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Abstract. Due to recent breakthroughs in hash functions cryptanalysis, some
new hash schemes have been proposed. GRINDAHL is a novel hash function, de-
signed by Knudsen, Rechberger and Thomsen and published at FSE 2007. It has
the particularity that it follows the RIJNDAEL design strategy, with an efficiency
comparable to SHA-256. This paper provides the first cryptanalytic work on this
new scheme. We show that the 256-bit version of GRINDAHL is not collision re-
sistant. With a work effort of approximatively 2112 hash computations, one can
generate a collision.
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1 Introduction

Hash functions are one of the most utilized primitives in cryptography. Basically, a
hash function H is a function that maps an input of variable size to a fixed length
output value. A cryptographic hash function has the additional feature that it must sat-
isfy some security properties such as preimage resistance, second preimage resistance
and collision resistance. For an ideal hash function with an n-bit output, one expects
that compromising these properties should require 2n, 2n and 2n/2 operations respec-
tively [12].

A possible way of building a hash function has been introduced by the pioneering
work of Merkle and Damgård [22,10], using an iterative process: at each iteration, a
fixed-length input function h (the compression function) updates an internal state called
chaining variable with some part of the message. With some appropriate padding of the
message to be hashed, the problem of building a collision-resistant hash function H is
then reduced to the problem of building a collision-resistant compression function h.
However, due to recent attacks [16,18,17,14] against this iterative process, other hash
domain extensions have been introduced [2,5].

Almost all the proposed hash functions define a compression function to be used
with any hash domain extension algorithm. There are basically three different ways
of building a compression function. First, one can relate the security of h to a hard
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problem, such as factorisation [9], finding small vectors in lattices [3], syndrome de-
coding [1] or solving multivariate quadratic equations [6]. The usually bad efficiency
of these schemes is compensated by the proofs of security they provide. Another very
active domain is the construction of secure compression functions based on block ci-
phers. The problem of building a secure n-bit compression function from an ideal n-bit
block cipher is more or less resolved [27,28,7] and due to a need of bigger output size
the cryptographic community is now concentrated on the problem of building a secure
(k × n)-bit compression function from an ideal n-bit block cipher [13,26,30]. Finally,
the most common and efficient way of building a compression function is from scratch,
for example the well known and standardized SHA-1 [25] or MD5 [29]. However,
almost all of this type of hash functions have been broken by novel cryptanalysis re-
sults [31,32,33,34,8].

To anticipate further improvements of the attacks, the NIST is initiating an ef-
fort [24] to develop one or more additional hash algorithms through a public compe-
tition, similar to the development process for the Advanced Encryption Standard [23].
In parallel, new hash functions have been published very recently, such as FORK-
256 [15] (broken in [21]), RADIO-GATÙN [4] or GRINDAHL [20]. We show here that
for the GRINDAHL hash function one can find a collision (resp. a second preimage)
with a work effort of 2112 (resp. 2224) hash computations approximatively, whereas 2n/2

(resp. 2n) is expected for an ideal hash function. Note that the conceptors of GRINDAHL
only claimed a (second) preimage security of 2n/2 operations, already providing an at-
tack requiring lower than 2n operations.

The paper is organized as follows. In Section 2 we quickly recall the specification
of the GRINDAHL hash function and in Section 3 we begin the analysis with various
observations on the scheme and the general methodology that allows us to build a dif-
ferential path. Then, in Section 4, we provide the first collision attack on GRINDAHL.
Finally, we discuss possible patches in Section 5 and we conclude in Section 6.

2 Description of GRINDAHL

GRINDAHL is a family of hash functions based on the so-called Concatenate-Permute-
Truncate strategy, where in our case the permutation uses the design principles of RI-
JNDAEL [11], well known for being the winning candidate of the Advanced Encryption
Standard (AES) process [23]. Two algorithms are defined, a version with a 256-bit out-
put and a 512-bit one. Also, a compression function mode is given, taking only fixed-
length inputs, to be used with any hash domain extension algorithm. We give in this
section a quick description of the GRINDAHL hash function with a 256-bit output. For
a more detailed specification of the algorithm, we refer to [20].

Let n = 256 be the number of output bits of the hash function H , with an internal
state s of 48 bytes (384 bits), and let M be the message (appropriately padded) to
be hashed. M is split into m blocks M1, . . . ,Mm of 4 bytes each (32 bits). At each
iteration k, the message block Mk will be used to update the internal state sk−1. We
call extended internal state ŝk the concatenation of the message block Mk+1 and the
internal state sk, i.e. ŝk = Mk+1||sk. We thus have |ŝk| = (4+48)× 8 = 416 bits. We
denote by trunct(x) the least significant t bits of x. Let P : {0, 1}416 7−→ {0, 1}416 be



a non-linear permutation, and let s0 be the initial internal state defined by s0 = {0}384.
Then, for each iteration k with 0 < k < m, we have sk = trunc384(P (ŝk−1)). For the
last iteration, the truncation is omitted: ŝm = P (ŝm−1). Finally, we apply eight blank
rounds ŝk = P (ŝk−1), for m < k ≤ m + 8, and the output of the hash function is
trunc256(ŝm+8).

The description is not complete since P has not yet been defined. This permutation
follows the design principle of RIJNDAEL (the reader is expected to be familiar with
the transformation defined in the RIJNDAEL specifications) and thus the extended state
ŝ is viewed as a matrix of bytes. However, instead of a (4, 4) bytes matrix, we have a
matrix α of 4 rows and 13 columns in the case of the 256-bit version of GRINDAHL.
The entry of the matrix α located at the i-th row and the j-th column is a byte denoted
by αi,j . Thus, we have:

α =


α0,0 α0,1 · · · α0,12

α1,0 α1,1 · · · α1,12

α2,0 α2,1 · · · α2,12

α3,0 α3,1 · · · α3,12

 .

By splitting the extended internal state ŝ into 52 8-bit chunks x0, . . . , x51, we can
define the conversion from ŝ to α by αi,j = xi+4×j . This mapping has a natural inverse.
Basically, before each iteration, the first column of α is overwritten with the incoming
message block. Finally, the permutation P is defined as

P (α) = MixColumns ◦ ShiftRows ◦ SubBytes ◦ AddConstant(α).

MixColumns. This transformation is defined as in the RIJNDAEL specifications.

ShiftRows. This transformation cyclically shifts bytes a number of positions along each
row. Thus, the i-th row is rotated by ρi positions to the right, with ρ0 = 1, ρ1 = 2,
ρ2 = 4 and ρ3 = 10.

SubBytes. The only non-linear part of the permutation, exactly defined as the SubBytes
function of RIJNDAEL.

AddConstant. This function is simply defined by α3,12 ←− α3,12 ⊕ 01, where 01 is
the byte-wise hexadecimal value of 1.

Note that the 512-bit version of GRINDAHL is based on the same principle as the
256-bit version, but the extended internal state is bigger (8 rows instead of 4). The com-
pression function mode for GRINDAHL-256 (without optional input) simply consists in
hashing 40 4-byte message blocks for each compression function call.

3 Overall Analysis

In this section, we study possible ways of finding a good differential path for the 256-bit
version of GRINDAHL. More precisely, we look for a trail of k iterations starting from
s0 and so that with two different messages M and M ′ we have the same hash output, i.e.
trunc256(ŝm+8) = trunc256(ŝm′+8). Thus, we only care about collision and second



preimage resistance. Finding a differential path including the blank rounds seems hard
since no message block is inserted during this last operation and thus we have very few
control on this part. However, the problem looks much easier when trying to find an
internal collision: a differential path excluding the blank rounds, i.e. ŝm = ŝm′ . Here,
we explain how to find such a path, with the constraint that we want this path to have a
good probability of success.

3.1 A Known Potential Attack and the Truncated-Differences

In the original paper from FSE 2007, a section explains a potential attack method,
pointed out by an anonymous reviewer. This method seems quite natural: the attacker
does not look at the actual values of differences inserted in the bytes of the internal
state, but only checks if there is a difference or not (this greatly simplifies the anal-
ysis). We call this kind of zero or non-zero differences truncated-differences in refer-
ence to the very similar truncated differences used by Knudsen in [19]. Then, a chain
of truncated-differences in which in every round the number of actives bytes (bytes
with a non-zero truncated-difference) is low must be found. In this differential path,
the truncated-differences can only be erased during two stages of an iteration: during
a MixColumns transformation or during the truncation at the end of the iteration. In
other words, the number of truncated-differences in a column can be reduced and their
position changed by a clever use of the MixColumns transformation (note however that
one can never erase all the truncated-differences of a column at a time). Otherwise, a
truncated-difference is deleted if it goes to the first column of α at the end of the itera-
tion, due to the truncation. Since at this stage of the attack the differential trail is already
settled, one can not force anything for the truncation but one can play with the message
blocks inserted at each iteration, in order to force a good behavior in the MixColumns
processes (see Section 3.2). In fact, the message bytes act as active/passive bits in the
sense that new input bytes do not affect some parts of the internal state for a limited
number of rounds (see Section 3.3). The feasibility of this method was left as an open
problem, and we argue in Section 3.4 that there is a better way of finding a collision on
GRINDAHL.

3.2 Analysis of Differences Propagation in MixColumns

The MixColumns transformation used in GRINDAHL is the same as in RIJNDAEL, and
its MDS property ensures maximal difference propagation. More precisely, the sum
of the number of active bytes of the input and the output is greater or equal to 5. In
other words, the number of non-zero truncated-differences of the input and the output
of MixColumns is greater or equal to 5.

More formally, let V = (A,B,C, D) be an input vector of four bytes A, B, C and
D; and let W = (A′, B′, C ′, D′) be an output vector of four bytes A′, B′, C ′ and D′.
We denote the function MixColumns by MC : V 7−→ W or MC : (A,B, C, D) 7−→
(A′, B′, C ′, D′). We also denote by Di(V1, V2) the function returning 1 if the i-th byte
of the 4-byte vectors V1 and V2 are different, and 0 otherwise. Finally, ND(V1, V2)
returns the number of such differences, i.e. ND(V1, V2) = #{i |Di(V1, V2) = 1}. We



thus have that if W1 = MC(V1) and W2 = MC(V2) with V1 6= V2, then

ND(V1, V2) + ND(W1,W2) ≥ 5.

Another interesting property is that any input byte of MixColumns defines a permu-
tation for any output byte. Thus, with W1 = MC(V1), W2 = MC(V2) and V1 6= V2

drawn uniformly and randomly in {0, 1}4×8, we have for any 1 ≤ i ≤ 4:

PD = P [Di(W1,W2) = 0] =
2563 − 1
2564 − 1

' 2−8, (1)

PD = P [Di(W1,W2) = 1] = 1− PD ' 1− 2−8. (2)

Our goal is to compute the probability that a fixed mask of input truncated-differences
maps to a fixed mask of output truncated-differences (later this will be often utilized in
order to compute the probability of success of the differential path). For example, we
want to be able to know the probability that given two input words V1 and V2 distinct
on their 2 first bytes give two output words different on their 3 first bytes through Mix-
Columns (note that this is slightly different from the event that any 2-byte difference
input maps to any 3-byte difference output). We can compute those probabilities in two
ways, formally or empirically by testing exhaustively all the input values: since Mix-
Columns is linear, dealing with differences or values is the same (during the test, instead
of looking for differences or non-differences, we checked for zero values or non-zero
values). We give in Table 1 an approximation of those probabilities.

H
HHHHDI

DO 0 1 2 3 4

0 0 -∞ -∞ -∞ -∞
1 -∞ -∞ -∞ -∞ 0
2 -∞ -∞ -∞ -8 0
3 -∞ -∞ -16 -8 0
4 -∞ -24 -16 -8 0

Table 1. Approximate probability that two 4-byte input words with DI different bytes on prede-
fined positions maps to two 4-byte output words with DO different bytes on predefined positions
through MixColumns. The values are base 2 logarithms.

3.3 Existence of Control Bytes

Modifying some message bytes will obviously modify quite quickly the internal state,
but not necessarily immediately. For each modified byte of the message Mk, we give in
Table 2 the columns of s (in its matrix representation α) affected by this modification
after 1, 2 and 3 iterations. Note that for more than 3 iterations, any message byte affect
all the internal state. This active/passive bytes feature will allow us to attack different



columns of different iterations independently. More precisely, we will control inde-
pendently the behaviour of some MixColumns transitions thanks to the active/passive
bytes.

0 1 2 3 4 5 6 7 8 9 10 11 12
Ak X
Bk X
Ck X
Dk X

0 1 2 3 4 5 6 7 8 9 10 11 12
Ak X X X X
Bk X X X X
Ck X X X X
Dk X X X X

0 1 2 3 4 5 6 7 8 9 10 11 12
Ak X X X X X X X X X X
Bk X X X X X X X X X X
Ck X X X X X X X X X X
Dk X X X X X X X X X X

Table 2. Influences on the columns of the extended internal states for a modification of a byte
of the message block Mk = (Ak, Bk, Ck, Dk) incoming at iteration k. We denote by X if the
column is affected (or active) and void if not. The first table shows influences on sk−1, the second
on sk and the third on sk+1.

3.4 General Strategy

We now have all the necessary tools in order to build a truncated-differential path and
evaluate its probability of success. But how to actually find one ? The natural intuition
one would have (as the anonymous reviewer suggested) is to always maintain a low
number of truncated-differences along the path (to increase the probability). However,
finding one such path seems really difficult as one can convince oneself with Property
1 from the original paper:

Property 1. An internal collision for GRINDAHL-256 requires at least 5 iterations. More-
over, any characteristic starting or ending in the extended state with no difference con-
tains at least on round where at least half the extended state bytes (excluding the first
column) are active.

This property can be verified with a meet-in-the-middle exhaustive search, as ex-
plained in the original paper. However, with a small speed improvement of this algo-
rithm, one can check that an internal collision for GRINDAHL-256 requires at least 6



iterations. Another observation is that by introducing differences in the state, after a
few iterations we quickly come to an "all-difference" pair of extended states. More-
over, this "all-difference" pair of extended states is almost stable: the probability that
an all-difference pair of columns remains an all-difference pair of columns through
MixColumns is approximatively PA = (1 − 2−8)4, so for the twelve columns of the
extended state (excepted the first column) we have a probability of P 12

A ' 2−0,27.
Thus, our first idea is to not search for a path starting from a zero difference but from
an all-difference pair of extended states (which is very easy to get). The overwhelming
probability P 12

A allows us to start with as much valid starting states as we want.

3.5 Finding a Truncated Differential Path

Searching for a differential path starting from an all-difference pair of extended inter-
nal states is quite easy. One method is to go backward almost exhaustively. Indeed, in
GRINDAHL the truncated differences propagate in the forward direction as quickly as in
the backward direction. More precisely, if we look for a collision at the end of iteration
k, we try all the possible truncated difference masks for the message blocks inserted at
iterations k, k − 1, etc. and all the possible transitions of truncated differences through
MixColumns, until we come to an all-difference pair of extended states. This algorithm
can be greatly improved with an early-abort strategy: we compute a lower bound on the
cost of the current trail we are building (taking in account the control provided by the
active/passive bytes, see Section 4) and we stop the search branch if the complexity of
the attack is already greater or equal to 2128 operations. We also stop the search if we
go too far in terms of number of iterations1.

Obviously, by always adding truncated differences to all the message blocks in-
serted is the fastest way to reach this goal. However, we will use the message bytes
inserted as control bytes to attack some parts of the differential path independently and
thus increase the probability of success. Thus, it may be better not to go too fast on
adding truncated differences in order to increase the total number of iterations during
the differential path. This will increase the total number of message blocks inserted and
therefore provide more control bytes. For example, we can find a path starting from an
all-difference pair of extended internal states and requiring only 4 iterations to get a col-
lision, with a probability of success of approximatively 2−312. However, another path
requiring 8 iterations to get a collision, with a probability of success of approximatively
2−440 may be better. Indeed, in the latter case, even if the probability of success has
been divided by a factor 2138, we have inserted 8 message word pairs instead of only
4 in the former case. Thus, we get roughly 2 × 4 × 4 × 8 = 256 degrees of freedom
compared to the former case (4 pairs of message of 4 bytes each). Thus, we obtained
more degrees of freedom than what we paid for the probability drop. Obviously, a limit
exists: at some point, adding more iterations does not improve things anymore.

1 in some particular cases, the overall complexity of the attack can remain stable even if the
number of iterations of the differential path increases.



4 Finding a Collision

In this Section, from the previous observations, we give a complete collision attack for
the 256-bit version of GRINDAHL.

4.1 The Differential Path

Before describing the collision attack, we give in Figure 1 the differential path used and
which has been generated thanks to a program implementing the previously explained
technique (see Section 3.5). This trail is the best found (among other possible candidates
leading to the same complexity). Several candidates were possible and we kept the one
providing the best collision attack. We denote by k the number of the last iteration
of our differential path, i.e. the last line of Figure 1. First, one can check that all the
MixColumns transitions are valid. This differential path has a probability of success of
approximatively 2−55×8 = 2−440, but we will see that we also have a lot of message
blocks inserted allowing to attack some parts independently.

Our aim is to find a pair of messages following the expected differential trail. For
this, we don’t take care of each iteration one by one, but we deal with each of the 4-
byte message words inserted one by one. Said in other words, we will fix the four bytes
of a message word pair and check that the newly imposed MixColumns differential
transitions are the ones expected in the truncated-differential path. If so, we continue to
the next message word pair until we get a collision.

In Table 3, we give all the dependencies of the MixColumns transitions with the
message blocks inserted, used as control bytes during the differential path from Fig-
ure 1. The cost of all the transitions are given (see Section 3.2) also with the number
of control bytes inserted at each iteration (see Section 3.3). The second column of the
Table gives the position of the columns of the state in which we force a differential
transition during a MixColumns transformation, and the first column indicates in which
iteration this event occurs. For each transition, we give in the third column its cost in
terms of number of bytes (i.e. for a cost c, the transition has a probability of 2−c×8).
Then, each of the seven other columns of the table represents a pair of message words
that will be used as control bytes (the letters a or A, b or B, c or C and d or D repre-
sent respectively the first, second, third and fourth byte of the 4-byte message inserted).
Capital letters means that we have 2 control bytes (we insert a difference for this block)
and small letters means that we only have 1 control byte (no difference inserted for this
message block). In the core of the table a dash or a cross represents the fact that the
MixColumns transition indicated by the corresponding line is affected by the control
byte indicated by the corresponding column. We divided those dependencies for the
sake of simplicity, the crosses are the dependencies that will be used for the attack: they
represent for each MixColumns transition the dependencies of the last involved mes-
sage word. Finally, the last line gives the cost of each message word insertion in terms
of number of bytes (the sum gives the total complexity of the attack).

Note that a lot of the inserted message bytes provide two one-byte degrees of free-
dom (capital letters) in the case where we introduce a difference for this message block
(we can make independently both messages of the pair vary). From Table 3, one can
check that we need to test 214×8 = 2112 all-difference pairs of internal state in order to



Mk iteration k

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−1 iteration k − 1

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−2 iteration k − 2

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−3 iteration k − 3

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−4 iteration k − 4

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−5 iteration k − 5

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−6 iteration k − 6
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SHIFTROW

Mk−7 iteration k − 7
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MIXCOL
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TRUNC

Fig. 1. Truncated-differential path in 8 iterations starting from an all-difference pair of states. The
dark cells mean that we have a non-zero difference for this byte, and the light cells stand for no
difference. Each row represents an iteration. The first column gives the differences in the state
just after its update with the 4-byte message word, and the second column gives the same state
after application of the ShiftRows transformation. Finally, the third column represents the internal
state just after application of the MixColumns function. Note that the AddConstant and SubBytes
functions have no effect on the differential path, thus they are omitted here. Each first 4-byte
column of the first column states represents the message words inserted at each iteration, that
will later be used as control bytes. The first 4-byte column of the state after every MixColumns
transition can have whatever difference mask since those bytes will be immediately truncated.



have a good probability of obtaining a collision. More precisely, the collision attack is
as follows.

4.2 The Collision Attack

First step: start with the predefined initial value and compute some iterations with lots
of truncated-differences in the incoming message blocks in order to quickly come to an
all-difference pair of states denoted A after a few iterations. This step is omitted in the
complexity analysis since very largely negligible.

Second step: from this pair of states A, generate 214∗8 = 2112 all-difference pairs of
states A1, . . . , A2112 . This step requires 2112× 20,27 = 2112,27 iterations computations.

Third step: we continue the attack by fixing the control bytes iteration per iteration:
for the message blocks inserted at the beginning of iterations k − 8, k − 7, k − 6 of
our truncated-differential path from Table 3, we have more control bytes incoming than
necessary. Indeed, we have for the messages inserted at iterations k − 8, k − 7 and
k − 6, 8, 8 and 7 control bytes available respectively, whereas we only require 2, 7 and
7 bytes of degrees of freedom respectively. More precisely, for each pair of message
words (Mk−i,M

′
k−i) inserted, its bytes are used in order to adjust the behavior of the

MixColumns transitions where crosses appear at column Mk−i in Table 3 2. For each
step, the total cost is equal to the sum of the costs of all the MixColumns transitions
involved, minus the number of control bytes available from Mk−i. Thus, at this point of
the attack, we maintain 2112 pairs of messages and states following the differential trail.
For the message words inserted at iteration k − 5, we have 6 control bytes for 7 bytes
of conditions, thus we only keep 1 out of 28 message pairs and we go to the (k − 4)-th
message word with 2104 valid pairs. We continue in the same way for the three lasting
message words k − 4, k − 3 and k − 2, having 7, 8 and 4 control bytes respectively3

and requiring 9, 14 and 9 bytes of conditions respectively. We thus expect to have one
pair of messages following the differential trail with a good probability by starting with
214×8 = 2112 all-difference pairs of states.

Fourth step: add a (k + 1)-th message block without truncated-difference in order to
force a truncation after the last iteration k of the differential trail (the final blank rounds
are done without truncation).

4.3 Discussion on the Attack

For the sake of clarity, we explain more precisely how to deal with the control bytes
by giving an example. Let set ourselves when the attacker has to fix the message pair

2 since in Table 3 the crosses represent the last message word involved for the transition, the
previous dependencies (represented by a dash) are already fixed at this point.

3 for the k−2 case, we only have 4 control bytes and not 6 as indicated in Table 3. Indeed, since
c and d are not involved in any MixColumns transition, they can not be considered as control
bytes.



message blocks inserted
it col cost k − 8 k − 7 k − 6 k − 5 k − 4 k − 3 k − 2

A B C D A B C D A B c D a B c D A b C D A B C D A B c d
2 1 − ×

k-7 3 1 × ×
7 1 ×
1 1 − − − − ×
2 1 − − − − ×
3 2 − − − − × ×

k-6 7 1 − − − ×
8 1 − − − − ×
10 1 − − ×
12 1 − − − × ×
2 1 − − − − − − − − ×
3 1 − − − − − − − − × ×

k-5 8 1 − − − − − − − − ×
9 1 − − − − × × × ×

11 1 − − − − − − × × ×
1 1 − − − − − − − − − − − − ×
3 1 − − − − − − − − − − − − × ×
4 2 − − − − − − − − − − − − ×

k-4 7 1 − − − − − − − − − − − ×
9 1 − − − − − − − − × × × ×

10 1 − − − − − − − − − − ×
11 1 − − − − − − − − − − × × ×
12 1 − − − − − − − − − − − × ×
1 3 − − − − − − − − − − − − − − − − ×
2 2 − − − − − − − − − − − − − − − − ×
4 2 − − − − − − − − − − − − − − − − ×

k-3 5 2 − − − − − − − − − − − − − − − − × ×
9 2 − − − − − − − − − − − − × × × ×

10 2 − − − − − − − − − − − − − − ×
11 1 − − − − − − − − − − − − − − × × ×
12 2 − − − − − − − − − − − − − − − × ×
1 3 − − − − − − − − − − − − − − − − − − − − ×

k-2 2 3 − − − − − − − − − − − − − − − − − − − − ×
6 3 − − − − − − − − − − − − − − − − − − − × ×

12 2 − − − − − − − − − − − − − − − − − − − × ×
k-1 3 3 − − − − − − − − − − − − − − − − − − − − − − − − × ×

COST 0 0 0 1 2 6 5

Table 3. Dependencies of the message blocks used as control bytes and inserted during the
truncated-differential path from Figure 1, for a collision at the end of iteration k.



incoming at step k − 5 (seventh column in Table 3). The previous message words have
already been fixed during the attack, thus we only have to deal with the crosses in
Table 3. Some MixColumns differential transitions have to behave as required by the
truncated-differential path, and this has a cost. For example, at the second column of
the (k − 5)-th iteration, we need a 4-truncated-differences to 3-truncated-differences
transition and this will happen with probability 2−8, thus with a cost of 1 byte. However,
to make this event occur, we can use the message word inserted at iteration k− 5 (more
precisely its second byte) in order to randomize the instantiation of the transition. Note
that there are several ways of doing this step, and this is discussed below. We actually
have a good probability to find 28 valid pairs of message bytes for this transition: two
control bytes for one byte of condition. We do the same process for the seventh column
transition of iteration k−4 with the fourth byte of the message word: again two control
bytes for one byte of condition. Then we identify the subset of the cross product of the
two sets of 28 byte pairs such that the twelfth column transitions of iteration k − 4 is
verified (depending only on the two previously fixed pairs of message bytes), which
costs one byte of condition. So, we maintain 28 valid possibilities. Then, we fix the first
byte of the message word to deal with the third column transition of iteration k − 4:
since this costs one control byte for one byte of condition, we still maintain 28 valid
possibilities. Finally, with the lasting byte of the message word (the third), we look for
a good transition for the ninth column of iteration k − 3: this costs one control byte for
two bytes of conditions but we had maintained 28 valid possibilities before. Thus, in the
end, we have a good probability to find a valid message word for all the transitions cited.
However, we didn’t take care of the eleventh column of iteration k − 4, which costs us
one byte of condition. To summarize, this whole step will cost us 28 tries because we
had a total of six control bytes for a total of seven bytes of conditions. Repeating this
reasoning for all the message words inserted at each iteration of the differential path
explains the 2112 tries cost for the whole collision attack.

One may argue that we indeed need to try 2112 all-difference pairs of states but the
basic operation is costly when playing with the control bytes. Indeed, with the previous
example, some steps require to pass through 28 or 216 values of message words, each
requiring only a SubBytes computation on a whole column, or one or two iteration
processes (depending on which column of the state the transition occur). Even if it is
still an attack, the complexity would be a slightly higher. This argument is true if the
attacker uses a naive search method. However, unexpensive precomputations allow to
reduce the computational cost of the search table lookups. For example, with as few as
232 precomputation time and memory, one can generate all the informations needed to
quickly execute the search needed during the third step of the collision search. Only a
few table lookups would then be required. One might also wonder why we did not count
the complexity of the few 4-truncated-differences to 4-truncated-differences transitions.
Such transitions always have a great probability to happen PA = (1− 2−8)4 ' 2−0,02.
Therefore they have very little effect on the complexity of the attack. This operation
is clearly less costly than doing a whole iteration process. Moreover, the compression
function mode performs 40 iterations for one compression call. Thus our attack actually
runs in less than 2112 hash computations, all the complexity coming from the generation
of 2112 all-difference pairs of states.



Note that we checked that this kind of attack also works with a complexity of at
most 2120 hash computations for all the rotation constants providing the best diffusion,
which seems to indicate that the internal state of GRINDAHL is not big enough.

We provide in Appendix the extension of this technique for the second preimage
case applied to the 256-bit version of GRINDAHL. However, note that the GRINDAHL
conceptors only claimed a 128-bit security for (second) preimage resistance, showing
that (second) preimages can be found in less than 2256 operations.

5 Discussion on the Attack and Possible Patches

Most of the difficulty of the presented attack is to actually find a good differential
path, and this is possible by letting the differences totally spread and start from an
all-difference pair of states. Moreover, even if better differential trails may be found by
maintaining a low weight of differences (which is hard to find), we think that the com-
plexity will not drastically decrease compared to our attack. Indeed, the complexity cost
grows quickly due to the last iterations of the differential trail (where very few control
bytes are available), and these steps will remain very costly whatever the differential
trail used. Said in other words, we can compute a lower bound on the complexity of
an attack using any truncated-differential path and control bytes. For example, a short
program gives us that a similar truncated-differential attack for the 256-bit version of
GRINDAHL requires at least 2104 operations (whatever the truncated-differential path).
Note that this does not mean that such an attack exists.

Thus it would be very interesting to think of a new version of GRINDAHL (with a
comparable efficiency) that resists the presented attack but also any attack dealing with
truncated-differences and control bytes. Thus, one wants the lower bound on the com-
plexity of an attack using truncated-differential path and control bytes to be greater or
equal to 2128 operations, and even greater for a good security margin. If this is possible,
an attacker that wants to find a collision would have to first find a differential trail and
then to deal with the actual values of differences in order to lower the complexity. The
SubBytes transformation would therefore discourage this kind of attack and we would
obtain a hash function with a strong security argument. A new GRINDAHL version with
such a property and a reasonable efficiency could be designed by adding some more
columns in the states. The question of the number of the columns to be added or other
possible patches is left open for future researches.

6 Conclusion

We showed in this work that the 256-bit version of GRINDAHL is not collision resis-
tant. By introducing a non-intuitive technique in order to find a good differential path
and with a careful use of the control bytes available, we presented an attack finding
collisions with no more than 2112 hash computations. We believe that such a reasoning
would apply for the 512-bit version of GRINDAHL, even if the search space for a differ-
ential path in this case would be much bigger. Finally, we provided possible patches for
the 256-bit version of GRINDAHL that may lead to new versions with stronger security
arguments.
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Appendix

Extending the Collision Attack to Second Preimage Resistance. Our previously
explained collision attack has a nice feature for an attacker: one does not care about
the actual values of the differences. Thus, we have very few constraints during the dif-
ferential path. This remark allows us to extend our collision attack to second preimage
resistance if the second preimage challenge has a reasonable number of message blocks.
For example, let us look at the differential path from Figure 2. If one wants to find a
second preimage using this path, only the number of control bytes will change as com-
pared with the collision attack case: when we previously had two control bytes because
of the insertion of a non-zero truncated-difference (capital letters in Table 3), we only
get one control byte since the first message block is fixed by the challenge. For the same
reason, when a zero truncated-difference is inserted, we have one control byte for the
collision case (small letters in Table 3) and we have no more control byte in the second
preimage case.

Using exactly the same techniques as for the collision attack, one can find a second
preimage in approximatively 228×8 = 2224 hash computations whereas 2256 hash com-
putations should be required for an ideal 256-bit hash function. The drawback of this
method is that we require the challenge to contain enough message blocks in order to
have enough iterations to follow our differential path (around 8 iterations: 3 to reach an
all-difference pair of states, 4 to follow the path from Figure 2 and 1 to force the trun-
cation at the end of our differential trail). Moreover, we need approximatively 7 more
iterations if we also take in account that we need to generate 2224 all-difference pairs of
internal state to pass the differential trail. Thus, our attack works for a challenge of at
least 15 message words.

Note that the GRINDAHL designers only claimed a 2128 security for their 256-bit
version, and provided in their original paper a (second) preimage algorithm requiring
2176 operations and memory with a meet-in-the-middle reasoning on the internal state
size.
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Fig. 2. Truncated-differential path in 4 iterations starting from an all-difference pair of states, to
be used for a second preimage attack.



message blocks inserted
it col cost k − 4 k − 3 k − 2

A B C D A B C D A B c D
2 1 ×

k-3 3 1 × ×
7 1 ×
1 2 − − − − ×
2 2 − − − − ×
3 3 − − − − × ×
5 3 − − − − × ×
6 3 − − − × ×

k-2 7 2 − − − ×
8 2 − − − − ×
9 2 × × × ×
10 2 − − ×
11 2 − − × × ×
12 1 − − − × ×
3 3 − − − − − − − − × ×

k-1 9 3 − − − − × × × ×
11 3 − − − − − − × × ×
12 3 − − − − − − − × ×

COST 0 16 12

Table 4. Dependencies of the message blocks used as control bytes and inserted during the
truncated-differential path from Figure 2 in a second preimage attack, for an internal collision
at the end of iteration k. Note that for the pairs of message words that will be used as control
bytes, since we set ourselves in the second preimage attack case, capital letters means that we
have one control byte (we insert a difference for this block) and small letters means that we have
no control byte (no difference inserted for this message block).


