
Quantum Fully Homomorphic Encryption With
Verification

Gorjan Alagic1,2, Yfke Dulek3, Christian Schaffner3, and Florian Speelman4

1 Joint Center for Quantum Information and Computer Science, University of
Maryland, College Park, MD

2 National Institute of Standards and Technology, Gaithersburg, MD
3 CWI, QuSoft, and University of Amsterdam

4 QMATH, Department of Mathematical Sciences, University of Copenhagen

Abstract. Fully-homomorphic encryption (FHE) enables computation
on encrypted data while maintaining secrecy. Recent research has shown
that such schemes exist even for quantum computation. Given the numer-
ous applications of classical FHE (zero-knowledge proofs, secure two-party
computation, obfuscation, etc.) it is reasonable to hope that quantum
FHE (or QFHE) will lead to many new results in the quantum setting.
However, a crucial ingredient in almost all applications of FHE is circuit
verification. Classically, verification is performed by checking a transcript
of the homomorphic computation. Quantumly, this strategy is impossible
due to no-cloning. This leads to an important open question: can quantum
computations be delegated and verified in a non-interactive manner?
In this work, we answer this question in the affirmative, by constructing
a scheme for QFHE with verification (vQFHE). Our scheme provides
authenticated encryption, and enables arbitrary polynomial-time quantum
computations without the need of interaction between client and server.
Verification is almost entirely classical; for computations that start and
end with classical states, it is completely classical. As a first application,
we show how to construct quantum one-time programs from classical
one-time programs and vQFHE.

1 Introduction

The 2009 discovery of fully-homomorphic encryption (FHE) in classical cryptogra-
phy is widely considered to be one of the major breakthroughs of the field. Unlike
standard encryption, FHE enables non-interactive computation on encrypted
data even by parties that do not hold the decryption key. Crucially, the input,
output, and all intermediate states of the computation remain encrypted, and
thus hidden from the computing party. While FHE has some obvious applications
(e.g., cloud computing), its importance in cryptography stems from its wide-
ranging applications to other cryptographic scenarios. For instance, FHE can be
used to construct secure two-party computation, efficient zero-knowledge proofs
for NP, and indistinguishability obfuscation [3, 14]. In fact, the breadth of its
usefulness has led some to dub FHE “the swiss army knife of cryptography”[3].



Recent progress on constructing quantum computers has led to theoretical
research on “cloud-based” quantum computing. In such a setting, it is natural
to ask whether users can keep their data secret from the server that performs
the quantum computation. A recently-constructed quantum fully-homomorphic
encryption (QFHE) scheme shows that this can be done in a single round of
interaction [12]. This discovery raises an important question: do the numerous
classical applications of FHE have suitable quantum analogues? As it turns out,
most of the classical applications require an additional property which is simple
classically, but non-trivial quantumly. That property is verification: the ability
of the user to check that the final ciphertext produced by the server is indeed
the result of a particular computation, homomorphically applied to the initial
user-generated ciphertext. In the classical case, this is a simple matter: the server
makes a copy of each intermediate computation step, and provides the user with
all these copies. In the quantum case, such a “transcript” would appear to violate
no-cloning. the user simply checks a transcript generated by the server. In the
quantum case, this would violate no-cloning. In fact, one might suspect that the
no-cloning theorem prevents non-interactive quantum verification in principle.

In this work, we show that verification of homomorphic quantum computations
is in fact possible. We construct a new QFHE scheme which allows the server
to generate a “computation log” which can certify to the user that a particular
homomorphic quantum computation was performed on the ciphertext. The
computation log itself is purely classical, and most (in some cases, all) of the
verification can be performed on a classical computer. Unlike in all previous
quantum homomorphic schemes, the underlying encryption is now authenticated.

Verification immediately yields new applications of QFHE, e.g., allowing users
of a “quantum cloud service” to certify the server’s computations. Verified QFHE
(or vQFHE) also leads to a simple construction of quantum one-time programs
(qOTPs) [8]. In this construction, the qOTP for a functionality Φ consists of an
evaluation key and a classical OTP which performs vQFHE verification for Φ
only. Finding other applications of vQFHE (including appropriate analogues of
all classical applications) is the subject of ongoing work.

Related Work. Classical FHE was first constructed by Gentry in 2009 [15]. For
us, the scheme of Brakerski and Vaikuntanathan [4] is of note: it has decryption in
NC1 and is believed to be quantum-secure. Quantumly, partially-homomorphic
(or partially-compact) schemes were proposed by Broadbent and Jeffery [5]. The
first fully-homomorphic (leveled) scheme was constructed by Dulek, Schaffner
and Speelman [12]. Recently, Mahadev proposed a scheme, based on classical
indistinguishability obfuscation, in which the user is completely classical [17].
A parallel line of work has attempted to produce QFHE with information-
theoretic security [23, 19, 21, 18]. There has also been significant research on
delegating quantum computation interactively (see, e.g., [1, 7, 10]). Another
notable interactive approach is quantum computation on authenticated data
(QCAD), which was used to construct quantum one-time programs from classical
one-time programs [8] and zero-knowledge proofs for QMA [9].
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Summary of Results. Our results concern a new primitive: verified QFHE.
A standard QFHE scheme consists of four algorithms: KeyGen, Enc, Eval and
Dec [5, 12]. We define vQFHE similarly, with two changes: (i.) Eval provides an
extra classical “computation log” output; (ii.) decryption is now called VerDec, and
accepts a ciphertext, a circuit description C, and a computation log. Informally,
correctness then demands that, for all keys k and circuits C acting on plaintexts,

VerDecCk ◦ Eval
C
evk ◦ Enck = ΦC . (1)

A crucial parameter is the relative difficulty of performing C and VerDecCk . In
a nontrivial scheme, the latter must be simpler. In our case, C is an arbitrary
poly-size quantum circuit and VerDecCk is almost entirely classical.

Security of verified QFHE. Informally, security should require that, if a server
deviates significantly from the map EvalCk in (1), then VerDecCk will reject.

1. Semantic security (SEM-VER). Consider a QPT adversary A which
manipulates a ciphertext (and side info) and declares a circuit, as in Figure 1
(top). This defines a channel ΦA := VerDec ◦ A ◦ Enc. A simulator S does
not receive or output a ciphertext, but does declare a circuit; this defines a
channel ΦS which first runs S and then runs a circuit on the plaintext based
on the outputs of S. We say that a vQFHE scheme is semantically secure
(SEM-VER) if for all adversaries A there exists a simulator S such that the
channels ΦA and ΦS are computationally indistinguishable.

2. Indistinguishability (IND-VER). Consider the following security game.
Based on a hidden coin flip b, A participates in one of two protocols. For
b = 0, this is normal vQFHE. For b = 1, this is a modified execution, where
we secretly swap out the plaintext ρA to a private register (replacing it with
a fixed state), apply the desired circuit to ρA, and then swap ρA back in; we
then discard this plaintext if VerDec rejects the outputs of A. Upon receiving
the final plaintext of the protocol, A must guess the bit b. A vQFHE scheme
is IND-VER if, for all A, the success probability is at most 1/2 + negl(n).

3. New relations between security definitions. If we restrict SEM-VER to
empty circuit case, we recover (the computational version of) the definition
of quantum authentication [13, 6]. SEM-VER (resp., IND-VER) generalizes
computational semantic security SEM (resp., indistinguishability IND) for
quantum encryption [5, 2]. We generalize SEM ⇔ IND [2] as follows.

Theorem 1. A vQFHE scheme satisfies SEM-VER iff it satisfies IND-VER.

A scheme for vQFHE for poly-size quantum circuits. Our main result is a vQFHE
scheme which admits verification of arbitrary polynomial-size quantum circuits.
The verification in our scheme is almost entirely classical. In fact, we can verify
classical input/output computations using purely classical verification. The main
technical ingredients are (i.) classical FHE with NC1 decryption [4], (ii.) the
trap code for computing on authenticated quantum data [20, 8, 6], and (iii.) the
“garden-hose gadgets” from the first QFHE scheme [12]. The scheme is called
TrapTP; a brief sketch is as follows.
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1. Key Generation (KeyGen). We generate keys for the classical FHE scheme,
as well as some encrypted auxiliary states (see evaluation below). This
procedure requires the generation of single-qubit and two-qubit states from a
small fixed set, performing Bell measurements and Pauli gates, and executing
the encoding procedure of a quantum error-correcting code on which the trap
code is based.

2. Encryption (Enc). We encrypt each qubit of the plaintext using the trap
code, and encrypt the trap code keys using the FHE scheme. This again
requires the ability to perform Paulis, execute an error-correcting encoding,
and the generation of basic single-qubit states.

3. Evaluation (Eval). Paulis and CNOT are evaluated as in the trap code;
keys are updated via FHE evaluation. To measure a qubit, we measure all
ciphertext qubits and place the outcomes in the log. To apply P or H, we use
encrypted magic states (from the eval key) plus the aforementioned gates.
Applying T requires a magic state and an encrypted “garden-hose gadget”
(because the T-gate magic state circuit applies a P-gate conditioned on a
measurement outcome). In addition to all of the measurement outcomes, the
log also contains a transcript of all the classical FHE computations.

4. Verified decryption (VerDec). We check the correctness and consistency
of the classical FHE transcript, the measurement outcomes, and the claimed
circuit. The result of this computation is a set of keys for the trap code, which
are correct provided that Eval was performed honestly. We decrypt using these
keys and output either a plaintext or reject. In terms of quantum capabilities,
decryption requires executing the decoding procedure of the error-correcting
code, computational-basis and Hadamard-basis measurements, and Paulis.

Our scheme is compact : the number of elementary quantum operations performed
by VerDec scales only with the size of the plaintext, and not with the size of
the circuit performed via Eval. We do require that VerDec performs a classical
computation which can scale with the size of the circuit; this is reasonable since
VerDec must receive the circuit as input. Like the other currently-known schemes
for QFHE, our scheme is leveled, in the sense that pre-generated auxiliary magic
states are needed to perform the evaluation procedure.

Theorem 2 (Main result, informal). Let TrapTP be the scheme outlined
above, and let VerDec≡ be VerDec for the case of verifying the empty circuit.

1. The vQFHE scheme TrapTP satisfies IND-VER security.
2. The scheme (KeyGen,Enc,VerDec≡) is authenticating [13] and IND-CPA [5].

Application: quantum one-time programs. A one-time program (or OTP) is a
device which implements a circuit, but self-destructs after the first use. OTPs are
impossible without hardware assumptions, even with quantum states; OTPs that
implement quantum circuits (qOTP) can be built from classical OTPs (cOTP) [8].
As a first application of vQFHE, we give another simple construction of qOTPs.
Our construction is weaker, since it requires a computational assumption. On
the other hand, it is conceptually very simple and serves to demonstrates the
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power of verification. In our construction, the qOTP for a quantum circuit C
is simply a (vQFHE) encryption of C together with a cOTP for verifying the
universal circuit. To use the resulting qOTP, the user attaches their desired
input, homomorphically evaluates the universal circuit, and then plugs their
computation log into the cOTP to retrieve the final decryption keys.

Preliminaries. Our exposition assumes a working knowledge of basic quantum
information and the associated notation. As for the particular notation of quantum
gates, the gates (H,P,CNOT) generate the so-called Clifford group (which can
also be defined as the normalizer of the Pauli group); it includes the Pauli gates
X and Z. In order to implement arbitrary unitary operators, it is sufficient to add
the T gate (also known as the π/8 gate). Finally, we can reach universal quantum
computation by adding single-qubit measurements in the computational basis.

We will frequently make use of several standard cryptographic ingredients,
as follows. The quantum one-time pad (QOTP) will be used for information-
theoretically secret one-time encryption. In its encryption phase, two bits a, b ∈
{0, 1} are selected at random, and the map XaZb is applied to the input, projecting
it to the maximally-mixed state. We will also need the computational security
notions for quantum secrecy, including indistinguishability (IND, IND-CPA) [5]
and semantic security (SEM) [2]. For quantum authentication, we will refer to the
security definition of Dupuis, Nielsen and Salvail [13]. We will also make frequent
use of the trap code for quantum authentication, described below in Section 3.
For a security proof and methods for interactive computation on this code,
see [8]. Finally, we will also use classical fully-homomorphic encryption (FHE). In
brief, an FHE scheme consists of classical algorithms (KeyGen,Enc,Eval,Dec) for
(respectively) generating keys, encrypting plaintexts, homomorphically evaluating
circuits on ciphertexts, and decrypting ciphertexts. We will use FHE schemes
which are quantum-secure and whose Dec circuits are in NC1 (see, e.g., [4]).

2 A new primitive: verifiable QFHE

We now define verified quantum fully-homomorphic encryption (or vQFHE), in
the symmetric-key setting. The public-key case is a straightforward modification.

Basic definition. The definition has two parameters: the class C of circuits
which the user can verify, and the class V of circuits which the user needs to
perform in order to verify. We are interested in cases where C is stronger than V .

Definition 1 (vQFHE). Let C and V be (possibly infinite) collections of quan-
tum circuits. A (C,V)-vQFHE scheme is a set of four QPT algorithms:

– KeyGen : {1}κ → K×D(HE) (security parameter → private key, eval key);
– Enc : K ×D(HX)→ D(HC) (key, ptext → ctext);
– Eval : C ×D(HCE)→ L×D(HC) (circuit, eval key, ctext → log, ctext);
– VerDec : K × C × L ×D(HC)→ D(HX)× {acc, rej}
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such that (i.) the circuits of VerDec belong to the class V, and (ii.) for all
(sk, ρevk)← KeyGen, all circuits c ∈ C, and all ρ ∈ D(HXR),∥∥VerDecsk(c,Eval(c,Enck(ρ), ρevk))− Φc(ρ)⊗ |acc〉〈acc|)

∥∥
1
≤ negl(κ) ,

where R is a reference and the maps implicitly act on appropriate spaces.

We will refer to condition (ii.) as correctness. It is implicit in the definition
that the classical registers K,L and the quantum registers E,X,C are really
infinite families of registers, each consisting of poly(κ)-many (qu)bits. In some
later definitions, it will be convenient to use a version of VerDec which also
outputs a copy of the (classical) description of the circuit c.

Compactness. We note that there are trivial vQFHE schemes for some choices of
(C,V) (e.g., if C ⊂ V, then the user can simply authenticate the ciphertext and
then perform the computation during decryption). Earlier work on quantum and
classical homomorphic encryption required compactness, meaning that the size
of the decrypt circuit should not scale with the size of the homomorphic circuit.

Definition 2 (Compactness of QFHE). A QFHE scheme S is compact if
there exists a polynomial p(κ) such that for any circuit C with nout output qubits,
and for any input ρX , the complexity of applying S.Dec to S.EvalC(S.Encsk(ρX), ρevk)
is at most p(nout, κ).

When considering QFHE with verification, however, some tension arises. On
one hand, trivial schemes like the above still need to be excluded. On the other
hand, verifying that a circuit C has been applied requires reading a description
of C, which violates Definition 2. We thus require a more careful consideration
of the relationship between the desired circuit C ∈ C and the verification circuit
V ∈ V. In our work, we will allow the number of classical gates in V to scale
with the size of C. We propose a new definition of compactness in this context.

Definition 3 (Compactness of vQFHE (informal)). A vQFHE scheme S
is compact if S.VerDec is divisible into a classical verification procedure S.Ver
(outputting only an accept/reject flag), followed by a quantum decryption procedure
S.Dec. The running time of S.Ver is allowed to depend on the circuit size, but
the running time of S.Dec is not.

The procedure S.Dec is not allowed to receive and use any other information
from S.Ver than whether or not it accepts or rejects. This prevents the classical
procedure S.Ver from de facto performing part of the decryption work (e.g., by
computing classical decryption keys). In Section 3, we will see a scheme that does
not fulfill compactness for this reason.

Definition 4 (Compactness of vQFHE (formal)). A vQFHE scheme S
is compact if there exists a polynomial p such that S.VerDec can be written as
S.Dec◦ S.Ver, and the output ciphertext space D(HC) can be written as a classical-
quantum state space A×D(HB), where (i.) S.Ver : K×C ×L×A → {acc, rej} is
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a classical polynomial-time algorithm, and (ii.) S.Dec : {acc, rej}×K×D(HC)→
D(HX)× {acc, rej} is a quantum algorithm such that for any circuit C with nout
output qubits and for any input ρX , S.Dec runs in time p(nout, κ) on the output
of S.EvalC(S.Enc(ρX), ρevk).

Note that in the above definition, the classical registers K and A are copied and
fed to both S.Dec and S.Ver.

For privacy, we say that a vQFHE scheme is private if its ciphertexts are
indistinguishable under chosen plaintext attack (IND-CPA) [5, 12].

Secure verifiability. In this section, we formalize the concept of verifiability.
Informally, one would like the scheme to be such that whenever VerDec accepts,
the output can be trusted to be close to the desired output. We will consider two
formalizations of this idea: a semantic one, and an indistinguishability-based one.

Our semantic definition will state that every adversary with access to the
ciphertext can be simulated by a simulator that only has access to an ideal
functionality that simply applies the claimed circuit. It is inspired by quantum
authentication [13, 6] and semantic secrecy [2].

The real-world scenario (Figure 1, top) begins with a state ρXR1R2
prepared

by a QPT (“message generator”) M. The register X (plaintext) is subsequently
encrypted and sent to the adversary A. The registers R1 and R2 contain side
information. The adversary acts on the ciphertext and R1, producing some output
ciphertext CX′ , a circuit description c, and a computation log log. These outputs
are then sent to the verified decryption function. The output, along with R2, is
sent to a distinguisher D, who produces a bit 0 or 1.

ρevk M
R1

R2

X
Encsk

CX

A

CX′

c

log

R′1

V
er
D
ec
s
k

X ′

c

acc/rej
D 0/1

ρevk M
R1

R2

X

Ssk

c

acc(0)/rej(1)

R′1

Φc
X ′

•

�

D 0/1

Fig. 1. The real-world (top) and ideal-world (bottom) for SEM-VER.
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In the ideal-world scenario (Figure 1, bottom), the plaintextX is not encrypted
or sent to the simulator S. The simulator outputs a circuit c and chooses whether
to accept or reject. The channel Φc implemented by c is applied to the input
register X directly. If reject is chosen, the output register X ′ is traced out and
replaced by the fixed state Ω; this controlled-channel is denoted ctrl-�.

Definition 5 (κ-SEM-VER). A vQFHE scheme (KeyGen,Enc,Eval,VerDec)
is semantically κ-verifiable if for any QPT adversary A, there exists a QPT S
such that for all QPTs M and D,∣∣∣∣Pr

[
D
(
RealAsk(M(ρevk))

)
= 1
]
− Pr

[
D
(
IdealSsk(M(ρevk))

)
= 1
]∣∣∣∣ ≤ negl(κ),

where RealAsk = VerDecsk ◦ A ◦ Encsk and IdealSsk = ctrl- � ◦Φc ◦ Ssk, and the
probability is taken over (ρevk, sk)← KeyGen(1κ) and all QPTs above.

Note that the simulator (in the ideal world) gets the secret key sk. We
believe that this is necessary, because the actions of an adversary may depend on
superficial properties of the ciphertext. In order to successfully simulate this, the
simulator needs to be able to generate (authenticated) ciphertexts. He cannot
do so with a fresh secret key, because the input plaintext may depend on the
correlated evaluation key ρevk. Fortunately, the simulator does not become too
powerful when in possession of the secret key, because he does not receive any
relevant plaintexts or ciphertexts to encrypt or decrypt: the input register X is
untouchable for the simulator.

Next, we present an alternative definition of verifiability, based on a security
game motivated by indistinguishability.

Game 1 For an adversary A = (A1,A2,A3), a scheme S, and a security pa-
rameter κ, the VerGameA,S(κ) game proceeds as depicted in Figure 2.

S
.K

ey
G
en

(1
κ
)

ρevk

sk

A1

R

X

|0n〉〈0n|

r ∈R {0, 1}

S.Encsk

•

×

×

A2

CX′

c

log

R′

Φc

S
.V
er
D
ec
s
k

acc/rej

c

X ′

•

�

•

×

×

A3 r′

Fig. 2. The indistinguishability game VerGameA,S(κ), as used in the definition of
κ-IND-VER.
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The game is played in several rounds. Based on the evaluation key, the adversary
first chooses an input (and some side information in R). Based on a random bit
b this input is either encrypted and sent to A2 (if b = 0), or swapped out and
replaced by a dummy input |0n〉〈0n| (if b = 1). If b = 1, the ideal channel Φc
is applied by the challenger, and the result is swapped back in right before the
adversary (in the form of A3) has to decide on its output bit b′. If A2 causes a
reject, the real result is also erased by the channel �. We say that the adversary
wins (expressed as VerGameA,S(κ) = 1) whenever b′ = b.

Definition 6 (κ-IND-VER). A vQFHE scheme S has κ-indistinguishable
verification if for any QPT adversary A, Pr[VerGameA,S(κ) = 1] ≤ 1

2 + negl(κ).

Theorem 3. A vQFHE scheme is κ-IND-VER iff it is κ-SEM-VER.

Proof (sketch). The forward direction is shown by contraposition. Given an
adversary A, define a simulator S that encrypts a dummy 0-state, then runs A,
and then VerDec. For this simulator, there existM and D such that the difference
in acceptance probability between the real and the ideal scenario is nonnegligible.
The triple (M,A,D) forms an adversary for the VER indistinguishability game.

For the reverse direction, we use the following approach. From an arbitrary
adversary A for the IND-VER indistinguishability game, we define a semantic
adversary, message generator, and distinguisher, that together simulate the game
for A. The fact that S is κ-SEM-VER allows us to limit the advantage of the
semantic adversary over any simulator, and thereby the winning probability of
A.

For a detailed proof, see the supplementary material. ut

3 TC: A partially-homomorphic scheme with verification

We now present a partially-homomorphic scheme with verification, which will
serve as a building block for the fully-homomorphic scheme in Section 4. It is
called TC (for “trap code”), and is homomorphic only for CNOT, (classically
controlled) Paulis, and measurement in the computational and Hadamard basis.
It does not satisfy compactness: as such, it performs worse than the trivial
scheme where the client performs the circuit at decryption time. However, TC
lays the groundwork for the vQFHE scheme we present in Section 4, and as
such is important to understand in detail. It is a variant of the trap-code scheme
presented in [8] (which requires classical interaction for T gates), adapted to our
vQFHE framework. A variation also appears in [9], and implicitly in [20].

Setup and encryption. Let CSS be a (public) self-dual [[m, 1, d]] CSS code, so
that H and CNOT are transversal. CSS can correct dc errors, where d = 2dc + 1.
We choose m = poly(d) and large enough that dc = κ where κ is the security
parameter. The concatenated Steane code satisfies all these requirements.

We generate the keys as follows. Choose a random permutation π ∈R S3m

of 3m letters. Let n be the number of qubits that will be encrypted. For each
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i ∈ {1, . . . , n}, pick bit strings x[i] ∈R {0, 1}3m and z[i] ∈R {0, 1}3m. The secret
key sk is the tuple (π, x[1], z[1], . . . , x[n], z[n]), and ρevk is left empty.

Encryption is per qubit: (i.) the state σ is encoded using CSS, (ii.) m compu-
tational and m Hadamard ‘traps’ (|0〉 and |+〉 states, see [8]) are added, (iii.) the
resulting 3m qubits are permuted by π, and (iv.) the overall state is encrypted
with a quantum one-time pad (QOTP) as dictated by x = x[i] and z = z[i] for
the ith qubit. We denote the ciphertext by σ̃.

Evaluation. First, consider Pauli gates. By the properties of CSS, applying
a logical Pauli is done by applying the same Pauli to all physical qubits. The
application of Pauli gates (X and/or Z) to a state encrypted with a quantum
one-time pad can be achieved without touching the actual state, by updating the
keys to QOTP in the appropriate way. This is a classical task, so we can postpone
the application of the Pauli to VerDec (recall it gets the circuit description)
without giving up compactness for TC. So, formally, the evaluation procedure
for Pauli gates is the identity map. Paulis conditioned on a classical bit b which
will be known to VerDec at execution time (e.g., a measurement outcome) can
be applied in the same manner.

Next, we consider CNOT. To apply a CNOT to encrypted qubits σi and σj ,
we apply CNOT transversally between the 3m qubits of σ̃i and the 3m qubits of
σ̃j . Ignoring the QOTP for the moment, the effect is a transversal application of
CNOT on the pysical data qubits (which, by CSS properties, amounts to logical
CNOT on σi ⊗ σj), and an application of CNOT between the 2m pairs of trap
qubits. Since CNOT|00〉 = |00〉 and CNOT|++〉 = |++〉, the traps are unchanged.
Note that CNOT commutes with the Paulis that form the QOTP. In particular,
for all a, b, c, d ∈ {0, 1}, CNOT(Xa1Z

b
1 ⊗ Xc2Z

d
2) = (Xa1Z

b⊕d
1 ⊗ Xa⊕c2 Zd2)CNOT. Thus,

updating the secret-key bits (a, b, c, d) to (a, b⊕ d, a⊕ c, d) finishes the job. The
required key update happens in TC.VerDec (see below).

Next, consider computational-basis measurements. For CSS, logical mea-
surement is performed by measurement of all physical qubits, followed by a
classical decoding procedure [8]. In TC.Eval, we measure all 3m ciphertext qubits.
During TC.VerDec, the contents of the measured qubits (now a classical string
a ∈ {0, 1}3m) will be interpreted into a logical measurement outcome.

Finally, we handle Hadamard-basis measurements. A transversal application
of H to all 3m relevant physical qubits precedes the evaluation procedure for the
computational basis measurement. Since CSS is self-dual, this applies a logical H.
Since H|0〉 = |+〉 and H|+〉 = |0〉, all computational traps are swapped with the
Hadamard traps. This is reflected in the way TC.VerDec checks the traps (see
the supplementary material for details). Note that this is a classical procedure
(and thus its accept/reject output flag is classical).

Verification and decryption. If a qubit is unmeasured after evaluation (as
stated in the circuit), TC.VerDecQubit is applied . This removes the QOTP, undoes
the permutation, checks all traps, and decodes the qubit. See the supplementary
material for a specification of this algorithm.
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If a qubit is measured during evaluation, TC.VerDec receives a list w̃ of 3m
physical measurement outcomes for that qubit. These outcomes are classically
processed (removing the QOTP by flipping bits, undoing π, and decoding CSS)
to produce the plaintext measurement outcome. Note that we only check the |0〉
traps in this case. Intuitively, this should not affect security, since any attack that
affects only |+〉 but not |0〉 will be canceled by computational basis measurement.

The complete procedure TC.VerDec updates the QOTP keys according to the
gates in the circuit description, and then decrypts all qubits and measurement
results as described above (see the supplementary material for details).

Correctness, compactness, and privacy. For honest evaluation, TC.VerDec
accepts with probability 1. Correctness is straightforward to check by following
the description in Section 3. For privacy, note that the final step in the encryption
procedure is the application of a (information-theoretically secure) QOTP with
fresh, independent keys. If IND-CPA security is desired, one could easily extend
TC by using a pseudorandom function for the QOTP, as in [2].

TC is not compact in the sense of Definition 4, however. In order to compute
the final decryption keys, the whole gate-by-gate key update procedure needs to
be executed, aided by the computation log and information about the circuit.
Thus, we cannot break TC.VerDec up into two separate functionalities, Ver and
Dec, where Dec can successfully retrieve the keys and decrypt the state, based
on only the output ciphertext and the secret key.

Security of verification. The trap code is proven secure in its application
to one-time programs [8]. Broadbent and Wainewright proved authentication
security (with an explicit, efficient simulator) [6]. One can use similar strategies
to prove κ-IND-VER for TC. In fact, TC satisfies a stronger notion of verifiability,
where the adversary is allowed to submit plaintexts in multiple rounds (letting
the choice of the next plaintext depend on the previous ciphertext), which
are either all encrypted or all swapped out. Two rounds (κ-IND-VER-2) are
sufficient for us; the definitions and proof (see the supplementary material) extend
straightforwardly to the general case κ-IND-VER-i for i ∈ N+.

Theorem 4. TC is κ-IND-VER-2 for the above circuit class.

4 TrapTP: Quantum FHE With Verification

In this section, we introduce our candidate scheme for verifiable quantum fully ho-
momorphic encryption (vQFHE). In this section, we will define the scheme prove
correctness, compactness, and privacy. We will show verifiability in Section 5.

Let κ ∈ N be a security parameter, and let t, p, h ∈ N be an upper bound
on the number of T, P, and H gates (respectively) that will be in the circuit
which is to be homomorphically evaluated. As in Section 3, we fix a self-dual
[[m, 1, d]] CSS code CSS which has m = poly(d) and can correct dc := κ errors
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(e.g., the concatenated Steane code). We also fix a classical fully homomorphic
public-key encryption scheme HE with decryption in LOGSPACE (see, e.g., [4]).
Finally, fix a message authentication code MAC = (Tag,Ver) that is existentially
unforgeable under adaptive chosen message attacks (EUF-CMA [16]) from a
quantum adversary; for example, one may take the standard pseudorandom-
function construction with a post-quantum PRF. This defines an authentication
procedure MAC.Signk : m 7→ (m,MAC.Tagk(m)).

Key generation and encryption. The evaluation key will require a number
of auxiliary states, which makes the key generation algorithm TrapTP.KeyGen
somewhat involved (see Algorithm 1 and Algorithm 2). Note that non-evaluation
keys are generated first, and then used to encrypt auxiliary states which are
included in the evaluation key (see TrapTP.Enc below). Most states are encrypted
using the same ‘global’ permutation π, but all qubits in the error-correction
gadget (except first and last) are encrypted using independent permutations πi
(see line 15). The T-gate gadgets are prepared by Algorithm 2, making use of
garden-hose gadgets from [12].

Algorithm 1. TrapTP.KeyGen(1κ, 1t, 1p, 1h)

1: k ← MAC.KeyGen(1κ)
2: π ←R S3m . S3m is the permutation group on 3m elements
3: for i = 0, ..., t do
4: (ski, pki, evki)← HE.KeyGen(1κ)
5: sk ← (π, k, sk0, ..., skt, pk0)
6: for i = 1, ..., p do . Magic-state generation for P
7: µP

i ← TrapTP.Enc(sk,P|+〉) . See Algorithm 3 for TrapTP.Enc
8: for i = 1, ..., t do . Magic-state generation for T
9: µT

i ← TrapTP.Enc(sk,T|+〉)
10: for i = 1, ..., h do . Magic-state generation for H
11: µH

i ← TrapTP.Enc(sk, 1√
2
(H⊗ I)(|00〉+ |11〉))

12: for i = 1, ..., t do . Gadget generation for T
13: πi ←R S3m

14: (gi, γ
in
i , γ

mid
i , γout

i )← TrapTP.GadgetGen(ski−1) . See Algorithm 2
15: Γi ← MAC.Sign(HE.Encpki(gi, πi))⊗TrapTP.Enc((πi, k, sk0, ..., skt, pki), γ

mid
i )⊗

TrapTP.Enc(sk, γ in
i , γ

out
i )

16: keys ← MAC.Sign(evk0, ..., evkt, pk0, ..., pkt,HE.Encpk0(π))
17: ρevk ← (keys, µP

0 , ..., µ
P
p, µ

T
0 , ..., µ

T
t , µ

H
0 , ..., µ

H
h, Γ1, ..., Γt)

18: return (sk, ρevk)

Algorithm 2. TrapTP.GadgetGen(ski)

1: gi ← g(ski) . classical description of the garden-hose gadget, see [12], p. 13
2: (γ in, γmid, γout)← generate |Φ+〉 states and arrange them as described by gi. Call

the first qubit γ in
i and the last qubit γout

i . The rest forms the state γmid
i .

3: return (gi, γ
in
i , γ

mid
i , γout

i )
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The encryption of a quantum state is similar to TC.Enc, only the keys to the
QOTP are now chosen during encryption (rather than during key generation) and
appended in encrypted and authenticated form to the ciphertext (see Algorithm 3).
Note that the classical secret keys sk0 through skt are not used.

Algorithm 3. TrapTP.Enc((π, k, sk0, ..., skt, pk), σ)

1: σ̃ ←
∑

x,z∈{0,1}3m

(
TC.Enc((π, x, z), σ)⊗MAC.Signk(HE.Encpk(x, z))

)
. Algorithm 13

2: return σ̃

Evaluation. Evaluation of gates is analogous to the interactive evaluation
scheme using the trap code [8], except the interactions are replaced by classical
homomorphic evaluation. Evaluation of a circuit c is done gate-by-gate, as follows.

In general, we will use the notation ·̃ to denote encryptions of classical and
quantum states. For example, in the algorithms below, σ̃ is the encrypted input
qubit for a gate and x̃ and z̃ are classical encryptions of the associated QOTP
keys. We will assume throughout that HE.Enc and HE.Eval produce, apart from
their actual output, a complete computation log describing all randomness used,
all computation steps, and all intermediate results.

Measurements. Computational basis measurement is described in Algorithm 4.
Recall that TC.VerDecMeasurement is a completely classical procedure that de-
codes the list of 3m measurement outcomes into the logical outcome and checks
the relevant traps. Hadamard-basis measurement is performed similarly, except
the qubits of σ̃ are measured in the Hadamard basis and HE.Encpk(×) is given
as the last argument for the evaluation of TC.VerDecMeasurement.

Algorithm 4. TrapTP.EvalMeasure(σ̃, x̃, z̃, π̃, pk, evk)

1: a = (a1, ..., a3m)← measure qubits of σ̃ in the computational basis
2: (ã, log1)← HE.Encpk(a)

3: (̃b, fl̃ag , log2)← HE.EvalTC.VerDecMeasurement
evk ((π̃, x̃, z̃), ã,HE.Encpk(+))

4: return (̃b, fl̃ag , log1, log2) . b ∈ {0, 1} represents the output of the measurement

Pauli gates. A logical Pauli-X is performed by (homomorphically) flipping the
X-key bits of the QOTP (see Algorithm 5). Since this is a classical operation,
the functionality extends straightforwardly to a classically controlled Pauli-X (by

specifying an additional bit b encrypted into b̃ that indicates whether or not X
should be applied; see Algorithm 6). The (classically controlled) evaluation of a
Pauli-Z works the same way, only the relevant bits in z̃ are flipped.

Algorithm 5. TrapTP.EvalX(σ̃, x̃, π̃, pk, evk)

1: (x̃, log1)← HE.Evalunpermute
evk (π̃, x̃)

2: (x̃, log2)← HE.Eval⊕evk(x̃,HE.Encpk(1m02m)) . this flips the first m bits
3: (x̃, log3)← HE.Evalpermute

evk (π̃, x̃)
4: return (σ̃, x̃, log1, log2, log3)

13



Algorithm 6. TrapTP.EvalCondX(̃b, σ̃, x̃, z̃, π̃, pk, evk)

1: (x̃, log1)← HE.Evalunpermute
evk (π̃, x̃)

2: s̃← HE.Evaly 7→y
m02m

evk (̃b)
3: (x̃, log2)← HE.Eval⊕evk(x̃, s̃) . this conditionally flips the first m bits
4: (x̃, log3)← HE.Evalpermute

evk (π̃, x̃)
5: return (σ̃, x̃, z̃, log1, log2, log3)

CNOT gates. The evaluation of CNOT in TrapTP is analogous to TC, only the
key updates are performed homomorphically during evaluation (see Algorithm 7).

Algorithm 7. TrapTP.EvalCNOT(σ̃1, σ̃2, x̃1, x̃2, z̃1, z̃2, π̃, pk, evk)

1: (σ̃1, σ̃2)← apply CNOT on all physical qubit pairs of σ̃1, σ̃2

2: (x̃1, x̃2, z̃1, z̃2, log1)← HE.EvalCNOT−key−update
evk (x̃1, x̃2, z̃1, z̃2). for commutation rules,

see Section 3
3: return (σ̃1, σ̃2, x̃1, x̃2, z̃1, z̃2, log1, log2)

Phase gates. Performing a P gate requires homomorphic evaluation of all the
above gates: (classically controlled) Paulis, CNOTs, and measurements. We also
consume the state µP

i (an encryption of the state P|+〉) for the ith phase gate in
the circuit. The circuit below applies P to the data qubit (see, e.g., [8]).

ρ

P|+〉〈+|P† • XZ PρP†

We define TrapTP.EvalP to be the concatenation of the corresponding gate
evaluations. The overall computation log is just a concatenation of the logs.

Hadamard gate. The Hadamard gate can be performed using the same ingredients
as the phase gate [8]. The ith gate consumes µH

i , an encryption of (H⊗ I)|Φ+〉.

ρ

(H⊗ I)|Φ+〉〈Φ+|(H⊗ I)†
{

•

H

ZX HρH†

The T gate. A magic-state computation of T uses a similar circuit to that for P,
using µT

i (an encryption of T|+〉) as a resource for the ith T gate:

ρ

T|+〉〈+|T† • PX TρT†
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The evaluation of this circuit is much more complicated, since it requires the
application of a classically-controlled phase correction P. We will accomplish this
using the error-correction gadget Γi.

First, we remark on some subtleties regarding the encrypted classical in-
formation surrounding the gadget. Since the structure of Γi depends on the
classical secret key ski−1, the classical information about Γi is encrypted under
the (independent) public key pki (see Algorithm 1). This observation will play a
crucial role in our proof that TrapTP satisfies IND-VER, in Section 5.

The usage of two different key sets also means that, at some point during the
evaluation of a T gate, all classically encrypted information needs to be recrypted

from the (i−1)st into the ith key set. This can be done because s̃ki−1 is included
in the classical information gi in Γi. The recryption is performed right before the
classically-controlled phase gate is applied (see Algorithm 8).

Algorithm 8. TrapTP.EvalT(σ̃, x̃, z̃, π̃, µT
i , Γi, pki−1, evki−1, pki, evki)

1: (σ̃1, σ̃2, x̃1, z̃1, x̃2, z̃2, log1)← TrapTP.EvalCNOT(µT
i , σ̃, x̃, z̃, π̃, pki−1, evki−1)

2: (̃b, log2)← TrapTP.EvalMeasure(σ̃2, x̃2, z̃2, π̃, pki−1, evki−1)

3: log3 ← recrypt all classically encrypted information (except b̃) from key set i− 1
into key set i.

4: (σ̃, log4)← TrapTP.EvalCondP(̃b, σ̃1, x̃1, z̃1, Γi, π̃, pki, evki)
5: return (σ̃, log1, log2, log3, log4)

Algorithm 9 shows how to use Γi to apply logical P on an encrypted quantum
state σ̃, conditioned on a classical bit b for which only the encryption b̃ is available.
When TrapTP.EvalCondP is called, b is encrypted under the (i− 1)st classical HE-
key, while all other classical information (QOTP keys x and z, permutations π and
πi, classical gadget description gi) is encrypted under the ith key. Note that we
can evaluate Bell measurements using only evaluation of CNOT, computational-
basis measurements, and H-basis measurements. In particular, no magic states
are needed to perform a Bell measurement. After this procedure, the data is in

qubit γ̃outi . The outcomes a1, a2, a of the Bell measurements determine how the
keys to the QOTP must be updated.

Algorithm 9. TrapTP.EvalCondP(̃b, σ̃, x̃, z̃, Γi = (g̃i, π̃i, γ̃ in
i , γ̃

mid
i , γ̃out

i ), π̃, pki, evki)

1: (ã1, ã2, log1)← evaluate Bell measurement between σ̃ and γ̃ in
i . a1, a2 ∈ {0, 1}

2: (ã, log2)← evaluate Bell measurements in γ̃mid
i as dictated by the ciphertext b̃ and

the garden-hose protocol for HE.Dec
3: (x̃, z̃, log3)← HE.EvalT−key−update

evki
(x̃, z̃, ã1, ã2, ã, g̃i)

4: return (γ̃out
i , x̃, z̃, log1, log2, log3)

Verified Decryption. The decryption procedure (Algorithm 10) consists of two
parts. First, we perform several classical checks. This includes MAC-verification of
all classically authenticated messages, and checking that the gates listed in the log
match the circuit description. We also check the portions of the log which specify
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the (purely classical, FHE) steps taken during HE.Enc and HE.Eval; this is the
standard transcript-checking procedure for FHE, which we call TrapTP.CheckLog.
Secondly, we check all unmeasured traps and decode the remaining qubits. We
reject if TrapTP.CheckLog rejects, or if the traps have been triggered.

Algorithm 10. TrapTP.VerDec(sk, σ̃, (x̃[i])i, (z̃[i])i, log, c)

1: Verify classically authenticated messages (in log) using k (contained in sk). If one
of these verifications rejects, reject.

2: Check whether all claimed gates in log match the structure of c. If not, return
(Ω, |rej〉). . Recall that Ω is a dummy state.

3: flag ← TrapTP.CheckLog(log) If flag = rej, return (Ω, |rej〉).
4: Check whether the claimed final QOTP keys in the log match x̃ and z̃. If not,

return (Ω, |rej〉).
5: for all gates G of c do
6: if G is a measurement then
7: x̃′, z̃′ ← encrypted QOTP keys right before measurement (listed in log)
8: w̃ ← encrypted measurement outcomes (listed in log)
9: x′, z′, w ← HE.Decskt(x̃

′, z̃′, w̃)
10: Execute TC.VerDecMeasurement((π, x′, z′), w, basis), where basis is the ap-

propriate basis for the measurement, and store the (classical) outcome.
11: if a trap is triggered then
12: return (Ω, |rej〉).
13: for all unmeasured qubits σ̃i in σ̃ do

14: x[i], z[i]← HE.Decskt(x̃[i], z̃[i])
15: σi ← TC.VerDec(π,x[i],z[i])(σ̃i). If TC.VerDec rejects, return (Ω, |rej〉).
16: σ ← the list of decrypted qubits (and measurement outcomes) that are part of the

output of c
17: return (σ, |acc〉)

4.1 Correctness, compactness, and privacy

If all classical computation was unencrypted, checking correctness of TrapTP can
be done by inspecting the evaluation procedure for the different types of gates,
and comparing them to the trap code construction in [8]. This suffices, since HE
and the MAC authentication both satisfy correctness.

Compactness as defined in Definition 4 is also satisfied: verifying the com-
putation log and checking all intermediate measurements (up until line 12 in
Algorithm 10) is a completely classical procedure and runs in polynomial time
in its input. The rest of TrapTP.VerDec (starting from line 13) only uses the
secret key and the ciphertext (σ̃, x̃, z̃) as input, not the log or the circuit de-
scription. Thus, we can separate TrapTP.VerDec into two algorithms Ver and
Dec as described in Definition 4, by letting the second part (Dec, lines 13 to 17)
reject whenever the first part (Ver, lines 1 to 12) does. It is worth noting that,
because the key-update steps are performed homomorphically during the evalua-
tion phase, skipping the classical verification step yields a QFHE scheme without
verification that satisfies Definition 2 (and is authenticating). This is not the case
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for the scheme TC, where the classical computation is necessary for the correct
decryption of the output state.

In terms of privacy, TrapTP satisfies IND-CPA (see Section 2). This is shown
by reduction to IND-CPA of HE. This is non-trivial since the structure of the
error-correction gadgets depends on the classical secret key. The reduction is
done in steps, where first the security of the encryptions under pkt is applied (no
gadget depends on skt), after which the quantum part of the gadget Γt (which
depends on skt−1) looks completely mixed from the point of view of the adversary.
We then apply indistinguishability of the classical encryptions under pkt−1, and
repeat the process. After all classical encryptions of the quantum one-time pad
keys are removed, the encryption of a state appears fully mixed. Full details
of this proof can be found in Lemma 1 of [12], where IND-CPA security of an
encryption function very similar to TrapTP.Enc is proven.

5 Proof of verifiability for TrapTP

In this section, we will prove that TrapTP is κ-IND-VER. By Theorem 3, it then
follows that TrapTP is also verifiable in the semantic sense. We will define a
slight variation on the VER indistinguishability game, followed by several hybrid
schemes (variations of the TrapTP scheme) that fit into this new game. We will
argue that for any adversary, changing the game or scheme does not significantly
affect the winning probability. After polynomially-many such steps, we will have
reduced the adversary to an adversary for the somewhat homomorphic scheme
TC, which we already know to be IND-VER. This will complete the argument
that TrapTP is IND-VER. The IND-VER game is adjusted as follows.

Definition 7 (Hybrid game HybA,S(κ)). For an adversary A = (A1,A2,A3),
a scheme S, and security parameter κ, HybA,S(κ) is the game in Figure 3.

Comparing to Definition 1, we see that three new wires are added: a classical
wire from S.Enc to S.VerDec, and a classical and quantum wire from S.KeyGen to
S.VerDec. We will later adjust TrapTP to use these wires to bypass the adversary;
TrapTP as defined in the previous section does not use them. Therefore, for any
adversary, Pr[VerGameA,TrapTP(κ) = 1] = Pr[HybA,TrapTP(κ) = 1].

Hybrid 1: Removing Classical MAC. In TrapTP, the initial keys to the
QOTP can only become known to VerDec through the adversary. We thus use
MAC to make sure these keys cannot be altered. Without this authentication,
the adversary could, e.g., homomorphically use π̃ to flip only those bits in x̃
that correspond to non-trap qubits, thus applying X to the plaintext. In fact, all
classical information in the evaluation key must be authenticated.

In the first hybrid, we argue that the winning probability of a QPT A
in HybA,TrapTP(κ) is at most negligibly higher than in HybA,TrapTP′(κ), where

TrapTP′ is a modified version of TrapTP where the initial keys are sent di-
rectly from KeyGen and Enc to VerDec (via the extra wires above). More pre-
cisely, in TrapTP′.KeyGen and TrapTP′.Enc, whenever MAC.Sign(HE.Enc(x)) or

17



S
.K

ey
G
en

(1
κ
)

ρevk

sk

A1

R

X

|0n〉〈0n|

r ∈R {0, 1}

S.Encsk

•

×

×

A2

CX′

c

log

R′

Φc

S
.V
er
D
ec
s
k

acc/rej

c

X ′

•

�

•

×

×

A3 r′

Fig. 3. The hybrid indistinguishability game HybA,S(κ), which is a slight variation on
VerGameA,S(κ) from Figure 2.

MAC.Sign(x) is called, the message x is also sent directly to TrapTP′.VerDec.
Moreover, instead of decrypting the classically authenticated messages sent by
the adversary, TrapTP′.VerDec uses the information it received directly from
TrapTP′.KeyGen and TrapTP′.Enc. It still check whether the computation log
provided by the adversary contains these values at the appropriate locations and
whether the MAC signature is correct. The following fact is then a straightforward
consequence of the EUF-CMA property of MAC.

Recall that all adversaries are QPTs, i.e., quantum polynomial-time uniform
algorithms. Given two hybrid games H1, H2, and a QPT adversary A, define

AdvHybH2

H1
(A, κ) :=

∣∣Pr[HybA,H1
(κ) = 1]− Pr[HybA,H2

(κ) = 1]
∣∣ .

Lemma 1. For any QPT A, AdvHybTrapTP
′

TrapTP (A, κ) ≤ negl(κ).

Hybrid 2: Removing Computation Log. In TrapTP and TrapTP′, the ad-
versary (homomorphically) keeps track of the keys to the QOTP and stores
encryptions of all intermediate values in the computation log. Whenever VerDec
needs to know the value of a key (for example to check a trap or to decrypt the
final output state), the relevant entry in the computation log is decrypted.

In TrapTP′, however, the plaintext initial values to the computation log
are available to VerDec, as they are sent through the classical side channels.
This means that whenever VerDec needs to know the value of a key, instead of
decrypting an entry to the computation log, it can be computed by “shadowing”
the computation log in the clear.
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For example, suppose the log contains the encryptions b̃1, b̃2 of two initial
bits, and specifies the homomorphic evaluation of XOR, resulting in b̃ where
b = b1 ⊕ b2. If one knows the plaintext values b1 and b2, then one can compute
b1 ⊕ b2 directly, instead of decrypting the entry b̃ from the computation log.

We now define a second hybrid, TrapTP′′, which differs from TrapTP′ exactly
like this: VerDec still verifies the authenticated parts of the log, checks whether
the computation log matches the structure of c, and checks whether it is syntac-
tically correct. However, instead of decrypting values from the log (as it does in
TrapTP.VerDec, Algorithm 10, on lines 9 and 14), it computes those values from
the plaintext initial values, by following the computation steps that are claimed
in the log. By correctness of classical FHE, we then have the following.

Lemma 2. For any QPT A, AdvHybTrapTP
′′

TrapTP′ (A, κ) ≤ negl(κ).

Proof. Let s be the (plaintext) classical information that forms the input to the
classical computations performed by the adversary: initial QOTP keys, secret
keys and permutations, measurement results, et cetera. Let f be the function
that the adversary computes on it in order to arrive at the final keys and logical
measurement results. By correctness of HE, we have that

Pr[HE.Decskt(HE.Eval
f
evk0,...,evkt

(HE.Encpk0(s))) 6= f(s)] ≤ negl(κ).

In the above expression, we slightly abuse notation and write HE.Evalevk0,...,evkt
to include the t recryption steps that are performed during TrapTP.Eval. As long
as the number of T gates, and thus the number of recryptions, is polynomial in
κ, the expression holds.

Thus, the probability that TrapTP′.VerDec and TrapTP′′.VerDec use different
classical values (decrypting from the log vs. computing from the initial values) is
negligible. Since this is the only place where the two schemes differ, the output
of the two VerDec functions will be identical, except with negligible probability.
Thus A will either win in both HybA,TrapTP′(κ) and HybA,TrapTP′′(κ), or lose in
both, again except with negligible probability. ut

More Hybrids: Removing Gadgets. We continue by defining a sequence of
hybrid schemes based on TrapTP′′. In 4t steps, we will move all error-correction
functionality from the gadgets to VerDec. This will imply that the adversary has
no information about the classical secret keys (which are involved in constructing
these gadgets). This will allow us to eventually reduce the security of TrapTP to
that of TC.

We remove the gadgets back-to-front, starting with the final gadget. Every

gadget is removed in four steps. For all 1 ≤ ` ≤ t, define the hybrids TrapTP
(`)
1 ,

TrapTP
(`)
2 , TrapTP

(`)
3 , and TrapTP

(`)
4 (with TrapTP

(t+1)
4 := TrapTP′′) as follows:

1. TrapTP
(`)
1 is the same as TrapTP

(`+1)
4 (or, in the case that ` = t, the

same as TrapTP′′), except for the generation of the state Γ` (see Algorithm 1,

line 15). In TrapTP
(`)
1 , all classical information encrypted under pk` is replaced
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with encryptions of zeros. In particular, for i ≥ `, line 15 is adapted to

Γi ←MAC.Sign(HE.Encpki(00 · · · 0))

⊗ TrapTP′′.Enc′(sk′, γmid
i )⊗ TrapTP.Enc(sk, γ ini ⊗ γouti )

where TrapTP′′.Enc′ also appends a signed encryption of zeros, effectively replac-
ing line 1 in Algorithm 3 with

σ̃ ←
∑

x,z∈{0,1}3m

(
TC.Enc((π, x, z), σ)⊗MAC.Signk(HE.Encpk(00 · · · 0))

)
It is important to note that in both KeyGen and Enc′, the information that is sent
to VerDec through the classical side channel is not replaced with zeros. Hence,
the structural and encryption information about Γ` is kept from the adversary,
and instead is directly sent (only) to the verification procedure. Whenever VerDec
needs this information, it is taken directly from this trusted source, and the
all-zero string sent by the adversary will be ignored.

2. TrapTP
(`)
2 is the same as TrapTP

(`)
1 , except that for the `th gadget, the

procedure TrapTP.PostGadgetGen is called instead of TrapTP.GadgetGen:

Algorithm 11. TrapTP.PostGadgetGen(ski)

1: gi ← 0|g(ski)|

2: (γ in, γmid, γout)← halves of EPR pairs (send other halves to VerDec)
3: return (gi, γ

in
i , γ

mid
i , γout

i )

This algorithm produces a ‘gadget’ in which all qubits are replaced with halves
of EPR pairs. These still get encrypted in line 15 of Algorithm 1. All other halves
of these EPR pairs are sent to VerDec through the provided quantum channel.

TrapTP
(`)
2 .VerDec has access to the structural information g` (as this is sent via

the classical side information channel from KeyGen to VerDec) and performs the
necessary Bell measurements to recreate γ in` , γmid

` and γout` after the adversary has
interacted with the EPR pair halves. Effectively, this postpones the generation of
the gadget structure to decryption time. Of course, the measurement outcomes
are taken into account by VerDec when calculating updates to the quantum

one-time pad. As can be seen from the description of TrapTP
(`)
4 , all corrections

that follow the `th one are unaffected by the fact that the server cannot hold the
correct information about these postponed measurements, not even in encrypted
form.

3. TrapTP
(`)
3 is the same as TrapTP

(`)
2 , except that gadget generation for the

`th gadget is handled by TrapTP.FakeGadgetGen instead of TrapTP.PostGadgetGen.

Algorithm 12. TrapTP.FakeGadgetGen(ski)

1: gi ← 0|g(ski)|

2: (γ in, γmid, γout)← halves of EPR pairs (send other halves to VerDec)
3: Send γmid to VerDec as well
4: return (gi, γ

in
i , |00 · · · 0〉, γout

i )
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This algorithm prepares, instead of halves of EPR pairs, |0〉-states of the
appropriate dimension for γmid

` . (Note that this dimension does not depend on

sk`−1). For γ in` and γout` , halves of EPR pairs are still generated, as in TrapTP
(`)
2 .

Via the side channel, the full EPR pairs for γmid
` are sent to VerDec. As in the

previous hybrids, the returned gadget is encrypted in TrapTP.KeyGen.

TrapTP
(`)
3 .VerDec verifies that the adversary performed the correct Bell mea-

surements on the fake `th gadget by calling TC.VerDec. If this procedure accepts,

TrapTP
(`)
3 .VerDec performs the verified Bell measurements on the halves of the

EPR pairs received from TrapTP
(`)
3 .KeyGen (and subsequently performs the Bell

measurements that depend on g` on the other halves, as in TrapTP
(`)
2 ). Effectively,

TrapTP
(`)
3 .VerDec thereby performs a protocol for HE.Dec, removing the phase

error in the process.

4. TrapTP
(`)
4 is the same as TrapTP

(`)
3 , except that VerDec (instead of perform-

ing the Bell measurements of the gadget protocol) uses its knowledge of the initial
QOTP keys and all intermediate measurement outcomes to compute whether or

not a phase correction is necessary after the `th T gate. TrapTP
(`)
4 .VerDec then

performs this phase correction on the EPR half entangled with γ in` , followed by a
Bell measurement with the EPR half entangled with γout` .

The first `− 1 gadgets in TrapTP
(`)
1 through TrapTP

(`)
4 are always functional

gadgets, as in TrapTP. The last t − ` gadgets are all completely replaced by
dummy states, and their functionality is completely outsourced to VerDec. In
four steps described above, the functionality of the `th gadget is also transferred
to VerDec. It is important to replace only one gadget at a time, because replacing
a real gadget with a fake one breaks the functionality of the gadgets that occur
later in the evaluation: the encrypted classical information held by the server
does not correspond to the question of whether or not a phase correction is
needed. By completely outsourcing the phase correction to VerDec, as is done

for all gadgets after the `th one in all TrapTP
(`)
i schemes, we ensure that this

incorrect classical information does not influence the outcome of the computation.
Hence, correctness is maintained throughout the hybrid transformations. We now
show that these transformations of the scheme do not significantly affect the
adversary’s winning probability in the hybrid indistinguishability game.

Lemma 3. For any QPT A, there exists a negligible function negl such that for
all 1 ≤ ` ≤ t,
AdvHyb

TrapTP
(`+1)
4

TrapTP
(`)
1

(A, κ) ≤ negl(κ).

Proof (sketch). In TrapTP
(`+1)
4 , no information about sk(`) is sent to the adversary.

In the original TrapTP scheme, the structure of the quantum state Γ`+1 depended
on it, but this structure has been replaced with dummy states in several steps in
TrapTP`+1

2 through TrapTP`+1
4 .

This is fortunate, since if absolutely no secret-key information is present, we
are able to bound the difference in winning probability between HybA,TrapTP(`+1)

4
(κ)
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and HybA,TrapTP`
1
(κ) by reducing it to the IND-CPA security against quantum

adversaries [5] of the classical homomorphic encryption scheme HE.

The proof is closely analogous to the proof of Lemma 1 in [12], and on a
high level it works as follows. Let A = (A1,A2,A3) be a QPT adversary for
the game HybA,TrapTP(`)

1
(κ) or HybA,TrapTP(`+1)

4
(κ) (we do not need to specify

for which one, since they both require the same input/output interface). A
new quantum adversary A′ for the classical IND-CPA indistinguishability game
is defined by having the adversary taking the role of challenger in either the
game HybA,TrapTP(`)

1
(κ) or the game HybA,TrapTP(`+1)

4
(κ). Which game is simulated

depends on the coin flip of the challenger for the IND-CPA indistinguishability
game, and is unknown to A′. This situation is achieved by having A′ send any
classical plaintext that should be encrypted under pk` to the challenger, so that
either that plaintext is encrypted or a string of zeros is.

Based on the guess of the simulated A, which A′ can verify to be correct
or incorrect in his role of challenger, A′ will guess which of the two games was
just simulated. By IND-CPA security of the classical scheme against quantum
adversaries, A′ cannot succeed in this guessing game with nonnegligible advantage
over random guessing. This means that the winning probability of A in both
games cannot differ by a lot. For details, we refer the reader the proof of Lemma 5,
in which a very similar approach is taken.

Technically, the success probability of A′, and thus the function negl, may
depend on `. A standard randomizing argument, as found in e.g. the discussion
of hybrid arguments in [16], allows us to get rid of this dependence by defining
another adversary A′′ that selects a random value of j, and then bounding the
advantage of A′′ by a negligible function that is independent of j. ut

Lemma 4. For 1 ≤ ` ≤ t and any QPT A, AdvHyb
TrapTP

(`)
2

TrapTP
(`)
1

(A, κ) = 0.

Proof. In TrapTP
(`)
1 , the `th error-correction gadget consists of a number of EPR

pairs arranged in a certain order, as described by the garden-hose protocol for
HE.Dec. For example, this protocol may dictate that the ith and jth qubit of the
gadget must form an EPR pair |Φ+〉 together. This can alternatively be achieved
by creating two EPR pairs, placing half of each pair in the ith and jth position
of the gadget state, and performing a Bell measurement on the other two halves.
This creates a Bell pair XaZb|Φ+〉 in positions i and j, where a, b ∈ {0, 1} describe
the outcome of the Bell measurement.

From the point of view of the adversary, it does not matter whether these
Bell measurements are performed during KeyGen, or whether the halves of EPR
pairs are sent to VerDec for measurement – because the key to the quantum
one-time pad of the `th gadget is not sent to the adversary at all, the same
state is created with a completely random Pauli in either case. Of course, the
teleportation correction Paulis of the form XaZb need to be taken into account
when updating the keys to the quantum one-time pad on the data qubits after
the gadget is used. VerDec has all the necessary information to do this, because
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it observes the measurement outcomes, and computes the key updates itself
(instead of decrypting the final keys from the computation log).

Thus, with the extra key update steps in TrapTP
(`)
2 .VerDec, the inputs to the

adversary are exactly the same in the games of TrapTP
(`)
1 and TrapTP

(`)
2 . ut

Lemma 5. For any QPT A, there exists a negligible function negl such that for
all 1 ≤ ` ≤ t,
AdvHyb

TrapTP
(`)
3

TrapTP
(`)
2

(A, κ) ≤ negl(κ).

Proof. We show this by reducing the difference in winning probabilities in the
statement of the lemma to the IND-VER security of the somewhat homomor-

phic scheme TC. Intuitively, because TC is IND-VER, if TrapTP
(`)
2 accepts the

adversary’s claimed circuit of Bell measurements on the EPR pair halves, the
effective map on those EPR pairs is the claimed circuit. Therefore, we might just

as well ask VerDec to apply this map, as we do in TrapTP
(`)
3 , to get the same

output state. If TrapTP
(`)
2 rejects the adversary’s claimed circuit on those EPR

pair halves, then TrapTP
(`)
3 should reject too. This is why we let the adversary

act on an encrypted dummy state of |0〉s.
Let A = (A1,A2,A3) be a set of QPT algorithms on the appropriate registers,

so that we can consider it as an adversary for the hybrid indistinguishability

game for either TrapTP
(`)
2 or TrapTP

(`)
3 (see Definition 7). Note the input/output

wires to the adversary in both these games are identical, so we can evaluate
Pr[HybA,TrapTP(`)

2
(κ) = 1] and Pr[HybA,TrapTP(`)

3
(κ) = 1] for the same A.

Now define an adversary A′ = (A′1,A′2,A′3) for the IND-VER game against
TC, VerGameA′,TC(κ), as follows:

1. A′1: Run TrapTP
(`)
2 .KeyGen until the start of line 15 in the `th iteration of

that loop. Up to this point, TrapTP
(`)
2 .KeyGen is identical to TrapTP

(`)
3 .KeyGen.

It has generated real gadgets Γ1 through Γ`−1, and halves of EPR pairs for γ in` ,
γmid
` and γout` . Note furthermore that the permutation π` is used nowhere. Now

send γmid
` to the challenger via the register X, and everything else (including sk)

to A′2 via the side register R.

2. A′2: Continue TrapTP
(`)
2 .KeyGen using the response from the challenger

instead of TrapTP.Enc′(sk′, γmid
` ) on line 15 in the `th iteration. Call the result

ρevk. Again, this part of the key generation procedure is identical for TrapTP
(`)
2

and TrapTP
(`)
3 . Start playing the hybrid indistinguishability game with A:

– Flip a bit r ∈ {0, 1}.
– Send ρevk to A1. If r = 0, encrypt the response of A1 using the secret key sk

generated by A′1. Note that for this, the permutation π` is also not needed.
If r = 1, encrypt a |0〉 state of appropriate dimension instead.

– Send the resulting encryption, along with the side info from A1, to A2.

– On the output of A2, start running TrapTP
(`)
2 .VerDec until the actions on

the `th gadget need to be verified. Since the permutation on the state γmid
`

is unknown to A′2 (it was sent to the challenger for encryption), it cannot
verify this part of the computation.
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– Instead, send the relevant part of the computation log to the challenger for
verification, along with the relevant part of the claimed circuit (the Bell
measurements on the gadget state), and the relevant qubits, all received from
A2, to the challenger for verification and decryption.

– In the meantime, send the rest of the working memory to A′3 via register R′.

3. A′3: Continue the simulation of the hybrid game with A:

– If the challenger rejects, reject and replace the entire quantum state by the
fixed dummy state Ω.

– If the challenger accepts, then we know that the challenger applies the
claimed subcircuit to the quantum state it did not encrypt (either |0〉 or
γmid
` ), depending on the bit the challenger flipped), and possibly swaps

this state back in (again depending on which bit it flipped). Continue the

TrapTP
(`)
2 .VerDec computation for the rest of the computation log.

– Send the result (the output quantum state, the claimed circuit, and the
accept/reject flag) to A3, and call its output bit r′.

Output 0 if r = r′, and 1 otherwise. (i.e., output NEQ(r, r′))
Recall from Definition 7 that the challenger flips a coin (let us call the outcome

s ∈ {0, 1}) to decide whether to encrypt the quantum state provided by A′, or to
swap in an all-zero dummy state before encrypting. Keeping this in mind while
inspecting the definition of A′, one can see that whenever s = 0, A′ takes the role
of challenger in the game HybA,TrapTP(`)

2
(κ) with A, and whenever s = 1, they

play HybA,TrapTP(`)
3

(κ). Now let us consider when the newly defined adversary A′

wins the VER indistinguishability game for TC. If s = 0, A′ needs to output a bit
s′ = 0 to win. This happens, by definition of A′, if and only if A wins the game
HybA,TrapTP(`)

2
(κ) (i.e. r = r′). On the other hand, if s = 1, A′ needs to output a

bit s′ = 1 to win. This happens, by definition of A′, if and only if A loses the
game HybA,TrapTP(`)

3
(κ) (i.e. r 6= r′). Thus the winning probability of A′ is:

Pr[VerGameA′,TC(κ) = 1] =

= Pr[s = 0] · Pr[HybA,TrapTP(`)
2

(κ) = 1] + Pr[s = 1] · Pr[HybA,TrapTP(`)
3

(κ) = 0]

=
1

2
Pr[HybA,TrapTP(`)

2
(κ) = 1] +

1

2

(
1− Pr[HybA,TrapTP(`)

3
(κ) = 1]

)
=

1

2
+

1

2

(
Pr[HybA,TrapTP(`)

2
(κ) = 1]− Pr[HybA,TrapTP(`)

3
(κ) = 1]

)
From the IND-VER property of TC (see Theorem 4) we know that the above is at
most 1

2 + negl(κ). From this (and a randomizing argument similar to Lemma 3),
the statement of the lemma follows directly. ut

Lemma 6. For any QPT A, there exists a negligible function negl such that for
all 1 ≤ ` ≤ t,
AdvHyb

TrapTP
(`)
4

TrapTP
(`)
3

(A, κ) ≤ negl(κ).
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Proof. Let f(s) be the bit that, after the `th T gate, determines whether or not
a phase correction is necessary. Here, s is all the relevant starting information
(such as quantum one-time pad keys, gadget structure, permutations, and applied
circuit), and f is some function that determines the X key on the relevant qubit
right before application of the T gate.

In TrapTP
(`)
3 , a phase correction after the `th T gate is applied conditioned

on the outcome of

HE.Decsk`−1
(HE.Evalfevk0,...,evk`−1

(HE.Encpk0(s))),

because the garden-hose computation in the gadget computes the classical de-
cryption. In the above expression, we again slightly abuse notation, as in the
proof of Lemma 2, and include recryption steps in HE.Evalevk0,...,evk`−1

. As long
as t is polynomial in κ, we have, by correctness of HE,

Pr[HE.Decsk`−1
(HE.Evalfevk0,...,evk`−1

(HE.Encpk0(s))) 6= f(s)] ≤ negl(κ).

In TrapTP
(`)
4 , the only difference from TrapTP

(`)
3 is that, instead of performing the

garden-hose computation on the result of the classical homomorphic evaluation
procedure, the phase correction is applied directly by VerDec, conditioned on

f(s). The probability that in TrapTP
(`)
4 , a phase is applied (or not) when in

TrapTP
(`)
3 it is not (or is), is negligible. The claim follows directly. ut

Final Hybrid: Removing All Classical FHE. In TrapTP
(1)
4 , all of the error-

correction gadgets have been removed from the evaluation key, and the error-
correction functionality has been redirected to VerDec completely. Effectively,

TrapTP
(1)
4 .KeyGen samples a permutation π, generates a lot of magic states (for

P, H and T) and encrypts them using TC.Encπ, after which the keys to the
quantum one-time pad used in that encryption are homomorphically encrypted
under pk0. The adversary is allowed to act on those encryptions, but while its
homomorphic computations are syntactically checked in the log, VerDec does not

decrypt and use the resulting values. This allows us to link TrapTP
(1)
4 to a final

hybrid, TrapTPf , where all classical information is replaced with zeros before
encrypting.

The proof of the following lemma is analogous to that of Lemma 3, and
reduces to the IND-CPA security of the classical scheme HE:

Lemma 7. For any QPT A, AdvHybTrapTP
f

TrapTP
(1)
4

(A, κ) ≤ negl(κ).

Proof of main theorem. Considering TrapTPf in more detail, we can see that
it is actually very similar to TC. This allows us to prove the following lemma,
which is the last ingredient for the proof of verifiability of TrapTP.

Lemma 8. For any QPT A, Pr[HybA,TrapTPf (κ) = 1] ≤ 1
2 + negl(κ).
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Proof. To see the similarity with TC, consider the four algorithms of TrapTPf .
In TrapTPf .KeyGen, a permutation π is sampled, and magic states for P, H

and T are generated, along with some EPR pair halves (to replace ini and outi).
For all generated quantum states, random keys for QOTPs are sampled, and the
states are encrypted using TC.Enc with these keys as secret keys. No classical
FHE is present anymore. Thus, TrapTPf .KeyGen can be viewed as TC.KeyGen,
followed by TC.Enc on the magic states and EPR pair halves.

TrapTPf .Enc is identical to TC.Enc, only the keys to the quantum one-time
pad are sampled on the fly and sent to TrapTPf .VerDec via a classical side-
channel, whereas TC.VerDec receives them as part of the secret key. Since the
keys are used exactly once and not used anywhere else besides in Enc and VerDec,
this difference does not affect the outcome of the game.

TrapTPf .Eval only requires CNOT, classically controlled Paulis, and compu-
tational/Hadamar basis measurements. For the execution of any other gate, it
suffices to apply a circuit of those gates to the encrypted data, encrypted magic
states and/or encrypted EPR halves.

TrapTPf .VerDec does two things: (i) it syntactically checks the provided
computation log, and (ii) it runs TC.VerDec to verify that the evaluation procedure
correctly applied the circuit of CNOTs and measurements.

An execution of HybA,TrapTPf (κ) for any A corresponds to the two-round
VER indistinguishability game for TC as follows. Let A = (A1,A2,A3) be a
polynomial-time adversary for the game HybA,TrapTPf (κ). Define an additional
QPT A0 that produces magic states and EPR pair halves to the register X1.
The other halves of the EPR pairs are sent through R, and untouches by A1 and
A2. The above analysis shows that the adversary A′ = (A0,A1,A2,A3) can be
viewed as an adversary for the VER-2 indistinguishability game VerGame2A′,TC(κ)
and wins whenever HybA,TrapTPf (κ) = 1. The other direction does not hold: A
loses the hybrid indistinguishability game if TrapTPf .VerDec rejects check (i),
but accepts check (ii) (see above). In this case, A′ would still win the VER-2
indistinguishability game. Hence,

Pr[HybA,TrapTPf (κ) = 1] ≤ Pr[VerGame2A′,TC(κ) = 1].

Theorem 4 yields Pr[VerGame2A′,TC(κ) = 1] ≤ 1
2 + negl(κ), and the result follows.

ut

Theorem 5. The vQFHE scheme TrapTP satisfies κ-SEM-VER.

Proof. From Lemmas 1, 2, 3, 4, 5, 6, and 7, we may conclude that if t (the
number of T gates in the circuit) is polynomial in κ (the security parameter),
then for any polynomial-time adversary A,

Pr[VerGameA,TrapTP(κ) = 1] − Pr[HybA,TrapTPf (κ) = 1] ≤ negl(κ),

since the sum poly-many negligible terms is negligible (it is important to note
that there is only a constant number of different negligible terms involved).
By Lemma 8, which reduces verifiability of TrapTPf to verifiability of TC,
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Pr[HybA,TrapTPf (κ) = 1] ≤ 1/2+negl(κ). It follows that Pr[VerGameA,TrapTP(κ) =
1] ≤ 1/2 + negl(κ), i.e., that TrapTP is κ-IND-VER. By Theorem 3, TrapTP is
also κ-SEM-VER. ut

6 Application to quantum one-time programs

One-time programs. We now briefly sketch an application of the vQFHE
scheme to one-time programs. A classical one-time program (or cOTP) is an
idealized object which can be used to execute a function once, but then self-
destructs. In the case of a quantum OTP (or qOTP), the program executes a
quantum channel Φ. In the usual formalization, Φ has two inputs and is public.
One party (the sender) creates the qOTP by fixing one input, and the qOTP
is executed by a receiver who selects the other input. To recover the intuitive
notion of OTP, choose Φ to be a universal circuit. We will work in the universally-
composable (UC) framework, following the approach of [8]. We thus first define
the ideal functionality of a qOTP.

Definition 8 (Functionality 3 in [8]). The ideal functionality FOTP
Φ for a

channel ΦXY→Z is the following:

1. Create: given register X from sender, store X and send create to receiver.
2. Execute: given register Y from receiver, send Φ applied to XY to receiver.

Delete any trace of this instance.

A qOTP is then a real functionality which “UC-emulates” the ideal function-
ality [22]. As in [8], we only allow corrupting receivers; unlike [8], we consider
computational (rather than statistical) UC security. The achieved result is there-
fore slightly weaker. The construction within our vQFHE framework is however
much simpler, and shows the relative ease with which applications of vQFHE
can be constructed.

The construction. Choose a vQFHE scheme Π = (KeyGen,Enc,Eval,VerDec)
satisfying SEM-VER. For simplicity, we first describe the classical input/output
case, i.e., the circuit begins and ends with full measurement of all qubits. Let C
be such a circuit, for the map ΦXY→Z . On Create, the sender generates keys
(k, ρevk)← KeyGen and encrypts their input register X using k. The sender also
generates a classical OTP for the public, classical function VerDec, choosing the
circuit and key inputs to be C and k; the computation log is left open for the
receiver to select. The qOTP is then the triple

ΞXC := (ρevk,Enck(ρX),OTPVerDec(C, k)) .

On Execute, the receiver computes as follows. The receiver’s (classical) input Y
together with the (public) circuit C defines a homomorphic computation on the
ciphertext Enck(ρX), which the receiver can perform using Eval and ρevk. Since
C has only classical outputs, the receiver measures the final state completely. At
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the end of that computation, the receiver holds the (completely classical) output
of the computation log from Eval. The receiver plugs the log into OTPVerDec(C, k),
which produces the decrypted output.

We handle the case of arbitrary circuits C (with quantum input and output)
as follows. Following the ideas of [8], we augment the above quantum OTP with
two auxiliary quantum states: an “encrypt-through-teleport” gadget σin and a
“decrypt-through-teleport” gadget σout. These are maximally entangled states with
the appropriate map (encrypt or decrypt) applied to one half. The receiver uses
teleportation on σin

Y1W1
to encrypt their input register Y before evaluating, and

places the teleportation measurements into the computation log. After evalution,
the receiver uses σout

W2Y2
to teleport the plaintext out, combining the teleportation

measurements with the output of OTPVerDec(C, k) to compute the final QOTP
decryption keys.

Security proof sketch. Starting with a QPT adversary A which attacks the
real functionality, we construct a QPT simulator S which attacks the ideal
functionality (with similar success probability). We split A into A1 (receive input,
output the OTP query and side information) and A2 (receive result of OTP
query and side information, produce final output). The simulator S will generate
its own keys, provide fake gadgets that will trick A into teleporting its input to
S, who will then use that input on the ideal functionality. Details follow.

The simulator first generates (k, ρevk)← KeyGen and encrypts the input X
via Enck. Instead of the encrypt gadget σin

Y1W1
, S provides half of a maximally

entangled state in register Y and likewise in register W . The other halves Y ′1
and W ′1 of these entangled states are kept by S. The same is done in place of the
decrypt gadget σout

W2Y2
, with S keeping Y ′2 and W ′2. Then S runs A1 with input

ρevk,Enck(ρX) and registers Y and W . It then executes VerDeck on the output
(i.e., the query) of A1 to see if A1 correctly followed the Eval protocol. If it did
not, then S aborts; otherwise, S plugs register Y ′1 into the ideal functionality, and
then teleports the output into register W ′2. Before responding to A2, it corrects
the one-time pad keys appropriately using its teleportation measurements.

7 Conclusion

In this work, we devised a new quantum-cryptographic primitive: quantum fully-
homomorphic encryption with verification (vQFHE). Using the trap code for
quantum authentication [8] and the garden-hose gadgets of [12], we constructed
a vQFHE scheme TrapTP which satisfies (i.) correctness, (ii.) compactness, (iii.)
security of verification, (iv.) IND-CPA secrecy, and (v.) authentication. We also
outlined a first application of vQFHE, to quantum one-time programs.

We leave open several interesting directions for future research. Foremost is
finding more applications of vQFHE. Another interesting question is whether
vQFHE schemes exist where verification can be done publicly (i.e., without the
decryption key), as is possible classically. Finally, it is unknown whether vQFHE
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(or even QFHE) schemes exist with evaluation key that does not scale with the
size of the circuit at all.
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Supplementary material

A Equivalence of κ-IND-VER and κ-SEM-VER.

In Theorem 3, it was stated that if a scheme is κ-IND-VER, then it is also
κ-SEM-VER, and vice versa. We here provide the full proof of Theorem 3.

Proof (of Lemma 3). We first show the forward direction. Suppose a scheme
S is not κ-SEM-VER. Then there exists a QPT A such that for all simulators
S, there exist QPTs M and D and a polynomial p such that the difference in
acceptance probability is at least 1/p(κ). Choose S to be

S : (sk, ρR1
) 7→ trX′

(
(VerDecsk ⊗ IR1

)(A(Encsk(|0n〉〈0n|)⊗ ρR1
))
)
,

This simulator encrypts a dummy state and feeds it to the adversary; whatever
comes out is then checked. Note that in the accept case, the output is wrong,
since the claimed circuit is applied to the dummy state instead of the real input.
This does not matter, however, because the simulator throws out the result
immediately. Since S is a possible simulator, we can let M and D be as given by
the assumption that κ-SEM-VER is false.

This allows us to construct a QPT adversary A′ = (A′1,A′2,A′3) for the
VER indistinguishability game VerGameA,S(κ) simply by setting A′1 =M, A′2 =
(A⊗ IR2), and A′3 = D. Informally, the probability that this adversary wins is

Pr[r = 0] Pr[A′3 guesses 0 | r = 0] + Pr[r = 1] Pr[A′3 guesses 1 | r = 1] .

More precisely, it is

1

2
Pr
[
A′3
(

(S.VerDecsk ⊗ IR)(A′2((S.Encsk ⊗ IR)(A′1(ρevk))))
)

= 0
]

+
1

2
Pr
[
A′3
((

IX′R′ ⊗Πacc

)(
(Φc ⊗ IFR′)(σXFR′)

)
+
(
IX′R′ ⊗Πrej

)(
Ω ⊗ σFR′

))
= 1
]

where F is the flag register (accept/reject), and we set (c, σXFR′) = (trX′ ◦
(IX ⊗ S.VerDecsk ⊗ IR′) ◦ (IX ⊗A′2))(S.Encsk(|0n〉〈0n|)⊗A′1(ρevk)), and Πacc =
|acc〉〈acc| and Πrej = |rej〉〈rej|. This can be seen by following the wires in the
indistinguishability game. By our definition of A′ and S, this is equal to

1

2

(
1− Pr

[
D
((
S.VerDecsk ⊗ IR′1R2

)(
(A⊗ IR2

)τCXR

))
= 1
])

+
1

2
Pr
[
D
(

(ctrl-� ◦Φc ◦ Ssk)(M(ρevk))
)

= 1
]

where τCXR = (S.Encsk ⊗ IR1R2)(M(ρevk)). By the assumption that S is not
κ-SEM-VER, this is at least 1

2 +1/p(κ). Hence, this adversary wins the IND-VER
indistinguishability game with nonnegligible probability.

For the other direction, suppose that a scheme S is κ-SEM-VER, and let A =
(A1,A2,A3) be an arbitrary QPT adversary for the IND-VER indistinguishability
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game for this scheme. By defintion of κ-SEM-VER, for A2 there exists S such
that for all QPTs M and D, the equation from Definition 5 holds with A := A2.
We choose M and D as in the figure below. More precisely, M does: (i.) run
A1 on its input (ii.) prepare the state |0n〉〈0n|, plus a random bit r ∈R {0, 1},
and store them in the side information register R2, and (iii.) swap the quantum
states in X and R2 conditioned on r. We also choose D to (i.) run A3 on the
appropriate input wires, (ii.) either apply Φc or � on the quantum state in the
register R2, conditioned on the accept/reject flag, (iii.) swap those wires back
(again, conditioned on r), and finally (iv.) output 1 if A3’s output was correct
(i.e. equal to r), and 0 otherwise.

ρevk

A1

R1

|0n〉〈0n|

X

r ∈R {0, 1} •

×

×

Ssk

c

acc(0)/rej(1)

R′1

Φc
X ′

•

�

Φc

•

�

•

×

×

A3 r′

M D

EQ(r, r′)

Note that these choices ensure that the real channel is an execution of the IND-
VER game. In the ideal scenario, A3 receives exactly the same state in the cases
r = 0 and r = 1. Hence, the best he can do is guess, and the probability that
r′ = r (and thus that D outputs 1)is at most 1

2 .
By the assumption that S is κ-SEM-VER, the probability that D outputs

1 in the real scenario can only be negligibly higher than in the ideal case. As
discussed above, the real scenario corresponds exactly to the adversary A playing
the IND-VER game. Therefore, the winning probability for A (i.e. the probability
that VerGameA,S(κ) = 1) is at most negligibly (in κ) higher than 1

2 . ut

B Algorithms for TC

This section formalizes the encryption, verification, and decryption procedures
described in Section 3.

Algorithm 13. TC.Enc((π, x, z), σ)

1: σ′ ← CSS.Encode(σ)
2: σ′′ ← permuteπ(σ′ ⊗ |0m〉 ⊗ |+m〉)
3: σ̃ ← XxZzσ′′XxZz

4: return σ̃
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Algorithm 14. TC.VerDecQubit((π, x, z), σ̃)

1: σ ← XxZzσ̃XxZz

2: (σ′, trapsX , trapsZ)← permuteπ−1(σ) . trapsX and trapsZ are quantum states
3: Measure trapsX in the computational basis. If not all-zero, return (Ω, |rej〉).
4: Measure trapsZ in the Hadamard basis. If not all-+, return (Ω, |rej〉).
5: σ′′ ← CSS.Decode(first m qubits of σ′)
6: return (σ′′, |acc〉)

Algorithm 15. TC.VerDecMeasurement((π, x, z), w̃, basis)

1: if basis = + then
2: w′ ← permuteπ−1(x⊕ w̃)
3: Check the second m bits of w′. If not all-zero, return (0, rej).
4: if basis = × then
5: w′ ← permuteπ−1(z ⊕ w̃)
6: Check the third m bits of w′. If not all-zero, return (0, rej).
7: w′′ ← CSS.ClassicalDecode(first m bits of w′)
8: return (w′′, acc)

Algorithm 16. TC.VerDec((π, x, z), σ̃, c)

1: for all gates G in c do
2: if G = Xi then
3: x[i]← x[i]⊕ permuteπ(1m02m) . update keys (see Section 3)
4: else if G = Zi then
5: z[i]← z[i]⊕ permuteπ(1m02m) . update keys (see Section 3)
6: else if G = CNOT then
7: (x[i], z[i])(x[j], z[j])← (x[i], z[i]⊕ z[j])(x[i]⊕ x[j], z[j]) . update keys
8: else if G is a measurement in basis b on qubit i then
9: (ai,flag)← TC.VerDecMeasurement((π, x[i], z[i]), σ̃i, b)

10: if flag = rej then
11: return (Ω, |rej〉).
12: Execute TC.VerDecQubit on all unmeasured qubits. If it rejects, return (Ω, |rej〉).
13: σ′ ← the list of decrypted qubits (and measurement outcomes ai).
14: σ′′ ← σ′ with all wires that are not part of the output of c traced out.
15: return (σ′′, |acc〉)

C Security of verification in TC.

The trap code is proven secure in its application to one-time programs [8].
Broadbent and Wainewright proved authentication security (with an explicit,
efficient simulator) [6]. One can use similar strategies to [6, 8] to prove κ-IND-VER
for TC.

Theorem 6. For any adversary A,

Pr[VerGameA,TC(κ) = 1] ≤ 1

2
+ negl(κ) ,
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and thus TC is a κ-IND-VER secure (somewhat) homomorphic encryption
scheme.

The proof (again following, e.g., [6]) will use the following lemma, the Pauli
Twirl [11].

Lemma 9 (Pauli Twirl). Let ρ be an arbitrary n-qubit state. Then for any
Pauli operators P , P ′ it holds that

1

4n

∑
a,b∈{0,1}n

(XaZb)†PXaZbρXaZbP ′†(XaZb)† =

{
PρP † if P = P ′

0 otherwise

Proof (Theorem 6). Let A = (A1,A2,A3) be an adversary for TC, for the
VerGameA,S(κ) security game. Let sk = (π, x, z) be the uniformly random keys,
with π ∈ S3m, x, z ∈ {0, 1}3mn. Let CSS be a [[m, 1, d]] CSS code, that can
correct up to dc errors. We can let dc be the security parameter κ, and then
d = 2dc + 1 and m depends on the exact properties of CSS.

First note that for TC, the circuit c which is output by A2 cannot in any way
depend on the bit r: All qubits output by TC.Enc are encoded with the quantum
one-time pad, and therefore will look completely mixed whether or not the real
or dummy input is given to A2. Also, c is measured when it is supplied to VerDec
as classical information. Therefore, we can in general view A as a probabilistic
mixture of adversaries for different choices of c. From now on, we assume that A
uses an arbitrary fixed c without loss of generality (since it can always use the
circuit c that wins the game with highest probability).

Next, observe that the accept probability of VerDec within the VerGameA,S(κ)
game is independent of the random choice r. The decryption procedure only
looks at the trap qubits when choosing whether to accept or reject, and so we
can imagine delaying undoing the quantum one-time pad on the data qubits
until after the accept or reject choice – which cannot depend on r at all since the
encrypted data always looks completely mixed.

In the reject case, VerDec outputs a fixed quantum state, and the quantum
one-time pad that is applied to the input of TC.Enc will never be revealed. So
in that case A3 will never be able to do better than a random guess. To prove
security, it then suffices to argue that the state A2 outputs in the r = 0 case is
close to the state A2 outputs in the r = 1 case, conditioned on VerDec accepting.

Now let D be the quantum operations that are performed by the honest eval-
uation circuit, i.e., the list of CNOT gates applied transversally to the encrypted
qubits. Let B ∈ {I, comp, H}n describe for each logical qubit whether it is un-
measured, measured in the computational basis, or measured in the Hadamard
basis respectively. To simplify notation, we assume without loss of generality that
HR = HR′ and that A2 can be written as a unitary operation that consists of
first applying an arbitrary U acting on HR ⊗HC , and then applying the honest
actions D.

Define MI = I⊗m ⊗ |0〉〈0|⊗m ⊗ |+〉〈+|⊗m as the projector corresponding to
accepting the traps of an unmeasured qubit (after undoing the permutation and
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quantum one-time pad). Similarly define Mcomp = I⊗m ⊗ |0〉〈0|⊗m ⊗ I⊗m and
MH = I⊗m ⊗ I⊗m ⊗ |+〉〈+|⊗m as the projectors corresponding to accepting the
traps of a measured qubit.

The VerDecMeasurement function does not undo the Z part of the quantum
one-time pad in case of computational-basis measurement (or the X corrections
for the Hadamard basis), making it not possible to immediately apply the Pauli
twirl (Lemma 9) as with the unmeasured qubits. Consider a scheme where the
decryption procedure for the measurement would first undo the entire quantum
one-time pad, and only measure the qubits afterward: this scheme would be
functionally completely equivalent to the actual TC scheme. (In [8] this property
is called the equivalence between decode-then-measure and measure-then-decode.)
Also, note that we can write the Pauli operators and the conditional Paulis as
occuring after all other gates; because of the commutation rules between the
Clifford group and the Pauli group, they will just correspond to different Pauli
operations applied later. Since the Pauli key updates only occur on the data
qubits and do not change the acceptance probability at all, we can rewrite the
decryption procedure as first checking the traps using the keys without the Paulis,
and only then apply the (conditional) Paulis after the checks.

Let σ ∈ HRX be the output state of A1. Write Λ(·) = CSS.Encode(·) ⊗
|0〉〈0|⊗m⊗|+〉〈+|⊗m as the channel representing the part of the encryption which

encodes the qubits and appends the traps and define ρ =
(

idR ⊗
⊗n

i=1 Λ
)

(σ).

Now the state (IR ⊗ XxZzπ⊗n)ρ(IR ⊗ XxZzπ⊗n)† is the encrypted input to A2.
The plaintext that VerDec holds right before running CSS.Decode, projected to
the accepting case, equals⊗
i∈[n]

MBi
E

π∈S3m

[
E

x,z∈{0,1}3mn
[π†⊗nXfc(x)Zfc(z)DUXxZzπ⊗nρπ†⊗nXxZzU†D†Xfc(x)Zfc(z)π⊗n]

]
where U acts on the reference system R and the ciphertext register, and all other
operations only act on the ciphertext register.5 The transformation fc represents
the updating of the quantum one-time pad keys as function of the applied circuit
– these are the keys that are used by the decryption circuit.

Now defineD′ as the unitary operation which applies CNOT gates transversally
on the 3m+ 3m qubits when listed in c. By construction of the key-update rules,
we have that Xfc(x)Zfc(z)π†⊗nD = D′XxZzπ†⊗n. Using that identity and the
Pauli twirl (Lemma 9) we decompose U into a probabilistic mixture of Pauli
operations:⊗
i∈[n]

MBi
D′ E

π∈S3m

[
E

x,z∈{0,1}3mn
[π†⊗nXxZzUXxZzπ⊗nρπ†⊗nXxZzU†XxZzπ⊗n]

]
D′† =

⊗
i∈[n]

MBi
D′ E

π∈S3m

[
E

P∈P3mn
[|αP |2π†⊗n(P ⊗ UP )π⊗nρπ†⊗n(P ⊗ U†P )π⊗n]

]
D′†

5 The expectation value is always taken over the uniform distribution, e.g., Eπ∈S3m is
nothing more than a short way of writing 1

(3m)!

∑
π∈S3m

.
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Expressions of this form were carefully analyzed in the earlier trap-code
security proofs – we will for completeness finish our security sketch, but see, e.g.,
[6] for a more precise analysis.

First observe that if these Pauli operators do not change any logical qubit,
this expression will be exactly the same as the state that A3 receives in the r = 1
case – namely the claimed circuit c, as represented by D′, the measurements, and
the (conditional) Paulis that will be effectively performed by decryption, applied
to the data. Consider what form the Pauli operator P would need to change a
specific logical qubit i. First consider an unmeasured qubit i. Because CSS can
correct up to dc errors, only those Paulis that are non-identity on more than dc
qubits will cause the logical qubit after decoding to change. Say without loss of
generality that this Pauli operator Pi has an X on at least dc/2 out of the 3m
physical qubits that encode i. (If the operator consists of more Z components
than X components, we could argue using Z instead.) Consider the probability
for a randomly chosen π ∈ S3m that all these X do not end up in the positions
m + 1 to 2m, i.e., each misses the computational basis traps. For each X, the
probability of missing all trap positions, conditioned on no trap being hit yet,
is always at most 2/3. Therefore the probability that all traps are missed is at
most (2/3)dc/2. A more careful combinatorial analysis which includes the Z flips
improves this to (2/3)dc [8, 6], but this simple bound suffices for us.

Now, consider the case that i is a qubit on which a computational-basis
measurement has been performed, of which only the corresponding traps are
checked. For these qubits, the Pauli Z parts of the attack are not detected, but
they also do not change the output: Since the data qubits are measured, only
the X Paulis will change anything in the data. Therefore, the operator Pi will
have to contain at least dc X Paulis on the 3m physical qubits. Now repeating
the same argument as for the unmeasured qubits, we see that the probability
over a random permutation π that all traps are missed is at most (2/3)dc . The
analogous argument works for the Hadamard-basis measurements.

To conclude, the part of the output of A2 that has been changed from that
what would come out of the honest evaluator, and still is accepted, has norm at
most (2/3)dc , both in case r = 0 and r = 1. This norm gives an upper bound to
the trace distance between the states that A3 receives in the r = 0 case and the
r = 1 case, since for all lower-weight Pauli attacks these states are exactly the
same (by the error-correction property of CSS). The final guessing probability is
then bounded as

Pr[VerGameA,TC(κ) = 1] ≤ 1

2
+

1

2

(
2

3

)dc
.

Since we picked the parameters of CSS such that dc scaled with κ, this completes
the proof. ut

D Security of TC with multiple encryptions

In Section 5, we will use the IND-VER property of TC to prove verifiability for
our new scheme. In order to achieve this, we will actually need a slightly stronger
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notion of verifiability for TC: IND-VER-n, where the adversary is allowed to
submit plaintexts in multiple rounds, which are either all encrypted or all swapped
out. In this subsection, we show that TC also fulfills this stronger notion. For our
purposes in Section 5, it suffices to show that TC is secure against an adversary
that is allowed two rounds (IND-VER-2), but the definitions and proof trivially
extend to the general case.

Definition 9 (VER-2 indistinguishability game VerGame2A,S(κ)). For an
adversary A = (A0,A1,A2,A3), a scheme S, and a security parameter κ,
VerGame2A,S(κ) is the following game:

S
.K
ey
G
en

(1
κ
)

ρevk

sk

|0n2〉〈0n2 |

|0n1〉〈0n1 |

r ∈R {0, 1}

A0

R

X1

A1

R′

X2
S.Encsk

•

×

× S.Encsk

•

×

×

A2

CX′

c

log

R′′

Φc

S
.V
er
D
ec
s
k

acc(0)/rej(1)

c

X ′

•

�

•

×

×

A3 r′

Here, n1 and n2 are the respective dimensions of the X1 and X2 registers.

Definition 10 (κ-IND-VER-2). A vQFHE scheme S = (KeyGen,Enc,Eval,VerDec)
has 2-round κ-indistinguishable verification if for any QPT adversary A =
(A0,A1,A2,A3),

Pr[VerGame2A,S(κ) = 1] ≤ 1

2
+ negl(κ).

Here, the probability is taken over KeyGen(1κ),Enc,VerDec, and A.

Lemma 10. TC is κ-IND-VER-2.

Proof. Let A = (A0,A1,A2,A3) be an arbitrary polynomial-time adversary for
the VER-2 indistinguishability game for TC. For notational convenience, write
the secret key as sk = (π, x1, z1, x2, z2), where x1 and z1 are lists of 3mn1 bits,
sufficient for encrypting X1, and analogously x2 and z2 are lists of 3mn2 bits.

We now slightly alter the VER-2 game in the following way. In the first
encryption step of the game, instead of providing A1 with TC.Enc(π,x1,z1) applied
to the register X1, we provide A1 with the halves of n1 EPR pairs, and perform
Bell measurements between the other halves and the qubits in X1, after they
have been CSS-encoded and permuted with traps. Let the outcomes of these
measurements be given by a, b ∈ {0, 1}3mn1 : a and b describe the effective X and
Z Paulis that are applied to X1 by these teleportation measurements. To undo
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these Paulis, we update sk to (π, x1 ⊕ a, z1 ⊕ b, x2, z2) at this point. Here, ⊕ is
bitwise addition modulo 2. Since the quantum one-time pad keys x1 and z1 are
chosen uniformly at random, and are completely hidden from the perspective of
the adversary, the new keys x1 ⊕ a and z1 ⊕ b are valid keys that are sampled
from the same distribution. Hence, the winning probability of A is not affected
by this change of the game.

A second small change to the game is the following: instead of performing
the Bell measurements and the secret-key update immediately, it is done only
after A1 has provided its query in X2. Since these actions happen only on wires
which are not accessible to A1 and otherwise also not touched in this stage of
the game, this change also does not affect the execution or outcome of the game
in any way.

We have now arrived at an interesting situation: A1 only receives halves of
EPR pairs, and so its choice for X2 or R′ is not based on the first ciphertext
received from the challenger – that ciphertext will only be generated after
execution of A1. We can merge A0 and A1 into a single QPT algorithm that
produces X1 and X2 simultaneously. When viewed as such, A is an adversary
for the single-query VER indistinguishability game, and we can conclude that

Pr[VerGame2A,TC(κ) = 1] = Pr[VerGameA,TC(κ) = 1].

Since we know that the latter probability is bounded by 1
2 + negl(κ) from

Theorem 4, so is the first. ut
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