphic property of the encryption scheme it is easy to verify that
in step 2 the sender computes ci ← EK(µi + (σ − i)simod N, ri rsimod N).
Then in step 3 the chooser can obtain µi + (σ− i)simod N . But since the si are
random coins, the values µi are perfectly hidden, except µσ. This guarantees the
correctness of the scheme and the sender-privacy. The HOT protocol is further
used in [22] to build committed OT and PET protocols.

Stern’s
(
n
1

)
-Oblivious Transfer:

Now we present the OT protocol proposed by Stern [31]; this protocol has later



been rediscovered by Chang [6]. The original protocol uses a homomorphic se-
mantically secure encryption scheme and a homomorphic commitment scheme.
The Paillier encryption scheme, proposed one year after the publication of [31],
is not used in the original scheme.
Private Inputs:

– The sender has a vector µ = (µ1, . . . , µn), µi ∈ ZT and T ≤ N .
– The chooser has made a choice σ ∈ {1, . . . , n}.

Private Output: The chooser gets µσ.

1. The chooser generates a (private, public) key-pair (SK,K) ← GΠ(1k). He
chooses an n-tuple (x1, . . . , xn) such that xσ = 1 and xi = 0 for i 6= σ.
Then generates n random coins ri ∈R Z∗

N and computes ci ← EK(xi, ri)
for i = 1, . . . , n. He sends K and c1, . . . , cn to the sender. Last he provides
zero-knowledge proofs that all xi except one are equal to 0 and the nonzero
one is equal to 1.

2. The sender generates a random coin r ∈R Z∗
N and

computes c← (
∏n

i=1 cµi

i ) EK(0, r)mod N2. He sends c to the chooser.
3. The chooser obtains µσ ← DSK(c).

Using the homomorphic property of the encryption scheme it is easy to ver-
ify that in step 2 the sender computes c ← EK(

∑n
i=1 µiximod N, r

∏n
i=1 rµi

i

mod N). Then in step 3 the chooser can obtain µ =
∑n

i=1 µiximod N . But
since (x1, . . . , xn) is such that xσ = 1 and xi = 0 for i 6= σ the decrypted value
is µ = µσ.

Note that in both OT protocols [31] and [1, 22] the sender uses an encryption
of 0 (step 2) to re-randomize the ciphertext.

3.2 Oblivious Polynomial Evaluation

Recall that oblivious polynomial evaluation protocol is a building block for other
more complex protocols, for example private matching. The protocol given by
Freedman et al. [17] can be described as follows.
Private Inputs:

– The chooser input is a value x ∈ ZT .
– The sender input is a polynomial P (x) =

∑n
i=0 aix

i, ai ∈ ZT .
– T is chosen such that max(|P (x)|) ≤ N .

Private Output: The chooser gets P (x).

1. The chooser generates a (private, public) key-pair (SK,K)← GΠ(1k). Then
he generates random coins rj ∈R Z∗

N and computes cj ← EK(xj , rj) for
j = 1, . . . , n. The chooser sends K and c1, . . . , cn to the sender.

2. The sender generates a random coin r ∈R Z∗
N and computes

c = EK(a0, r)(
∏n

j=1 c
aj

j )mod N2. He sends c to the chooser.
3. The chooser decrypts the received ciphertexts, i.e. he computes z = DSK(c).

Observe that c = EK(
∑n

j=0 ajx
jmod N, r

∏n
j=1 r

aj

j mod N), thus z =
∑n

j=0 ajx
j

mod N , i.e. z = P (x). Note that the sender re-randomizes the ciphertext (step
2) in a slightly non standard way – by encrypting a0 with a random r instead
of encrypting 0 afterwards.



3.3 Private Shared Scalar Product

In [19] Goethals et al. proposed a private SSP protocol. As pointed out by the
authors of [19] a private SP can be obtained immediately from the private SSP
protocol by defining ss ← 0. We present here the private SSP protocol.
Private Inputs:

– The chooser input is a vector x = (x1, . . . , xn), xi ∈ ZT and T ≤ b
√

N/nc.
– The sender input is a vector y = (y1, . . . , yn), yi ∈ ZT .

Private Output:

– The chooser gets a share sc ∈ ZN .
– The sender gets a share ss ∈ ZN .
– Such that sc + ss =<x,y> mod N .

1. The chooser generates a (private, public) key-pair (SK,K) ← GΠ(1k). He
generates a random coin ri ∈R Z∗

N and computes ci ← EK(xi, ri) for i =
1, . . . , n. The chooser sends K and c1, . . . , cn to the sender.

2. The sender performs the following: generates a random coin r ∈R Z∗
N , a

random share ss ∈R ZN and computes c ← EK(−ss, 1)(
∏n

i=1 cyi

i )EK(0, r)
mod N2. He sends c to the chooser.

3. The chooser decrypts the received ciphertexts and sets it as his share sc, i.e.
he computes sc = DSK(c).

Note that c = EK(−ss+
∑n

i=1 xiyimod N, r
∏n

i=1 ryi

i mod N), thus sc = −ss+ <
x,y> mod N , i.e. the protocol is correct. Again the semantic security of the en-
cryption scheme guarantees the chooser-privacy. The sender-privacy is preserved
since the chooser only sees a random encryption of −ss+ <x,y>, where ss is
random. Note again that the sender uses encryption of 0 (step 2) to re-randomize
the ciphertext.

The authors of [19] give an interesting application of an SP protocol: if xi, yi ∈
{0, 1}, i.e. x and y are the characteristic vectors of two sets X and Y , then
<x,y>= |X ∩ Y |. In other words such an SP protocol provides solution for the
private matching intersection set size problem.

3.4 Private Matching

We first describe the private subset inclusion protocol given by Laur et al. [24].
Then we propose a modification to this protocol, which is more efficient.
Laur’s Private Subset Inclusion:
The authors of [24] use the fact that X ⊆ Y if and only if |X| = |X∩Y |. Instead
of using directly the sets, their characteristic functions (denoted with the same
letters) are used in the protocol, where X[i] = 1 if i ∈ X and X[i] = 0 otherwise
(Y [i] is defined in a similar way).
Private Inputs:

– The chooser input is a set X ⊆ {1, . . . , n}.
– The sender input is a set Y ⊆ {1, . . . , n}.



Private Output: The chooser gets 0 if X ⊆ Y .

1. The chooser generates a (private, public) key-pair (SK,K)← GΠ(1k). Then
he generates a random coin rj ∈R Z∗

N and computes cj ← EK(X[j], rj) for
j = 1, . . . , n. The chooser sends K and c1, . . . , cn to the sender.

2. The sender generates random coins r, s ∈R Z∗
N and computes

c = (
∏

j:Y [j]=0 cj)s EK(0, r)mod N2. He sends c to the chooser.
3. The chooser decrypts the received ciphertexts, i.e. he computes z = DSK(c)

and accepts that X ⊆ Y if z = 0.

Note that c = EK(s
∑

j:Y [j]=0 X[j]mod N, r
∏

j:Y [j]=0 rs
j mod N). Thus the

chooser gets z = s
∑

j:Y [j]=0 X[j]mod N , which is zero only if all X[j] = 0 when
Y [j] = 0. The last relation implies that X ⊆ Y .
Private Subset Inclusion:
We also do not use directly the sets in our protocol, but their characteristic
functions redefined as follows X[i] = si if i ∈ X (for a random nonzero si ∈R Z∗

T

and T ≤ bN/nc) and X[i] = 0 otherwise.
Private Inputs:

– The chooser input is a set X ⊆ {1, . . . , n}.
– The sender input is a set Y ⊆ {1, . . . , n}.

Private Output: The chooser gets 0 if X ⊆ Y .

1. The chooser generates a (private, public) key-pair (SK,K)← GΠ(1k). Then
he generates a random coin rj ∈R Z∗

N and computes cj ← EK(X[j], rj) for
j = 1, . . . n. The chooser sends K and c1, . . . , cn to the sender.

2. The sender generates a random coin r ∈R Z∗
N and computes

c = (
∏

j:Y [j]=0 cj) EK(0, r)mod N2. He sends c to the chooser.
3. The chooser decrypts the received ciphertexts, i.e. he computes z = DSK(c)

and accepts that X ⊆ Y if z = 0.

Note that c = EK(
∑

j:Y [j]=0 X[j]mod N, r
∏

j:Y [j]=0 rjmod N). Thus z =∑
j:Y [j]=0 X[j], which is zero only if all X[j] = 0 when Y [j] = 0. The last relation

implies that X ⊆ Y . Obviously this protocol is more efficient than the original
protocol of [24] since the sender does not need to compute a random power of∏

j:Y [j]=0 cj . Note again that the standard way to re-randomize the ciphertext
(step 2) is used in both protocols, i.e. the sender uses an encryption of 0.

3.5 Zero-Knowledge Arguments

Consider the following protocol for equality of double base discrete logarithms.
We consider another Σ-protocol than the one in [12] which is for the equality of
discrete logarithms, where the prover should prove that indeed h1 = gw

1 mod p
and h2 = gw

2 mod p for some w. Let k̃ be the security parameter.



Input:

– The system setting is the tuple (p, p′, g1, g2, h1, h2) where p, p′ are prime, p′

is k̃-bit long, p = 2p′ + 1, g1 ∈ Z∗
p has order p′ and g2, h1, h2 ∈ < g1 >.

In addition g2 = gy
1 for some secret y ∈ Z∗

p and h1 = gw
1 gw1

2 , h2 = gw
1 gw2

2 for
some w,w1, w2 ∈ Z∗

p.
– The tuple (p, p′, g1, g2, h1, h2) is a common input to the prover and the ver-

ifier.
– The prover gets w,w1, w2 as private input.

Output: The verifier checks whether logg1
(h1)mod y = logg2

(h2)mod y.

1. The prover chooses random 3k̃-bit integers r, r1, r2 and sends a1 = gr
1g

r1
2

mod p and a2 = gr
1g

r2
2 mod p to the verifier.

2. The verifier chooses the challenge e at random in Zp′ and sends it to the
prover.

3. The prover computes z = r + ew, z1 = r1 + ew1, z2 = r2 + ew2 and sends
them to the verifier who checks that gz

1gz1
2 = a1h

e
1mod p and gz

1gz2
2 = a2h

e
2

mod p.

4 The Proposed Attack

4.1 Attack against Oblivious Transfer
We first specify the information that the chooser possesses after finishing the
protocol.

– Consider the Stern’s OT protocol described in Section 3.1. Denote by r =
r
∏n

i=1 rµi

i mod N and recall that DSK(c) = (µ, r), where µ =
∑n

i=1 µixi

mod N . Thus the chooser obtains µ and r.
– Consider the OPE protocol described in Section 3.2. Denote by r = r

∏n
j=1 r

aj

j

mod N and recall that DSK(c) = (z, r), where z = P (x). Thus the chooser
obtains z and r.

– Consider the private SSP protocol described in Section 3.3. Recall that
DSK(c) = (m, r), where m = −ss +

∑n
i=1 xiyimod N and r = r

∏n
i=1 ryi

i

mod N . Thus the chooser obtains m and r.
– Consider the modified Subset Inclusion protocol described in Section 3.4.

Recall that DSK(c) = (z, r), where z =
∏

j:Y [j]=0 X[j]mod N and r =
r
∏

j:Y [j]=0 rjmod N . Thus the chooser obtains z and r.

Notice that in all these cases r has a common form, which we will further unify
as r = r

∏n
i=1 ryi

i mod N .
Scenario:
Now we describe the scenario in which our attack can be mounted by the chooser.
Recall that the sender’s inputs to the protocol are yi ∈ ZT . We consider the case
when T � N , i.e. is very small; how small will be specified later. In this case a
semi-honest chooser with irrational behavior can try to get some information on
the sender’s inputs with a non-negligible probability. For the sake of simplicity



we only consider the case of a uniform probability distribution for (y1, . . . , yn),
but our results hold for any probability distribution.

Attack - Phase 1:
Let the chooser select ri in step 1 to be small prime numbers, e.g. 2 ≤ p1 ≤
p2 ≤ . . . ≤ pn � N . Thus the probability that gcd(ri, r) 6= 1 for some i is 1

ri
,

when r ∈R Z∗
N is chosen (independently) by the sender in step 2. Hence the

probability Pi = Pr[ri = pi and r ∈R Z∗
N : gcd(r, ri) 6= 1] = 1/pi.

Consider the random coin r obtained by the chooser after decrypting the
sender’s reply. Denote by r̃ = r

∏n
i=1 ryi

i thus r̃ = r + `N , where ` = 0, 1, . . ..
Recall that yi ∈ ZT , r ∈R Z∗

N and ri = pi. Denote by N = (
∏n

i=1 pi)T−1 hence
` < N . Denote by x = NQn

i=1 p
yi
i

(assuming the yi’s are fixed) then Pr[r ∈R Z∗
N :

r < x] = x
N and since the probability that (y1, . . . , yn) is the concrete sender’s

input is 1
T n we obtain that

P [` = 0] = Pr[yi ∈R ZT , r ∈R Z∗
N : r

n∏
i=1

pyi

i < N ] (1)

=
∑

(y1,...,yn)

Pr[(y1, . . . , yn) = (y1, . . . , yn)] Pr[r ∈R Z∗
N : r

n∏
i=1

pyi

i < N ]

=
1

Tn

∑
(y1,...,yn)

1∏n
i=1 pyi

i

=
1

Tn

∏n
i=1(p

T
i − 1)∏n

i=1 pT−1
i (pi − 1)

>
1

Tn
.

Notice that 2x < N when (y1, . . . , yn) 6= (0, . . . , 0) and x = N when (y1, . . . , yn) =
(0, . . . , 0), thus we obtain Pr[r ∈R Z∗

N , x 6= N : x ≤ r < 2x] = x
N . It can be

observed that P [` = 0] > P [` = i] for any i > 0, for example:

P [` = 1] = Pr[yi ∈R ZT , r ∈R Z∗
N : N ≤ r

n∏
i=1

pyi

i < 2N ]

=
1

Tn

∑
(y1,...,yn) 6=(0,...,0)

1∏n
i=1 pyi

i

=
1

Tn

( ∏n
i=1(p

T
i − 1)∏n

i=1 pT−1
i (pi − 1)

− 1

)
.

Hence P [` = 1] = P [` = 0] − 1
T n . More importantly P [` = 0] depends only on

the primes selected by the chooser and the system parameters n and T .

Attack - Phase 2:
Now we explain further how the attack works. The protocol is executed just
once with the exception that the chooser does not generate the ri at random
but instead selects them as described above. At the end of the execution the
chooser possesses r and with probability P [` = 0] he guesses r̃. Note that ryi

i

is a factor of r̃ co-prime with the other factors, except maybe with r. Let the
attacker target some of the secrets yi for i ∈ I (I ⊆ [n] = {1, . . . , n}). We stress
that the chooser should select different prime numbers pi for i ∈ I. Thus from r̃
the chooser can find yi, i ∈ I, by simple division. Hence yi ≤ yi holds, moreover



the difference between yi and yi is equal to the power mi of pi, such that pmi
i

divides r but pmi+1
i doesn’t. Thus an irrational semi-honest chooser can derive

from r̃ upper bounds for all yi for i ∈ I with probability P [` = 0].
Stern’s OT protocol and the modified Subset Inclusion protocol give the

chooser additional information namely µσ (z respectively) which can be used to
verify the derived values yi. If there is a mismatch between them (e.g. µσ > yσ)
then the chooser tries the next r̃ for ` = 1 (with probability P [` = 1]) and so on.

Setting:
We are in position now to clarify the setting of our attack (i.e. when it is feasible
at all) and more precisely what we mean by T to be small (i.e. T � N). We
recall here that the security parameter k̃ for the OT is the logarithm of 1

T n . The
other security parameter k ensures only that the Paillier cryptosystem is secure
and in this case 1

2k = 1
N �

1
T n (i.e. k ≥ k̃) holds, i.e. we consider the case when

1
T n is non-negligible in k. Note that in some protocols it is implicitly assumed
that T = N , but sometimes this requirement is not imposed. We want to point
out that for all four protocols T is allowed to be small, moreover for the private
SSP (used for PM intersection set problem) and the modified Subset Inclusion
protocols we have explicitly T = 2.

Recall that the chooser derives with probability P [` = 0] upper bounds for
all yi for i ∈ I, i.e. yi ≤ yi. Hence to break the security of the protocol, namely
the sender’s privacy, it is sufficient that P [` = 0] > 1

T n (i.e. for I = [n]). Indeed
the inequality holds, see (1). Thus the attacker obtains upper bounds for the
secrets, which contradicts the security goal of the protocol.

Now we will show that if the attacker tries to find the exact values yi for
some set I his success probability is negligible. The attack success probability P
of finding the exact values yi is the product of the probability P [` = 0] and the
probabilities of gcd(ri, r) = 1 for those yi, i ∈ I, i.e.

P = P [` = 0]
∏
i∈I

(1− Pi) =
1

Tn

n∏
i=1

pT
i − 1

pT−1
i (pi − 1)

∏
i∈I

pi − 1
pi

=
1

Tn

∏
i∈I

pT
i − 1
pT

i

∏
i∈[n]\I

(pT
i − 1)

pT−1
i (pi − 1)

=
1

Tn

n∏
i=1

(1− 1
pT

i

)
∏

i∈[n]\I

pi

pi − 1
.

Obviously the higher P is, the more successful the attack. In order to get the
exact values of yi, i ∈ I, it is sufficient that P > 1

T |I| (the random guessing), but
it is easy to verify that

P =
1

Tn

n∏
i=1

(1− 1
pT

i

)
∏

i∈[n]\I

pi

pi − 1
≤ 1

Tn

n∏
i=1

(1− 1
pT

i

)2n−|I| <
1

T |I|

because T ≥ 2 and taking pi = 2 for i ∈ [n] \ I. Hence the success probability of
this attack is indeed negligible.

But the attacker still can mount a stronger attack than finding upper bounds
for the secrets. Since the probability Pi = Pr[ri = pi and r ∈R Z∗

N : gcd(r, ri) 6=



1 and gcd(r/ri, ri) 6= 1] = 1
p2

i
the attacker obtains with probability P = P [` =

0]
∏

i∈I(1 − Pi) that yi ∈ {yi − 1, yi} for i ∈ I. This is the probability that
mi ∈ {0, 1}. Indeed when I = [n] it is easy to check that

P =
1

Tn

∏n
i=1(p

T
i − 1)∏n

i=1 pT−1
i (pi − 1)

n∏
i=1

(p2
i − 1)
p2

i

>
1

Tn

holds since pi ≥ 2 and T ≥ 2. Thus with probability P better than random
guessing the attacker derives sets with two values for each of the secrets, which
is particularly interesting when T > 2.

To summarize, we have proved the inequalities: P [` = 0] > P > 1
T n > P ;

and we have shown that yi ≤ yi with probability P [` = 0] and yi ≥ yi − 1 with
probability P .

Example:
Let the system parameters are T = 5 and n = 2. If the attacker selects p1 = 2 and
p2 = 3 the success probabilities of the attacks are as follows: P [` = 0] = 2.89429

25 ,
P [` = 1] = 1.89429

25 , P = 1.92953
25 and P = 0.96476

25 while the random guessing
has probability 1

25 . Thus with approximately three times better probability than
random guessing the attacker obtains the upper bound and with approximately
twice better probability the lower bound for each secret.

Discussion:
A natural question is why this attack doesn’t apply to the HOT and AIR pro-
tocols? Recall that DSK(ci) = (µi, ri), where µi = µi + (σ − i)simod N and
ri = rir

simod N . But now since the sender chooses r and si at random in ZN

the chooser can not derive si from ri. The same trick precludes the attack in the
original Subset Inclusion protocol described in Section 3.4.

Now we clarify why we call the chooser irrational. Note that in order to
mount the attack the chooser puts his privacy at risk. This happens because the
Paillier cryptosystem is not secure if the used “random coin” is not random. It
can be easily verified that if the attacker knows r then he can efficiently reveal m
from Ek(m, r). Thus if the sender knows that he is subject to an attack he can
reveal the chooser’s private input(s). Thus in order to get the sender’s inputs
the chooser has to bluff, which we call irrational behavior.

Our attack does not contradict the semantic security of the Paillier cryp-
tosystem since the attack is performed by the owner of the private key. More
precisely the owner of the private key encrypts a message which is then modified
by another entity and returned back to the owner, who decrypts it and tries
to figure out what the modification was. We would like to point out that the
additional information from the random coins affects OT protocols because of
their specific nature.

4.2 Attack against Non-Interactive Zero-Knowledge

We apply the compilation technique from [12] to obtain from the zero-knowledge
protocol described in Section 3.5 a non-interactive one. Then we show that in



this different (compare to OT protocols) scenario our attack can be mounted
too.
Setting
Input:
– The system setting is the tuple (p, p′, g1, g2, h1, h2) where p, p′ are prime, p′

is k̃-bit long, p = 2p′ + 1, g1 ∈ Z∗
p has order p′ and g2, h1, h2 ∈ < g1 >. In

addition g2 = gy
1 for some secret y ∈ Z∗

p and h1 = gw
1 gw1

2 , h2 = gw
1 gw2

2 for
some w1, w2 ∈ Z∗

p. Let w ∈ ZT and T � N .
– The tuple (p, p′, g1, g2, h1, h2) is a common input to the prover and the ver-

ifier.
– The prover gets w,w1, w2 as private input.
– The verifier generates a (private, public) key-pair (SK,K)← GΠ(1k). Then

he generates a random challenge e ∈R Z∗
N , a random coin s ∈R Z∗

N and
computes c̃← EK(e, s).

– The prover gets c̃ and K as input.

Output: The verifier checks whether logg1
(h1)mod y = logg2

(h2)mod y.
Protocol Compile

1. The prover chooses random 3k̃-bit integers r, r1, r2 and computes a1 = gr
1g

r1
2

mod p and a2 = gr
1g

r2
2 mod p.

2. The prover computes c = EK(r, s̃)c̃w, c1 = EK(r1, s̃1)c̃w1 , c2 = EK(r2, s̃2)c̃w2

with some random coins s̃, s̃1, s̃2 ∈R Z∗
N . His proof is the tuple (a1, a2, c, c1, c2).

Verification

1. The verifier decrypts c, c1, c2 obtaining DSK(c) = (z, r), DSK(c1) = (z1, r1),
DSK(c2) = (z2, r2). Where z = r + ew, z1 = r1 + ew1, z2 = r2 + ew2.

2. Then the verifier checks that gz
1gz1

2 = a1h
e
1mod p and gz

1gz2
2 = a2h

e
2mod p.

Note that the ciphertexts c, c1, c2 are randomized by the prover. The verifier
can mount the attack as follows. Let us emphasize that we explicitly require
w ∈ ZT and T � N . It is easy to compute that r = s̃sw, r1 = s̃1s

w1 , r2 = s̃2s
w2 .

In the setting phase the verifier chooses s to be a small prime number e.g. p1.
Thus the probability that gcd(s, s̃) 6= 1 is 1

p1
. Moreover since s̃ ∈R Z∗

N the

probability Pr[s̃, w : s̃sw < N ] = 1
T

(pT
1 −1)

pT−1
1 (p1−1)

is larger than 1
T . Hence the same

type of attack can again be mounted by the verifier in the verification phase if
the space from which w is selected is small. Bound for w can be derived, but
not the exact value. Note that we intentionally modified the protocol from [12]
to the Pedersen commitment, since the Pedersen commitment can perfectly hide
any (even a small) secret w (by w1 and w2).

4.3 Precluding the Attack

Finally we propose an easy fix to the protocols in order to resist our attack. Note
that all these protocols use an encryption of 0 to re-randomize the ciphertext. If
more than one re-randomization is applied (e.g. two) then the probability P [` =



0] = Pr[r, s ∈R Z∗
N : rs

∏n
i=1 pyi

i < N ] is smaller than the probability P [` = 0]

(OT case) multiplied by
PN

i=1 1/i

N ≈ ln(N)
N and therefore becomes negligible. The

probability can be computed by taking into account that Pr[r, s ∈R Z∗
N : rs <

x] =
∑x−1

i=1 Pr[s = i] Pr[r < x/i] = 1
N

∑x−1
i=1

x
iN = x

N2

∑x−1
i=1

1
i < x

N2

∑N
i=1

1
i .

Thus we have shown that in these settings just one re-randomization is not
sufficient, but two (or more) suffice.

5 Conclusion
We have described an attack against several OT protocols and protocols derived
from OT such as private matching, oblivious polynomial evaluation and private
shared scalar product, which are based on semantically secure homomorphic
encryption scheme (e.g. Paillier’s). Some semantically secure encryption schemes
possess the additional property (e.g. Paillier’s) – that they also decrypt the
random coin used for the encryption. We have shown that in certain cases the
information which can be derived from the random coin is sufficient even for
a semi-honest chooser to obtain bounds for the sender’s private inputs with
non-negligible probability.

The following protocols could be subject to this attack: Stern at Asiacypt’98,
Goethals et al. at ICISC’04, Chang at ACISP’04, Freedman et al. at TCC’05,
Damgard et al. at TCC’06 if applied in the scenario, when the secrets belong
to a space very small compared to the (Paillier’s) plaintext space. A fix which
precludes the attacks is proposed.
Acknowledgements. We would like to thank the anonymous reviewers of AC
2006 for the very helpful comments and suggestions.
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