
Homomorphic Secret Sharing for Multipartite
and General Adversary Structures Supporting
Parallel Evaluation of Low-degree Polynomials

Reo Eriguchi1,3 and Koji Nuida2,3

1 The University of Tokyo, Tokyo, Japan
reo-eriguchi@g.ecc.u-tokyo.ac.jp
2 Kyushu University, Fukuoka, Japan

nuida@imi.kyushu-u.ac.jp
3 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. Homomorphic secret sharing (HSS) for a function f allows
input parties to distribute shares for their private inputs and then locally
compute output shares from which the value of f is recovered. HSS can
be directly used to obtain a two-round multiparty computation (MPC)
protocol for possibly non-threshold adversary structures whose commu-
nication complexity is independent of the size of f . In this paper, we
propose two constructions of HSS schemes supporting parallel evalua-
tion of a single low-degree polynomial and tolerating multipartite and
general adversary structures. Our multipartite scheme tolerates a wider
class of adversary structures than the previous multipartite one in the
particular case of a single evaluation and has exponentially smaller share
size than the general construction. While restricting the range of tolera-
ble adversary structures (but still applicable to non-threshold ones), our
schemes perform ℓ parallel evaluations with communication complexity
approximately ℓ/ log ℓ times smaller than simply using ℓ independent in-
stances. We also formalize two classes of adversary structures taking into
account real-world situations to which the previous threshold schemes are
inapplicable. Our schemes then perform O(m) parallel evaluations with
almost the same communication cost as a single evaluation, where m is
the number of parties.

Keywords: Homomorphic secret sharing · General adversary structure
· Parallel evaluation.

1 Introduction

This paper concerns a large-scale multiparty computation (MPC), in which the
number m of parties are considerably large, e.g., m = 1000 [25]. We also aim
at realizing parallel evaluation of a single low-degree polynomial (or SIMD op-
erations) [9, 19]. That setting practically appears in privacy-preserving statistics
and machine learning. A fundamental analysis such as linear regression can be
expressed as an m-variate polynomial of constant degree [11, 24]. We should in-
volve a large number of inputs to make analysis results useful. Furthermore,

amortized communication cost is important if the same analysis is performed on
different data sets.

The privacy requirement is specified by an adversary structure ∆, a family
of all possible corrupted subsets of the whole set P . Although ∆ may contain
all strict subsets, the all-but-one corruption is an unrealistically strong setting.
Moreover, the only possible solution in that setting would be using fully ho-
momorphic encryption (FHE) [21, 32] or general-purpose MPC (e.g., [3, 13, 23]).
The existing FHE schemes are based on a narrow class of assumptions and their
concrete efficiency leaves much to be desired. General-purpose MPC results in
considerably large communication complexity proportional to the function de-
scription size, which is O(md) for a degree-d polynomial. It is then important to
improve performance by focusing on practical adversary structures. For example,
many real-world situations are expressed by multipartite adversary structures
[18], in which P is divided into L parts Pj and whether each subset X is in ∆ is
determined by (|X ∩ P1|, . . . , |X ∩ PL|).

Homomorphic secret sharing (HSS) [6] allows m parties to distribute shares
for their inputs and then locally compute output shares from which the output of
a function is recovered. HSS offers protection against bounded collusion and can
be constructed from weak assumptions, such as the intractability of the Diffie-
Hellman problem [14], or even information-theoretically. It is directly used to
obtain a two-round MPC protocol whose point-to-point communication cost is
linear in its share size, which is independent of the function description size.

There are several constructions of HSS schemes. The packed secret sharing
scheme [19] is an information-theoretic scheme that generalizes Shamir’s scheme
[31] to support parallel evaluation, the scheme of [17] is an information-theoretic
one for multipartite adversary structures, and the schemes of [26, 30] are compu-
tational variants of Woodruff and Yekhanin’s scheme [34] and the CNF scheme
[2], respectively, which tolerate wider classes of adversary structures.

However, they do not give a satisfactory solution to practical non-threshold
adversary structures ∆. The schemes [19, 26] need to set a corruption thresh-
old to the maximum size of X ∈ ∆ and then are inapplicable if ∆ contains at
least one set of size exceeding their tolerable thresholds. The construction [30]
is applicable to any adversary structure but results in exponentially large share
size for multipartite ones. In addition, ∆ is practically much smaller than maxi-
mally tolerable adversary structures of [17, 26, 30]4. Then, the previous schemes
satisfy unnecessarily strong privacy requirements and would limit the possibility
of parallel evaluation. In summary, we need to construct HSS schemes tailored
to given non-threshold adversary structures to tolerate corruptions in real-world
situations and also to improve the amortized communication cost.

1.1 Our Results

We propose HSS schemes for multipartite and general adversary structures as-
suming k-HE, homomorphic encryption for polynomials of degree k = O(1). Our

4 Here, a maximally tolerable adversary structure of an HSS scheme means ∆ such
that the scheme cannot tolerate ∆ ∪ {X} for any X /∈ ∆.

2

technical novelty is applying the packing technique of [19] to the non-threshold
schemes [17, 30]. It is especially not straightforward to apply it to [30], which
does not involve polynomial interpolation.

HSS for Multipartite Adversary Structures. Let ∆ be an L-partite ad-
versary structure and N be the number of all vectors associated with maximal
sets of ∆ (Table 1). When performing ℓ parallel evaluations of a degree-d poly-
nomial, the input and output share sizes of our scheme are O(N log(m+ ℓ)) and
O(log(m+ ℓ)), respectively, omitting polynomial factors of the security param-
eter λ. Note that N = O(mL) and L is practically small, e.g., L = 2 [18]. As a
result, we obtain an MPC protocol for ∆ whose communication complexity is
logarithmic in ℓ and is approximately ℓ/ log ℓ times smaller than [17] while the
range of tolerable ∆ degrades as ℓ increases (Fig. 1 (left)). Our scheme for ℓ = 1
tolerates a wider class of adversary structures than [17]. By setting L = 1, we ob-
tain a threshold HSS scheme (Table 2). Given k, d, and m, its tolerable threshold
is strictly larger than [19]. Compared to [26], there is a trade-off between thresh-
olds and share sizes. If a threshold t is smaller than t∗ = ⌈(k + 1)m/d − 1⌉,
our scheme can perform ℓ ≤ t∗− t parallel evaluations with communication cost
ℓ/ log ℓ times smaller than [26].

Table 1. Comparison of HSS schemes for an L-partite adversary structure ∆
supporting ℓ parallel evaluations of a degree-d polynomial. Let Π = (Pj)j∈[L]

be an L-partition of P , {a1, . . . ,aN} be the collection of (|X ∩ Pj |)j∈[L] for all
maximal sets X, and ΦΠ(P) = (|Pj |)j∈[L] (see Section 3.3). Define ϵk,d(∆) =
min{

∣∣(k + 1)ΦΠ(P)− (ai1 + · · ·+ aid)
∣∣
∞ : 1 ≤ i1 ≤ . . . ≤ id ≤ N}, where |v|∞ =

maxj∈[L]{max{vj , 0}} for v = (vj)j∈[L] ∈ ZL.

Reference [17] Ours (Corollary 2)

Condition on ∆ ϵ0,d(∆) > 0 ϵk,d(∆) > d(ℓ− 1)

Input share size O(ℓN logm) O(N log(m+ ℓ))

Output share size O(ℓ logm) O(log(m+ ℓ))

Assumption – k-HE

Table 2. Comparison of HSS schemes for a threshold adversary structure supporting
ℓ parallel evaluations of a degree-d polynomial.

Reference [19] [26] Ours (Corollary 1)

Threshold m/d− ℓ (k + 1)m/d− 1 (k + 1)m/d− ℓ
Input share size O(log(m+ ℓ)) O(ℓ logm) O(log(m+ ℓ))

Output share size O(log(m+ ℓ)) O(ℓ logm) O(log(m+ ℓ))

Assumption – k-HE k-HE

3

HSS for General Adversary Structures. Let ∆ be an adversary structure
and N be the number of all maximal sets of ∆ (Table 3). For ℓ parallel evalua-
tions, the input and output share sizes of our scheme are O(N log(m + ℓ)) and
O(log(m + ℓ)), respectively, omitting poly(λ) factors. Note that our scheme is
applicable only to ∆ such that N = poly(m) to guarantee polynomial compu-
tational complexity while N = O(2m) in the worst case. Nevertheless, as shown
below, there is an interesting class of adversary structures even if N = O(m). We
obtain an MPC protocol for ∆ whose communication complexity is logarithmic
in ℓ and is ℓ/ log ℓ times smaller than [30] while the range of tolerable ∆ degrades
as ℓ increases (Fig. 1 (right)).

Table 3. Comparison of HSS schemes for a general adversary structure ∆ supporting ℓ
parallel evaluations of a degree-d polynomial. Let N be the number of all the maximal
sets {B1, . . . , BN} and 1m is the all-ones vector. Let ai ∈ Zm be such that the j-th entry
is 1 if j ∈ Bi and otherwise 0. Define δk,d(∆) = min{|(k + 1)1m − (ai1 + · · ·+ aid)|+ :
1 ≤ i1 ≤ . . . ≤ id ≤ N}, where |v|+ =

∑
j∈[m] max{vj , 0} for v = (vj)j∈[m] ∈ Zm.

Reference [30] Ours (Corollary 3)

Condition on ∆ δk,d(∆) > 0 δk,d(∆) > (d+ 1)(ℓ− 1)

Input share size O(ℓN) O(N log(m+ ℓ))

Output share size O(ℓ) O(log(m+ ℓ))

Assumption k-HE k-HE

Fig. 1. Conceptual comparison between the threshold constraint, ϵk,d(∆) > 0, and
ϵk,d(∆) > d(ℓ− 1) for a 2-partite adversary structure (left) and between the threshold
constraint, δk,d(∆) > 0, and δk,d(∆) > (d+ 1)(ℓ− 1) for a general adversary structure
(right). The circles to the right show the subsets of P ordered with respect to inclusion.

Formalization of Practical Adversary Structures. We formalize two classes
of adversary structures and show advantages of our schemes over [17, 19, 26, 30].

4

– Unbalanced 2-partite adversary structure: For parameters τ, σ and a 2-partition
Π = (P1, P2), we define a Π-partite adversary structure which contains all
subsets X of size at most τm satisfying either |X ∩ P1| ≤ σm or |X ∩ P2| ≤
σm. We suppose a situation in which an adversary belongs to either of the
two parts and corrupts at most τm parties as in the threshold adversary
structure but he is only able to corrupt σm parties from the other part. Our
multipartite scheme can be applied to parameters τ, σ to which the thresh-
old schemes [19, 26] cannot. It supports ℓ = O(m) parallel evaluations and
decreases communication cost by O(m) times compared to [17].

– Adversary structure induced by a random graph: For a graph on m parties
(vertices), we define an adversary structure which contains the neighborhood
of j for all vertices j, i.e., a subset of all vertices adjacent to j including j
itself. That captures a situation in which an adversary is one of parties and
corrupts all adjacent parties in the graph. We show that for a random graph
whose edges occur independently with probability p, our HSS scheme for
general adversary structures can be applied with high probability. Under
certain parameter settings, our scheme supports ℓ = O(m) parallel evalua-
tions and decreases communication cost by O(m/ logm) times compared to
[30]. The threshold schemes [19, 26] cannot be applied with high probability.

1.2 Related Work

There are packing methods of homomorphic encryption which packs many ele-
ments into a single ciphertext [12, 32] and it may be used to reduce the share
size of [26, 30]. However, packing methods asymptotically reducing ciphertext
size are based on the LWE assumption or the one that implies FHE.

Under the LWE assumption, spooky encryption [15] provides an HSS scheme
for the adversary structure containing all strict subsets. The schemes [5–7] as-
sume the client-server model, in which input parties have to trust and give sen-
sitive information related to their inputs to a small number of external servers.
They are only applied to m = O(1) and not suited to our setting.

The authors of [26] show an MPC protocol with preprocessing whose online
communication complexity is independent of the function description size. In
the plain model, however, it ends up communication complexity linear in the
description size since the preprocessing phase is jointly executed by input parties.

2 Technical Overview

In this section, we provide an overview of our constructions of HSS schemes. We
give more detailed descriptions and security proofs in the following sections.

2.1 Adjusting the ILM Compiler [26] to Parallel Evaluation

The authors of [26] propose a compiler, which we call the ILM compiler, that con-
verts an information-theoretic HSS (IT-HSS) scheme with recovery information

5

to an HSS scheme using k-HE. In an IT-HSS scheme with recovery information,
the decoding algorithm Dec needs to use auxiliary information to compute an
output of a function. Our technical contributions are constructions of IT-HSS
schemes supporting parallel evaluation, from which our HSS schemes are ob-
tained by the ILM compiler. However, the original compiler assumes a single
evaluation and a naive generalization ends up in output shares whose size is
proportional to the number of evaluations. We need to consider in more detail
an algebraic property of the IT-HSS scheme that the compiler assumes.

Specifically, to apply the ILM compiler, the output of Dec has to be expressed
as a⊤y, where y is a vector representing an output share of the IT-HSS scheme
and a is a vector whose entries are degree-k polynomials of recovery information.
This is why the ILM compiler successfully works by letting a new sharing algo-
rithm output ciphertexts ã for a and letting a new evaluation algorithm compute
a ciphertext for a⊤y from y and ã. For ℓ parallel evaluations, the output of Dec
is expressed as Ay using a matrix A = (a1, . . . ,aℓ)

⊤ whose entries are degree-k
polynomials of recovery information. However, if the IT-HSS scheme only sat-
isfies this algebraic property, an output share consists of ℓ ciphertexts for a⊤

i y,
whose size is proportional to ℓ. We require a more involved property that the
output of Dec is expressed as CAy using A = (a1, . . . ,ah)

⊤ whose entries are
degree-k polynomials of recovery information and an ℓ-by-h constant matrix C.
Then, an output share consists of h ciphertexts for a⊤

i y and the decoding proce-
dures can be done by only using public information C. An important feature is
that the output share size is constant (ignoring poly(λ) factors) if we can choose
h independent of ℓ.

2.2 HSS for Multipartite Adversary Structures

As a warm-up, we construct an HSS scheme for threshold adversary structures
by applying the ILM compiler to a variant of the packed secret sharing scheme
[19] whose recovery information is derivatives of an interpolating polynomial.
That construction is a natural generalization of the IT-HSS scheme [26, 34],
which is a variant of Shamir’s scheme using derivatives as recovery information.
Specifically, we fix m + ℓ points ζ1, . . . , ζm, η1, . . . , ηℓ. For a threshold t and a
vector of ℓ inputs x, the sharing algorithm chooses a random polynomial φ of
degree t+ ℓ− 1 such that (φ(ηi))i∈[ℓ] = x, and set input shares as (φ(ζj))j∈[m]

and recovery information as the derivatives of φ of the up to k-th order on the
ζj ’s. Since the degree of the interpolating polynomial is at most d(t+ ℓ−1) after
evaluating a degree-d polynomial, the decoding succeeds if d(t+ℓ−1) < (k+1)m
due to Hermite interpolation [33].

To deal with an L-partite adversary structure, we recall the HSS scheme [17],
which decompose it to many threshold sub-structures and combines Shamir’s
schemes realizing them. We replace Shamir’s schemes used there with the above
variant of the packed scheme. In our resulting scheme, an input vector x can be
additively split into x1, . . . ,xN , where N is the number of the sub-structures,
and each xu is shared by using the above threshold scheme. We can evaluate
a degree-d polynomial if each monomial xu1

∗ · · · ∗ xud
is recovered by parties

6

in some part of the L parts, where ∗ denotes the element-wise product. This is
actually the case if the number of parties in some part exceeds a certain threshold
relating to the degree of the interpolating polynomial for xu1 ∗ · · · ∗ xud

, which
is formalized as the condition in Table 1.

Then, we can apply the ILM compiler to that IT-HSS scheme with recovery
information. However, there still remains a problem of context hiding, which
guarantees that output shares reveal nothing beyond the output value and is
necessary for an application to MPC. Using a technique similar to [27], an HSS
scheme for a single evaluation can be made context-hiding by modifying output
shares so that they add up to the single output value and re-randomizing them
by an additive sharing of zero. To output ℓ values, however, that solution results
in communicating ℓ output shares each of which is an additive share of each
output value. We observe that the set of all possible consistent output shares is
a translation of a subspaceW in a linear space V by an element v ∈ V relating to
the output values. Thus, we can re-randomize output shares by adding a random
element from W , which can be predistributed in the sharing phase without
increasing the share size asymptotically.

2.3 HSS for General Adversary Structures

Our starting point is the HSS scheme [30], which is the result of applying the
ILM compiler to the CNF scheme [2]. In their scheme for ∆, a scalar input x is
additively split into N elements xu, where N is the number of all maximal sets
of ∆ and an index u corresponds to the u-th maximal set Bu. Then, an input
share for the j-th party consists of xu for all u with j /∈ Bu and his recovery
information consists of xu for all u with j ∈ Bu. To deal with a vector x, we
use the packing technique of [19], which is not straightforward since the above
procedures do not involve polynomial interpolation. Specifically, we additively
split x into N vectors xu and distribute shares for xu using the packed secret
sharing among parties not in Bu instead of simply sending a copy of xu. That
is, for each u ∈ [N], the sharing algorithm chooses a random polynomial φu of
degree ℓ−1 such that (φu(ηi))i∈[ℓ] = xu. It sets an input share for the j-th party
as φu(ζj) for all u with j /∈ Bu and his recovery information as φu(ζj) for all u
with j ∈ Bu and some derivatives of φu on ζj for all u ∈ [N]. The input share
size increases logarithmically in ℓ since each party receives elements from a field
of size at least m+ ℓ.

The above scheme can evaluate a degree-d polynomial if for u = (u1, . . . , ud) ∈
[N]d, sufficiently many values and derivatives of φu1

· · ·φud
is computed from

input shares and degree-k polynomials of recovery information due to Hermite
interpolation. However, this solution falls short of preventing the output share
size from increasing linearly in ℓ since the coefficients in Hermite interpolation
formula to compute (φu1 · · ·φud

)(ηi) depend on i ∈ [ℓ] and hence parties need to
send output shares separately for each i ∈ [ℓ]. Instead, we introduce public poly-
nomials pu for all u ∈ [N]d such that pu(ηi) = 1 for all i ∈ [ℓ] and that the values
and derivatives of g =

∑
u∈[N]d puφu1

· · ·φud
is computed from input shares and

degree-k polynomials of recovery information. The condition in Table 3 comes

7

from a sufficient condition for such polynomials to exist. An important feature is
that the number of the values and derivatives of g to be communicated is inde-
pendent of ℓ and that the decoding algorithm locally recovers g (and hence g(ηi)
for all i ∈ [ℓ]) from them. Now, that scheme can perform ℓ parallel evaluations
while the share size is logarithmic in ℓ. On the other hand, it has to pay the cost
of degrading the range of tolerable adversary structures as ℓ increases since the
degree of the interpolating polynomial g becomes higher.

3 Preliminaries

Notations. Let Z+ and R+ denote the sets of all non-negative integers and all
non-negative real numbers, respectively. For ℓ ∈ N, define [ℓ] = {1, . . . , ℓ} and
[0..ℓ] = {0} ∪ [ℓ]. The power set of a set X is denoted by 2X and Xm is the
Cartesian product of m copies of X. Let F be a finite field or the ring of integers
Z. The vector 1m ∈ Fm is the one whose entries are all one. The i-th component
of v ∈ Fm is denoted by v(i). If F = Z, define |v|+ =

∑
i∈[m] max{v(i), 0} and

|v|∞ = maxi∈[m]{max{v(i), 0}}. For v,w ∈ Zm, we write v ⪯ w if v(i) ≤ w(i)
for any i ∈ [m] and v ≺ w if v ⪯ w and v ̸= w. Let f ∈ F[X1, . . . , Xn]
be an n-variate polynomial over F. We say that f is a degree-k polynomial if
its total degree is at most k. For ℓ ∈ N and (x1, . . . ,xn) ∈ (Fℓ)n, we define
Pℓ(f, (x1, . . . ,xn)) = (f(x1(j), . . . ,xn(j)))j∈[ℓ]. Define the differential operator
D as (Dφ)(X) =

∑
i iciX

i−1 for φ =
∑
i ciX

i ∈ F[X]. We assume D0φ = φ. For
two random variables R1 and R2 over a set U , we write R1 ≈ R2 if the statistical
distance SD(R1, R2) = (1/2)

∑
u∈U |Pr[R1 = u]−Pr[R2 = u] | is negligible in a

security parameter. We write u←$U if u is randomly chosen from U .

3.1 Hermite Interpolation

We recall Hermite interpolation [33], which generalizes Lagrange interpolation
in that it recovers a polynomial using its derivatives and values on given points.

Proposition 1 ([33]). Let m, k ∈ N and rj ∈ [0..k] for j ∈ [m]. Let F be
a prime field such that |F| ≥ max{m, k + 1}. Let ζ1, . . . , ζm be m distinct el-
ements of F. Let yj,w ∈ F for each j ∈ [m] and w ∈ [0..rj]. Then, there
exists a unique polynomial g ∈ F[X] such that deg g <

∑
j∈[m](rj + 1) and

Dwg(ζj) = yj,w for all j ∈ [m] and w ∈ [0..rj]. Furthermore, g can be written
as g(X) =

∑m
j=1

∑rj
w=0Aj,w(X)yj,w using some polynomials Aj,w of degree less

than
∑m
j=1(rj + 1) whose coefficients are independent of the yj,w’s.

We require that F is a prime field such that |F| ≥ k+1 to guarantee that w!
for all w ∈ [k], which appear as denominators in Hermite interpolation formula,
have inverses in F. Let ℓ ∈ N and assume that |F| ≥ max{m + ℓ, k + 1}. Let
ζ1, . . . , ζm, η1, . . . , ηℓ be m+ ℓ distinct elements of F, ζ = (ζ1, . . . , ζm) ∈ Fm, and
η = (η1, . . . , ηℓ) ∈ Fℓ. Applying Proposition 1 to the case of r1 = · · · = rm = k
implies an F-linear map Hermiteζ,η : F(k+1)m → Fℓ such that for any polynomial
g ∈ F[X] of degree less than (k + 1)m, it holds that Hermiteζ,η((zj)j∈[m]) =
(g(ηi))i∈[ℓ], where zj = (Dwg(ζj))w∈[0..k] for j ∈ [m].

8

3.2 Homomorphic Encryption

We recall the notion of homomorphic encryption for degree-k polynomials.

Definition 1 (Homomorphic Encryption (HE)). A homomorphic encryp-
tion scheme HE = (KGen,Enc,Eval,Dec) for degree-k polynomials over F, k-HE
for short, consists of the following PPT algorithms:

– KGen(1λ): Given the security parameter 1λ, the key generation algorithm
outputs a public key pk and a secret key sk.

– Enc(pk,x): Given the public key pk and a message x ∈ Fn for some n =
poly(λ), the encryption algorithm outputs a ciphertext c ∈ Cn in some ci-
phertext space C.

– Eval(pk, f, c): Given the public key pk, (a description of) a degree-k polyno-
mial f ∈ F[X1, . . . , Xn], and a ciphertext c ∈ Cn for some n = poly(λ), the
evaluation algorithm outputs a ciphertext c′ ∈ C.

– Dec(sk, c): Given the secret key sk and a ciphertext c ∈ Cn for some n =
poly(λ), the decryption algorithm outputs a plaintext x ∈ Fn.

As in [27, 30], we consider the standard notions of compactness, correctness,
IND-CPA security, circuit privacy [8], and their multi-key variants. We provide
the formal definitions in the full version. We focus on small k = O(1), for which
it is not known how k-HE can be bootstrapped [21] into FHE. For k ∈ {1, 2},
there exist efficient k-HE schemes [1, 4, 11, 16, 20, 29]. For general k = O(1), k-HE
schemes can be constructed from the LWE assumption with smaller parameters
than those which imply FHE, and therefore concretely efficient. There exist
several multi-key HE schemes in the literature [10, 28].

3.3 Adversary Structures

Let P = [m] for m ∈ N. A family ∆ of subsets of P is monotonically decreasing
if A ∈ ∆ and A ⊇ B imply B ∈ ∆ for any A,B ⊆ P . We call a monotonically
decreasing family of subsets of P an adversary structure on P . A set A ∈ ∆ is
called maximal if A ⊊ B implies B /∈ ∆ for any B ⊆ P . Let Π = (P1, . . . , PL)
be an L-partition of P , i.e., Pi ∩ Pj = ∅ for i ̸= j and P =

⋃
j∈[L] Pj . A

permutation τ on P is called a Π-permutation if τ(Pj) = Pj for any j ∈ [L]. An
adversary structure ∆ is called Π-partite [18] if τ(B) ∈ ∆ for any B ∈ ∆ and
anyΠ-permutation τ . There is a geometric representation of Π-partite adversary
structures. Let ΦΠ : 2P → RL be a map defined by ΦΠ(X) = (|X ∩ Pj |)j∈[L]. A
Π-partite adversary structure ∆ is uniquely determined by ΦΠ(∆). Note that,
if a ∈ ΦΠ(∆) and a ⪰ b, then b ∈ ΦΠ(∆) for any a, b ∈ ΦΠ(2P). Thus,
any Π-partite adversary structure ∆ is uniquely determined only by specifying
maxΦΠ(∆) := {a ∈ ΦΠ(∆) : a ≺ b ⪯ ΦΠ(P) ⇒ b /∈ ΦΠ(∆)}. For a real
number τ with 0 ≤ τ ≤ 1, the threshold adversary structure T mτ is defined by
T mτ = {A ⊆ P : |A| ≤ τm}. Note that T mτ is Π-partite for any partition Π.

9

3.4 Homomorphic Secret Sharing

We provide the definition of homomorphic secret sharing in the public-key setup
model [27]. Homomorphic secret sharing can be defined in the multi-key setting
and then lifted to the plain model [6] as described below. In addition, we here
distinguish between clients holding inputs and servers performing evaluation.
However, this is only for simplicity of the syntax and descriptions of schemes.
In its application to MPC, we suppose that clients themselves do evaluation of
a function as well as sharing of their inputs.

Definition 2 (Homomorphic Secret Sharing (HSS)). Suppose that there
are n inputs and m servers. A homomorphic secret sharing scheme consists of
four PPT algorithms HSS = (KGen, Share,Eval,Dec):

– (pk, sk) ← KGen(1λ): Given the security parameter 1λ, the key generation
algorithm outputs a public key pk and a secret key sk.

– (in
⟨i⟩
j)j∈[m] ← Share(pk, i,x⟨i⟩): Given the public key pk, an index i ∈ [n], and

an input x⟨i⟩ ∈ X , the sharing algorithm outputs input shares (in
⟨i⟩
j)j∈[m].

– outj ← Eval(pk, j, f, (in
⟨i⟩
j)i∈[n]): Given the public key pk, an index j ∈ [m],

(a description of) a function f : Xn → Y, and the shares of the j-th server

(in
⟨i⟩
j)i∈[n], the evaluation algorithm outputs an output share outj.

– y ← Dec(sk, (outj)j∈[m]): Given the secret key sk and output shares (outj)j∈[m]

from all servers, the decoding algorithm outputs y.

The efficiency measures α = α(n,m, log |X |) and β = β(n,m, log |Y|) are the
lengths of input and output shares, respectively (omitting poly(λ) factors). That

is, in
⟨i⟩
j ∈ {0, 1}α·poly(λ) and outj ∈ {0, 1}β·poly(λ) for any i ∈ [n] and j ∈ [m].

Definition 3 (Correctness). Let F be a finite field. An n-input m-server HSS
scheme HSS is said to support ℓ parallel evaluations of degree-d polynomials
over F if each input is a vector x⟨i⟩ ∈ Fℓ and the following holds: for any λ ∈ N,
any n,m ∈ poly (λ), any (pk, sk) ← KGen(1λ), any degree-d polynomial f ∈
F[X1, . . . , Xn], any n-tuple of inputs (x

⟨i⟩)i∈[n] ∈ (Fℓ)n, any shares (in⟨i⟩j)j∈[m] ←
Share(pk, i,x⟨i⟩) for i ∈ [n], and any outj ← Eval(pk, j, f, (in

⟨i⟩
j)i∈[n]) for j ∈ [m],

it holds that Pr
[
Dec(sk, (outj)j∈[m]) = Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩))

]
≥ 1− negl(λ) .

It is sufficient for the HSS scheme to evaluate degree-d polynomials that is
homogeneous, i.e., polynomials written as the sum of degree-d monomials. This
is because we can pad any monomial of degree d′ < d with d − d′ copies of a
dummy variable X0. We set the corresponding input to x⟨0⟩ = (1, . . . , 1) ∈ Fℓ
and the shares of x⟨0⟩ to some predetermined ones. For that reason, we assume
in the following that a polynomial to be evaluated is homogeneous.

The security of an HSS scheme guarantees that collusion of servers in B ∈ ∆
cannot guess inputs of clients from their input shares.

Definition 4 (Security). Let ∆ be an adversary structure on the set of servers.
An n-input m-server HSS scheme HSS is said to satisfy ∆-privacy if for any PPT

10

algorithm A = (A0,A1), there exists a negligible function negl(λ) such that for
any λ ∈ N, |Pr

[
Security0A,HSS = 1

]
− Pr

[
Security1A,HSS = 1

]
| < negl(λ) , where

SecuritybA,HSS is defined in Fig. 2 (left) for b ∈ {0, 1}.

We use the shorthand (n,m, ℓ, d,∆)-HSS to refer to n-input m-server homo-
morphic secret sharing that supports ℓ parallel evaluations of degree-d polyno-
mials and satisfies ∆-privacy. Note that an (n,m, 1, d,∆)-HSS scheme HSS1 with
efficiency measures α1 and β1 can be trivially extended to an (n,m, ℓ, d,∆)-HSS
scheme HSSℓ with efficiency measures α = ℓα1 and β = ℓβ1 by simply running
ℓ independent instances of HSS1.

The notion of context hiding [1] assures that the output client learns nothing
beyond the output of the computation.

Definition 5 (Context Hiding). An (n,m, ℓ, d,∆)-HSS scheme HSS is said
to be context-hiding if for any PPT algorithm A = (A0,A1), there exists a
PPT algorithm SHSS and a negligible function negl(λ) such that for any λ ∈ N,
|Pr

[
ContextHiding0A,SHSS,HSS = 1

]
−Pr

[
ContextHiding1A,SHSS,HSS = 1

]
| < negl(λ) ,

where ContextHidingbA,SHSS,HSS is defined in Fig. 2 (right) for b ∈ {0, 1}.

SecuritybA,HSS(1
λ):

(pk, sk)← KGen(1λ)

(x0,x1, B ∈ ∆, state)← A0(pk)

(in1, . . . , inm)← Share(pk,xb)

b′ ← A1(state, (inj)j∈B)

return b′

ContextHidingbA,SHSS,HSS(1
λ):

(pk, sk)← KGen(1λ)

(f,x⟨1⟩, . . . ,x⟨n⟩, state)← A0(pk)

if b = 0 then

(in
⟨i⟩
1 , . . . , in⟨i⟩m)← Share(pk, i,x⟨i⟩), ∀i ∈ [n]

yj ← Eval(pk, j, f, (in
⟨i⟩
j)i∈[n]), ∀j ∈ [m]

else

(y1, . . . , ym)← SHSS(1
λ, pk, f(x⟨1⟩, . . . ,x⟨n⟩))

endif

b′ ← A1(state, (y1, . . . , ym))

return b′

Fig. 2. Security and context hiding experiments for HSS

The authors of [26] introduce the notion of information-theoretic HSS with
recovery information, which is an intermediate primitive for constructing HSS
in the sense of Definition 2. That variant guarantees that a secret is protected
against unbounded adversaries but the decoding algorithm requires auxiliary
information to compute the output of a function.

Definition 6 (Information-Theoretic HSS with Recovery Information).
An (n,m, ℓ, d,∆)-IT-HSS scheme with recovery information consists of three al-
gorithms HSS = (Share,Eval,Dec):

11

– (in
⟨i⟩
j , rec

⟨i⟩
j)j∈[m] ← Share(i,x⟨i⟩): Given an input index i ∈ [n] and an input

x⟨i⟩, the sharing algorithm outputs a set of input shares (in
⟨i⟩
j)j∈[m] and

recovery information (rec
⟨i⟩
j)j∈[m].

– outj ← Eval(j, f, (in
⟨i⟩
j)i∈[n]): Given an index j ∈ [m], (a description of)

a degree-d polynomial f , and the shares of the j-th server (in
⟨i⟩
j)i∈[n], the

evaluation algorithm outputs an output share outj.

– y ← Dec((outj)j∈[m], (rec
⟨i⟩
j)i∈[n],j∈[m]): Given output shares (outj)j∈[m] and

recovery information (rec
⟨i⟩
j)i∈[n],j∈[m], the decoding algorithm outputs y.

The definition of correctness is the same as Definition 3 except that Dec is al-
lowed to take the recovery information as input. The definition of security is the
same as Definition 4 except that the adversary A is unbounded.

Application to MPC. Any (m,m, ℓ, d,∆)-HSS scheme has a direct application
to m-input MPC for an adversary structure ∆. Assume that there are m input
parties each holding their private inputs x⟨i⟩ and a distinguished output party.
For an m-variate degree-d polynomial f , consider the following protocol:

1. The output party generates (pk, sk)← KGen(1λ) and publishes pk.

2. For i ∈ [m], the i-th input party computes (in
⟨i⟩
j)j∈[m] ← Share(pk, i,x⟨i⟩)

and sends in
⟨i⟩
j to the j-th input party for all j ∈ [m].

3. For j ∈ [m], the j-th input party computes outj ← Eval(pk, j, f, (in
⟨i⟩
j)i∈[n])

and sends it to the output party.
4. The output party outputs y ← Dec(sk, (outj)j∈[m]).

The ∆-privacy of the HSS scheme guarantees that an adversary corrupting a
subset X of input parties such that X ∈ ∆ cannot guess the inputs of par-
ties not in X. In addition, if the scheme is context-hiding, the output party
obtains nothing beyond Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)). The individual communication
complexity between input parties themselves is α · poly(λ) and each input party
sends an output share of length β · poly(λ) to the output party. Hence, the total
communication complexity is at most (αm2 + βm) · poly(λ).

Multi-Key HSS. As shown in [27], the syntax of HSS can be easily generalized
to the multi-key settings by extending the evaluation algorithm so that all servers
take as input all public keys of the participating input clients, the decoding
algorithm takes as input all the corresponding secret keys. While the definition
of security is unchanged and is required to hold for each secret key, the definitions
of correctness and context hiding are extended accordingly. According to [27],
multi-key HSS can be generically lifted to the plain model [6] requiring no public-
key setup by simply letting input clients locally generate key pairs, adding their
public keys and m-out-of-m additive shares of their secret keys to input shares,
and letting servers relay the additive shares to an output client. Therefore, by
instantiating it with a multi-key HSS scheme, we can lift the above MPC protocol
to the plain model without increasing the order of communication complexity.

12

4 Adjusting the ILM Compiler to Parallel Evaluation

The ILM compiler [26] converts an IT-HSS scheme with recovery information to
an HSS scheme based on HE. Although it originally assumes a single evaluation
of polynomials, we can generalize the ILM compiler so that it is applicable to
IT-HSS schemes supporting ℓ parallel evaluations. As shown in Section 2.1, that
generalization is not trivial in that we need to consider in more detail an algebraic
expression of the decoding algorithm to obtain an HSS scheme whose output
share size is not proportional to ℓ.

Proposition 2. Let HSS0 be an (n,m, ℓ, d,∆)-IT-HSS scheme and HE be an
IND-CPA secure k-HE scheme. Assume that HSS0 satisfies the following:

– An input share in
⟨i⟩
j is a vector s

⟨i⟩
j ∈ Fα.

– Each piece of recovery information rec
⟨i⟩
j is a vector r

⟨i⟩
j ∈ Fρ.

– An output share outj is a vector yj ∈ Fβ.
– HSS0.Dec((outj)j∈[m], (rec

⟨i⟩
j)i∈[n],j∈[m]) outputs

∑
j∈[m] Cj(Ajyj+bj), where

Cj is a constant ℓ-by-h matrix over F for some h, Aj is an h-by-β matrix

whose entries are degree-k polynomials of (r
⟨i⟩
j)i∈[n] over F, and bj is an

h-dimensional vector whose entries are degree-k polynomials of (r
⟨i⟩
j)i∈[n].

Then, there exists an (n,m, ℓ, d,∆)-HSS scheme HSS with efficiency measures
α′ = α log |F|+ ρ and β′ = h.

Proof. For j ∈ [m], write Aj = (pj,1, . . . ,pj,h)
⊤, bj = (qj,1, . . . , qj,h)

⊤, where

pj,w is a β-dimensional vectors of polynomials of (r
⟨i⟩
j)i∈[n] and qj,w is a poly-

nomial of (r
⟨i⟩
j)i∈[n]. In Fig. 3, we define HSS following the framework in [26].

HSS.KGen(1λ):

(pk, sk)← KGen(1λ)

return (pk, sk)

HSS.Share(pk, i,x⟨i⟩):

(s
⟨i⟩
j , r

⟨i⟩
j)j∈[m] ← HSS0.Share(i,x

⟨i⟩)

u
⟨i⟩
j ← HE.Enc(pk, r

⟨i⟩
j), ∀j ∈ [m]

in
⟨i⟩
j = (s

⟨i⟩
j ,u

⟨i⟩
j), ∀j ∈ [m]

return (in
⟨i⟩
j)j∈[m]

HSS.Eval(pk, j, f, (in
⟨i⟩
j)i∈[n]):

yj ← HSS0.Eval(j, f, (s
⟨i⟩
j)i∈[n])

νj,w = p⊤
j,wyj + qj,w, ∀w ∈ [h]

dj,w ← HE.Eval(pk, νj,w, (u
⟨i⟩
j)i∈[n]), ∀w ∈ [h]

return outj = (dj,w)w∈[h]

HSS.Dec(sk, (outj)j∈[m]):

dj = HE.Dec(sk, outj), ∀j ∈ [m]

return
∑
j∈[m]

Cjdj

Fig. 3. Compiler from HSS0 to HSS based on HE

To see correctness, observe that dj,w in the evaluation algorithm of HSS

is a ciphertext that decrypts to pj,w(r
⟨1⟩
j , . . . , r

⟨n⟩
j)⊤yj + qj,w(r

⟨1⟩
j , . . . , r

⟨n⟩
j)

13

since each entry of pj,w and qj,w are degree-k polynomials. Hence, it holds
that dj = Ajyj + bj and the correctness of HSS0 implies that

∑
j∈[m] Cjdj =

Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)). As in [26], the security of HSS follows from the information-

theoretic security of HSS0 and the IND-CPA security of HE. An input share in
⟨i⟩
j

consists of s
⟨i⟩
j ∈ Fα and a ciphertext for r

⟨i⟩
j ∈ Fρ. An output share outj consists

of h ciphertexts. Therefore, the correctness of α′ and β′ follows. ⊓⊔

The computational complexity of HSS.Share is that of HSS0.Share plus mρ ·
poly(λ). The computational complexity of HSS.Eval is that of HSS0.Eval plus
β(nρ)kh · poly(λ). Here, we assume that HE.Eval(f, ·) can be computed in time
|f | · poly(λ) for a function f whose description size is |f |. The computational
complexity of HSS.Dec is mℓh · poly(λ).

Note that we can obtain a multi-key HSS scheme by replacing the HE scheme
with the corresponding multi-key variant.

5 Warm-up: HSS for Threshold Adversary Structures

As a warm-up, we construct an IT-HSS scheme with recovery information for
a threshold adversary structure T mτ . Let n,m, ℓ, d, k ∈ N, τ ∈ R+, and set
t = ⌊τm⌋ ∈ Z+. We fix m+ ℓ distinct elements ζ1, . . . , ζm, η1, . . . , ηℓ of F and set
ζ = (ζj)j∈[m] and η = (ηj)j∈[ℓ]. The sharing algorithm on input x⟨i⟩ ∈ Fℓ chooses
a random polynomial φ⟨i⟩ such that x⟨i⟩ = (φ⟨i⟩(ηj))j∈[ℓ] and degφ⟨i⟩ ≤ t+ℓ−1.
It sets input shares as in

⟨i⟩
j = φ⟨i⟩(ζj) and recovery information as rec

⟨i⟩
j =

((Dwφ⟨i⟩)(ζj))w∈[k]. The T mτ -privacy is straightforward since input shares are
equivalent to shares of the packed secret sharing scheme [19], which reveal noth-
ing about x ∈ Fℓ as long as the number of shares is at most t.

Consider the simplest case of f = X1 · · ·Xd. Then, Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)) =
x⟨1⟩ ∗ · · · ∗ x⟨d⟩ = (g(ηj))j∈[ℓ], where ∗ denotes the element-wise product and

g = φ⟨1⟩ · · ·φ⟨d⟩. For j ∈ [m] and w ∈ [0..k], the chain rule implies

Dwg(ζj) =
∑

e∈Zd
+:

e1+···+ed=w

w!

e1! · · · ed!
∏
κ∈[d]:
eκ=0

φ⟨κ⟩(ζj)
∏
κ∈[d]:
eκ>0

(Deκφ⟨κ⟩)(ζj). (1)

The j-th server computes and outputs
∏
κ:eκ=0 φ

⟨κ⟩(ζj) for all w, e with
∑
eκ =

w from its input shares. Then, the output client computes
∏
κ:eκ>0(Deκφ⟨κ⟩)(ζj)

for all j, w, e from recovery information. Combining them with output shares, he
obtains zj = (Dwg(ζj))w∈[0..k] and computes Hermiteζ,η((zj)j∈[m]) = (g(ηj))j∈[ℓ]

if d(t+ ℓ− 1) < (k + 1)m.
To apply the ILM compiler, we have to check whether an output of the

decoding algorithm has the form specified in Proposition 2. Indeed, each piece

of recovery information is a vector r
⟨i⟩
j ∈ Fρ for ρ = k and an output share

is a vector yj whose dimension β is the number of all the pairs (w, e) such
that w ∈ [0..k] and

∑
κ eκ = w, i.e., β ≤ k2k+d. In view of Eq. (1), Dwg(ζj)

14

is a degree-1 polynomial of
∏
κ:eκ=0 φ

⟨κ⟩(ζj) for all e such that
∑
κ eκ = w.

Furthermore, the coefficient of each
∏
κ:eκ=0 φ

⟨κ⟩(ζj) is a degree-k polynomial

of (r
⟨i⟩
j)i∈[n] since |{κ ∈ [d] : eκ > 0}| ≤ w ≤ k. Therefore, zj can be expressed

as Ajyj + bj using a (k + 1)-by-β matrix Aj and (k + 1)-dimensional vector bj

whose entries are degree-k polynomials of (r
⟨i⟩
j)i∈[n]. Since Hermiteζ,η((zj)j∈[m])

is linear in (zj)j∈[m], the output of Dec can be expressed as
∑
j∈[m] Cj(Ajyj+bj)

using some constant ℓ-by-(k+1) matrices Cj . In summary, we have the following
theorem. Since it is a special case of Theorem 2, we omit the formal proof here.

Theorem 1. Let n,m, ℓ, d, k ∈ N. Let τ ∈ R+ and t = ⌊τm⌋ ∈ Z+. Let F be
a prime field such that |F| ≥ max{m + ℓ, k + 1}. Assume that (k + 1)m − dt >
d(ℓ−1). Then, there exists an (n,m, ℓ, d, T mτ)-IT-HSS scheme HSS0 with recovery
information that satisfies the properties in Proposition 2 for α = 1, ρ = k,
β = ndk2k+d, and h = k + 1.

By applying the ILM compiler in Proposition 2, assuming a k-HE scheme
HE, we obtain an (n,m, ℓ, d, T mτ)-HSS scheme HSS with efficiency measures α =
log |F|+ k and β = k + 1. To make computational complexity polynomial in λ,
we assume that n,m ∈ poly(λ) and k, d ∈ O(1) since the most costly part is the
evaluation algorithm, whose time complexity is nd+kkk+12k+d · poly(λ).

Since the ILM compiler does not provide context hiding in general, we add
re-randomizing procedures to the sharing and evaluation algorithms of the com-
piled scheme HSS. Specifically, an output share of HSS computed by the j-
th server consists of k + 1 ciphertexts (dj,w)w∈[0..k] of HE each of which de-
crypts to Dwg(ζj) for a polynomial g of degree less than (k + 1)m such that
(g(ηj))j∈[ℓ] = Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)). We modify the sharing algorithm so that
the first client (on behalf of all clients) additionally generates a polynomial θ such
that deg(θ) < (k + 1)m and (θ(ηj))j∈[ℓ] = 0, and sends (Dwθ(ζj))w∈[0..k] to the
j-th server for each j ∈ [m]. Accordingly, the j-th server executes the evaluation
algorithm of HSS to obtain (dj,w)w∈[0..k] and then using (Dwθ(ζj))w∈[0..k], out-
puts k+1 ciphertexts (d′j,w)w∈[0..k] each of which decrypts to (Dwg′(ζj))w∈[0..k],

where g′ = g + θ. In this modified scheme HSS′, the output shares are cipher-
texts of values and derivatives of g′, which is uniformly distributed over the set
{g̃ ∈ F[X] : deg(g̃) < (k + 1)m ∧ (g̃(ηj))j∈[ℓ] = Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩))}. Com-
bined with the circuit-privacy of HE, the output shares can be simulated only
from Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)). In summary, we have the following result. Again,
we omit the formal proof here since Corollary 1 is a special case of Corollary 2.

Corollary 1. Using the notations in Theorem 1, assume that n,m ∈ poly(λ)
and k, d ∈ O(1). Assuming a k-HE scheme HE, there exists an (n,m, ℓ, d, T mτ)-
HSS scheme HSS with efficiency measures α = log |F|+k and β = k+1. Further-
more, if HE is circuit-private, there exists a context-hiding (n,m, ℓ, d, T mτ)-HSS
scheme HSS′ with efficiency measures α = (k + 2) log |F| + k = O(log(m + ℓ))
and β = k + 1 = O(1).

To lift the above result to the plain model, it is sufficient to replace the
HE scheme with the corresponding multi-key variant. We can instantiate the m-

15

input MPC protocol in Section 3.4 with the threshold HSS scheme in Corollary 1
and then the communication complexity is O(m2 log(m+ ℓ)).

6 HSS for Multipartite Adversary Structures

We show a construction of IT-HSS schemes with recovery information for mul-
tipartite adversary structures.

Theorem 2. Let n,m, ℓ, d, k, L ∈ N. Let Π be an L-partition of the set P of
m servers. Let ∆ be a Π-partite adversary structure on P and maxΦΠ(∆) =
{a1, . . . ,aN}. Let F be a prime field such that |F| ≥ max{m+ ℓ, k+1}. Assume
that ∆ satisfies the condition

∀(u1, . . . , ud) ∈ [N]d : |(k + 1)ΦΠ(P)− (au1
+ · · ·+ aud

)|∞ > d(ℓ− 1). (2)

Then, the scheme HSS0 described in Fig. 4 is an (n,m, ℓ, d,∆)-IT-HSS scheme
with recovery information that satisfies the properties in Proposition 2 for α = N ,
ρ = Nk, β = ndNdk2k+d, and h = k + 1.

Proof. Since |(k+1)ΦΠ(P)−(au1+· · ·+aud
)|∞ > d(ℓ−1) for any (u1, . . . , ud) ∈

[N]d, there is a map ψ : [N]d → [L] such that (k+1)|Pv| > au1(v)+· · ·+aud
(v)+

d(ℓ− 1) for any (u1, . . . , ud) ∈ [N]d and v = ψ(u1, . . . , ud).
To see correctness, let f(X1, . . . , Xn) =

∑
i∈[n]d ciXi1 · · ·Xid . Using the no-

tations in Fig. 4, for any input x⟨1⟩, . . . ,x⟨n⟩ ∈ Fℓ, it holds that

Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)) =
∑

u∈[N]d

∑
i∈[n]d

cix
⟨i1⟩
u1
∗ · · · ∗ x⟨id⟩

ud

=

L∑
v=1

∑
u∈ψ−1(v)

∑
i∈[n]d

cix
⟨i1⟩
u1
∗ · · · ∗ x⟨id⟩

ud

=

L∑
v=1

(gv(ηj))j∈[ℓ],

where ∗ denotes the element-wise product and gv =
∑

u∈ψ−1(v)

∑
i∈[n]d ciφ

⟨i1⟩
u1,v · · ·φ

⟨id⟩
ud,v.

It holds that

Dwgv =
∑

u∈ψ−1(v)

∑
i∈[n]d

∑
e∈Zd

+:
e1+···+ed=w

w!

e1! · · · ed!
ci(De1φ⟨i1⟩

u1,v) · · · (D
edφ⟨id⟩

ud,v
)

and hence yj,w = (Dwgvj)(ζj) for any j ∈ [m] and w ∈ [0..k]. Since the degree of
gv is at most maxu∈ψ−1(v){au1(v)+· · ·+aud

(v)+d(ℓ−1)} < (k+1)|Pv|, we have
Hermiteζv,η((zj)j∈Pv

) = (gv(ηj))j∈[ℓ]. Therefore,
∑
v∈[L] Hermiteζv,η((zj)j∈Pv

) =

Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)).

16

Notations.
– Parameters n,m, ℓ, d, k, L ∈ N.
– An L-partition Π = (P1, . . . , PL) of the set of m servers.
– A Π-partite adversary structure ∆ and maxΦΠ(∆) = {a1, . . . ,aN}.
– A prime field F such that |F| ≥ max{m+ ℓ, k + 1}.
– m + ℓ distinct elements ζ1, . . . , ζm, η1, . . . , ηℓ ∈ F, ζv = (ζj)j∈Pv for v ∈ [L],

and η = (η1, . . . , ηℓ).
– A map ψ : [N]d → [L] such that (k+1)|Pv| > au1(v) + · · ·+aud(v) + d(ℓ− 1)

for any (u1, . . . , ud) ∈ [N]d and v = ψ(u1, . . . , ud).
– For j ∈ [m], a set

Sj =

{
(i,u, w, e) :

i = (i1, . . . , id) ∈ [n]d, u = (u1, . . . , ud) ∈ ψ−1(vj),

w ∈ [0..k], e = (e1, . . . , ed) ∈ Zd
+ s.t. e1 + · · ·+ ed = w

}
.

Share(i,x⟨i⟩). Given an index i ∈ [n] and an input x⟨i⟩ ∈ Fℓ:

1. Choose x
⟨i⟩
u ∈ Fℓ, u ∈ [N] at random such that x⟨i⟩ =

∑
u∈[N] x

⟨i⟩
u .

2. For each u ∈ [N] and v ∈ [L], choose φ
⟨i⟩
u,v ∈ F[X] at random such that

x
⟨i⟩
u = (φ

⟨i⟩
u,v(ηj))j∈[ℓ] and deg(φ

⟨i⟩
u,v) ≤ au(v) + ℓ− 1.

3. For each j ∈ [m], set

in
⟨i⟩
j = (φ⟨i⟩

u,vj (ζj))u∈[N] and rec
⟨i⟩
j = ((Dφ⟨i⟩

u,vj)(ζj), . . . , (D
kφ⟨i⟩

u,vj)(ζj))u∈[N],

where vj ∈ [L] is the unique index such that j ∈ Pvj .

4. Output (in
⟨i⟩
j , rec

⟨i⟩
j)j∈[m].

Eval(j, f, (in
⟨i⟩
j)i∈[n]). Given an index j ∈ [m], a polynomial f =

∑
i∈[n]d ciXi1 · · ·Xid

where ci ∈ F, and input shares (in
⟨i⟩
j)i∈[n], output

outj =

(
ci

∏
κ:eκ=0

φ⟨iκ⟩
uκ,vj (ζj) : (i,u, w, e) ∈ Sj

)
.

Dec((outj)j∈[m], (rec
⟨i⟩
j)i∈[n],j∈[m]). Given output shares (outj)j∈[m] and recovery in-

formation (rec
⟨i⟩
j)i∈[n],j∈[m]:

1. For each j ∈ [m] and w ∈ [0..k], compute

yj,w :=
∑
i,u,e:

(i,u,w,e)∈Sj

w!

e1! · · · ed!

(
ci

∏
κ:eκ=0

φ⟨iκ⟩
uκ,vj (ζj)

)(∏
κ:eκ>0

(Deκφ⟨iκ⟩
uκ,vj)(ζj)

)
.

2. Letting zj = (yj,w)w∈[0..k], output
∑

v∈[L] Hermiteζv,η((zj)j∈Pv).

Fig. 4. An (n,m, ℓ, d,∆)-IT-HSS scheme with recovery information for an L-partite
adversary structure ∆

17

An input share is an N -dimensional vector, each piece of recovery information

is an Nk-dimensional vector r
⟨i⟩
j , and an output share outj is an |Sj |-dimensional

vector yj . It follows from the definition of Sj that |Sj | ≤ nd ·Nd · k · 2k+d =: β.
Each yj,w computed by Dec is a degree-1 polynomial with respect to outj . The

degree of yj,w with respect to (rec
⟨i⟩
j)i∈[n] is at most the maximum of |{κ ∈ [d] :

eκ > 0}| over all e = (e1, . . . , ed) ∈ Zd+ such that e1+· · ·+ed = w and hence is at
most w ≤ k. Therefore, zj = (yj,w)w∈[0..k] can be expressed as Ajyj+bj using a
(k+1)-by-β matrixAj and (k+1)-dimensional vector bj whose entries are degree-

k polynomials of (r
⟨i⟩
j)i∈[n]. Since

∑
v∈[L] Hermiteζv,η((zj)j∈Pv

) is linear with

respect to (zj)j∈[m], the output of Dec can be expressed as
∑
j∈[m] Cj(Ajyj+bj)

using some constant ℓ-by-(k + 1) matrices Cj .
To see ∆-privacy, we show that for any x,x′ ∈ Fℓ and B ∈ ∆, the distri-

butions of input shares (inj)j∈B for x and (in′j)j∈B for x′ are identical. Since

ΦΠ(B) ⪯ ai for some i ∈ [N], there exist L polynomials θ1, . . . , θL ∈ F[X]
such that for all v ∈ [L], deg(θv) ≤ ai(v) + ℓ − 1, (θv(ηj))j∈[ℓ] = x′ − x, and
θv(ζj) = 0 for any j ∈ Pv ∩ B. We have a bijection between randomness used
by Share on input x and randomness used by Share on input x′ such that the
shares of B are the same under this bijection. Indeed, we map any random
polynomials (φu,v)u∈[N],v∈[L] generated by Share on input x to (φ′

u,v)u∈[N],v∈[L]

where φ′
u,v = φu,v + θv if u = i and v ∈ [L], and otherwise φ′

u,v = φu,v. Then,
(φ′
u,v)u∈[N],v∈[L] provide consistent shares for x′ and the shares of B resulting

from (φ′
u,v)u∈[N],v∈[L] are the same as the ones resulting from (φu,v)u∈[N],v∈[L].

⊓⊔

By applying the ILM compiler in Proposition 2, we obtain an HSS scheme
for multipartite adversary structures. To guarantee context hiding, we have to
add certain re-randomizing procedures.

Corollary 2. Using the notations in Theorem 2, assume that n,m ∈ poly(λ),
k, d ∈ O(1), and N ∈ poly(λ). Assuming a (resp. multi-key) k-HE scheme HE,
there exists an (n,m, ℓ, d,∆)-HSS scheme HSS (resp. in the plain model) with
efficiency measures α = N log |F| + Nk and β = k + 1. Furthermore, if HE
satisfies circuit privacy, there exists a context-hiding (n,m, ℓ, d,∆)-HSS scheme
HSS′ (resp. in the plain model) with efficiency measures α = (N+k+1) log |F|+
Nk = O(N log(m+ ℓ)) and β = k + 1 = O(1).

Proof. In view of Proposition 2 and Theorem 2, we obtain an (n,m, ℓ, d,∆)-HSS
scheme HSS with efficiency measures α = N log |F|+Nk and β = k + 1.

We make HSS context-hiding by adding re-randomizing procedures to the
sharing and evaluation algorithms. Using the notations in the proof of Theo-
rem 2, we can see that in HSS, the sharing algorithm executed by the i-th client

outputs ciphertexts c
⟨i⟩
j = (HE.Enc(pk,Dwφ⟨i⟩

u,vj (ζj)))u∈[N],w∈[0..k] for j ∈ [m].
The evaluation algorithm executed by the j-th server outputs k + 1 ciphertexts
(dj,w)w∈[0..k] each of which decrypts to yj,w = (Dwgvj)(ζj) for w ∈ [0..k], where
gv is a polynomial of degree less than (k + 1)|Pv|. Note that there are degree-

18

k polynomials νj,w (whose coefficients depend on (φ
⟨i⟩
u,vj (ζj))u∈[N]) such that

dj,w = HE.Eval(pk, νj,w, (c
⟨1⟩
j , . . . , c

⟨n⟩
j)) (see Fig. 3).

We fix any client, say, i = 1. If the input index is i = 1, we let the shar-
ing algorithm additionally generate random polynomials (θv)v∈[L] such that
deg(θv) < (k + 1)|Pv| for all v ∈ [L] and

∑
v∈[L](θv(ηj))j∈[ℓ] = 0. Then,

it sends k + 1 field elements y′j,w = (Dwθvj)(ζj) for w ∈ [0..k] to the j-th

server in addition to an input share in
⟨1⟩
j of HSS. We do not modify the pro-

cedures for the other clients. Accordingly, the size of input shares are now
α = (N + k+ 1) log |F|+Nk. When executing the evaluation algorithm of HSS,
the j-th server outputs k+1 ciphertexts (d′j,w)w∈[0..k] each of which decrypts to
yj,w + y′j,w = (Dwg′vj)(ζj) where g′v = gv + θv. More precisely, the j-th server

computes d′j,w ← HE.Eval(pk, νj,w(·) + y′j,w, (c
⟨1⟩
j , . . . , c

⟨n⟩
j)) for all w ∈ [0..k].

In this modified HSS scheme HSS′, the output client receives k+1 ciphertexts
(d′j,w)w∈[0..k] from the j-th server. Now, d′j,w decrypts to (Dwg′vj)(ζj) and the
polynomials g′v are uniformly random under the constraints

∑
v∈[L](g

′
v(ηj))j∈[ℓ] =

Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)) and deg g′v < (k+1)|Pv|. Due to the circuit privacy of HE,
the output shares can be simulated from Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)). Precisely, let
SHE be the simulator for the circuit privacy of HE. Given Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)),
the simulator SHSS′ randomly chooses polynomials g̃v for v ∈ [L] such that∑
v∈[L](g̃

′
v(ηj))j∈[ℓ] = Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)) and deg g̃v < (k + 1)|Pv| for all

v ∈ [L], and then computes d̃j,w ← SHE(1
λ, pk, (Dwg̃vj)(ζj)) for all j ∈ [L] and

w ∈ [0..k]. It finally outputs ((d̃1,w)w∈[0..k], . . . , (d̃m,w)w∈[0..k]).

We analyze the distribution of the output of SHSS′ . Let j ∈ [m], w ∈ [0..k],
and rj,w be any fixed field element. The circuit privacy of HE implies that

HE.Eval(pk, νj,w(·) + rj,w, (c
⟨1⟩
j , . . . , c

⟨n⟩
j)) ≈ SHE(1

λ, pk, yj,w + rj,w),

where ≈ denotes statistical indistinguishability. Then, we have that

(HE.Eval(pk, νj,w(·) + rj,w, (c
⟨1⟩
j , . . . , c

⟨n⟩
j)))w∈[0..k],j∈[m]

≈ (SHE(1
λ, pk, yj,w + rj,w))w∈[0..k],j∈[m]. (3)

Let V be the set from which (θv)v∈[L] is sampled. Note that V is a linear space
over F. Since Eq. (3) holds for any fixed elements rj,w, we can apply it to rj,w =
y′j,w = Dwθvj (ζj) where (θv)v∈[L]←$V , and obtain that

(d′j,w)w∈[0..k],j∈[m] = (HE.Eval(pk, νj,w(·) + y′j,w, (c
⟨1⟩
j , . . . , c

⟨n⟩
j)))w∈[0..k],j∈[m]

≈ (SHE(1
λ, pk, yj,w + y′j,w))w∈[0..k],j∈[m]. (4)

The distribution of (g′v)v∈[L] is the uniform distribution over an affine space
(gv)v∈[L]+V := {(gv+θv)v∈[L] : (θv)v∈[L] ∈ V }, which is the same as the distribu-
tion of (g̃v)v∈[L]. Furthermore, the differential operator and the evaluation map
are both linear maps over F. Therefore, the distribution of (Dwg′vj (ζj))w∈[0..k],j∈[m]

19

induced by (θv)v∈[L]←$V is identical to that of (Dwg̃vj (ζj))w∈[0..k],j∈[m] induced
by (g̃v)v∈[L]←$ (g1, . . . , gL) + V . Combined with Eq. (4), we obtain that

(d′j,w)w∈[0..k],j∈[m] ≈ (SHE(1
λ, pk,Dwg′vj (ζj)))w∈[0..k],j∈[m]

= (SHE(1
λ, pk,Dwg̃vj (ζj)))w∈[0..k],j∈[m]

= SHSS′(1λ, pk,Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩))).

We show that the computational complexity of HSS′ is polynomial in the
security parameter λ. The most costly step in the sharing algorithm of HSS0 is

sampling random polynomials φ
⟨i⟩
u,v, which can be done in polynomial time in

m,N, ℓ by pre-computing and publishing a basis for the linear space

Lu,v := {φu,v ∈ F[X] : deg(φu,v) ≤ au(v) + ℓ− 1, (φu,v(ηj))j∈[ℓ] = 0}

for each u ∈ [N] and v ∈ [L]. We have that ℓ = O(m) due to the condition (2) and
hence the time complexity of that step is polynomial in λ. Since the additional
re-randomizing steps of HSS′ can also be done in time poly(m,N, ℓ, λ), the time
complexity of HSS′.Share is still polynomial in λ. Next, HSS0.Eval computes β =
O(ndNd) products and HE.Eval can be executed by HSS′.Eval in time β(nρ)k ·
poly(λ) = O(nd+kNd+k) ·poly(λ). The time complexity of HSS′.Eval is therefore
also polynomial in λ. Finally, in view of Proposition 2, HSS′.Dec can be done in
time mℓ(k + 1) · poly(λ) = poly(λ).

We can lift the above scheme to the plain model by replacing the HE scheme
with the corresponding multi-key variant. ⊓⊔

Theorem 1 and Corollary 1 can be recovered by setting L = 1 and ∆ = T mτ ,
in which maxΦΠ(∆) = {⌊τm⌋} ⊆ Z+.

In Table 1 in Section 1.1, we have defined ϵk,d(∆) := min{|(k + 1)ΦΠ(P) −
(au1 + · · · + aud

)|∞ : ∀(u1, . . . , ud) ∈ [N]d}. It can be seen that the condition
ϵ0,d(∆) > 0 is equivalent to the Qd property [2], namely there are no d sets in ∆
whose union covers the entire set P . The authors of [17] construct an information-
theoretic HSS scheme (without recovery information) tolerating a multipartite
Qd-adversary structure. Since ϵk,d(∆) > ϵ0,d(∆) if k ≥ 1, our scheme in the
particular case of ℓ = 1 can be viewed as a computational variant of the scheme
[17] that tolerates a wider class of Qd-adversary structures.

We can instantiate the m-input MPC protocol in Section 3.4 with the HSS
scheme in Corollary 2 and then the communication complexity is O(Nm2 log(m+
ℓ)), where ℓ is the number of parallel evaluations. Since N = O(mL) and L is
practically chosen as L ∈ {2, 3} [18], it is much smaller than the description size
O(md) of a polynomial to compute. Furthermore, as shown in Section 8, there
is still an interesting class of adversary structures even in the case of N = O(1).

7 HSS for General Adversary Structures

We show a construction of IT-HSS schemes with recovery information for general
adversary structures.

20

Theorem 3. Let n,m, ℓ, d, k ∈ N. Let ∆ be an adversary structure on the set P
of m servers and {B1, . . . , BN} be all maximal sets of ∆. Let F be a prime field
such that |F| ≥ max{m+ ℓ, k + 1}. Assume that ∆ satisfies the condition

∀(u1, . . . , ud) ∈ [N]d : |(k + 1)1m − (au1
+ · · ·+ aud

)|+ > (d+ 1)(ℓ− 1), (5)

where au ∈ Zm is a vector in which au(j) = 1 if j ∈ Bu and au(j) = 0 otherwise.
Then, the scheme HSS0 described in Fig. 5 and 6 is an (n,m, ℓ, d,∆)-IT-HSS
scheme with recovery information that satisfies the properties in Proposition 2
for α = O(N), ρ = O(Nk), β = ndNdk2k+d, and h = k + 1.

Proof. To see correctness, let f(X1, . . . , Xn) =
∑

i∈[n]d ciXi1 · · ·Xid . Using the

notations in Fig. 5 and 6, it holds that Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)) = (g(ηj))j∈[ℓ] for

hu =
∑

i∈[n]d ciφ
⟨i1⟩
u1 · · ·φ

⟨id⟩
ud and g =

∑
u∈[N]d puhu. For j ∈ [m], w ∈ [0..k],

and u ∈ [N]d, the chain rule implies γj,u,w = (Dwhu)(ζj) if µj,u ≤ k − w, and

(Dwg)(ζj) =
∑

u∈[N]d

w∑
v=0

w!

v!(w − v)!
(Dw−vpu)(ζj) · (Dvhu)(ζj)

=
∑

u∈[N]d:
µj,u≤k−w

w∑
v=0

w!

v!(w − v)!
(Dw−vpu)(ζj) · (Dvhu)(ζj)

+

w∑
v′=1

∑
u∈[N]d:

µj,u=k−w+v′

w−v′∑
v=0

w!

v!(w − v)!
(Dw−vpu)(ζj) · (Dvhu)(ζj)

+

w∑
v′=1

∑
u∈[N]d:

µj,u=k−w+v′

v′−1∑
v=0

w!

(w − v)!v!
(Dvpu)(ζj) · (Dw−vhu)(ζj)

+
∑

u∈[N]d:
µj,u>k

w∑
v=0

w!

(w − v)!v!
(Dvpu)(ζj) · (Dw−vhu)(ζj).

In the first and second terms of the last equation, γj,u,v = Dvhu(ζj) since
µj,u ≤ k−w ≤ k−v and µj,u ≤ k−(w−v′) ≤ k−v, respectively. Furthermore, in
the third and fourth terms, we have Dvpu(ζj) = 0 since µj,u = k−w+v′ ≥ v′ > v
and µj,u > k ≥ w ≥ v, respectively. It then holds that

(Dwg)(ζj) =
∑

u∈[N]d:
µj,u≤k−w

w∑
v=0

w!

v!(w − v)!
(Dw−vpu)(ζj) · γj,u,v

+

w∑
v′=1

∑
u∈[N]d:

µj,u=k−w+v′

w−v′∑
v=0

w!

v!(w − v)!
(Dw−vpu)(ζj) · γj,u,v,

21

Notations.
– Parameters n,m, ℓ, d, k ∈ N.
– The family {B1, . . . , BN} of all maximal sets of ∆.
– A prime field F such that |F| ≥ max{m+ ℓ, k + 1}.
– m + ℓ distinct elements ζ1, . . . , ζm, η1, . . . , ηℓ ∈ F, ζ = (ζj)j∈[m], and η =

(η1, . . . , ηℓ).
– For j ∈ [m] and u = (u1, . . . , ud) ∈ [N]d, a set Mj,u = {κ ∈ [d] : j ∈ Bκ} and
µj,u = |Mj,u|.

– For j ∈ [m], a set

Sj =

(i,u, w, e) :
i = (i1, . . . , id) ∈ [n]d,u = (u1, . . . , ud) ∈ [N]d,

w ∈ [0..k] s.t. w ≤ k − µj,u,

e = (e1, . . . , ed) ∈ Zd
+ s.t. e1 + · · ·+ ed = w

 .

Share(i,x⟨i⟩). Given an index i ∈ [n] and an input x⟨i⟩ ∈ Fℓ:

1. Choose x
⟨i⟩
u ∈ Fℓ, u ∈ [N] at random such that x⟨i⟩ =

∑
u∈[N] x

⟨i⟩
u .

2. For each u ∈ [N], choose φ
⟨i⟩
u ∈ F[X] at random such that x

⟨i⟩
u = (φ

⟨i⟩
u (ηj))j∈[ℓ]

and deg(φ
⟨i⟩
u) ≤ ℓ− 1.

3. For each j ∈ [m], set

in
⟨i⟩
j = (φ⟨i⟩

u (ζj))u∈[N]:j /∈Bu and

rec
⟨i⟩
j = ((φ⟨i⟩

u (ζj))u∈[N]:j∈Bu , ((Dφ
⟨i⟩
u)(ζj), . . . , (Dkφ⟨i⟩

u)(ζj))u∈[N]).

4. Output (in
⟨i⟩
j , rec

⟨i⟩
j)j∈[m].

Eval(j, f, (in
⟨i⟩
j)i∈[n]). Given an index j ∈ [m], a polynomial f =

∑
i∈[n]d ciXi1 · · ·Xid

where ci ∈ F, and input shares (in
⟨i⟩
j)i∈[n], output

outj =

ci ∏
κ:

κ/∈Mj,u,eκ=0

φ⟨iκ⟩
uκ

(ζj) : (i,u, w, e) ∈ Sj

 .

Fig. 5. The sharing and evaluation algorithms of an (n,m, ℓ, d,∆)-IT-HSS scheme with
recovery information for an adversary structure ∆

22

Notations. Using the notations in Fig. 5,
– For u ∈ [N]d, pu ∈ F[X] is the polynomial of minimum degree such that
pu(ηi) = 1 for any i ∈ [ℓ] and (Dwpu)(ζj) = 0 for any w ∈ [0..k] and any
j ∈ [m] with µj,u > w.

Dec((outj)j∈[m], (rec
⟨i⟩
j)i∈[n],j∈[m]). Given output shares (outj)j∈[m] and recovery in-

formation (rec
⟨i⟩
j)i∈[n],j∈[m]:

1. For each j ∈ [m] and w ∈ [0..k], compute

γj,u,w :=
∑
i,e:

(i,u,w,e)∈Sj

w!

e1! · · · ed!

ci ∏
κ:

κ/∈Mj,u,eκ=0

φ⟨iκ⟩
uκ

(ζj)



×

 ∏
κ:

κ∈Mj,u,eκ=0

φ⟨iκ⟩
uκ

(ζj)

(∏
κ:eκ>0

(Deκφ⟨iκ⟩
uκ,vj)(ζj)

)
.

for all u ∈ [N]d such that µj,u ≤ k − w and compute

yj,w :=
∑

u∈[N]d:
µj,u≤k−w

w∑
v=0

w!

v!(w − v)! (D
w−vpu)(ζj)γj,u,v

+

w∑
v′=1

∑
u∈[N]d:

µj,u=k−w+v′

w−v′∑
v=0

w!

v!(w − v)! (D
w−vpu)(ζj)γj,u,v.

2. Letting zj = (yj,w)w∈[0..k], output Hermiteζ,η((zj)j∈[m]).

Fig. 6. The decoding algorithm of an (n,m, ℓ, d,∆)-IT-HSS scheme with recovery in-
formation for an adversary structure ∆

23

which is equal to yj,w. For each j ∈ [m], w ∈ [0..k], and u ∈ [N]d, define
cw,u = |{j ∈ [m] : µj,u > w}|, and δj,w,u = 1 if µj,u ≤ w and otherwise 0.
Proposition 1 implies that deg pu ≤ ℓ− 1 +

∑
j∈[m] µj,u. We also have that∑

j∈[m]

µj,u =
∑

w∈[0..k]

cw,u

= (k + 1)m−
m∑
j=1

k∑
w=0

δj,w,u

= (k + 1)m−
m∑
j=1

max{k + 1− µj,u, 0}

= (k + 1)m− |(k + 1)1m − (au1
(j) + · · ·+ aud

(j))|+.

Hence, the condition (5) implies that deg pu < (k+1)m−d(ℓ−1). Then, we have
deg g ≤ maxu∈[N]d{puhu} < (k + 1)m and Hermiteζ,η((zj)j∈[m]) = (g(ηj))j∈[ℓ].

An input share in
⟨i⟩
j is a vector of dimension Nj := |{u ∈ [N] : j /∈ Bu}| and

each piece of recovery information rec
⟨i⟩
j is a vector of dimension N −Nj +Nk.

Since |Sj | ≤ nd ·Nd ·k ·2k+d =: β, an output share outj is a vector yj ∈ Fβ . Each
yj,w computed by Dec is linear in the γj,u,v’s, each of which is in turn a degree-1

polynomial of outj . The degree of yj,w with respect to (rec
⟨i⟩
j)i∈[n] is at most the

maximum of µj,u + |{κ ∈ [d] : eκ > 0}| over all u ∈ [N]d and all e ∈ Zd+ such
that µj,u ≤ k−w and

∑
κ eκ = w, which is at most (k−w)+w ≤ k. Therefore,

zj = (yj,w)w∈[0..k] can be expressed as Ajyj + bj using a (k + 1)-by-β matrix
Aj and (k+1)-dimensional vector bj whose entries are degree-k polynomials of

(r
⟨i⟩
j)i∈[n]. Since Hermiteζ,η((zj)j∈[m]) is linear in (zj)j∈[m], the output of Dec

can be expressed as
∑
j∈[m] Cj(Ajyj + bj) using Cj ∈ Fℓ×(k+1).

To see ∆-privacy, we show that for any x,x′ ∈ Fℓ and B ∈ ∆, the distribu-
tions of (inj)j∈B for x and (in′j)j∈B for x′ are identical. We may assume that
B = Bi for some i ∈ [N]. There exists a polynomial θ such that deg(θ) ≤ ℓ− 1
and (θ(ηj))j∈[ℓ] = x′ − x. We then have a bijection between the random strings
used by Share on input x and those used by Share on input x′ such that the
shares of B are the same under this bijection. Indeed, we map any polynomials
(φu)u∈[N] generated by Share on input x to (φ′

u)u∈[N] where φ
′
u = φu+θ if u = i

and otherwise φ′
u = φu. Then, (φ

′
u)u∈[N] provide consistent shares for x′ and

the shares of B resulting from (φ′
u)u∈[N] are the same as the ones for (φu)u∈[N]

since the j-th share does not contain φ′
i(ζj) or φi(ζj) if j ∈ Bi. ⊓⊔

By applying the ILM compiler in Proposition 2, we obtain an HSS scheme for
a general adversary structure. Again, as in Corollary 2, we have to add similar
re-randomizing procedures to guarantee context hiding.

Corollary 3. Using the notations in Theorem 3, assume that n,m ∈ poly(λ),
k, d ∈ O(1), and N ∈ poly(λ). Assuming a (resp. multi-key) k-HE scheme HE,
there exists an (n,m, ℓ, d,∆)-HSS scheme HSS (resp. in the plain model) with

24

efficiency measures α = N log |F| + Nk and β = k + 1. Furthermore, if HE
satisfies circuit privacy, there exists a context-hiding (n,m, ℓ, d,∆)-HSS scheme
HSS′ (resp. in the plain model) with efficiency measures α = (N+k+1) log |F|+
Nk = O(N log(m+ ℓ)) and β = k + 1 = O(1).

Proof. In view of Proposition 2 and Theorem 3, we obtain an (n,m, ℓ, d,∆)-HSS
scheme HSS with efficiency measures α = N log |F|+Nk and β = k + 1.

We make HSS context-hiding by adding re-randomizing procedures to the
sharing and evaluation algorithms. Using the notations in the proof of Theo-
rem 3, the output of the sharing algorithm of HSS on input x⟨i⟩ includes

c
⟨i⟩
j = ((HE.Enc(pk, φ⟨i⟩

u (ζj)))u∈[N]:j∈Bu
, (HE.Enc(pk,Dwφ⟨i⟩

u (ζj)))u∈[N],w∈[0..k])

for j ∈ [m]. The evaluation algorithm executed by the j-th server outputs k + 1
ciphertexts (dj,w)w∈[0..k] each of which decrypts to yj,w = Dwg(ζj) for w ∈ [0..k].
Note that there are degree-k polynomials νj,w (whose coefficients depend on

(φ
⟨i⟩
u (ζj))u∈[N]:j /∈Bu

) such that dj,w = HE.Eval(pk, νj,w, (c
⟨1⟩
j , . . . , c

⟨n⟩
j)). We fix

any client, say, i = 1. If the input index is i = 1, we let the sharing algorithm
generate a random polynomial θ such that deg(θ) < (k+1)m and (θ(ηj))j∈[ℓ] =
0. Then, it sends k + 1 field elements y′j,w = Dwθ(ζj) for w ∈ [0..k] to the j-th

server in addition to an input share in
⟨1⟩
j of HSS. We do not modify the procedures

for the other clients. The size of input shares are now α = (N+k+1) log |F|+Nk.
When executing the evaluation algorithm of HSS, the j-th server outputs k + 1
ciphertexts (d′j,w)w∈[0..k] each of which decrypts to yj,w+y

′
j,w = (Dwg′)(ζj) where

g′ = g+ θ. More precisely, the j-th server computes d′j,w ← HE.Eval(pk, νj,w(·)+
y′j,w, (c

⟨1⟩
j , . . . , c

⟨n⟩
j)) for all w ∈ [0..k].

Given Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)), the simulator SHSS′ randomly chooses a polyno-
mial g̃ such that (g̃(ηj))j∈[ℓ] = Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩)) and deg g̃ < (k+1)m, and

then computes d̃j,w ← SHE(1
λ, pk, (Dwg̃)(ζj)) for all j ∈ [m] and w ∈ [0..k],

where SHE is the simulator for the circuit privacy of HE. It finally outputs
((d̃1,w)w∈[0..k], . . . , (d̃m,w)w∈[0..k]). We analyze the distribution of the output
of SHSS′ . Let j ∈ [m], w ∈ [0..k], and rj,w be any fixed field element. The

circuit privacy of HE implies that HE.Eval(pk, νj,w(·) + rj,w, (c
⟨1⟩
j , . . . , c

⟨n⟩
j)) ≈

SHE(1
λ, pk, yj,w + rj,w), where ≈ denotes statistical indistinguishability. Then,

we have that

(HE.Eval(pk, νj,w(·) + rj,w, (c
⟨1⟩
j , . . . , c

⟨n⟩
j)))w∈[0..k],j∈[m]

≈ (SHE(1
λ, pk, yj,w + rj,w))w∈[0..k],j∈[m]. (6)

Let V be the set from which θ is sampled. Note that V is a linear space over F.
Since Eq. (6) holds for any fixed elements rj,w, we can apply it to rj,w = y′j,w =
Dwθ(ζj) where θ←$V , and obtain that

(d′j,w)w∈[0..k],j∈[m] = (HE.Eval(pk, νj,w(·) + y′j,w, (c
⟨1⟩
j , . . . , c

⟨n⟩
j)))w∈[0..k],j∈[m]

≈ (SHE(1
λ, pk, yj,w + y′j,w))w∈[0..k],j∈[m]. (7)

25

The distribution of g′ is the uniform distribution over an affine space g + V :=
{g+θ : θ ∈ V }, which is the same as that of g̃. Taking derivatives and substitution
are both linear maps over F. Hence, the distribution of (Dwg′(ζj))w∈[0..k],j∈[m]

induced by θ←$V is identical to that of (Dwg̃(ζj))w∈[0..k],j∈[m] induced by
g̃←$ g + V . Combined with Eq. (7), we obtain that

(d′j,w)w∈[0..k],j∈[m] ≈ (SHE(1
λ, pk,Dwg′(ζj)))w∈[0..k],j∈[m]

= SHSS′(1λ, pk,Pℓ(f, (x⟨1⟩, . . . ,x⟨n⟩))).

We show that the computational complexity of HSS′ is polynomial in the
security parameter λ. The most costly step in the sharing algorithm of HSS0
is sampling random polynomials φ

⟨i⟩
u , which can be done in polynomial time

in N, ℓ by pre-computing and publishing a basis for the linear space Lu :=
{φu ∈ F[X] : deg(φu) ≤ ℓ − 1, (φu(ηj))j∈[ℓ] = 0} for each u ∈ [N]. We have
that ℓ = O(m) due to the condition (5) and hence the time complexity of that
step is polynomial in λ. Since the additional steps of HSS′.Share can also be
done in time poly(m,N, ℓ, λ), the time complexity of HSS′.Share is polynomial
in λ. Next, HSS0.Eval computes β = O(ndNd) products and HE.Eval can be
executed by HSS′.Eval in time β(nρ)k · poly(λ) = O(nd+kNd+k) · poly(λ). The
time complexity of HSS′.Eval is therefore also polynomial in λ. Finally, in view
of Proposition 2, HSS′.Dec can be done in time mℓ(k + 1) · poly(λ) = poly(λ).

We can lift the above scheme to the plain model by replacing the HE scheme
with the corresponding multi-key variant. ⊓⊔

Since N = poly(λ) is required, Corollary 3 cannot be applied to adversary
structures whose number of all maximal sets is exponential in m = poly (λ),
which actually occurs in the worst case. Therefore, Corollary 3 is especially
important for the case of N = poly(m). As shown in Section 8, there is still an
interesting class of adversary structures even if N = O(m).

We can instantiate the m-input MPC protocol in Section 3.4 with the HSS
scheme in Corollary 3 and then the communication complexity is O(Nm2 log(m+
ℓ)), where ℓ is the number of parallel evaluations.

The scheme [30] can be recovered by setting ℓ = 1. Indeed, at Step 2 of

the sharing algorithm in Fig. 5, a possible polynomial φ
⟨i⟩
u is only the constant

polynomial x
⟨i⟩
u of degree 0. Therefore, in

⟨i⟩
j at Step 3 consists of (x

⟨i⟩
u)u∈[N]:j /∈Bu

.

We can set rec
⟨i⟩
j as (x

⟨i⟩
u)u∈[N]:j∈Bu

by removing the other entries since Dwφ⟨i⟩
u

is the zero polynomial for w ≥ 1. This is exactly the same as the one in [30].

8 Formalization of Practical Adversary Structures

We formalize two classes of non-threshold adversary structures and show ad-
vantages of our schemes over the previous schemes [19, 17, 30, 26] in the appli-
cation to m-input MPC shown in Section 3.4. That is, the i-th input party has
ℓ kinds of data x⟨i⟩ = (x⟨i⟩(1), . . . ,x⟨i⟩(ℓ)) ∈ Fℓ and an output party wants

26

Pℓ(f, (x⟨1⟩, . . . ,xm)). We suppose that the degree d is independent of the num-
ber of data m. For example, d depends only on the order of approximation for
Fisher’s linear discriminant analysis [24].

8.1 Unbalanced 2-Partite Adversary Structure

Let Π = (P1, P2) be a 2-partition and τ, σ ∈ R+. Define a Π-partite adversary
structure BΠτ,σ = {X ⊆ [m] : |X| ≤ τm∧ (|X ∩P1| ≤ σm∨|X ∩P2| ≤ σm)}. The
motivation behind BΠτ,σ is modification of T mτ so that it takes into account a real-
world situation. Suppose that input parties are classified to two organizations
P1, P2 and an adversary A is one of the parties. If A belongs to P1, then it would
be more difficult forA to corrupt parties in the other organization P2 than parties
in P1. We therefore add the constraint |X∩P2| ≤ σm to the threshold constraint
|X| ≤ τm. Similarly, we require |X ∩ P1| ≤ σm. We show that an HSS scheme
for BΠτ,σ is obtained from Corollary 2 under a certain parameter setting. The
proof is given in the full version.

Proposition 3. Letm ∈ N be an even number and Π = (P1, P2) be a 2-partition
such that |P1| = |P2| = m/2. Let k, d ∈ N be constants and assume that d is an
odd number. Let ϵ, τ, σ ∈ R+ be such that

d− 1

2d
τ +

d+ 1

2d
σ + ϵ ≤ k + 1

2d
and σ ≤ τ. (8)

and set ℓ = ϵm. Assuming a circuit-private k-HE scheme and a prime field F
with |F| ≥ max{m+ ℓ, k+1}, there exists a context-hiding (m,m, ℓ, d,BΠτ,σ)-HSS
scheme with efficiency measures α = (k + 3) log |F|+ 2k and β = k + 1.

The threshold schemes [19, 26] only tolerate T mτ and hence inapplicable to
BΠτ,σ for τ ≥ (k+1)/d. In the scheme [30], the input share size α is exponential in

m since the number of all maximal sets of BΠτ,σ is larger than
(
m/2
σm

)(
m/2

(τ−σ)m
)
. Our

scheme can be applied to BΠτ,σ even for τ such that (k+1)/d ≤ τ < (k+1)/(d−1)
and the input and output share sizes are only constant numbers of field elements
and ciphertexts. Furthermore, if there are sufficiently many input parties, it can
support parallel evaluations without increasing communication complexity.

To be more concrete, suppose that there are m = 1000 input parties and
that a polynomial of degree d = 5 is computed on ℓ = 10 data sets. Assuming a
1-HE scheme (i.e., k = 1), we can choose ϵ = 0.01, τ = 0.45, and σ = 0.01, which
means that our scheme can tolerate a collusion X of at most 450 input parties
such that |X ∩ P1| ≤ 10 or |X ∩ P2| ≤ 10. The point-to-point communication
complexity between input parties is 4 field elements plus 2 ciphertexts and each
input party sends 2 ciphertexts to an output party. Hence, the total communi-
cation complexity is 4m2 field elements plus 2m2+2m ciphertexts. The schemes
[19, 26] cannot be applied to this setting since τ > 0.4 = (k + 1)/d. Since the
scheme of [17] does not support parallel evaluation, the communication com-
plexity increases ℓ = ϵm times, that is, 4ϵm3 field elements plus 2ϵm3 + 2ϵm2

ciphertexts.

27

8.2 Adversary Structure Induced by a Random Graph

Let G = ([m], E) be a graph on the set of input parties (vertices) and let Aj
be the set of all adjacent vertices of j ∈ [m]. We define an adversary structure
∆G = {X ⊆ [m] : X ⊆ Aj ∪ {j} for some j ∈ [m]}. Note that the number N
of all the maximal sets of ∆G is at most m. The motivation behind ∆G is a
real-world scenario in which an adversary is one of input parties and colludes
with all adjacent parties in G. For p with 0 < p < 1, we consider the probability
distribution G(m, p) [22] over the set of all the graphs on m vertices, in which
a random graph is obtained by starting with a set of m isolated vertices and
adding every possible edge independently with probability p. We show that for
sufficiently large m and G sampled from G(m, p), an HSS scheme for ∆G can be
obtained from Corollary 3 with high probability. The proof is given in the full
version.

Proposition 4. Let m, d, k ∈ N and p be a real number with 0 < p < 1. Let
ℓ ∈ N be such that ℓ ≤ (d+ 1)−1k(1− p)d(m− d) and q ∈ R+ be such that

q ≥ 1−md exp

(
−2(1− p)2d(m− d)

(k + 1)2

)
.

Assume a circuit-private k-HE scheme and a prime field F with |F| ≥ max{m+
ℓ, k + 1}. If G is sampled from G(m, p), then with probability at least q, there
exists a context-hiding (m,m, ℓ, d,∆G)-HSS scheme with efficiency measures α =
(m+ k + 1) log |F|+ 2k and β = k + 1.

We demonstrate concrete parameters. Assume a 1-HE scheme, i.e., k = 1.
Suppose that we want to compute a single polynomial of degree d = 5 and
that every possible edge occurs with probability p = 0.45. Then, if there are
m ≥ 50000 input parties, we can obtain, with probability at least 0.99, an HSS
scheme for ∆G computing the polynomial on ℓ ≳ m/200 ≥ 250 different data
sets. The threshold schemes [19, 26] cannot be applied to this setting since ∆G ⊈
T mτ with high probability if p > τ . Precisely, we also show in the full version
that if p = τ + ϵ, the probability that ∆G ⊆ T mτ occurs is at most exp(−2(mϵ−
p+1)2/(m− 1)), which converges exponentially to 0 for m→∞. For the above
parameters, if m ≥ 1000, ∆G ⊈ T m0.4 occurs with probability at least 0.99. The
scheme [30] can tolerate ∆G and does not require |F| ≥ m + ℓ. However, their
scheme cannot support parallel evaluation and hence the efficiency measures
α = O(ℓm log |F|) and β = O(ℓ) are ℓ times larger than our scheme. As for
the assumption on the field size, since statistical analysis and machine learning
typically deal with numerical data, we end up to choose a field of size much
larger than m+ ℓ due to another requirement of sufficiently approximating the
data.

Acknowledgements

This research was partially supported by JSPS KAKENHI Grant Numbers
JP20J20797 and 19H01109, JST CREST JPMJCR19F6 and JPMJCR14D6,

28

and Ministry of Internal Affairs and Communications SCOPE Grant Number
182103105.

References

1. Attrapadung, N., Hanaoka, G., Mitsunari, S., Sakai, Y., Shimizu, K., Teruya, T.:
Efficient two-level homomorphic encryption in prime-order bilinear groups and a
fast implementation in webassembly. In: Proceedings of the 2018 on Asia Con-
ference on Computer and Communications Security. pp. 685–697. ASIACCS ’18
(2018)

2. Barkol, O., Ishai, Y., Weinreb, E.: On d-multiplicative secret sharing. Journal of
Cryptology 23(4), 580–593 (2010)

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols.
In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing. pp. 503–513. STOC ’90 (1990)

4. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Theory of Cryptography. pp. 325–341 (2005)

5. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Advances in
Cryptology – CRYPTO 2019, Part III. pp. 489–518 (2019)

6. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Advances in Cryptology – CRYPTO 2016, Part I. pp.
509–539 (2016)

7. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: Advances in Cryptology – EUROCRYPT 2019, Part II. pp. 3–33 (2019)

8. Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-round secure computation
and secure autonomous mobile agents. In: Automata, Languages and Program-
ming. pp. 512–523 (2000)

9. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-
theoretically secure mpc revisited. In: Advances in Cryptology – CRYPTO 2018,
Part III. pp. 395–426 (2018)

10. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Topics in Cryptology – CT-RSA 2015. pp. 487–505 (2015)

11. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. pp. 1518–1529. CCS ’15 (2015)

12. Cheon, J.H., Coron, J.S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Advances in Cryptology
– EUROCRYPT 2013. pp. 315–335 (2013)

13. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Advances in Cryptology – CRYPTO 2012.
pp. 643–662 (2012)

14. Diffie, W., Hellman, M.: New directions in cryptography. IEEE transactions on
Information Theory 22(6), 644–654 (1976)

15. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Advances in Cryptology – CRYPTO 2016, Part III. pp. 93–122 (2016)

16. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

29

17. Eriguchi, R., Kunihiro, N.: d-Multiplicative secret sharing for multipartite adver-
sary structures. In: 1st Conference on Information-Theoretic Cryptography (ITC
2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 163, pp. 2:1–
2:16 (2020)

18. Farràs, O., Padró, C.: Ideal secret sharing schemes for useful multipartite access
structures. In: Coding and Cryptology. pp. 99–108 (2011)

19. Franklin, M., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium
on Theory of Computing. pp. 699–710. STOC ’92 (1992)

20. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Advances in Cryptology – EUROCRYPT 2010.
pp. 44–61 (2010)

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing. pp. 169–0178.
STOC ’09 (2009)

22. Gilbert, E.N.: Random Graphs. The Annals of Mathematical Statistics 30(4),
1141–1144 (1959)

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing. pp.
218–229. STOC ’87 (1987)

24. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: Machine learning on en-
crypted data. In: Information Security and Cryptology – ICISC 2012. pp. 1–21
(2013)

25. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Tinykeys: A new approach to
efficient multi-party computation. In: Advances in Cryptology – CRYPTO 2018,
Part III. pp. 3–33 (2018)

26. Ishai, Y., Lai, R.W.F., Malavolta, G.: A geometric approach to homomorphic secret
sharing. In: Public-Key Cryptography – PKC 2021. pp. 92–119 (2021)

27. Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic secret sharing for low
degree polynomials. In: Advances in Cryptology – ASIACRYPT 2018, Part III.
pp. 279–309 (2018)

28. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing. pp. 1219–1234.
STOC ’12 (2012)

29. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Advances in Cryptology — EUROCRYPT ’99. pp. 223–238 (1999)

30. Phalakarn, K., Suppakitpaisarn, V., Attrapadung, N., Matsuura, K.: Constructive
t-secure homomorphic secret sharing for low degree polynomials. In: Progress in
Cryptology – INDOCRYPT 2020. pp. 763–785 (2020)

31. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

32. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Designs, Codes
and Cryptography 71(1), 57–81 (2014)

33. Spitzbart, A.: A generalization of Hermite’s interpolation formula. The American
Mathematical Monthly 67(1), 42–46 (1960)

34. Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic pri-
vate information retrieval. In: 20th Annual IEEE Conference on Computational
Complexity (CCC’05). pp. 275–284 (2005)

30

