
Simple and Efficient Perfectly-Secure
Asynchronous MPC ?

Zuzana Beerliová-Trub́ıniová and Martin Hirt

ETH Zurich, Department of Computer Science, CH-8092 Zurich
{bzuzana,hirt}@inf.ethz.ch

Abstract. Secure multi-party computation (MPC) allows a set of n
players to securely compute an agreed function of their inputs, even
when up to t players are under the control of an adversary. Known asyn-
chronous MPC protocols require communication of at least Ω(n3) (with
cryptographic security), respectively Ω(n4) (with information-theoretic
security, but with error probability and non-optimal resilience) field ele-
ments per multiplication.

We present an asynchronous MPC protocol communicating O(n3)
field elements per multiplication. Our protocol provides perfect security
against an active, adaptive adversary corrupting t < n/4 players, which
is optimal. This communication complexity is to be compared with the
most efficient previously known protocol for the same model, which re-
quires Ω(n5) field elements of communication (i.e., Ω(n3) broadcasts).
Our protocol is as efficient as the most efficient perfectly secure protocol
for the synchronous model and the most efficient asynchronous protocol
with cryptographic security.

Furthermore, we enhance our MPC protocol for a hybrid model. In
the fully asynchronous model, up to t honest players might not be able
to provide their input in the computation. In the hybrid model, all play-
ers are able to provide their input, given that the very first round of
communication is synchronous. We provide an MPC protocol with com-
municating O(n3) field elements per multiplication, where all players
can provide their input if the first communication round turns out to
be synchronous, and all but at most t players can provide their input
if the communication is fully asynchronous. The protocol does not need
to know whether or not the first communication round is synchronous,
thus combining the advantages of the synchronous world and the asyn-
chronous world. The proposed MPC protocol is the first protocol with
this property.

Keywords: Multi-party computation, asynchronous, hybrid model, ef-
ficiency, perfect security.

? This work was partially supported by the Zurich Information Security Center. It
represents the views of the authors.

1 Introduction

1.1 Secure Multi-Party Computation

Secure multi-party computation (MPC) enables a set of n players to securely
evaluate an agreed function of their inputs even when t of the players are cor-
rupted by a central adversary. A passive adversary can read the internal state
of the corrupted players, trying to obtain information about the honest players’
inputs. An active adversary can additionally make the corrupted players deviate
from the protocol, trying to falsify the outcome of the computation.

The MPC problem dates back to Yao [Yao82]. The first generic solutions pre-
sented in [GMW87, CDG87, GHY87] (based on cryptographic intractability as-
sumptions) and later [BGW88, CCD88, RB89, Bea91] (with information-theoretic
security) assume the existence of a synchronous network. Synchronous networks
assume that there is a global clock, and the delay of any message in the network
is bounded by a constant. Such networks do not well model real-life networks
like the internet.

1.2 Asynchronous Networks

In asynchronous networks, messages are delayed arbitrarily. As worst-case as-
sumption, the adversary is given the power to schedule the delivery of mes-
sages. Asynchronous communication models real-world networks (like the In-
ternet) much better than synchronous communication. However, protocols for
asynchronous networks are much more involved than their synchronous counter-
parts. This comes from the fact that when a player does not receive an expected
message, he cannot decide whether the sender is corrupted (and did not send
the message at all) or the message is just delayed in the network.

This implies also that in fully asynchronous settings it is impossible to con-
sider the inputs of all uncorrupted players. The inputs of up to t (potentially
honest) players have to be ignored, because waiting for them could turn out to
be endless.

For a good introduction to asynchronous protocols, see [Can95]. Due to
its complexity, asynchronous MPC has attracted much less research than syn-
chronous MPC. The most important results on asynchronous MPC are [BCG93,

BKR94, SR00, PSR02, HNP05].
In the asynchronous setting perfect information-theoretic security against an

active adversary is possible if and only if t < n/4 (whereas cryptographic and
unconditional security are possible if and only if t < n/3).

1.3 Communication Complexity of MPC protocols

The first proposed MPC protocols secure against active adversaries were very in-
efficient and so of theoretical relevance mainly. In the recent years lots of research
concentrated on designing protocols with lower communication complexity (mea-
sured in bits sent by honest players). The currently most efficient MPC protocols

for the synchronous model are [HMP00] (perfect security with t < n/3, O(n3)
communication per multiplication), [DN07] (information-theoretic security with
t < n/3, O(n) communication per multiplication), [BH06] (information-theoretic
security with t < n/2, communicating O(n2) per multiplication), [HN06] (cryp-
tographic security with t < n/2, communicating O(n) per multiplication).

However known MPC protocols for asynchronous networks still feature (im-
practically) high communication complexities. The most efficient asynchronous
protocol is the one of [HNP05] communicating O(n3) per multiplication
while providing cryptographic security only. The most efficient information-
theoretically secure protocols were proposed in [SR00, PSR02]. Both protocols
are secure against an unbounded adversary corrupting up to t < n/4 players.
The first one makes extensive use of the (communication-intensive) BA primitive
– O(n2) invocations per multiplication, which amounts to Ω(n5)1 bits of com-
munication per multiplication. The second one requires only O(n2) invocations
to BA in total, however, still communicates O(n4) bits per multiplication, and
provides unconditional security only (for which t < n/4 is not optimal).

1.4 Contributions

Known MPC protocols for the asynchronous setting suffer from two main dis-
advantages in contrast to their more restrictive synchronous counterparts, both
significantly reducing their practicability: Asynchronous protocol tend to have
substantially higher communication complexity, and they do not allow to take
the inputs of all honest players. In this work, we propose a solution to both these
problems.

First, we present an perfectly secure asynchronous MPC protocol that com-
municates only O(n3) field elements per multiplication. This very same com-
munication complexity is also required by the most efficient known perfectly
secure protocol for the synchronous model [HMP00], as well as by the most ef-
ficient asynchronous protocol only secure against computationally bounded ad-
versaries [HNP05]. The protocol provides perfect security against an unbounded
adaptive active adversary corrupting up to t < n/4 players, which is optimal. In
contrast to the previous asynchronous protocols, the new protocol is very simple.

Second, we extended the protocol for a hybrid communication model (with
the same security properties and the same communication complexity), allow-
ing all players to give input if the very first round of the communication is
synchronous, and takes at least n − t inputs in a fully asynchronous setting. It
is well-known that fully asynchronous protocols cannot take the inputs of all
players; however, we show that a single round of synchronous communication is
sufficient to take all inputs. We stress that it is important that this round is the
first round, because assuming the k-th round to be synchronous implies that all
rounds up to k must also be synchronous. Furthermore, the protocol achieves
the best of both worlds, i.e., takes the inputs of all players when indeed the first
round is synchronous, and still takes the inputs of at least n−t players even if the

1 The most efficient known asynchronous BA protocol requires Ω(n3).

synchronity assumptions cannot be fulfilled. More precisely, the protocol takes
the inputs of at least n− t players, and additionally, always takes the inputs of
players whose first-round messages are delivered synchronously.

2 Preliminaries

2.1 Model

We consider a set P of n players, P = {P1, . . . , Pn}, which are connected with a
complete network of secure (private and authentic) asynchronous channels. The
function to be computed is specified as an arithmetic circuit over a finite field
F = Zp (with p > n), with input, addition, multiplication, random, and output
gates. We denote the number of gates of each type by cI , cA, cM , cR, and cO,
respectively.

The faultiness of players is modeled in terms of a central adversary corrupting
players. The adversary can corrupt up to t players for any fixed t with t < n/4,
and make them deviate from the protocol in any desired manner. The adversary
is computationally unbounded, active, adaptive, and rushing. Furthermore, in
order to model the asynchronism of the network, the adversary can schedule
the delivery of the messages in the network, i.e., she can delay any message
arbitrarily. In particular, the order of the messages does not have to be preserved.
However, every sent message will eventually be delivered.

The security of our protocols is perfect, i.e., information-theoretic without
any error probability.

2.2 Design of Asynchronous MPC Protocols

Asynchronous protocols are executed in steps. Each step begins by the sched-
uler choosing one message (out of the queue) to be delivered to its designated
recipient. The recipient is activated by receiving the message, he performs some
(internal) computation and possibly sends messages on his outgoing channel
(and waits for the next message).

The action to be taken by the recipient is defined by the relevant sub-
protocol2 consisting of a number of instructions what is to be done upon receiv-
ing a specified message. If the received message refers to a sub-protocol which
is not yet “in execution”, then the player keeps the message until the relevant
sub-protocol is invoked.

2.3 Partial Termination

Many “asymmetric” tasks with a designated dealer (broadcast, secret-sharing)
cannot be implemented with guaranteed termination in an asynchronous world;
the players cannot distinguish whether the dealer is corrupted and does not start
the protocol, or the dealer is correct but his messages are delayed in the network.

2 We assume that for each message it is clear to which sub-protocol it belongs.

Hence, these protocol are required to terminate only if the dealer is correct.
However, we require that if such a sub-protocol terminated for one (correct)
player, then it must eventually terminate for all correct players.

The issue with partial termination is typically attacked by invoking n in-
stances of the protocol with partial termination in parallel, every player acting
as dealer in one instance. Then, every player can wait till n − t instances have
terminated (from his point of view). In order to reach agreement on the set of
terminated instances, a specialized sub-protocol is invoked, called agreement on
a core-set. A player can only be contained in the core-set if his protocol instance
has terminated for at least one honest player, and hence will eventually terminate
for all honest players. The core-set contains at least n− t players.

2.4 Input Provision

Providing input is an inherently asymmetric task, and it is not possible to dis-
tinguish between a corrupted input player who does not send any message and a
correct input player whose messages are delayed in the network. For this reason,
in a fully asynchronous world it is not possible to take the inputs of all players;
up to t (possible correct) players cannot be waited for, as this waiting could turn
out to be endless. Hence, the protocol waits only till n − t of the players have
achieved to provide input, and then goes on with the computation.

2.5 Byzantine Agreement

We need three flavors of Byzantine agreement, namely broadcast, consensus, and
core-set agreement.

The broadcast (BC) primitive allows a sender to distribute a message among
the players such that all players get the same message (even when the sender
is corrupted), and the message they get is the sender’s message if he is honest.
As explained above, broadcast cannot be realized with complete termination;
instead, termination of all (correct) players is required only when the sender is
correct; however, as soon as at least one correct player terminates, all players
must eventually terminate. Such a broadcast primitive can be realized rather
easily [Bra84]. The required communication for broadcasting an `-bit message is
O(n2`), where the hidden constant is small.

Consensus enables a set of players to agree on a value. If all honest players
start the consensus protocol with the same input value v then all honest players
will eventually terminate the protocol with the same value v as output. If they
start with different input values, then they will eventually reach agreement on
some value. All known i.t.-secure asynchronous consensus protocols start by
having every player broadcast his input value, which results to communication
complexity Ω(n3`), where ` denotes the length of the inputs.

Agreement on a core set (ACS) is a primitive presented in [BCG93]. We use
it to determine a set of at least n− t players that correctly shared their values.
More concretely, every player starts the ACS protocol with a accumulative set of
players who from his point of view correctly shared one or more values (the share

sub-protocol in which they acted as dealers terminated properly). The output
of the protocol is a set of at least n − t players, who really correctly shared
their values, which means that every honest player will eventually get a share of
every sharing dealt by a dealer from the core set. The communication cost of a
ACS protocol are essentially the costs of n invocations to consensus (where the
messages are index of players), i.e. Ω(n4 log n) bits.

2.6 Super-Invertible Matrices

We consider r-by-c matrices M over a field F . When r = c, M is called invertible
if all column-vectors are linearly independent. When r ≤ c, M is called super-
invertible if every subset of r column-vectors are linearly independent.

Formally, for an r-by-c matrix M and an index set C ⊆ {1, . . . , c}, we denote
by MC the matrix consisting of the columns i ∈ C of M . Then, M is super-
invertible if for all C with |C| = r, MC is invertible.

Super-invertible matrices over F can be constructed as follows: Fix c disjoint
elements α1, . . . , αc ∈ F , and for i = 1, . . . , r, let fi(·) be a polynomial of degree
at most r − 1 with fi(αi) = 1 and fi(αj) = 0 for j ∈ {1, . . . , r} \ {i}. Then,
M = {mi,j = fi(αj)}. M is super-invertible because M{1,...,r} is invertible (it is
the identity matrix), and any MC for C ⊆ {1, . . . , c}, |C| = r can be mapped
onto M{1,...,r} using an invertible matrix given by Lagrange interpolation.

Super-invertible matrices are of great help to extract random elements
from a set of some random and some non-random elements: Consider a vec-
tor (x1, . . . , xc) of elements, where for some C ⊆ {1, . . . , c} with |C| = r, the
elements {xi}i∈C are chosen uniformly at random (by honest players), and the el-
ements {xj}j /∈C are chosen maliciously (by corrupted players). Then, the vector
(y1, . . . , yr) = M(x1, . . . , xc) is uniformly random and unknown to the adver-
sary.3

This means that given a super-invertible matrix and a set of c elements out
of which at least r elements are chosen uniformly at random (and unknown to
the adversary), we can generate r uniformly random elements (unknown to the
adversary).

3 Protocol Overview

The new protocol proceeds in three phases: the preparation phase, the input
phase and the computation phase. Every honest player will eventually complete
every phase.

In the preparation phase many sharings of random values will be generated in
parallel. For every multiplication gate, 3t + 1 random sharing will be generated.
For every random gate, one random sharing will be generated.

In the input phase the players share their inputs and agree on a core set of
correctly shared inputs (every honest player will eventually get a share of every
input from the core set).
3 This follows from the observation that the c−r maliciously chosen elements {xj}j /∈C

define a bijection from the r random elements {xi}i∈C onto (y1, . . . , yr).

In the computation phase, the actual circuit will be computed gate by gate,
based on the core-set inputs. Due to the linearity of the used secret-sharing, the
linear gates can be computed locally – without communication. Each multipli-
cation gate will be evaluated with the help of 3t + 1 of the prepared sharings.

4 Secret Sharing

4.1 Definitions and Notations

As secret-sharing scheme, we use the standard Shamir scheme [Sha79]: We say
that a value s is d-shared if every correct player Pi is holding a share si of s,
such that there exists a degree-d polynomial p(x) with p(0) = s and p(i) = si

for all i = 1, . . . , n. We call the vector (s1, . . . , sn) of shares a d-sharing of s. A
(possibly incomplete) set of shares is called d-consistent if these shares lie on a
degree d polynomial.

Most of our Sharings will be t-sharings (where t denotes the maximum num-
ber of corrupted players). We denote a t-sharing of s by [s]. In the multiplication
sub-protocol, we will also use 2t-sharings, which will be denoted by [[s]].

4.2 Share1 and Recons— The Vanilla Protocols

In the following, we recap the Share1 and Recons protocol of [BCG93].4 Share1

allows a dealer PD to t-share a secret value s ∈ F . Recons allows the players
to reconstruct a d-sharing (for d ≤ 2t) towards a receiver PR. We stress that
the protocol Share1 does not necessarily terminate when the dealer PD is cor-
rupted. However, when it terminates for some correct player, then it eventually
terminates for all players. The protocol Recons always terminates.

The intuition behind the protocol Share1 is the following: In order to share
a secret s, the dealer chooses a random two-dimensional polynomial f(·, ·) with
f(0, 0) = s, and sends to every player Pi the polynomials gi(·) = f(i, ·) and
hi(·) = f(·, i). Then the players pairwisely check the consistency of the received
polynomials, and publicly confirm successful checks. Once n− t players are mu-
tually consistent, the other players use the checking points received from these
players to determine their respective polynomial gi(·), and all players compute
the share si = gi(0).

Protocol Share1 (Dealer PD, secret s ∈ F).
• Distribution — Code for Dealer PD: Choose a random two-

dimensional degree-t polynomial f(·, ·) with f(0, 0) = s and send to each
player Pi the two degree-t polynomials gi(·) = f(i, ·) and hi(·) = f(·, i).

• Consistency Checks — Code for player Pi:

1. Wait for gi(·) and hi(·) from PD.
2. To each player Pj send the share-share sji = hi(j).

4 We denote their sharing protocol by Share1, as it allows to share only one single
value.

3. Upon receiving sij from Pj check whether sij = gi(j). If so broadcast
(ok, i, j).

• Output-computing — Code for Player Pi:

1. Wait until there is a (n− t)-clique in the graph implicitly defined by the
broadcasted confirmations.5

2. Upon receiving at least 2t + 1 t-consistent share-shares sij (for j ∈
{1, . . . , n}) from the players in the clique, find the interpolation poly-
nomial g̃i(·) and (re)compute your share si = g̃i(0).6

3. Output the share si.

Lemma 1. For every coalition of up to t bad players and every scheduler, the
protocol Share1 achieves the following properties:

– Termination: If the dealer is correct, then every correct player will eventually
complete Share1, and if some correct player has completed Share1, then all
the correct players will eventually complete Share1.

– Correctness: Once a correct player has completed Share1, then there exists a
unique value r which is t-shared among the players, where r = s if the dealer
is correct.

– Privacy: If the dealer is correct, then the adversary obtains no information
about the shared secret.

The communication complexity of Share1 is O(n2κ + n2BC(κ)).

The intuition behind the protocol Recons is the following: Every player Pi

sends his share si to PR. The receiver waits until receiving at least d + t + 1
d-consistent shares and outputs the value of their interpolation polynomial at 0.
Note that corrupted players can send false shares to PR, but for the latest when
PR has received the shares of all honest players, he has at least n− t ≥ d + t + 1
t-consistent shares (for t < n/4 and d ≤ 2t).

Protocol Recons (Receiver PR, degree d, d-sharing of s).
• Code for player Pi: Send si to PR.
• Code for receiver PR: Upon receiving at least d + t + 1 d-consistent

shares si (and up to t inconsistent shares), interpolate the polynomial p(·)
and output s = p(0).

Lemma 2. For any d-shared value s, where d + 2t < n, for every coalition of
up to t bad players, and for every scheduler, the protocol Recons achieves the
following properties:

– Termination: Every correct player will eventually complete Recons.

5 The graph has n nodes representing the n players and there is an edge between i
and j if and only if both (ok, i, j) and (ok, j, i) were broadcasted.

6 If the dealer is correct or if Pi is a member of the clique gi(·) = g̃i(·)

– Correctness: PR will output s.
– Privacy: When PR is honest, then the adversary obtains no information

about the shared secret.

The communication complexity of the protocol Recons is O(nκ).

Note that for t < n/4, Recons can be used to reconstruct t-sharings as well
as 2t-sharings. However, the protocol Share1 can only generate t-sharings.

Proofs of security as well as details on solving the clique-problem in Share1

(respectively, reducing it to a computationally simpler problem) and on find-
ing (and interpolating) d + t + 1 d-consistent shares in Recons, can be found
in [BCG93].

4.3 Share∗: Sharing Many Values at Once

The following protocol Share∗ extends the protocol Share1 in two ways: First, it
allows the dealer to share a vector

(
s(1), . . . , s(`)

)
of ` secrets at once, substan-

tially more efficient than ` independent invocations of Share1. Secondly, Share∗

allows to share “empty” secrets, formally s(k) =⊥, resulting in all shares of s(k)

being ⊥ as well. This will be used when a dealer should share an unknown value.

Protocol Share∗ (Dealer PD, secrets (s(1), . . . , s(`)) ∈ (F ∪ {⊥})`).
• Distribution — Code for Dealer PD: For every s(k) 6=⊥, choose a

random two-dimensional degree-t polynomial f (k)(·, ·) with f (k)(0, 0) = s(k).
Send to every Pi the polynomials

(
g
(1)
i , h

(1)
i , . . . , g

(`)
i , h

(`)
i

)
, where g

(k)
i (·) =

f (k)(i, ·) and h
(k)
i (·) = f (k)(·, i) if s(k) ∈ F , and g

(k)
i = h

(k)
i =⊥ if s(k) =⊥.

• Consistency Checks — Code for player Pi:

1. Wait for
(
g
(1)
i , h

(1)
i , . . . , g

(`)
i , h

(`)
i

)
from PD.

2. To each Pj send
(
s
(1)
ji , . . . , s

(`)
ji

)
, where s

(k)
ji = h

(k)
i (j), resp. s

(k)
ji =⊥ if

h
(k)
i =⊥.

3. Upon receiving
(
s
(1)
ij , . . . , s

(`)
ij

)
from Pj , broadcast (ok, i, j) if for all k =

1, . . . , ` it holds that s
(k)
ij = g

(k)
i (j), resp. s

(k)
ij =⊥= g

(k)
i .

• Output-computing — Code for Player Pi:

1. Wait until there is a (n−t)-clique in the graph defined by the broadcasted
confirmations.

2. For k = 1, . . . , `, upon receiving at least 2t + 1 t-consistent share-shares
s
(k)
ij (for j ∈ {1, . . . , n}) from the players in the clique, find the interpo-

lation polynomial g̃
(k)
i (·) and (re)compute the share s

(k)
i = g̃

(k)
i (0). Upon

receiving 2t + 1 values s
(k)
ij =⊥ (for j ∈ {1, . . . , n}), set s

(k)
i =⊥.

3. Output the shares
(
s
(1)
i , . . . , s

(`)
i

)
.

Lemma 3. The protocol Share∗ allows PD to share ` secrets from F ∪ {⊥} at
once, with the same security properties as required in Lemma 1. The communi-
cation complexity of Share∗ is O(`n2κ + n2BC(κ)).

5 Preparation Phase

The goal of the preparation phase is to generate t-sharings of ` uniformly random
values r(1), . . . , r(`), unknown to the adversary, where ` will be cM (3t + 1) + cR.

The idea of the protocol PreparationPhase is the following: First, every player
acts as dealer in Share∗ to share a vector of `′ = d`/(n − 2t)e random values.
Then the players agree on a core set of n − t correct dealers (such that their
Share∗ protocol was completed by at least one honest player). This results in
n− t vectors of `′ correct t-sharings, but up to t of these vectors may be known
to the adversary (and may not be random). Then, these n − t correct vectors
are compressed to n− 2t correct random vectors, unknown to the adversary, by
using a (n − 2t)-by-(n − t) super-invertible matrix (applied component-wise).
This computation is linear, hence the players can compute their shares of the
compressed sharings locally from their shares of the original sharings.

Protocol PreparationPhase (`).
Code for player Pi:
• Secret Sharing

• Act as a dealer in Share∗ to share a vector of `′ = d`/(n − 2t)e random
values

(
s(i,1), . . . , s(i,`′)

)
.

• For every j = 1, . . . , n, take part in Share∗ with dealer Pj , resulting in the
shares

(
s
(j,1)
i , . . . , s

(j,`′)
i

)
.

• Agreement on a Core Set

1. Create an accumulative set Ci = ∅.
2. Upon completing Share∗ with dealer Pj , include Pj in Ci.
3. Take part in ACS with the accumulative set Ci as input.

• Compute Output (local computation)

1. Wait until ACS completes with output C. For simple notation, assume
that {P1, . . . , Pn−t} ⊆ C.

2. For every k ∈ {1, . . . , `′}, the (n − 2t) t-shared random values,
unknown to the adversary, are defined as

(
r(1,k), . . . , r(n−2t,k)

)
=

M
(
s(1,k), . . . , s(n−t,k)

)
, where M denotes a (n − 2t)-by-(n − t) super-

invertible matrix, e.g., constructed according to Section 2.6. Compute
your shares

(
r
(1,k)
i , . . . , r

(n−2t,k)
i

)
accordingly. Denote the resulting `′(n−

2t) ≥ ` sharings as [r(1)], . . . , [r(`)].

Lemma 4. PreparationPhase (eventually) terminates for every honest player. It
outputs independent random sharings of ` secret, independent, uniformly random
values r(1), . . . , r(`). PreparationPhase communicates O(`n2κ+n3BC(κ)) bits and
requires one invocation to ACS.

6 Input Phase

In the InputPhase protocol every player Pi acts as a dealer in one Share∗ protocol
in order to share his input si.7 However the asynchronity of the network does not
allow the players to wait for more than n− t Share∗-protocols to be completed.
In order to agree on the players whose inputs will be taken into to computation
one ACS protocol is run.

Protocol InputPhase (Every Pi has input si).
Code for player Pi:
• Secret Sharing

• Share your secret input si with Share∗.
• For every j = 1, . . . , n take part in Share∗ with dealer Pj .

• Agreement on a Core Set

1. Create a accumulative set Ci = ∅.
2. Upon completing Share∗ with dealer Pj , include Pj in Ci.
3. Take part in ACS with your accumulative set Ci as your input.
4. Output the agreed core set C and your outputs of the Share∗ protocols

with dealers from C.

Lemma 5. The InputPhase protocol will (eventually) terminate for every honest
player. It enables the players to agree on a core set of at least n− t players who
correctly shared their inputs – every honest player will (eventually) complete the
Share∗ protocol of every dealer from the core set (and get the correct shares of
his shared input values). InputPhase communicates O(cIn

2κ+n3BC(κ)) bits and
requires one invocation to ACS.

7 Computation Phase

In the computation phase, the circuit is evaluated gate by gate, whereby all
inputs and intermediate values are shared among the players. As soon as a
player holds his shares of the input values of a gate, he joins the computation of
the gate.

Due to the linearity of the secret-sharing scheme, linear gates can be com-
puted locally simply by applying the linear function to the shares, i.e. for any
linear function f(·, ·), a sharing [c] = [f(a, b)] is computed by letting every player
Pi compute ci = f(ai, bi). With every random gate, one random sharing (from
the preparation phase) is associated, which is directly used as outcome of the
random gate. With every multiplication gate, 3t + 1 random sharings (from the
preparation phase) are associated, which are used to compute a sharing of the
product as described in the protocol Multiplication.

7 si can be one value or an arbitrary long vector of values from F

Protocol ComputationPhase ((3t + 1)cM + cR random sharings
[r(1)], . . . , [r(`)]).
For every gate in the circuit — Code for player Pi:
1. Wait until you have shares of each of the inputs
2. Depending on the type of the gate, proceed as follows:

• Linear gate [c] = f([a], [b], . . .): compute your share ci as ci = f(ai, bi, . . .).
• Multiplication gate [c] = [a][b]: participate in protocol

Multiplication([a], [b], [r(0)], . . . , [r(3t+1)]), where [r(0)], . . . , [r(3t+1)] denote
the 3t + 1 associated random sharing.

• Random gate [r]: set your share ri = r
(k)
i , where [r(k)] denotes the asso-

ciated random sharing.
• Output gate [a] → PR: participate in Recons(PR, d = t, [a]).

In order to compute multiplication gates, we use the approach of of [DN07]:
First, the players jointly generate a secret random value s, which is both t-shared
(by [s]) and 2t-shared (by [[s]]). These sharings can easily be generated based on
the 3t + 1 t-sharings associated with the multiplication gate. Then, every player
locally multiplies his shares of a and b, resulting in a 2t-sharing of the product
c = ab, i.e., [[c]]. Then, the players compute and reconstruct [[c − s]], resulting
in every player knowing d = c − s, pick a default t-sharing [d], and (locally)
compute [c] = [d] + [s], the correct product [ab].

Protocol Multiplication ([a], [b], [r(0)], . . . , [r(3t+1)]).
Code for player Pi:
1. Prepare [s]: The degree-t polynomial p(·) to share s is defined by the shared

coefficients r(0), r(1), . . . , r(t). For every Pj , a sharing of his share sj = p(j) is
defined as [sj] = [r(0)] + [r(1)]j + . . . + [r(t)]jt. Invoke Recons(Pj , d = t, [sj])
to let Pj learn his degree-t share sj .

2. Prepare [[s]]: The degree-2t polynomial p′(·) to share s is defined by the
shared coefficients r(0), r(t+1), . . . , r(3t). For every Pj , a sharing of his share
s′j = p′(j) is defined as [s′j] = [r(0)] + [r(t+1)]j + . . . + [r(3t)]j2t. Invoke
Recons(Pj , d = t, [s′j]) to let Pj learn his degree-2t share s′j .

3. Compute [ab]:
1. Compute your degree-2t share of c = ab as ci = aibi, resulting in [[c]].
2. For every j = 1, . . . , n, invoke Recons (Pj , d = 2t, ([[c]]− [[s]])), resulting

in every Pj knowing d = c− s.
3. Define [d] as default sharing of d, e.g., the constant degree-0 polynomial.
4. Compute [c] = [d] + [s].

Lemma 6. The protocol Multiplication (eventually) terminates for every hon-
est player. Given correct sharings [a], [b], [r(0)], . . . , [r(3t+1)] as input, it outputs
a correct sharing [ab]. The privacy is maintained when ([r(0)], . . . , [r(3t+1)]) are
sharings of random values unknown to the adversary. Multiplication communi-
cated O(n2κ) bits.

Lemma 7. The protocol ComputationPhase (eventually) terminates for every
honest player. Given that the ` = (3t + 1)cM + cR sharings [r(1)], . . . , [r(`)] are
correct t-sharings of random values, unknown to the adversary, it computes the
outputs of the circuit correctly and privately, while communicating O(n2cM +
ncOκ) bits (where cM , cR, and cO denote the number of multiplication, random,
and output gates in the circuit, respectively).

8 The Asynchronous MPC Protocol

The following protocol allows the players to evaluate an agreed arithmetic circuit
C of a finite field F : Denote the number of input, multiplication, random and
output gates as cI , cM , cR, cO, respectively.

Protocol AsyncMPC (C, cI , cM , cR, cO).
1. Invoke PreparationPhase to generate ` = cM (3t + 1) + cR random sharings.
2. Invoke InputPhase to let the players share their inputs.
3. Invoke ComputationPhase to evaluate the circuit (consisting of linear, multi-

plication, random, and output gates).

Theorem 1. For every coalition of up to t < n/4 bad players and for every
scheduler, the protocol AsyncMPC securely computes the circuit C. AsyncMPC
communicates O

(
(cIn

2 + cMn3 + cRn2 + ncO)κ + n3BC(κ)
)

bits and requires 2
invocations to ACS,8 (which requires O(n2BC(κ))).

9 The Hybrid Model

9.1 Motivation

A big disadvantage of asynchronous networks is the fact that the inputs of up to t
honest players cannot be considered in the computation. This restriction disqual-
ifies fully asynchronous models for many real-world applications. Unfortunately,
this drawback is intrinsic to the asynchronous model, no (what so ever clever)
protocol can circumvent it. The only escape is to move to less general commu-
nication models, where at least some restriction on the scheduling of messages
is given.

In [HNP05], an asynchronous (cryptographically secure) MPC protocol was
presented in which all players can provide their inputs, given that one single
round of communication is synchronous. However, this protocol has two serious
drawbacks: First, the communication round which is required to be synchronous
is round number 7 (we say that a message belongs to round k if it depends
on a message received in round k − 1). This essentially means that the first 7
rounds must be synchronous, because if not, then the synchronous round can
8 The protocol can easily be modified to use only a single invocation to ACS, by

invoking PreparationPhase and InputPhase in parallel, and invoking ACS to find those
dealers who have both correctly shared their input(s) as well as correctly shared
enough random values.

never be started (the players would have to wait until all messages of round 6
are delivered — an endless wait in an asynchronous network).

The second drawback of this protocol is that one must decide a priori the
mode in which the protocol is to be executed, namely either in the hybrid mode
(with the risk that the protocol fails when some message in the first 7 rounds is
not delivered synchronously), or in the fully asynchronous mode (with the risk
that up to t honest players cannot provide their input, even when the network
is synchronous).

9.2 Our Hybrid Model

We follow the approach of [HNP05], but strengthen it in both mentioned direc-
tions: First, we require only the very first round to be synchronous, and second,
we guarantee that even if some messages in the first round are not delivered
synchronously, still at least n− t inputs are provided — so to speak the best of
both worlds. A bit more precisely, we provide a fully asynchronous input protocol
with the following properties:
• For every scheduler, the inputs of at least n− t players are taken.
• If all messages sent by Pi in the very first round of communication are deliv-

ered synchronously, then Pi’s inputs are taken.
This means in particular that if the first round is fully synchronous, then the

inputs of all honest players are taken, and if the network is fully asynchronous,
then at least n− t inputs are taken.

9.3 PrepareInputs and RestoreInput

We briefly describe the idea of the new input protocol (assuming, for the sake
of simple notation, that every player gives exactly one input): In the first (sup-
posedly synchronous) round, every player computes a degree-t Shamir-sharing
of his input and sends one share to each player. Then, the players invoke the
fully asynchronous input protocol, where the input of each player is a vector
consisting of his real input, and his shares of the inputs of the other players. As
result of the asynchronous input protocol, a core set C of at least n− t players
is found, whose input vectors are (eventually) t-shared among the players. For
every player Pi ∈ C, the input is directly taken from his input vector. For every
player Pj /∈ C, the input is computed as follows: There are n − t shares of his
input, each t-shared as a component of the input vector of some player Pi ∈ C.
Up to t of these players might be corrupted and have input a wrong share.
Therefore, these t-shared shares are error-corrected and used as Pj ’s input. For
error correction, t + 1 random t-sharings are used. These will be generated (ad-
ditionally) in the preparation phase. Then, right before the computation phase,
sharings of the missing inputs are computed.

In the following, we present a (trivial) sub-protocol PrepareInputs, which pre-
pares the inputs of all players (to be invoked in the first, supposedly synchronous
round), and a protocol RestoreInput, which restores the sharing of an input s(k)

of a player not in the core set, if possible (to be invoked right before the compu-
tation phase). The protocol RestoreInput needs t+1 t-sharings of random values,
which must be generated in the preparation phase.

Protocol PrepareInputs (every Pi holding input s(i)).
Code for player Pi:
1. Choose random degree-t polynomial p(·) with p(0) = s(i) and send to every

Pj his share s
(i)
j = p(j).

2. Collect shares s
(j)
i (from Pj) till the first round is over. Then compose your

new input s̃(i) =
(
s(i), s

(1)
i , . . . , s

(n)
i

)
, where s

(j)
i =⊥ if no share s

(j)
i was

received from Pj within the first round.

Protocol RestoreInput (Core Set C, Input Sharings [s̃(i)] of Pi ∈ C,
[r(0)], . . . , [r(t+1)], k).
Code for player Pi:
1. Define the blinding polynomial b(x) = r(0 +r(1)x+ . . .+r(t)xt, and for every

Pj , define [bj] = [b(j)] = [r(0)] + [r(1)]j + . . . + [r(t)]jt. Invoke Recons to
reconstruct bj towards Pj , for every Pj .

2. For every Pj ∈ C, denote by [s(k)
j] the sharing of Pj ’s share of Pk’s input s(k).

Note that [s(k)
j] is a part of the input vector [s̃(j)]. If [s(k)

j] 6=⊥, then compute

[dj] = [s(k)
j] + [bj], and invoke Recons to reconstruct dj towards every player.

3. If there exists a degree-t polynomial p(·) such that at least 2t + 1 of the
reconstructed values dj lie on it, define d′i = p(i), and compute your share
s
(k)
i of Pk’s input s(k) as d′i − bi. The sharing of input [s(k)] was successfully

restored. If no such polynomial p(·) exists, then [s(k)] cannot be restored.

Lemma 8. The protocol PrepareInputs and RestoreInput terminate for all play-
ers. When all messages of a player Pk in Step 1 of PrepareInputs are syn-
chronously delivered, then a sharing of his input s(k) can be successfully restored
in RestoreInput, by any core set C with C ≥ n− t (with up to t cheaters. When
an input sharing [s(k)] of an honest player Pk is restored in RestoreInput, then
the shared value is the correct input of Pk. Furthermore, both PrepareInputs and
RestoreInput preserve the privacy of inputs of honest players.

Proof (sketch). Termination and privacy are easy to verify. We focus on cor-
rectness. First assume that Pk is honest, and all his messages in Round 1 of
PrepareInputs were synchronously delivered. Then every honest player Pi em-
beds the share s

(k)
i in his input vector. There will be at least n − t players in

the core set, so at least n − 2t honest players Pj . This means that there are
at least n − 2t t-consistent shares s

(k)
j , and hence, at least n − 2t consistent

shares dj . For t < n/4, we have n − 2t ≥ 2t + 1, and the result is a sharing of
d − b = (s(k) + b) − b = s(k). Then assume that Pk is honest, but not all his
messages in Round 1 have been delivered synchronously. However, if there are

2t+1 points on the polynomial p(·), at least t+1 of these points are from honest
players, and hence the right input is restored.

9.4 The Hybrid MPC Protocol

The new main protocol for the hybrid model is as follows:

Protocol HybridMPC (C, cI , cM , cR, cO).
1. Invoke PrepareInputs to let every Pi with input s(i) Shamir share s(i) among

all players.
2. Invoke PreparationPhase to generate ` = cM (3t + 1) + cR + cI(t + 1) random

sharings.
3. Invoke InputPhase (with Pi’s input being the vector s̃(i)) to let the players

share their input vectors.
4. Invoke RestoreInput to restore the inputs of every Pk not in the core set.
5. Invoke ComputationPhase to evaluate the circuit (consisting of linear, multi-

plication, random, and output gates).

Theorem 2. For every coalition of up to t < n/4 bad players and for every
scheduler, the protocol HybridMPC securely computes the circuit C, taking the
inputs of all players (when the first round is synchronous), or taking the inputs of
at least n− t players (independently of any scheduling assumptions). AsyncMPC
communicates O

(
(cIn

3 + cMn3 + cRn2 + ncO)κ + n3BC(κ)
)

bits and requires 2
invocations to ACS (can be reduced to 1).

10 Conclusions

We have presented an MPC protocol for the fully asynchronous model, which is
perfectly secure against an active, adaptive adversary, corrupting up to t < n/4
players, what is optimal. The protocol communicates only O(n3) field elements
per multiplication. Even in the synchronous model, no perfectly secure MPC pro-
tocol with better communication complexity is known. Furthermore, the protocol
is as efficient as the most efficient protocol for the asynchronous model, which
provides only cryptographic security.

Furthermore, we have enhanced the protocol for a hybrid communication
mode, where the inputs of all players can be taken under the only assumption
that the very first communication round is synchronous. This assumption is very
realistic, as anyway the players have to agree on set of involved players, on the
circuit to be evaluated, etc. The proposed protocol combines best of both the
hybrid model and the fully asynchronous model; it allows at least n− t players
provide their input (even when the communication is fully asynchronous), and
additionally guarantees that the input of every player is taken, as long as his
first-round messages are delivered synchronously.

Lastly, the proposed protocol is conceptually very simple. It uses neither
player elimination nor repetition.

References

[BCG93] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computa-
tion. In Proc. 25th STOC, pp. 52–61, 1993.

[Bea91] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, pp. 75–122, 1991.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proc. 20th
STOC, pp. 1–10, 1988.

[BH06] Z. Beerliova-Trubiniova and M. Hirt. Efficient multi-party computation
with dispute control. In TCC 2006, LNCS 3876, pp. 305–328, 2006.

[BKR94] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations
with optimal resilience (extended abstract). In Proc. 13th PODC, pp. 183–
192, 1994.

[Bra84] G. Bracha. An asynchronous b(n − 1)/3c-resilient consensus protocol. In
Proc. 3rd PODC, pp. 154–162, 1984.

[Can95] R. Canetti. Studies in Secure Multiparty Computation and Applications.
PhD thesis, Weizmann Institute, Israel, June 1995.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In Proc. 20th STOC, pp. 11–19, 1988.

[CDG87] D. Chaum, I. Damg̊ard, and J. van de Graaf. Multiparty computations
ensuring privacy of each party’s input and correctness of the result. In
CRYPTO ’87, LNCS 293, pp. 87–119, 1987.

[DN07] I. Damg̊ard and J. B. Nielsen. Robust multiparty computation with linear
communication complexity. In CRYPTO 2007, LNCS 4622, 2007.

[GHY87] Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure fault-
tolerant protocols and the public-key model. In CRYPTO ’87, LNCS 293,
pp. 135–155, 1987.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
— a completeness theorem for protocols with honest majority. In Proc. 19th
STOC, pp. 218–229, 1987.

[HMP00] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multi-party com-
putation. In ASIACRYPT 2000, LNCS 1976, pp. 143–161, 2000.

[HN06] M. Hirt and J. B. Nielsen. Robust multiparty computation with linear
communication complexity. In CRYPTO 2006, LNCS 4117, pp. 463–482,
2006.

[HNP05] M. Hirt, J. B. Nielsen, and B. Przydatek. Cryptographic asynchronous
multi-party computation with optimal resilience. In EUROCRYPT 2005,
LNCS 3494, pp. 322–340, May 2005.

[PSR02] B. Prabhu, K. Srinathan, and C. P. Rangan. Asynchronous unconditionally
secure computation: An efficiency improvement. In Indocrypt 2002, LNCS
2551, 2002.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In Proc. 21st STOC, pp. 73–85, 1989.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22:612–
613, 1979.

[SR00] K. Srinathan and C. P. Rangan. Efficient asynchronous secure multiparty
distributed computation. In Indocrypt 2000, LNCS 1977, Dec. 2000.

[Yao82] A. C. Yao. Protocols for secure computations. In Proc. 23rd FOCS, pp.
160–164, 1982.

