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Abstract. Sharing a common primitive for multiple functionalities is
essential for lightweight cryptography, and NIST’s lightweight cryptog-
raphy competition (LWC) considers the integration of hashing to AEAD.
While permutations are natural primitive choices in such a goal, for de-
sign diversity, it is interesting to investigate how small block-cipher (BC)
based and tweakable block-cipher (TBC) based schemes can be. Double-
block-length (DBL) hash function modes are suitable to ensure the same
security level for AEAD and hashing, but hard to achieve a small mem-
ory size. Romulus, a TBC-based finalist in NIST LWC, introduced the
DBL hashing scheme Romulus-H, but it requires 3n + k bits of memory
using an underlying primitive with an n-bit block and a k-bit (twea)key.
Even the smallest DBL modes in the literature require 2n + k bits of
memory. Addressing this issue, we present new DBL modes EXEX-NI
and EXEX-I achieving (n + k)-bit state size, i.e., no extra memory in
addition to n + k bits needed within the primitive. EXEX-NI is indiffer-
entiable from a random oracle up to n−logn bits. By instantiating it with
SKINNY, we can provide hashing to Romulus with zero memory overhead.
EXEX-I is an optimized mode with collision resistance. We finally com-
pare the hardware performances of EXEX-NI, EXEX-I, and Romulus-H
with SKINNY-128-384. EXEX-NI and EXEX-I achieve the circuit-area re-
duction by 2,000+ GE, yielding the total areas being smaller than 70%
of that of Romulus-H.

Keywords: double-block-length hash · lightweight cryptography · low
memory · indifferentiability · collision resistance · tweakable block cipher.

1 Introduction

Lightweight cryptography receives great attention in the field of symmetric-key
cryptography. The National Institute of Standards and Technology (NIST) is
now organizing a competition (NIST LWC) to standardize lightweight authen-
ticated encryption with associated data (AEAD) schemes [29]. In particular, it
is the final year of the competition, at the time of writing, and new knowledge



on lightweight AEAD schemes is highly important. Sharing a common primitive
for multiple functionalities is important for reducing hardware/software costs;
it is an essential idea behind AEAD schemes that simultaneously realize both
encryption and message authentication. For even higher efficiency, NIST LWC
considers the integration of yet another functionality into AEAD: a hashing
scheme.

Efficient integration of AEAD and hashing is a challenging task. Using a se-
cret key is the central difference between AEAD and hashing, which results in
different security levels for a given state size. Intuitively, to ensure the same level
of security, hashing schemes require a larger state than AEAD schemes in order
to resist collision attacks based on the birthday paradox. A naive approach to
compensate for this difference is to use a larger primitive for hashing, but using
a larger primitive for the optional functionality in NIST LWC is unreasonable
for lightweight implementation. Compared to block ciphers (BCs) and tweak-
able block ciphers (TBCs), cryptographic permutations seem more suitable to
support both AEAD and hashing by using the duplex construction for AEAD
[5] and the sponge construction for hashing [4].

NIST LWC has recently proceeded into the final stage by selecting 10 schemes
as finalists [30], where 6 of them are permutation-based schemes, and the rest
have diversity; a BC-based scheme, a TBC-based scheme, a stream cipher-based
scheme, and a keyed permutation-based scheme. Among the 10 finalists, the 4
schemes support both AEAD and hashing, and all of them adopt the duplex and
the sponge constructions. NIST explicitly states that they consider design di-
versity during the selection [31], and exploring an efficient realization of hashing
in other constructions is an important research challenge. The design team of
the TBC-based scheme Romulus [12] has recently announced a hashing scheme
called Romulus-H [13], which is an MDPH hashing mode [24] instantiated with
SKINNY-128-384 [3] used in Romulus AEAD. This is an interesting direction,
and the goal of this paper is to explore an optimal construction with respect to
the memory size to realize a hashing scheme based on a BC or a TBC, particu-
larly to satisfy the design requirements for NIST LWC.

We begin by recalling NIST’s requirements for hash functions: (1) cryptana-
lytic attacks to find a collision, a second preimage, and a preimage shall require
at least 2112 computations and (2) length extension attacks should be prevented.
For example, if part of the message is a secret key, constructing a hash value
corresponding to another message under the same key should be infeasible.

DBL Modes. Double block length (DBL) hashing modes construct a 2n-bit
hash function from an n-bit block cipher.4 Given that hashing schemes require a
larger state than AEAD schemes, DBL modes are very suitable to support both
AEAD and hashing schemes by BCs. Moreover, NIST LWC requires at least
112-bit security for a hashing scheme, while most of the existing lightweight

4 Instead of BCs, TBCs can be used in DBL. Hashing modes replace a key with some
public value, hence BCs with a k-bit key and TBCs with a k′-bit key and a t-bit
tweak generally play the same role as long as k = k′ + t. For sake of simplicity, we
denote underlying primitives by BCs.
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Fig. 1. Hirose’s DBL CF. p is a permu-
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Fig. 2. EXEX CF. π1 (resp. π2) is an
(k−n)-bit (resp. n-bit) linear function.

BCs and TBCs have a block size of 128 bits or shorter, which makes it natural
to design a 256-bit hashing scheme from a 128-bit BC. Apart from NIST LWC,
DBL modes are motivated by a practical demand; one may want to implement
a 256-bit hash function from AES (128-bit block and a 128-bit or a 256-bit key)
instead of implementing SHA-256 that has a completely different structure.

A popular approach to design DBL modes is to first design a DBL com-
pression function (CF), which is then converted to a hash function (HF) by
the Merkle-Damg̊ard domain extension [9, 21]. There are many such modes, in-
cluding MDC-2, MDC-4 [7], Tandem-DM, and Abreast-DM [16]. Hirose’s DBL
construction [10] is one of the most widely known DBL CFs, which is depicted
in Fig. 1. Besides, many DBL constructions have been proposed for different
goals, e.g., for improving security [1, 18, 24], relaxing the key size limitation for
underlying BCs [17, 20], etc. In particular, there is a line of research works for
reducing the required memory size, which determines the overall hardware cost
in lightweight implementation. The goal of this paper is to optimize the memory
size, and we explain below the previous works in this direction.

With an underlying BC having an n-bit block and a k-bit key, Hirose’s DBL
CF requires a (3n + k)-bit state. Bogdanov et al. proposed a lightweight hash
function for RFID tags by instantiating Hirose’s construction with a lightweight
block cipher PRESENT [6]. Notably, they pointed out that the feed-forward op-
eration in Hirose’s DBL construction increases the memory size. Naito’s MDPH,
the mode used in Romulus-H, also requires a (3n + k)-bit state because it is
an extension of Hirose’s CF; MDPH replaces the standard Merkle-Damg̊ard do-
main extension with Merkle-Damg̊ard-Permutation (MDP) domain extension
[11], thereby providing indifferentiability (from a random oracle) [19].

Özen and Stam broke the (3n + k)-bit barrier by proposing a synthetic ap-
proach to achieving the (2n + k)-bit state size [32]. Their generic construction
includes Hirose’s DBL CF without the feed-forward, which enables to reduce
the state size to 2n + k bits. This is an interesting approach because the omis-
sion of the feed-forward makes the CF vulnerable, while the security (collision
resistance) is guaranteed as a whole HF. Naito followed the same approach [23],
and designed another mode achieving 2n+ k bits of memory in which the CF is
Hirose’s construction without feed-forward, while the security (indifferentiabil-



Table 1. Comparison of DBL modes. −ε denotes that security is lost by a factor of
logn. coll resp. indiff denote the collision resistance resp. the indifferentiability.

Scheme Memory Security Security #BC Message Key Parallel Omit Ref.

in bits goal calls length length KSF−1

Tandem-DM 3n+ k n coll 2 k − n n < k Yes No [16]
Abreast-DM 3n+ k n coll 2 k − n 2n ≤ k Yes No [16]

MDC-2 3n+ k 3n/5− ε coll 2 n n ≤ k Yes No [7]
MDC-4 3n+ k 5n/8− ε coll 4 n n ≤ k Yes No [7]
Mennink 4n+ k n− ε coll 3 n n ≤ k Yes No [20]
MJH 5n+ k n− ε coll 2 n n ≤ k Yes No [17]
Hirose 3n+ k n coll 2 k − n n < k Yes No [10]

MDPH† 3n+ k n− ε indiff 2 k − n n < k Yes No [24, 13]

Özen-Stam 2n+ k n− ε coll 2 k − n n < k Yes No [32]

Naito‡ 2n+ k n indiff 2 k − n 2n ≤ k Yes No [23]

EXEX-NI‡ n+ k n− ε indiff 2 k − n 2n ≤ k No Yes Ours
EXEX-I n+ k n− ε coll 2 k − n n < k No Yes Ours

†The mode used in Romulus-H. ‡Requires 2 additional BC calls.

ity) for the HF is guaranteed by replacing the domain extension. Naito’s mode
imposes a stronger requirement on the underlying BC with k ≥ 2n.

The memory size of existing DBL modes, along with their security and other
associated parameters, is compared in Table 1. The smallest memory size in
the literature is 2n + k bits by Özen-Stam [32] and Naito [23]. The collision
resistance may not be sufficient to prevent the length extension attack, one of the
requirements in NIST LWC, while indifferentiability suffices to prevent it. The
lack of indifferentiability does not immediately imply that the length extension
attack is feasible; however, the standard Merkle-Damg̊ard domain extension is
known to be vulnerable against the length extension attack.

Our Contributions. In this paper, we present new DBL hash function modes
EXEX-NI (NI for nested iterated) and EXEX-I (I for iterated) achieving (n+k)-bit
state size using an underlying primitive having an n-bit block and a k-bit key.
This is the smallest as compared in Table 1, and is optimal because we need
n + k bits just for implementing the BC. EXEX-NI and EXEX-I also accept a
TBC of an n-bit block, a k′-bit key, and a t-bit tweak such that k = k′ + t.
Their instantiations with SKINNY can be efficient alternatives to Romulus-H;
our modes provide hashing to Romulus (AEAD) with zero memory overhead.

Designing DBL modes with a small memory size is challenging. We first
observe that many existing DBL modes call the underlying BC at least twice,
and the results of the first BC call (or the value after the feed-forward) are stored
on the memory, which will be used as a half of the compression function output
after the second BC call. Our idea is to save such a memory. Namely, we use the
result of the first BC call to compute an input to the second BC call, as shown
in Fig. 2. 5 In this way, all the memory is always actively used to compute both

5 Linear dependency between the message and the key does not degrade security. Intu-
itively, previous block-cipher’s output spreads to next block-cipher’s key. This makes
two keys different, and block-cipher’s outputs become different random strings.



BC calls, which enables us to reduce the memory size to n+k bits. As a natural
consequence of serialization, the new CF cannot run these consecutive BCs in
parallel (see ”Parallel” in Table 1), however, that has a negligible impact on
low-area implementations.

Due to the strictly restricted memory size, we adopt the same approach as
Özen-Stam and Naito that use a vulnerable CF [32, 23], which actually allows
an attacker to easily find a preimage of the CF. This implies that there exists
a preimage attack on HF by using the meet-in-the-middle approach with O(2n)
computational cost, though the digest size is 2n bits. As required in NIST LWC,
not all practical usage require higher security for the preimage resistance than
the collision resistance. 6 EXEX-NI and EXEX-I are suitable for such demand. We
prove the security of EXEX-NI with respect to indifferentiability up to n− log n
bits, which ensures that EXEX-NI resists the length-extension attacks. Recall that
NIST LWC requires 112-bit security. This can be satisfied by using a 128-bit BC
or a 128-bit TBC, say AES or SKINNY-128, even by considering the security loss
of log n bits. We believe that EXEX-NI is an attractive design, especially as an
alternative to the MDPH mode in Romulus-H.

As mentioned above, our CF is invertible. In contrast, to design an indiffer-
entiable HF, we need a non-invertible function somewhere in the computation.
In EXEX-NI, we fill this gap by using Coron et al.’s NMAC hash [8]: we add
a special finalization function with 2 BC calls, making the finalization function
non-invertible with a constant-time overhead. EXEX-NI requires an underlying
BC to support the key size k ≥ 2n, and the requirement can be satisfied by
many existing BC designs, e.g., by AES-256 and SKINNY-128-256.

Although it is required in NIST LWC, we observe that resisting the length-
extension attack may be unnecessary in practice. This is because all the NIST
LWC candidates support an AEAD scheme, thus keyed computations such as
MACs can be done by using the AEAD scheme. This motivates us to consider
relaxing the security goal to the collision resistance rather than the indifferentia-
bility. EXEX-I is a design for this purpose. EXEX-I does not require the finaliza-
tion function, which reduces the number of BC calls by 2. This has a significant
impact on the performance for short messages. Moreover, the requirement of the
key size of the underlying BC is relaxed compared to EXEX-NI.

As shown in Fig. 2, we prove the security of EXEX-NI and EXEX-I by assuming
that some part of the key state can be updated by using any linear functions
π1 and π2, which allows us interesting optimization regarding on-the-fly key
scheduling (see ”Omit KSF−1” in Table 1). This idea was first introduced by
Naito et al. [26] and known to reduce the hardware cost when a key schedule
function (and a tweak schedule function) of the underlying BC is a state-wise
linear update, which is particularly useful when the underlying BC is SKINNY.
In short, by setting π1 and π2 to the key schedule function (KSF), the updated
key state during the computation of BC can immediately be used to compute
the next BC without applying the KSF−1.

6 HMAC [28] and Hash-then-MAC [15] are example use-cases whose security is reduced
to coll of the hashing scheme, thus does not require higher security level than coll.



Table 2. Comparison between EXEX and the sponge construction. A check mark X
shows that the target mode is advantageous.

Modes Sponge EXEX

Base primitive Permutation BC or TBC
Memory size for modes n+ k n+ k

Number of primitive calls 1 2
Construction simplicity X —

Proof simplicity X —
Memory size with TI — X

Backward compatibility with AES — X

We finally compare the hardware performances of EXEX-NI, EXEX-I, and
Romulus-H by instantiating them with SKINNY-128-384 and implementing them
with the same design policy. Thanks to the smaller memory size and the op-
timized tweakey-schedule implementation, EXEX-NI and EXEX-I achieved the
circuit-area reduction by 2,000+ GE, yielding the total areas being smaller than
70% of that of the Romulus-H.

Related Work. It is well-known that permutation-based schemes (the sponge
construction) provide an excellent hardware performance. Although BC-based
and TBC-based hashing schemes are important with respect to the design di-
versity, it is still interesting to compare the performance of those schemes.

Memory sizes for the sponge construction and EXEX are the same to achieve
the same rate under the same security level. The sponge construction is ad-
vantageous with respect to the number of primitive calls, design simplicity, and
proof simplicity, though the number of primitive calls is a low-priority criterion
for small implementations. EXEX is advantageous with respect to other met-
rics. First, TBC-based designs are advantageous with masking countermeasures
against side-channel attack, as discussed in [25]. Second, it has backward com-
patibility with AES. Many microprocessors have AES accelerators and EXEX
provides efficient hashing to them. The comparison is summarized in Table 2.
Overall, EXEX is competitive with the key performance metric memory size and
offers new options for implementers depending on the criteria of their choice.

Outline. Section 2 introduces notations and fundamentals. Section 3 shows
our general approach to obtain DBL HF only with n+ k-bit memory. Section 4
shows our higher-security variant EXEX-NI that satisfies the requirements in
NIST LWC, followed by its proof in Section 5. Section 6 shows our rigorously
optimized variant EXEX-I that compromises the security goal to collision re-
sistance but provides better performance, particularly for short messages. Fi-
nally, we make a hardware performance comparison by implementing EXEX-NI,
EXEX-I, and Romulus-H instantiated with SKINNY-128-384 in Sect. 7. Section 8
is the conclusion.



2 Preliminaries

Notation. Let {0, 1}∗ be the set of all bit strings. Let λ be an empty string, and
∅ an empty set. For an integer n ≥ 0, {0, 1}n be the set of all n-bit strings, and
({0, 1}n)∗ be the set of all strings whose bit lengths are multiples of n. For an
integer i > 0, let [i] be the set of positive integers less than or equal to i. For an

m`-bit stringM , we write its partition intom-bit strings as (M1,M2, . . . ,M`)
m←−

M . For integers r, s with 0 ≤ s ≤ r and an r-bit string X, the most (resp.
least) significant s bits of X is denoted by [X]s (resp. [X]s). For a bit string

Y , X ← Y means that Y is assigned to X. X
$←− X means that an element is

sampled uniformly at random from a finite set X and is assigned to X. Y ← X
means that a finite set X is assigned to Y, and Y ∪←− X means that Y ← X ∪Y.

Security Definition of Hash Function. Our proofs are given in the ideal
cipher model. For positive integers k and n, let E be (an encryption function
of) a BC having a k-bit key and an n-bit plaintext block, which is a set of n-
bit permutations indexed by keys. The decryption function of E is denoted by
D : {0, 1}k × {0, 1}n → {0, 1}n. BC(k, n) denotes the set of all BCs with k-bit

keys and n-bit blocks. An ideal cipher is defined as E
$←− BC(k, n). In the ideal

cipher model, an adversary has access to E and D.
Let HE : {0, 1}∗ → {0, 1}2n be a DBL hash function using a BC E. We define

security notions for HE .

Preimage Security. In the security game, a computationally unbounded

adversary A is given oracle access to (E,D), where E
$←− BC(k, n). The goal of

A is to find a massage M of a given hash value H. The advantage function of
an adversary A is defined as Advpre

H,H(A) = Pr
[
HE(M) = H : M ← AE,D(H)

]
,

where the probabilities are taken over A, H, and E.

Collision Security. In the security game, a computationally unbounded

adversary A is given oracle access to (E,D), where E
$←− BC(k, n). The goal

of A is to find a pair of messages M and M ′ such that the hash values are
equal. The advantage function of an adversary A is defined as Advcoll

H (A) =
Pr
[
HE(M) = HE(M ′) : (M,M ′)← AE,D,M 6= M ′

]
, where the probabilities are

taken over A and E.

Indifferentiability from a Random Oracle. The indifferentiability of
HE from a random oracle is indistinguishability between HE (in the ideal cipher
model) and a random oracle. Func(∗, 2n) denotes the set of all functions from

{0, 1}∗ to {0, 1}2n, and a random oracle is defined as RO $←− Func(∗, 2n).
In the security game, an adversary A tries to distinguish a real world from

an ideal world. A has access to a hash oracle L, an encryption oracle RE , and
a decryption oracle RD. In the real world, these oracles are (L,RE , RD) =

(HE , E,D), where E
$←− BC(k, n). In the ideal world, these oracles are (L,RE , RD)

= (RO,SROE ,SROD ), where RO $←− Func(∗, 2n), and SROE and SROD are simulators
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Fig. 3. GLMCFE : a general construction for low-memory compression function.

with access to RO. After the interaction, A outputs a decision bit in {0, 1}.
An output of an adversary A with access to oracles L,RE , RD is denoted by
AL,RE ,RD . For a simulator SRO = (SROE ,SROD ), the advantage function of an ad-

versary A is defined as Advindiff
H,S (A) = Pr

[
AHE ,E,D = 1

]
−Pr

[
ARO,S

RO
E ,SROD = 1

]
,

where the probabilities are taken over A, E, RO, and S. HE is indifferentiable
from a random oracle if for any adversary A, there exists a simulator S such
that the advantage function is upper-bounded by a negligible probability. In this
paper, we call queries to L, RE , and RD hash queries, encryption queries, and
decryption queries, respectively.

3 Conditions for Secure Low Memory DBL Hash Designs

In this section, we approach to DBL hash functions with the smallest memory
size, which uses a block cipher E : {0, 1}k×{0, 1}n → {0, 1}n and uses a memory
of k+n bits. We first introduce a generic framework to construct a CF in Sect. 3.1.
We then derive conditions for parameters to resist collision attacks in Sect. 3.2.
We show that such a CF is always invertible, thus requires additional effort to
be indifferentiable in Sect. 3.3. Finally, a generic framework to construct a HF
is introduced in Sect. 3.4.

3.1 Generic Construction of Low-Memory DBLCF

To design a DBL hash function with a (k + n)-bit memory, we need to design
a CF with a (k + n)-bit memory. In this subsection, we introduce GLMCFE :
a generic construction of the low-memory CF with a block cipher E, which is
depicted in Fig. 3.

Let m be the bit-length of a message block. GLMCFE takes as input a 2n-bit
state value Si−1 and an m-bit message Mi, and generates a 2n-bit output Si.
GLMCFE calls a BC with n-bit block and a k-bit key, denoted by E. E can be
called multiple times even under the restriction of (k + n)-bit memory if all E
calls are sequentially processed. At this stage, we do not fix the number of calls
of E, and let r be this number. Since E uses the entire k + n bits, we cannot
carry anything over the E call. This restricts the design of GLMCFE to be an
iteration of a linear function Li and E. Namely, we first apply a linear function
L0 to map a (2n+m)-bit state to a (k+n)-bit state. Then, the state is updated
to another (k+n)-bit state by E and linear function L1. This is iterated r times
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to apply BC r times. Lastly, the (k+n)-bit state is transformed to 2n-bit output
by a linear function Lr. At this stage, we do not make any assumption on m,
thus L0 can be either an expanding or a contracting function and Lr can be its
opposite.

The formal description is as follows. Let L0 : {0, 1}2n × {0, 1}m → {0, 1}k ×
{0, 1}n, L1 : {0, 1}k ×{0, 1}n → {0, 1}k ×{0, 1}n, . . . , Lr−1 : {0, 1}k ×{0, 1}n →
{0, 1}k × {0, 1}n, and Lr : {0, 1}k × {0, 1}n → {0, 1}2n be linear functions. We
give the procedure of GLMCFE : {0, 1}2n × {0, 1}m → {0, 1}2n.

– GLMCFE(Si−1,Mi)
1. (K1, X1)← L0(Si−1,Mi)
2. for j = 1, . . . , r − 1 do Yj ← E(Kj , Xj); (Kj+1, Xj+1)← Lj(Kj , Yj)
3. Yr ← E(Kr, Xr); Si ← Lr(Kr, Yr); return Si

3.2 Conditions of m, k, and n for n-bit Collision Resistance

Now we are lifting the CF to a HF. Suppose that a DBL HF is constructed
by iteratively applying GLMCFE , which is denoted by iGLMCFE . For sake of
simplicity, an input message M is in ({0, 1}m)∗. Let IV be a 2n-bit constant.

– iGLMCFE(M)

1. (M1,M2, . . . ,M`)
m←−M ; S0 ← IV

2. for i = 1, . . . , ` do Si ← GLMCFE(Si−1,Mi)
3. return S`

First, the construction needs to satisfy n ≤ k. In fact, if n > k, n-bit security
cannot be ensured due to the birthday attack on the (n+ k)-bit state.

Second, the construction needs to satisfy k−n ≥ m. In fact, there is an attack
that breaks the collision security on iGLMCFE with O(2(k+n−m)/2) complexity,
which we discuss in this section. In this attack, we split the linear function L0 in
GLMCFE into two linear functions L′0 : {0, 1}2n → {0, 1}k+n and L∗0 : {0, 1}m →
{0, 1}k+n that satisfy L0(Si−1,Mi) = L′0(Si−1)⊕ L∗0(Mi). L

∗
0 must be injective,

otherwise one can trivially find a collision. The compression function with some
formulation is given in Fig. 4, where f : {0, 1}n+k → {0, 1}2n is a composed
function covering from the first BC to the last linear function Lr. The security
bound is given in the following lemma.



Lemma 1. Let f be an ideal function. For any Si ∈ {0, 1}2n, there exists an
adversary A making Q ·max{1, dn/me} queries to f such that Advcoll

iGLMCF(A) =

Ω
(

Q2

2k+n−m

)
.

Proof. We define an adversary A that finds a collision of iGLMCFE where f is
ideal. Let u := dn/me.

1. For j = 1, . . . , Q do the following steps.

(a) Select a j-th message (M
(j)
1 ‖ · · · ‖M

(j)
u ) that is distinct from all previous

messages (M
(1)
1 ‖ · · · ‖M

(1)
u ), . . . , (M

(j−1)
1 ‖ · · · ‖M (j−1)

u ).

(b) Calculate the u-th state denoted by S
(j)
u for the message (M

(j)
1 ‖ · · · ‖M

(j)
u )

by making queries to f .

(c) For each j′ ∈ [j−1], check if there exist message blocks M
(j)
u+1 and M

(j′)
u+1

such that L′0(S
(j)
u )⊕ L∗0(M

(j)
u+1) = L′0(S

(j′)
u )⊕ L∗0(M

(j′)
u+1) which causes a

collision at the (u+ 1)-th CF call.

(d) If such an index j′ exists then M ← (M
(j)
1 ‖ · · · ‖M

(j)
u ‖M (j)

u+1), M ′ ←
(M

(j′)
1 ‖ · · · ‖M (j′)

u ‖M (j′)
u+1), and go to Step 3.

2. Choose messages M
$←− {0, 1}m and M ′

$←− {0, 1}m.
3. Return (M,M ′).

The number of choices of the XOR value L∗0(M
(j)
u+1)⊕L∗0(M

(j′)
u+1) is 2m. Hence, for

each pair (j, j′), the probability that there exist message blocks M
(j)
u+1 and M

(j′)
u+1

such that L′0(S
(j)
u )⊕L∗0(M

(j)
u+1) = L′0(S

(j′)
u )⊕L∗0(M

(j′)
u+1) isΩ(1/2k+n−m). By sum-

ming the probability for each pair, we have Advcoll
iGLMCFE (A) = Ω(Q2/2k+n−m).

ut

To ensure n-bit security against the collision attack, k + n−m ≥ 2n, which
results in k−n ≥ m. This implies that m can take any value between k−n and
1. The memory size is k+n bits for any m, while the number of bits processed in
each invocation of GLMCFE decreases when m becomes small. In the rest of the
paper, we fix k−n = m, which is the optimal choice in terms of the performance
under the restriction of the (k + n)-bit memory.

3.3 Conditions for Indifferentiability: Invertibility of GLMCF

The conditions in Sect. 3.2 were derived for the collision resistance, which is in-
sufficient for the indifferentiability (to ensure resistance against length-extension
attacks required by NIST). Towards indifferentiable constructions, we first show
that one can break the preimage security of GLMCFE , where E is an ideal cipher.

Lemma 2. Fix r. For any Si ∈ {0, 1}2n, there exists an adversary A making r
queries such that Advpre

GLMCFE ,Si
(A) = 1.

Proof. We define an adversary A that finds a preimage of a value Si.
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Fig. 5. Hash Function GLMHF.

1. Find (Kr, Yr) s.t. Si = Lr(Kr, Yr); Xr ← D(Kr, Yr)

2. for j = r − 1, . . . , 1 do
Find (Kj , Yj) s.t. (Kj+1, Xj+1) = Lj(Kj , Yj); Xj ← D(Kj , Yj)

3. Find (Si−1,Mi) s.t. (K1, X1) = L0(Si−1,Mi); Return (Si−1,Mi)

Since L0, L1, . . . , Lr are linear functions, for each j = 0, 1, . . . , r, given an output
of Lj , one can easily find the input. Hence, the adversary finds a preimage
(Mi, Si−1) by r queries. ut

This analysis shows that only with (k + n)-bit memory satisfying k − n = m,
GLMCFE is easily invertible. To obtain an indifferentiable HF, we need a non-
invertible part somewhere in HF.

3.4 Generic Construction of Low Memory DBL HF

The analysis in Sect. 3.3 motivates us to introduce a non-invertible finalization
function Fin : {0, 1}2n → {0, 1}2n. Here, we define GLMHF : {0, 1}∗ → {0, 1}2n, a
generic construction of low memory hash function using the compression function
GLMCFE and a finalization function Fin. Let pad : {0, 1}∗ → ({0, 1}m)∗ be an
injective padding function.

– GLMHFE,Fin(M)

1. (M1,M2, . . . ,M`)
m←− pad(M); S0 ← IV

2. for i = 1, . . . , ` do Si ← GLMCFE(Si−1,Mi)

3. H ← Fin(S`); return H

Note that IV is a 2n-bit constant. Fig. 5 shows the structure of GLMHF. In the
next section, we propose EXEX-NI by specifying details in GLMHF.

4 EXEX-NI: Low Memory Indifferentiable DBL HF

In this section, we specify every details of the general framework introduced in
Sect. 3. In particular, a compression function EXEX and our indifferentiable DBF
mode EXEX-NI are defined in Sect 4.1. An overview of its indifferentiability is
given in Sect. 4.2 and Sect. 4.3.
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of the path 02n M1‖M2‖···‖M`−−−−−−−−−−→ S` in the proof of Theorem 1.

4.1 Specifications of EXEX and EXEX-NI

To realize our modes using GLMCFE , we should specify the number of E calls
r and the linear functions L0, . . . , Lr. Choosing the same linear function for L0

to Lr−1 is a reasonable decision considering implementation efficiency. In each
invocation of GLMCFE , the 2n-bit state (chaining values) must be updated non-
linearly. For this purpose, we XOR BC’s output to the least significant n bits of
the key state. To provide 2n-bit entropy from BC’s output, we set r = 2.7

We can prove security only with the above configuration, but in addition, we
assume that the (k−n)-bit and the remaining n-bit key states are independently
updated by any linear function π1 and π2. As shown by Naito et al. [26], a proof
over π1 and π2 provides a certain optimization of the memory size when a key
(and a tweak) schedule function of E is a state-wise linear update, which is
particularly useful for SKINNY. The intuition behind is that k bits of memory
for the key state is updated by a key schedule function inside E, thus starting the
next E with the state after the key schedule function is more efficient. Indeed, if
the next E takes as input the key state before the key schedule function, the k
bits of memory must be reproduced by computing the inverse of the key schedule
function. We will discuss this optimization later in Sect. 7. Note that π1 and π2

7 For an EXEX-based hash function with r = 1 (single BC call), one can easily found
a collision with O(2n/2) complexity: Choosing distinct 2n/2 single-block messages, a
collision of the BC outputs occurs with non-negligible probability, yielding a collision
on the internal state. Note that when the linear layers of GLMCFE are arbitrary,
attacking GLMCFE with r = 1 is non-trivial and an open problem.



can also be the identity map, hence if E does not have such a structure, we use
the identity map to avoid having extra computations.

EXEXE uses a BC E : {0, 1}k×{0, 1}n → {0, 1}n with k > n. Let m = k−n.
The formal definition of EXEXE : {0, 1}2n × {0, 1}m → {0, 1}2n is given below,
which is also depicted in Fig. 6.

– EXEXE(Si−1,Mi):

1. Y ← E(Mi‖[Si−1]n, [Si−1]n); K ← π1(Mi)‖(π2([Si−1]n)⊕ Y );
2. [Si]n ← E(K,Y ); [Si]

n ← π2([K]n)⊕ [Si]n; return Si

We next define a EXEX-NI : {0, 1}∗ → {0, 1}2n. Let pad : {0, 1}∗ → ({0, 1}m)∗

be an injective padding function, e.g., one-zero padding pad(M) = M‖10w where
w = m− 1− |M | mod m. We realize Fin in GLMHF by reusing EXEX to save the
memory size. The nested-iterated construction enables us to achieve it. Let i be
an n-bit representation of a positive integer i, e.g., 1 = 0n−11. The definition is
given below, which is also depicted in Fig. 7.

– EXEX-NIE(M):

1. S0 ← 02n; M1,M2, · · · ,M`
m←− pad(M)

2. for i = 1, . . . , ` do Si ← EXEXE(Si−1,Mi) // Inner Function
3. H ← EXEXE([S`]

n‖1, 0m−n‖[S`]n) // Outer Function
4. return H

4.2 Indifferentiability of EXEX-NI

We give an upper-bound of the indifferentiability of EXEX-NI below.

Theorem 1. Let µ be any positive integer. There exists a simulator S such that
for any adversary A running in time t and making q hash queries with σ BC
calls in total and p encryption or decryption queries,

Advindiff
EXEX-NI,S(A) ≤ 2n+2 ·

(
3Q

µ

)
·
(

1

2n − 3Q

)µ
+

6µQ+ 19Q

2n − 3Q
+

22Q2

(2n − 3Q)2
,

where Q = σ + p. S runs in time t+O(p) and makes at most p queries.

We next study the upper-bound.

– Putting µ = n and using Stirling’s approximation (x! ≥ (x/e)x for any x), we

have Advindiff
EXEX-NI,S(A) ≤ 4 ·

(
3eQ

n(2n−2Q)

)n
+ 6nQ+19Q

2n−3Q + 22Q2

(2n−3Q)2 . The upper-

bound ensures that EXEX-NI is indifferentiable from a random oracle up to
O(2n/n) query complexity.

– Consider a BC with n = 128. In this case, putting µ = 17 and using Stir-

ling’s approximation, Advindiff
EXEX-NI,S(A) ≤

(
97Q

2128−3Q

)17
+ 121Q

2128−3Q+ 22Q2

(2128−3Q)2 .

The upper-bound is less than 1/2 as long as Q ≤ 2118. Thus, EXEX-NI is
indifferentiable from a random oracle up to 2118 query complexity.



4.3 Overview of the Proof of Theorem 1

We briefly describe the proof of Theorem 1 along with some definitions. We
give the full proof in Sect. 5. The goal of this proof is to construct a simulator
S = (SE ,SD) such that the real-world oracles are indistinguishable from the
ideal-world oracles up to O(2n/n) query complexity. The real-world oracles are
(L,RE , RD) = (EXEX-NIE , E,D), and the ideal-world oracles are (L,RE , RD) =
(RO,SROE ,SROD ).

Firstly, we give several definitions to explain an outline of our simulator.

Definition 1 (query-response of RE/RD). An encryption (resp. decryption)
query is denoted by (K,X) ∈ {0, 1}k ×{0, 1}n (resp. (K,Y ) ∈ {0, 1}k ×{0, 1}n)
and the response is denoted by Y ∈ {0, 1}n (resp. X ∈ {0, 1}n). Hence, Y =
RE(K,X) and X = RD(K,Y ). Let Lqr be a set of tuples (K,X, Y ) of RE or
RD. A tuple in Lqr is called R block.

Definition 2 (block). A CF block is a tuple (Si−1,Mi, Si) which is defined by
two R blocks with the relation Si = EXEXRE (Si−1,Mi). The CF block is denoted

by Si−1
Mi−−→ Si (see Fig. 6). Lblock is a set of all CF blocks obtained from Lqr.

Definition 3 (Path). A path is a CF block or a concatenation of CF blocks

which start from the initial value 02n. For a sequence of CF blocks 02n
M1−−→

S1, S1
M2−−→ S2, . . . , S`−1

M`−−→ S`, we denote the concatenation by 02n
M1‖M2‖···‖M`−−−−−−−−−→

S`. Hence, the path represents the inner function of EXEX-NIRE (M1‖M2‖ · · · ‖M`)
(see Fig. 7). Lpath is a set of all paths obtained from Lblock.

Definition 4. For a path 02n
M−→ S and an input (K,X) to RE, if (K,X) is

the first R block at the next CF block, i.e., S = [K]n‖X, then the relation is

denoted by S
in
 (K,X). If (K,X) is the input of the first R block at the outer

function connected with the path 02n
M−→ S, i.e., [K]2n = [S]n‖[S]n, X = 1,

and [K]m−n = 0m−n, then the relation is denoted by S
out
 (K,X). We abuse

the notation for a CF block S′
M ′−−→ H, i.e., if [S′]n = 1, S = [S′]n‖[M ′]n, and

[M ′]m−n = 0m−n then the relation is denoted by S
out
 (S′,M ′).

We next specify a relation between L and RE in the real world. In the real
world, for each queryM , the response L(M) is defined as L(M) = EXEX-NIRE (M)
where RE = E, thus the following relation is satisfied.

∀
(

02n
M−→ S

)
∈ Lpath,

(
S′

M ′−−→ H
)
∈ Lblock

s.t. S
out
 (S′,M ′) :L(M) = H. (1)

On the other hand, in the ideal world, L = RO is a monolithic function. We
thus need to construct a simulator SRO = (SROE ,SROD ) so that Eq. (1) is satisfied
and the simulator behaves like an ideal cipher.
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We explain an outline of our simulator. For each query to SE/SD, to behave
like an ideal cipher, the response is defined by lazy sampling.8 In addition, in
order to ensure the relation in Eq. (1), the simulator keeps paths in a table Tpath
that are constructed from R blocks. Specifically, for each tuple (K,X, Y ) defined

by SE , if there exists a path
(

02n
M ′−−→ S′

)
∈ Tpath such that S′

in
 (K,X), then

a new path
(

02n
M−→ S

)
is added to Tpath, which is defined by appending the

CF block
(
S′

M∗−−→ S
)

having the R block (K,X, Y ) to
(

02n
M ′−−→ S′

)
, where

M = M ′‖M∗. Since the new path represents an inner function with the input
M , SE defines a CF block corresponding to the outer function by using RO(M).
That ensures the relation in Eq. (1) as long as the following events do not occur.

E1: For a path
(

02n
M−→ S

)
∈ Lpath, there exists an i-th CF block defined by SE

such that the (i + 1)-th CF block is defined by SD or defined by SE before
the i-th CF block. The collision event is depicted in Fig. 8. In this event,
if the CF blocks from the (i + 2)-th to the last (in the outer function) are
already defined, then SE cannot obtain the message M when defining the
last CF block. Thus, Eq. (1) cannot be satisfied.

E2: When the path
(

02n
M−→ S

)
∈ Lpath is defined, the last CF block (in the

outer function) is already defined. In this event, SE cannot obtain the mes-
sage M when defining the last CF block. Thus, Eq. (1) cannot be satisfied.

E3: There exist collision paths
(

02n
M−→ S

)
,
(

02n
M†−−→ S†

)
∈ Lpath such that

S = S†. In this case, RO(M) 6= RO(M†) is satisfied with a high probability
(on the other hand, EXEX-NIE(M) = EXEX-NIE(M†) is satisfied in the real
world). In this event, Eq. (1) cannot be satisfied.

Assume that the above events do not occur. By ¬E1, for any path
(

02n
M−→

S
)

, the internal CF blocks are defined in order from the first to the last. Since

8 For a query (K,X) (resp. (K,Y )) to SE (resp. SD), the response Y (resp.X) is chosen
uniformly at random from {0, 1}n excluding previous ciphertext (resp. plaintext)
blocks associated with the key K.



no collision path exists by ¬E3, S can obtain the message M leading to S. By
¬E2, the path is defined before the R block in the outer function, thus the
simulator can define the R block by using RO(M) so that Eq. (1) is satisfied.
Thus, we have the indifferentiable bound by summing the upper-bounds of the
probabilities for these events.

First, we analyze the event E1 by using Fig. 8. If the R block (b) defined
by SD before (a), then using the multi-collision technique for Wi, the number
of the R block (b) resulting in the Wi value can be n, that is, the number of
candidates for Xi+1 is at most n. Thus, for each R block (a), the probability
that E1 occurs is at most O(n/2n). Similarly, if the R block (b) is defined by SD
after (a), then using the multi-collision technique for Wi+1, for each R block (b),
the probability that E1 occurs is at most O(n/2n). If the R block (b) is defined
by SE before (a), then by the randomnesses of Yi and Zi, the probability that
the R block (a) connects with one of candidates for the R block (b) is O(Q/22n).
Using the upper-bounds, we have Pr[E1] ≤ O(nQ/2n).

Second, we analyze E2. For each path
(

02n
M−→ S

)
∈ Lpath, since S is a 2n-bit

(almost) random value by two R blocks, the probability that S hits some R block
(in the outer function) is at most O(Q/22n). Hence, we have Pr[E2] ≤ O(Q2/22n).

Third, we analyze E3. For a path
(

02n
M−→ S

)
, since S is a 2n-bit (almost)

random value by two R blocks, the probability that there exists a collision path(
02n

M†−−→ S†
)

with S = S† is at most O(Q/22n). Hence, we have Pr[E3] ≤
O(Q2/22n).

Finally, by these upper-bounds, we have the indifferentiable boundO(nQ/2n).

5 Proof of Theorem 1

In this proof, for the sake of simplicity, the padding function pad in EXEX-NI is
omitted. Hence, an adversary A makes hash queries whose lengths are multiples
of m. Since A can select any padding rule, this setting does not reduce the
advantage of A.

This proof considers three games. Game 0 is the real world, Game 1 is defined
later, and Game 2 is the ideal world. In each game, an adversary A interacts
with three oracles (L,RE , RD). L is a hash oracle, RE is an encryption oracle,
and RD is a decryption oracle.

In the following analysis, we use Definitions 1, 2, 3, and 4 in Subsection 4.3.

5.1 Simulator

We define a simulator SRO = (SROE ,SROD ), where SROE : {0, 1}k × {0, 1}n →
{0, 1}n simulates an encryption oracle E, and SROD : {0, 1}k × {0, 1}n → {0, 1}n
simulates a decryption oracle D. In the real world, for a hash query, the response
is defined by using E via the EXEX-NI structure, thus the relation in Eq. (1) is
satisfied. On the other hand, in the ideal world, for a hash query, the hash value



Algorithm 1 Simulator SRO = (SROE ,SROD )

Simulator SROE (K,X)

1: if E(K,X) 6= λ then return E(K,X)

2: Y
$←− {0, 1}n\E(K, ∗); E(K,X)← Y ; D(K,Y )← X

3: X2 ← Y ; K2 ← π1([K]m)‖(π2([K]n)⊕ Y )
4: if E(K2, X2) = λ then

5: Y2
$←− {0, 1}n\E(K2, ∗); E(K2, X2)← Y2; D(K2, Y2)← X2

6: end if
7: Y2 ← E(K2, X2); Y0 ← X; K0 ← π−1

1 ([K]m)‖π−1
2 ([K]n ⊕X)

8: if D(K0, Y0) = λ then

9: X0
$←− {0, 1}n\D(K0, ∗); E(K0, X0)← Y0; D(K0, Y0)← X0

10: end if

11: if ∃
(

02n M′−−→ S′
)
∈ Tpath s.t. S′

in
 (K,X) then

12: M ←M ′‖[K]m; S ←
(
π2([K2]n)⊕ Y2

)
‖Y2; Tpath

∪←−
(

02n M−→ S
)

13: H ←RO(M); K′1 ← 0m−n‖[S]n‖[S]n; X ′1 ← 1
14: Y ′2 ← [H]n; K′2 ← π1([K′1]m)‖π−1

2 ([H]n ⊕ [H]n); X ′2 ← [K′2]n ⊕ π2([K′1]n)
15: Y ′1 ← X ′2; if Y ′1 ∈ E(K′1, ∗) then abort
16: E(K′1, X

′
1)← Y ′1 ; D(K′1, Y

′
1 )← X ′1; if Y ′2 ∈ E(K′2, ∗) then abort

17: E(K′2, X
′
2)← Y ′2 ; D(K′2, Y

′
2 )← X ′2

18: end if
19: return E(K,X)

Simulator SROD (K,Y )

1: if D(K,Y ) 6= λ then return D(K,Y )

2: X
$←− {0, 1}n\D(K, ∗); E(K,X)← Y ; D(K,Y )← X

3: return D(K,Y )

is defined by a monolithic random function RO. Hence, the goal of a simulator
is to simulate an ideal cipher so that the query-responses of RO and of S satisfy
the relation in Eq. (1).

S is defined in Algorithm 1. S keeps R blocks in lists E and D whose entries are
initially empty strings. If an R block (K,X, Y ) is defined where SE(K,X) = Y
or SD(K,Y ) = X, then Y is stored in E(K,X) and X is stored in D(K,Y ). S

also keeps paths in Tpath, which initially keeps only a path 02n
λ−→ 02n. For K ∈

{0, 1}k, let E(K, ∗) = {E(K,X)|X ∈ {0, 1}n ∧E(K,X) 6= λ} a set of all entries
associated with K in E and D(K, ∗) = {D(K,Y )|Y ∈ {0, 1}n ∧ D(K,Y ) 6= λ}
a set of all entries associated with K in D. For a query (K,X) to SE , two
ciphertext blocks Y, Y2 and a plaintext block X0 are defined, where the three
tuples (K0, X0, Y0), (K,X, Y ), (K2, X2, Y2) offer two CF blocks: the first (resp.
second) CF block consists of (K0, X0, Y0) and (K,X, Y ) (resp. (K,X, Y ) and

(K2, X2, Y2)). See Fig. 9. If there exists a path
(

02n
M ′−−→ S′

)
∈ Tpath such that

S′
in
 (K,X), then a new path

(
02n

M−→ S
)

is defined by appending the CF

block with (K,X, Y ) and (K2, X2, Y2) to the path, and is added to Tpath. To
ensure the relation in Eq. (1), R blocks (K ′1, X

′
1, Y

′
1) and (K ′2, X

′
2, Y

′
2) in the
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Fig. 9. Structures of R blocks defined by SE . The R block (1) is defined by a forward
operation, then the R block (2) is defined by a forward operation and the R block (3)
is defined by an inverse operation.

outer function that are connected with the path are defined by using RO(M).
Since Y ′1 and Y ′2 are defined by RO, there is a case that E(K ′1, X

′
1) or E(K ′2, X

′
2)

is already defined, which does not occur in the real world. If this case occurs,
then S aborts.

For each encryption query, SE makes a query to RO at most once. Hence,
the number of queries to RO is at most p. Regarding the running time, for each
query, the number of steps of S is a constant. Hence, the running time is t+O(p).

In SE , we call the operations to define Y, Y2, Y
′
1 , and Y ′2 “forward operations,”

and the operation to define X0 “inverse operation.” In SD, we call the operation
to define X “inverse operation.”

5.2 Main Part of the Proof

Structure of the Proof. As mentioned above, this proof consists of three
games, Game 0, Game 1, and Game 2. Let Gi be oracles in Game i. These oracles
are defined as follows: Game 0:G0 := (L,RE , RD) = (EXEX-NIE , E,D); Game 1:
G1 := (L,RE , RD) = (EXEX-NISE ,SROE ,SROD ); Game 2: G2 := (L,RE , RD) =
(RO,SROE ,SROD ). Game 1 is a middle game between the real world (Game 0)
and the ideal world (Game 2): for each hash query, the response is defined by
using SE via the structure of EXEX-NI. In the following proof, in Game 2, after

finishing all queries by A, the procedure of EXEX-NIS
RO
E (M) is performed for

all hash queries M . Note that the additional procedure does not reduce the
advantage of A.

Bad Events and Definitions. We next define bad events in Game 1 and
Game 2. LetQF (resp.QI) be a list of R blocks defined by forward (resp. inverse)
operations in S. Let qF = |QF | and qI = |QI |. We assume that after an R block
(K,X, Y ) is stored in QF (resp. QI), the R block is not stored in QI (resp. QF ).
Note that Lblock = QF ∪QI is satisfied.

– mcollF: ∃(K1, X1, Y1), . . . , (Kµ, Xµ, Yµ) ∈ QF s.t. π2([K1]n) ⊕ Y1 = · · · =
π2([Kµ]n)⊕ Yµ.



– mcollI: ∃(K1, X1, Y1), . . . , (Kµ, Xµ, Yµ) ∈ QI s.t. [K1]n⊕X1 = · · · = [Kµ]n⊕
Xµ.

– hitFI: ∃(K,X, Y ) ∈ QF , (K ′, X ′, Y ′) ∈ QI s.t. π2([K]n)⊕Y = [K ′]n∧Y = X ′.

– hitIV: (∃(K,X, Y ) ∈ QF s.t. Y = 0n ∨ Y = 1) ∨ (∃(K,X, Y ) ∈ QI s.t.
X = 0n ∨X = 1).

– hitXY: ∃(K,X, Y ) ∈ QF ∪QI s.t. X = Y .

– coll: ∃
(

02n
M−→ S

)
,
(

02n
M ′−−→ S′

)
∈ Lpath s.t. M 6= M ′ ∧ S = S′.

– hitPath: ∃
(

02n
M−→ S

)
∈ Lpath, (K,X, Y ) ∈ QF s.t. S = [K]n‖X or [S]n‖[S]n =

[K]2n, and the path is defined after the R block.

– Ecoll: S aborts.

For an event e, the event in Game 1 (resp. Game 2) is denoted by e1 (resp. e2).
Let bad1 := mcoll1F ∨ mcoll1I ∨ hit1FI ∨ hit1IV ∨ hit1XY ∨ coll1 ∨ hit1Path. Let bad2 :=
mcoll2F ∨mcoll2I ∨ hit2FI ∨ hit2IV ∨ hit2XY ∨ coll2 ∨ hit2Path ∨ Ecoll2.

Remark 1. For the overview in Sec. 4.3, hitFI and hitPath (first condition) cor-
respond to E1, hitPath (second condition) corresponds to E2, t coll corresponds
to E3, and mcollF and mcollI correspond to the multi-collision technique used
in the analysis of E1. Note that hitIV, hitXY, and Ecoll are not discussed in the
overview. The following analyses show that these probabilities are negligible as
long as other events do not occur.

Upper-Bounding the Advantage Function. To upper-bound the advan-
tage, we use the following lemmas.

Lemma 3. Let
(

02n
M−→ S

)
∈ Lpath be a path with ` CF blocks (i.e., 2` R

blocks). In both Game 1 and Game 2, for any i ∈ [2`], the i-th R block is
defined by forward operations and is defined after the (i− 1)-th R block as long
as (hitFI ∨ hitIV ∨ hitXY ∨ hitPath) does not occur.

Lemma 4. For V ∈ {0, 1}2n and
(

02n
M−→ S

)
∈ Lpath such that V is given

before the path is defined, we have Pr[S = V ] ≤ 1/(2n − 3Q)2 as long as (hitFI ∨
hitIV ∨ hitXY ∨ hitPath) does not occur.

Lemma 5. Pr[AG0 = 1] = Pr[AG1 = 1 | ¬Ecoll1].

Lemma 6. Pr[AG1 = 1 | ¬bad1 ∧ ¬Ecoll1] = Pr[AG2 = 1 | ¬bad2].

Lemma 3 is used in the proofs of Lemmas 4 and 6 and in the analyses of the
bad events. Lemma 4 is used in the analyses of the bad events. Using Lemmas 5
and 6, we have

Advindiff
H,S (A) ≤ Pr[bad1 | ¬Ecoll1] + Pr[bad2] , 9



where

Pr[bad1 | ¬Ecoll1] ≤ Pr[mcoll1F | ¬Ecoll
1] + Pr[mcoll1I | ¬Ecoll

1]

+ Pr[hit1FI | ¬mcoll1F ∧ ¬mcoll1I ∧ ¬Ecoll
1]

+ Pr[hit1IV | ¬Ecoll
1] + Pr[hit1XY | ¬Ecoll

1]

+ Pr[coll1 | ¬hit1IV ∧ ¬hit
1
FI ∧ ¬hit

1
XY ∧ ¬hit

1
Path ∧ ¬Ecoll

1]

+ Pr[hit1Path | ¬hit
1
IV ∧ ¬hit

1
FI ∧ ¬hit

1
XY ∧ ¬Ecoll

1] ,

and

Pr[bad2] ≤ Pr[mcoll2F] + Pr[mcoll2I ] + Pr[hit2FI | ¬mcoll2F ∧ ¬mcoll2I ]

+ Pr[hit2IV] + Pr[hit2XY] + Pr[coll2 | ¬hit2IV ∧ ¬hit
2
FI ∧ ¬hit

2
XY ∧ ¬hit

2
Path]

+ Pr[hit2Path | ¬hit
2
IV ∧ ¬hit

2
FI ∧ ¬hit

2
XY] + Pr[Ecoll2 | ¬hit2Path] .

These upper-bounds are given in the following, which gives

Advindiff
H,S (A) ≤ 2n+2 ·

(
3Q

µ

)
·
(

1

2n − 3Q

)µ
+

6µQ+ 19Q

2n − 3Q
+

22Q2

(2n − 3Q)2
.

Upper-Bounding Pr[mcoll1F | ¬Ecoll
1]. For each (K,X, Y ) ∈ QF , since Y is

chosen uniformly at random from at least 2n− 3Q elements in {0, 1}n, for some
V ∈ {0, 1}n, we have Pr[π2([K]n) ⊕ Y = V ] ≤ 1/(2n − 3Q). Hence, we have

Pr[mcoll1F | ¬Ecoll
1] ≤ 2n ·

(
qF
µ

)
·
(

1
2n−3Q

)µ
.

Upper-Bounding Pr[mcoll2F]. By the same analysis as Pr[mcoll1F | ¬Ecoll
1],

we have Pr[mcoll2F] ≤ 2n ·
(
qF
µ

)
·
(

1
2n−3Q

)µ
.

9 The inequation is obtained by

Advindiff
H,S (A) = Pr[AG0 = 1]− Pr[AG2 = 1] = Pr[AG1 = 1 | ¬Ecoll1]− Pr[AG2 = 1]

≤
(

Pr[AG1 = 1 ∧ bad1 | ¬Ecoll1] + Pr[AG1 = 1 ∧ ¬bad1 | ¬Ecoll1]
)

−
(

Pr[AG2 = 1 ∧ bad2] + Pr[AG2 = 1 ∧ ¬bad2]
)

=
(

Pr[AG1 = 1 | bad1 ∧ ¬Ecoll1] · Pr[bad1 | ¬Ecoll1]

+ Pr[AG1 = 1 | ¬bad1 ∧ ¬Ecoll1]︸ ︷︷ ︸
=Pr[AG2=1|¬bad2]

·Pr[¬bad1 | ¬Ecoll1]︸ ︷︷ ︸
=1−Pr[bad1|¬Ecoll1]

)

−
(

Pr[AG2 = 1 | bad2] · Pr[bad2] + Pr[AG2 = 1 | ¬bad2] · Pr[¬bad2]
)

=
(

Pr[AG1 = 1 | bad1 ∧ ¬Ecoll1]− Pr[AG2 = 1 | ¬bad2]
)
· Pr[bad1 | ¬Ecoll1]

+
(

Pr[AG2 = 1 | ¬bad2]− Pr[AG2 = 1 | bad2]
)
· Pr[bad2]

≤ Pr[bad1 | ¬Ecoll1] + Pr[bad2] ,



Upper-Bounding Pr[mcoll1I | ¬Ecoll
1]. For each (K,X, Y ) ∈ QI , since X

is chosen uniformly at random from at least 2n − 3Q elements in {0, 1}n, for
some V ∈ {0, 1}n, we have Pr[[K]n ⊕ X = V ] ≤ 1/(2n − 3Q). Hence, we have

Pr[mcoll1I | ¬Ecoll
1] ≤ 2n ·

(
qI
µ

)
·
(

1
2n−3Q

)µ
.

Upper-Bounding Pr[mcoll2I ]. By the same analysis as Pr[mcoll1I | ¬Ecoll
1],

we have Pr[mcoll2I ] ≤ 2n ·
(
qI
µ

)
·
(

1
2n−3Q

)µ
.

Upper-Bounding Pr[hit1FI | ¬mcoll1F ∧ ¬mcoll1I ∧ ¬Ecoll
1]. For R blocks

(K,X, Y ) and (K ′, X ′, Y ′), if (K ′, X ′, Y ′) is defined after (K,X, Y ), then the
relation is denoted by (K,X, Y ) / (K ′, X ′, Y ′). We consider the following two
cases.

– hit1←−
FI

: ∃(K,X, Y ) ∈ QF , (K ′, X ′, Y ′) ∈ QI s.t. (K,X, Y ) / (K ′, X ′, Y ′) ∧
π2([K]n)⊕ Y = [K ′]n ∧ Y = X ′.

– hit1−→
FI

: ∃(K,X, Y ) ∈ QF , (K ′, X ′, Y ′) ∈ QI s.t. (K ′, X ′, Y ′) / (K,X, Y ) ∧
π2([K]n)⊕ Y = [K ′]n ∧ Y = X ′.

We analyze hit1←−
FI

. For an input (K ′, Y ′) in QI , by ¬mcoll1F, the number of

tuples (K,X, Y ) ∈ QF such that π2([K]n) ⊕ Y = [K ′]n is satisfied is at most
µ − 1, thus the probability that X ′ equals one of the (µ − 1) ciphertext blocks
is at most (µ− 1)/(2n − 3Q). Summing the probability for each element in QI ,
we have Pr[hit1←−

FI
| ¬mcoll1F ∧ ¬mcoll1I ∧ ¬Ecoll

1] ≤ (µ− 1)qI/(2
n − 3Q).

For hit1−→
FI

, the analysis is the same as that of hit1←−
FI

. Using the condition ¬mcoll1I ,

we have Pr[hit1−→
FI
| ¬mcoll1F ∧ ¬mcoll1I ∧ ¬Ecoll

1] ≤ (µ− 1)qF /(2
n − 3Q).

By qF + qI ≤ 3Q, we have Pr[hit1FI | ¬mcoll1F ∧ ¬mcoll1I ∧ ¬Ecoll
1] ≤ 3(µ−1)Q

2n−3Q .

Upper-Bounding Pr[hit2FI | ¬mcoll2F ∧ ¬mcoll2I ]. As the analysis of Pr[hit1FI |
¬mcoll1F ∧¬mcoll1I ∧¬Ecoll

1], using the conditions ¬mcoll2F and ¬mcoll2I , we have

Pr[hit2FI | ¬mcoll2F ∧ ¬mcoll2I ] ≤ 3(µ−1)Q
2n−3Q .

Upper-Bounding Pr[hit1IV | ¬Ecoll
1] For each (K,X, Y ) ∈ QF (resp. (K,X, Y ) ∈

QI), Y (resp. X ) is chosen uniformly at random from at least 2n−3Q elements
in {0, 1}n. Thus, we have Pr[hit1IV | ¬Ecoll

1] ≤ 6Q
2n−3Q .

Upper-Bounding Pr[hit2IV]. The analysis is the same as that of Pr[hit1IV |
¬Ecoll1]. We have Pr[hit2IV] ≤ 6Q

2n−3Q .

Upper-Bounding Pr[hit1XY | ¬Ecoll
1] For each (K,X, Y ) ∈ QF (resp. (K,X, Y ) ∈

QI), Y (resp. X) is chosen uniformly at random from at least 2n− 3Q elements
in {0, 1}n. Thus, we have Pr[hit1XY | ¬Ecoll

1] ≤ 3Q
2n−3Q .

Upper-Bounding Pr[hit2XY]. The analysis is the same as that of Pr[hit1IV |
¬Ecoll1]. We have Pr[hit2XY] ≤ 3Q

2n−3Q .

Upper-Bounding Pr[coll1 | ¬hit1IV∧¬hit
1
FI∧¬hit

1
XY∧¬hit

1
Path∧¬Ecoll

1]. Assume

that (hit1IV∨hit
1
FI∨hit

1
XY∨hit

1
Path∨Ecoll

1) is not satisfied. Fix a path
(

02n
M−→ S

)
∈



Lpath, and assume that coll1 has not occurred before the path. Then, for each

path
(

02n
M ′−−→ S′

)
∈ Lpath that was defined before

(
02n

M−→ S
)

, we have Pr[S =

S′] ≤ 1/(2n−3Q)2 by Lemma 4. Summing the probability for each pair of paths
where |Lpath| ≤ 2Q, we have Pr[coll1 | ¬hit1IV∧¬hit

1
FI∧¬hit

1
XY∧¬hit

1
Path∧¬Ecoll

1] ≤(
2Q
2

)
· 1
(2n−3Q)2 ≤

2Q2

(2n−3Q)2 .

Upper-Bounding Pr[coll2 | ¬hit2IV ∧ ¬hit
2
FI ∧ ¬hit

2
XY ∧ ¬hit

2
Path] The analysis

is the same as that of Pr[coll1 | ¬hit1IV ∧ ¬hit
1
FI ∧ ¬hit

1
XY ∧ ¬hit

1
Path ∧ ¬Ecoll

1]. By

Lemma 4, we have Pr[coll2 | ¬hit2IV ∧ ¬hit
2
FI ∧ ¬hit

2
XY ∧ ¬hit

2
Path] ≤ 2Q2

(2n−3Q)2 .

Upper-Bounding Pr[hit1Path | ¬hit
1
IV ∧¬hit

1
FI ∧¬hit

1
XY ∧¬Ecoll

1]. Fix
(

02n
M−→

S
)
∈ Lpath and (K,X, Y ) ∈ QF such that hit1Path has not occurred and the R

block was defined before the path is defined. By Lemma 4, we have Pr[S =
[K]n‖X] ≤ 1/(2n − 3Q)2 and Pr[[S]n‖[S]n = [K]2n] ≤ 1/(2n − 3Q)2. Summing
the probabilities for each path and R block, we have Pr[hit1Path | ¬hit

1
IV ∧¬hit

1
FI ∧

¬hit1XY ∧ ¬Ecoll
1] ≤ 2Q · 2Q · 2

(2n−3Q)2 ≤
8Q2

(2n−3Q)2 .

Upper-Bounding Pr[hit2Path | ¬hit
2
IV ∧ ¬hit

2
FI ∧ ¬hit

2
XY]. The analysis is the

same as that of Pr[hit1Path | ¬hit
1
IV ∧ ¬hit

1
FI ∧ ¬hit

1
XY ∧ ¬Ecoll

1]. Thus we have

Pr[hit2Path | ¬hit
2
IV ∧ ¬hit

2
FI ∧ ¬hit

2
XY] ≤ 8Q2

(2n−3Q)2 .

Upper-Bounding Pr[Ecoll2 | ¬hit2Path]. For each process of SROE (K,X), if

there exists a path
(

02n
M ′−−→ S′

)
∈ Tpath s.t. S′

in
 (K,X), then by ¬hit2Path,

E[K ′1, ∗] = λ and E[K ′2, ∗] = λ are satisfied. On the other hand, there is a case
that K ′1 = K ′2 and X ′1 6= X ′2 are satisfied, but Y ′1 = Y ′2 is satisfied. For each
path, the collision probability is 1/2n, since Y ′1 and Y ′2 are defined by RO. We
thus have Pr[Ecoll2 | hit2Path] ≤ Q

2n .

5.3 Proof of Lemma 3

Consider Game j where j ∈ [2]. Assume that (hitjFI ∨ hitjIV ∨ hitjXY ∨ hitjPath) does

not occur. Consider a path
(

02n
M−→ S

)
∈ Lpath with ` CF block (2` R blocks).

By the definition of SE , after an R block is defined by a forward operation, the
next R block is immediately defined by a forward operation, and the former R
block is defined by an inverse operation. All R blocks in the path are defined by
forward operations by ¬hitjFI and ¬hitjIV, and for each i ∈ [2`− 1], the (i+ 1)-th

R block in the path is defined after the i-th R block by ¬hitjXY and ¬hitjPath.

5.4 Proof of Lemma 4

Consider Game j where j ∈ [2]. Assume that (hitjFI ∨ hitjIV ∨ hitjXY ∨ hitjPath)

does not occur. Fix a value V ∈ {0, 1}2n. For a path
(

02n
M−→ S

)
∈ Lpath, by

Lemma 3, the last CF block in the path consists of two R blocks defined by



forward operations and the outputs are differently sampled. Since the outputs
are chosen uniformly at random from at least 2n − 3Q elements in {0, 1}n, we
have Pr[S = V ] ≤ 1/(2n − 3Q)2.

5.5 Proof of Lemma 5

Since outputs of RO are chosen uniformly at random from {0, 1}2n, a collision
occurs in entries with the same key. In other words, S behaves as an ideal cipher
if and only if such collision does not occur, i.e., Ecoll1 = false. Thus, we have
Pr[AG0 = 1] = Pr[AG1 = 1 | ¬Ecoll1].

5.6 Proof of Lemma 6

We show that Pr[AG1 = 1 | ¬bad1∧¬Ecoll1] = Pr[AG2 = 1 | ¬bad2] (Game 1 and
Game 2 are indistinguishable). In this proof, we need to show that the structural
difference of L gives no advantage to A. The difference is: L = EXEX-NIRE

(Game 1) and L = RO (Game 2), thus with the following two points, the
equivalence is ensured.

1. In Game 1, for any hash query M , the response is equal to RO(M).
2. In Game 2, L and R are consistent as in Game 1 with respect to the structure

of EXEX-NI, that is, for any
(

02n
M−→ S

)
∈ Lpath,

(
S′

M ′−−→ H
)
∈ Lblock such

that S
out
 (S′,M ′), H = L(M) is satisfied.

The following lemma ensures these two points. Hence, we have

Pr[AG1 = 1 | ¬bad1 ∧ ¬Ecoll1] = Pr[AG2 = 1 | ¬bad2] .

Lemma 7. In Game j (= 1, 2), the following is satisfied as long as badj does

not occur: ∀
(

02n
M−→ S

)
∈ Lpath,

(
S′

M ′−−→ H
)
∈ Lblock s.t. S

out
 (S′,M ′):

H = RO(M).

Proof (Lemma 7). In Game j (j = 1, 2), for a path
(

02n
M−→ S

)
∈ Lpath and

a CF block
(
S′

M ′−−→ H
)
∈ Lblock such that S

out
 (S′,M ′), by ¬hitjPath, the CF

block
(
S′

M ′−−→ H
)

is defined after the path
(

02n
M−→ S

)
∈ Lpath is defined. By

Lemma 3, all R blocks in the path are defined by forward operations in order
from the first to the last. By ¬collj , there is no collision path leading to S. Thus,
by the definition of SE , H is defined as H = RO(M). ut

6 EXEX-I: Low Memory Collision Resistant DBL HF

In this section, we consider relaxing the security goal to the collision resistance
rather than the indifferentiability. We design EXEX-I in Sect. 6.1. An overview
of its collision resistance is given in Sect. 6.2.
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Fig. 10. Hash Function EXEX-I.

6.1 Specification of EXEX-I

Like EXEX-NI, we design EXEX-I by iterating EXEX defined in Sect. 4.1, but un-
like EXEX-NI, we relax the security goal to be collision resistance. The change of
the security goal enables us to remove the outer function of EXEX-NI, which was
introduced to achieve indifferentiability. Removal of the outer function relaxes
the condition for the key length and improves the efficiency.

We define EXEX-I : {0, 1}∗ → {0, 1}2n. Let pad : {0, 1}∗ → ({0, 1}m)∗ be
an injective padding function, e.g., one-zero padding pad(M) = M‖10w where
w = m− 1− |M | mod m. The construction of EXEX-I is depicted in Fig. 10.

– EXEX-IE(M):

1. S0 ← 02n; M1,M2, · · · ,M`
m←− pad(M)

2. for i = 1, . . . , ` do Si ← EXEXE(Si−1,Mi)
3. return S`

6.2 Collision Resistance of EXEX-I

The following gives an upper-bound for the collision resistance of EXEX-I.

Theorem 2. Let µ be any positive integer. For any adversary A making Q
queries, we have

Advcoll
EXEX-I(A) ≤ 0.5Q2

(2n − 3Q)2
+

3µQ+ 3Q

2n − 3Q
+ 2n ·

(
3Q

µ

)
·
(

1

2n − 3Q

)µ
.

EXEX-I is equal to the inner function of EXEX-NI. Since a collision of the
inner function breaks the indifferentiability of EXEX-NI, the proof of the collision
resistance of EXEX-I is equal to (some part of) the proof of the indifferentiability
of EXEX-NI. Using the proof, we can show that EXEX-I is collision resistant up
to the bound given in the theorem.

7 Hardware Performance Evaluation

We compare the hardware performances of EXEX-NI, EXEX-I, and Romulus-H un-
der the same design policy. We instantiate the candidates with SKINNY-128-384



used in the first literature on Romulus-H [13]. 10 All the instantiations achieve
the same data rate, i.e., processing a 256-bit message block with two TBC calls.
EXEX-NI and EXEX-I can choose SKINNY-128-256 for an even smaller implemen-
tation, which we will discuss later in Sect.7.4.

7.1 SKINNY-128-384 Implementation

The baseline design is Naito et al.’s conventional SKINNY-128-384 implementa-
tion [25] based on the common byte-serial architecture [3]. The state array is a
128-bit register arranged in a 2-dimensional array, which integrates the linear
operations, i.e., MixColumns and ShiftRows. It finishes the round function in 21
cycles, and the entire SKINNY-128-384 in 1,176 (=21 × 56) cycles. We use a scan
flip-flop, a special-purpose register with a built-in 2-way selector, for efficiently
implementing the 2-dimensional array [3, 25].

The 384-bit tweakey comprises independently scheduled 128-bit chunks, re-
ferred to as TK1, TK2, and TK3 hereafter. We assign TK1 for storing the state
mixed with TBC outputs and TK2||TK3 for storing 256-bit message blocks. By
following the baseline implementation, we again use the 2-dimensional arrays
for storing the tweakey, namely the TK1, TK2, and TK3 arrays. Those arrays
efficiently realize a serial byte scanning and the byte-wise permutation for the
tweakey schedule [25]11.

7.2 Hardware Implementation of EXEX-NI and EXEX-I

We decompose EXEX-NI into the four operations as shown in Fig. 11-(left): (C1)
a TBC call, (C2) transferring a TBC output to TK1, (C3) feeding a 256-bit new
message block to TK2||TK3, and (C4) organizing data for the nested processing.
The circuit in Fig. 11-(right) implements the four basic operations and can hash
a long message by dispatching the operations in an appropriate order. Starting
from the baseline SKINNY-128-384 implementation, we added some 8-bit selec-
tor, XOR, and AND gates for managing data transmission between the arrays
to support the (C2) and (C4) operations. The EXEX-I implementation is the
EXEX-NI implementation without the (C4) operation, and we can remove some
gates from the datapath in Fig. 11-(right).

π1 and π2 for tweakey schedule. We use the linear operations π1 and π2 (see
Fig. 7) to achieve better performance by eliminating the inverse tweakey sched-
ule. A lightweight TBC implementation commonly uses an on-the-fly tweakey
schedule to avoid storing the round keys. As a drawback, we lose the original
tweakey by updating it in place, which is a problem for a mode of operation that
uses the same tweakey in the following operations. The previous SKINNY-128-384

10 In the updates for the NIST LWC final round, the Romulus team decided to use
a reduced-round variant called SKINNY-128-384+. We discuss the impact of this
change in Sect. 7.4.

11 For efficiency, we remove a built-in arithmetic counter in the previous tweakey arrays
needed for an AEAD mode of operation [25].
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Fig. 11. (Left) Decomposition of EXEX-NI into basic operations and (Right) the dat-
apath architecture realizing those operations

implementation addressed this issue by integrating the inverse tweakey schedule
in the tweakey arrays at the cost of additional hardware resources [25].

A more sophisticated approach is integrating the tweakey schedule into a
mode of operation so that we can continue without recovering the original
tweakey [26]. EXEX-NI and EXEX-I support this optimization by assigning π1
as TK1’s schedule and assigning π2 as TK2’s and TK3’s schedule combined. As
a result, by skipping the inverse operation after an on-the-fly key schedule, the
(C2) operation implicitly executes π2 and π3 after a TBC call. This allows us to
remove the circuits for the inverse tweakey operations from the tweakey arrays. 12

7.3 Hardware Implementation of Romulus-H

Our Romulus-H design is based on the same SKINNY-128-384 implementation
and has a similar architecture and components (the state and tweakey arrays).
Romulus-H needs additional 2 × 128 bits of memory, and we realize them using
a set of 128-bit shift registers, namely SR0 and SR1.

We decompose Romulus-H into several basic operations in Fig. 12-(left): (D1)
a TBC call, (D2) processing the first TBC output, (D3) processing the second
TBC output, and (D4) feeding a 256-bit new message block to TK2||TK3. Fig. 12-
(left) also illustrates how we manage data between the memory elements: we
use SR0 for storing the previous TBC input for feed-forward and use SR1 for
preserving a derivative of the first TBC call during the second one.

Fig. 12-(right) shows the corresponding datapath. The major additions to
the baseline SKINNY-128-384 implementation are SR0 and SR1 implemented as
simple 8-bit width and 16-stage shift registers. We also added some 8-bit logic
gates for enabling data transmission between the memory elements.

12 The conventional TK1–TK3 arrays integrates circuits for inverse tweakey operations
(the inverse LFSRs and inverse byte permutation) [25]. We remove these circuits
along with selectors for switching between the datapaths. These circuits are intact
in our Romulus-H implementation because it requires the inverse operations.
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7.4 Performance Evaluation and Comparison

Implementation and Evaluation Procedure. We implement the designs at
the register-transfer level; we explicitly instantiate the standard cells only for the
scan flip-flops [22]. We synthesize the designs using Synopsys Design Compiler
with the NanGate 45-nm standard cell library [27]. Table 3 summarizes the
circuit areas of our EXEX-NI, EXEX-I, and Romulus-H implementations in NAND
gate equivalent (GE), along with its breakdown to major components that we
preserved during the synthesis.

Comparison. The EXEX-NI and EXEX-I implementations are smaller than that
of Romulus-H, as shown in Table 3. More specifically, the EXEX-NI implementa-
tion is smaller by 2,262 GE and is only 68% of the Romulus-H implementation.
The main reason is the memory sizes: Romulus-H’s additional memory, imple-
mented as the shift registers SR0 and SR1, consumes roughly 1,500 GE, as shown
in Table 3. 13 Another reason is the inverse tweakey schedule we discussed in
Sect. 7.2. Eliminating the inverse tweakey schedule makes each tweakey array
smaller by roughly 250 GE, resulting in the total reduction of 750 GE. The dif-
ference between the EXEX-NI and EXEX-I implementations is only 48 GE that
corresponds to several 8-bit width logic gates for the (C4) operation; EXEX-I’s
main advantage is speed. The S-box circuit, composed of eight XORs and NORs,
occupies roughly 30 GE which is negligible compared to the registers.

Missing Parallelism. The conventional schemes including Romulus-H can
run up to two TBCs in parallel, which is impossible with EXEX-NI and EXEX-I
that serializes the consecutive TBCs for smaller memory. Missing parallelism has
a negligible impact on lightweight implementations because parallel execution
needs double the hardware resources. On the other hand, in high-speed imple-
mentation with sufficiently many resources available, Romulus-H and other con-
ventional schemes can have higher efficiency (i.e., throughput/area) by pipelining
the consecutive TBCs.

13 The per-bit cost of SR0 and SR1 is smaller than those of the state/tweakey arrays
because SR0 and SR1 use a simple flip-flop instead of a scan flip-flop.



Table 3. Circuit-area comparison of EXEX-NI, EXEX-I, and Romulus-H instantiated
with SKINNY-128-384 in gate-equivalent (GE)

Target Total State TK1 TK2 TK3 SR0 SR1

array array array array

EXEX-NI 4,755 1,078 1,007 1,019 1,019 — —

EXEX-I 4,707 1,077 1,007 1,019 1,019 — —

Romulus-H 7,017 1,078 1,231 1,270 1,271 743 743

Further optimization. We can implement EXEX-NI even smaller at the cost
of speed by choosing a TBC with a smaller tweakey. If we instantiate EXEX-NI
with SKINNY-128-256 instead of SKINNY-128-384, we can eliminate the TK3

array and save roughly 1,000 GE, and the total circuit will be approximately
3,700 GE. Meanwhile, this modification comes at the cost of speed: the data
rate is roughly halved because we can process only a 128-bit message block with
a pair of TBC calls.

EXEX-NI and EXEX-I enjoy the conventional Romulus-H optimizations pro-
posed by the Romulus team [14, 13]. The first optimization is to reduce the round
number considering SKINNY’s large security margin [13], i.e., SKINNY-128-384+.
It will speed up each TBC call but its impact to area should be limited. Another
optimization is to virtually reduce the tweakey size by using message blocks
stuffed with zeros. For example, if we limit the message size to 128 bits in our
tweakey configuration, the input to TK3 becomes always zero, and we can re-
place the TK3 array with a constant-value generator, which makes the circuit
area similar to those instantiated with SKINNY-128-256.

8 Conclusion

In this paper, we proposed two DBL hash modes achieving minimum memory
size. When an underlying BC supports an n-bit block and a k-bit key, our modes
only require n + k-bit memory, which improves the previous smallest results of
2n + k-bit memory. EXEX-NI mode is indifferentiable up to n − log n bits. Its
instantiation with SKINNY-128 can be an efficient alternative to Romulus-H;
our mode satisfies all the requirements in NIST LWC and provides hashing to
Romulus with zero memory overhead, which significantly reduces the memory
size of 3n + k bits for Romulus-H. EXEX-I mode focuses on the fact that indif-
feretiability may be unnecessary to be integrated with AEAD schemes, and we
rigorously optimized its efficiency by focusing on the collision resistance.

There are several possible research directions, which includes relaxing the
key size limitation k ≥ 2n of EXEX-NI, finding an attack rigorously matching
the bound, a new mode without security loss of log n bits, integrated imple-
mentations of AEAD and hashing schemes. Application of our modes to the
BC-based NIST finalist GIFT-COFB [2] is also interesting because it does not
support hashing. Its underlying cipher GIFT128 supports n = 128 and k = 128,



thus the block size fits perfectly, while the key size does not. Modifying GIFT128
to support a 256-bit key or 128-bit tweak is an interesting challenge.
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