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Abstract. Lai et al. (CCS 2019) have shown how Bulletproof’s arith-
metic circuit zero-knowledge protocol (Bootle et al., EUROCRYPT 2016
and Bünz et al., S&P 2018) can be generalized to work for bilinear group
arithmetic circuits directly, i.e., without requiring these circuits to be
translated into arithmetic circuits.
In a nutshell, a bilinear group arithmetic circuit is a standard arithmetic
circuit augmented with special gates capturing group exponentiations or
pairings. Such circuits are highly relevant, e.g., in the context of zero-
knowledge statements over pairing-based languages. As expressing these
special gates in terms of a standard arithmetic circuit results in a signifi-
cant overhead in circuit size, an approach to zero-knowledge via standard
arithmetic circuits may incur substantial additional costs. The approach
due to Lai et al. shows how to avoid this by integrating additional zero-
knowledge techniques into the Bulletproof framework so as to handle the
special gates very efficiently.
We take a different approach by generalizing Compressed Σ-Protocol
Theory (CRYPTO 2020) from arithmetic circuit relations to bilinear
group arithmetic circuit relations. Besides its conceptual simplicity, our
approach has the practical advantage of reducing the communication
costs of Lai et al.’s protocol by roughly a multiplicative factor 3.
Finally, we show an application of our results which may be of inde-
pendent interest. We construct the first k-out-of-n threshold signature
scheme (TSS) that allows for transparent setup and that yields thresh-
old signatures of size logarithmic in n. The threshold signature hides the
identities of the k signers and the threshold k can be dynamically chosen
at aggregation time.

Keywords: Zero-Knowledge, Bilinear Groups, Pairings, CompressedΣ-
Protocol Theory, Threshold Signature Schemes.

1 Introduction
Bulletproofs [11, 13] introduced an ingenious technique to compress the com-
munication complexity of discrete logarithm (DL) based circuit zero-knowledge
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(ZK) protocols from linear to logarithmic. Their approach was presented as a
drop-in replacement for the well-established Σ-protocol theory and it results
in efficient zero-knowledge protocols for relations captured by a circuit defined
over Zq ∼= Z/(qZ). In [4], Bulletproofs and Σ-protocol theory were reconciled
by repurposing an appropriate adaptation of Bulletproofs as a black-box com-
pression mechanism for basic Σ-protocols. They first show how to handle linear
arithmetic relations by deploying a basic Σ-protocol. Second, they show how
an adaptation of Bulletproofs allows the communication complexity of the basic
Σ-protocol to be compressed from linear to logarithmic. Hence, the resulting
compressed Σ-protocol allows a prover to prove linear statements with a com-
munication complexity that is logarithmic in the size of the witness. Finally,
to handle arbitrary non-linear relations, arithmetic secret sharing based tech-
niques [19] are deployed to linearize these non-linearities. Cryptographic proto-
col design can now follow well-established approaches from Σ-protocol theory,
but with the additional black-box compression mechanism to reduce the com-
munication complexity down to logarithmic.

These, and other, recent advances in communication-efficient circuit ZK lead
to an obvious, but indirect, approach for efficient protocols for arbitrary relations:

1. Construct an arithmetic circuit capturing the relation;
2. Apply an efficient circuit ZK protocol to this arithmetic circuit.

However, for some relations, the associated arithmetic circuits can be large and
complex. Thereby losing the conceptual simplicity and possibly even the concrete
efficiency over a more direct approach. The work of [5], for instance, describes a
number of efficiency advantages of their direct approach for proving knowledge
of k discrete logarithms out of n public group elements.

Moreover, Lai et al. [35] construct a zero-knowledge proof system for di-
rectly handling relations captured by bilinear group arithmetic circuits. A bilin-
ear group is a tuple (q,G1,G2,GT , e,G,H), where e : G1×G2 → GT is a bilinear
map, also called a pairing, and G1, G2 and GT are groups (group operations are
written additively) of prime order q generated by G,H and e(G,H), respectively.
A bilinear group arithmetic circuit, or a bilinear circuit, is a circuit in which each
wire takes values in W ∈ {Zq,G1,G2,GT } and the gates all have fan-in 2 and
unbounded fan-out. Gates are either group operations, Zq-scalar multiplications
or bilinear pairings. For more details see Section 6. Bilinear circuits directly
capture relations encountered in, e.g., identity based encryption [41] and struc-
ture preserving signatures [2]. We note that, for a highly optimized group of
order q ≈ 2256, multiplying a single group element with a Zq-scalar requires an
arithmetic circuit with approximately 800 multiplication gates [32], instead of
a single gate in the bilinear circuit model. Hence, besides conceptual simplicity
there can be significant efficiency advantages of the direct approach over the
indirect approach that uses generic solutions for arithmetic circuit ZK.

In this work, we focus on one application of our bilinear circuit ZK proto-
cols: Threshold Signature Schemes (TSSs) [20]. A k-out-of-n TSS is a standard
signature scheme, allowing each of the n players to individually sign arbitrary
messages m, enriched with a public k-aggregation algorithm. The k-aggregation
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algorithm takes as input k signatures, issued by any k distinct players, on the
same messagem and outputs a threshold signature σ. A naive TSS is obtained by
exhibiting the k individual signatures directly. However, this approach results
in threshold signatures with size linear in the threshold k. The main goal for
TSSs is to have succinct threshold signatures, i.e., with size sub-linear in k. The
succinct TSS of [43] immediately found an application in reducing the commu-
nication complexity of consensus protocols [15]. The impact of succinctness is
significant since, in consensus applications, the threshold k is of the same order
of magnitude as n (typically k = n/2 or k = 2n/3). Although desirable in some
applications, it is not required that a threshold signature hides the k-subset of
signers.

1.1 Contributions

In this work, we present a novel ZK protocol for relations captured by bilin-
ear circuits. We show that there is a generalization of the approach of [4] for
arithmetic circuit relations to bilinear circuit relations. Generalizing [4], our ap-
proach is to first compress a basic Σ-protocol for proving linear statements about
committed vectors and, second, to show how to handle arbitrary bilinear circuit
relations by linearizing non-linearities. This leads to a conceptually simple and
modular construction of ZK protocols for bilinear circuit relations.

In [5], an abstraction of the compressed Σ-protocols for proving linear rela-
tions was introduced. An appropriate instantiation of these abstract protocols
immediately results in a compressed Σ-protocol for proving that a mixed vector
x ∈ Zn0

q × Gn1
1 × Gn2

2 × GnTT satisfies a linear constraint defined over a bilinear
circuit. The main ingredient in this instantiation is a homomorphic commitment
scheme [2, 35] that allows a prover to commit to such mixed vectors. However,
a number of modification to this straightforward approach are warranted.

First, in contrast to the Pedersen commitment scheme for Zq-vectors, the
commitment scheme for mixed vectors is not compact, i.e., the size of a com-
mitment is not constant in the size of the committed vector. More precisely, the
size of a commitment to a vector x ∈ Zn0

q ×Gn1
1 ×Gn2

2 ×GnTT is constant in the
dimensions n0, n1 and n2, but it is linear in the dimension nT . For this reason,
compression should only be applied to the compact part of the commitment
scheme. We handle this complication in an abstract manner by considering ho-
momorphisms Ψ(x1,x2), where the input consists of two parts and compressing
is only applied to the first part x1.

Second, the arithmetic circuit instantiation of the abstract protocol allows for
an additional reduction of the communication costs by roughly a factor 2. This
technique stems from [13] and was also applied in the compressed Σ-protocols
of [4]. However, it is not applicable in general, i.e., for arbitrary homomorphisms
Ψ , and has therefore been omitted in the abstract framework of [5]. Here, we
show how this technique can be adapted to the bilinear circuit setting. Again,
and in contrast to prior works, the compact part and the non-compact part of
the commitment must be treated separately.
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Third, the non-compact part of the commitment scheme has an “El Gamal
structure”. We adapt the basic Σ-protocols, used in compressed Σ-protocol, to
exploit this structure. Informally, to prove knowledge of an opening of an El
Gamal commitment it is sufficient to prove knowledge of commitment random-
ness γ ∈ Zq satisfying certain properties. Altogether, this technique reduces the
constant in the linear component of the communication costs from 3 down to 1
(the other components are logarithmic).

Finally, the abstract framework of [5] only considers linear relations. To han-
dle non-linear relations, we show how the linearization techniques from the arith-
metic circuit setting of [4] can be adapted to the bilinear circuit setting.

The communication complexity of our protocols is logarithmic in n0, n1 and
n2, but linear in nT . Asymptotically this is comparable to the prior work of [35].
However, we consider a strictly stronger application scenario, i.e., [35] only con-
siders bilinear relations captured by a limited class of circuits.5 Moreover, in com-
parison to [35], we improve upon the concrete communication costs by roughly
a factor 3. More precisely, we reduce the constant in the logarithmic component
of the communication costs from 16 down to 6, and the constant in the linear
component from 3 down to 1. See Section 6.3 for a detailed comparison.

Another application of the commitment scheme of [2, 35] is that it allows a
prover to commit to Pedersen commitments in a pairing-based platform. This
layered approach, of committing to commitments, was already suggested in [2]
and it allows a prover to commit to n2 Zq-coefficients using only 2n + 1 public
group elements, instead of the n2 +1 public group elements required when using
Pedersen commitments directly. Replacing the Pedersen commitment scheme,
in circuit ZK protocols derived from Bulletproofs [11, 13] or Compressed Σ-
Protocol Theory [4], by this layered commitment scheme immediately gives a
square root reduction in the size of the set of public parameters while leaving
the logarithmic communication costs exactly the same.

An additional advantage of our approach is that we can handle linear relations
directly. By contrast, Lai et al. [35] generalize the Bulletproof approach [11, 13]
where the pivotal protocol handles a specific non-linear inner-product relation.
Applying this approach to a linear relation requires a cumbersome approach of
capturing this linear relation by a set of non-linear inner-product constraints,
leading to unnecessarily complicated protocols.

As an application of our compressed Σ-protocol for proving linear relations,
we construct a transparent k-out-of-n threshold signature scheme (TSS) with
threshold signatures that are O(κ log(n)) bits, where κ is the security parameter.
Recall that a TSS enables any set of at least k players, in a group of n, to
issue a “threshold” signature on a message m, but no subset of less than k
players is able to issue one. A TSS is called transparent if it does not require a
trusted setup phase, i.e., all public parameters are random coins. Given recent
advances in efficient circuit zero-knowledge, an obvious solution is to construct
a threshold signature as a proof of knowledge attesting the knowledge of k-

5This is perhaps not immediate from the paper [35], but it has been confirmed by
the authors. See also Section 6.3.
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out-of-n signatures. With the appropriate ZK protocol this would immediately
result in a transparent TSS with sublinear size threshold signatures. However,
this approach requires an inefficient reduction from the corresponding threshold
signature relation to a relation defined over an arithmetic circuit. More precisely,
the arithmetic circuits capturing these relations are typically large.

For this reason, we follow a more direct approach avoiding this inefficient re-
duction. Namely, we append the BLS signature scheme [10] with a k-aggregation
algorithm. The BLS signature scheme is defined over a bilinear group. In par-
ticular, the BLS verification algorithms naturally fit with our compressed Σ-
protocols for relations defined over bilinear groups. A key feature of this sig-
nature scheme is that its signing algorithm does not contain the evaluation of
a hash function. This would namely require the hash function to be expressed
in terms of a (typically large) bilinear circuit. To derive the required threshold
functionality, we use an appropriated adaptation of k-out-of-n proofs of partial
knowledge from a recent work [5].

The compressed Σ-protocols are interactive and can be made non-interactive
by the Fiat-Shamir transform [21]. In general, the Fiat-Shamir transformation
of a (2µ+1)-move protocol increases the knowledge error from κ to Qµ ·κ, where
Q is the number of random oracle queries the non-interactive prover is allowed
to make, i.e., the security loss is exponential in the number of rounds. However,
for (k1, . . . , kµ)-special sound protocols such as ours, it is believed that this loss
is actually constant in the number of rounds. This claim was recently proven in
the algebraic group model [27].

The non-interactive proofs contain precisely the messages sent from the
prover to the verifier. Hence, the logarithmic proof size is inherited by the log-
arithmic communication complexity of the compressed Σ-protocol. More pre-
cisely, a k-out-of-n threshold signature contains 4 dlog2(n)e + 3 GT -elements, 1
G1-element and 1 Zq-element.

The k-aggregation algorithm can be evaluated by any party with input at
least k valid signatures from distinct signers. Besides the signatures, the k-
aggregation algorithm only takes public input values. Moreover, the threshold
k can be chosen at aggregation time independent of the set-up phase. By con-
trast, Shoup’s construction [43] requires a different trusted setup phase for every
threshold k. Since the compressed Σ-protocol is zero-knowledge, an additional
property of our TSS is that a threshold signature hides the k-subset of signers
S. Our TSS does not require a trusted setup and is therefore transparent. More
precisely, the players can generate their own public-private key-pairs and the
Σ-protocol only requires an unstructured public random string defined by the
public parameters of the commitment scheme.

1.2 Related Work

Zero-Knowledge Proof Systems. Groth and Sahai [28] were the first to
consider zero-knowledge proof systems for relations defined over bilinear groups
directly. In contrast to more standard indirect approaches, their work avoids in-
efficient reductions to arithmetic circuit relations. Bilinear groups have found
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applications in many areas of cryptography. For instance, in digital signatures,
identity based encryption and efficient zero-knowledge proof systems. For this
reason many relevant relations are naturally defined over bilinear groups. The
goal is not only to achieve efficiency, but also modularity in the design of cryp-
tographic protocols.

A drawback of the Groth-Sahai proof system is that its proof sizes are linear
in the size of the statements. By contrast, Bulletproofs [11, 13] are practically
efficient DL-based proof systems for arithmetic circuit relations with logarith-
mic proof sizes. Their main building block is an efficient protocol for proving
a specific non-linear inner-product relation. Arbitrary relations captured by an
arithmetic circuit are reduced to a set of inner-product constraints. Lai et al. [35]
adapted the techniques from Bulletproofs to the bilinear circuit model achieving
a communication-efficient ZKP system for relations defined over bilinear circuits.
More precisely, the communication complexity is logarithmic in the number of
Zq, G1 and G2 inputs, but linear in the number of GT inputs. They first reduce
the bilinear circuit relation to a set of inner-products constraints, and subse-
quently describe protocols for proving various inner-product relations. The work
of [14] improves the efficiency for a specific subset of bilinear inner-product rela-
tions. Hence, although these approaches avoid reductions to arithmetic circuits,
they do rely on the reduction to a set of inner-product constraints.

In [4], an alternative approach for arithmetic circuit relations is described.
Their pivotal protocol is a basic Σ-protocol for proving linear relations. They
show how to compress the communication complexity down to logarithmic and
how to handle non-linearities in arbitrary arithmetic circuit relations. This ap-
proach is compatible with standard Σ-protocol theory and avoids the need for
reinventing cryptographic protocol design around non-linear inner-product rela-
tions. Here, we generalize compressed Σ-protocols to the bilinear circuit model.

Threshold Signature Schemes. Shoup’s TSS [43] already achieves threshold
signatures of constant size. However, his approach, and all other approaches
with threshold signature sizes sub-linear in k and n are not transparent [25, 26,
9, 36, 30, 34, 33, 24]. These works require either an explicit trusted dealer, or
they have implemented this trusted dealer by an MPC (or other interactive)
protocol that is evaluated before messages are signed. At first glance it might
seem that [24] also achieves a transparent setup. However, in their protocol the k
signing players first have to run an interactive protocol before they can generate
threshold signatures. This interactive protocol has to be evaluated before players
can produce their inputs to the aggregation algorithm, therefore we consider this
as a trusted setup.

The standard approach, introduced by Desmedt and Frankel [20], works by
secret sharing the private key amongst the n players. This requires the private
key to be generated by either a trusted dealer or an MPC protocol, i.e., this
approach has a trusted set-up and is not transparent. Moreover, in contrast to
our scheme, the threshold k should be fixed during the setup phase.
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By contrast, all known transparent TSSs have size at least linear in the thresh-
old k. Besides the naive implementation of simply outputting k valid signatures,
there is also the following approach used by the decentralized transaction system
Libra [37] and by [39]. Every player generates its own public-private key-pair. A
threshold signature is computed as the sum of k individual BLS signatures, and
it can be verified by running the BLS verification algorithm using the sum of
the public keys of the k signers. Hence, the threshold signature should contain a
list of the k signers, i.e., it is of size O(n) or O(k log(n)) depending on the exact
encoding of this list. Moreover, these threshold signatures clearly do not hide
the k-subset of signers. By contrast, Haque et al. [29] construct a transparent
TSS that does hide the k-subset of signers. However, while individual signature
sizes are logarithmic in n, the threshold signatures are linear in the threshold k.

Finally, a recent work [12] presents a different variant of a TSS, which they
call succinctly reconstructed distributed signatures (SRDS). Their SRDS is most
similar to the obvious approach of reducing the problem to an arithmetic circuit
relation. It indeed applies a general (unspecified) SNARK in a black-box manner
to achieve O(polylog(n))-size signatures. However, their SRDS can only tolerate
up to n/3 corruptions.

1.3 Organization of the Paper

The remainder of the paper is organized as follows. In Section 2, we recall ba-
sic notation and definitions regarding bilinear groups and zero-knowledge proof
systems. In Section 3, we define a number of commitment schemes generalizing
Pedersen vector commitments. In Section 4, we describe a compressedΣ-protocol
for proving linear relations about committed vectors, with logarithmic communi-
cation complexity. In Section 5, as an application of our compressed Σ-protocol,
we construct a novel threshold signature scheme. In Section 6, we describe our
linearization strategy for handling non-linear relations.

2 Preliminaries

2.1 Bilinear Groups

We consider the ring Zq ∼= Z/(qZ) for a prime q. Moreover, we let G1,G2 and
GT be groups of prime order q supporting discrete-log (DL) based cryptography,
hence log(q) = O(κ) for security parameter κ. Some properties of commitment
schemes used in this work rely on the stronger Decisional Diffie-Hellman (DDH)
assumption. Therefore, we assume the DDH assumption to hold in all groups.

We write the group operations additively. Clearly, all groups Gi are Zq-
modules and, for all a ∈ Zq and g ∈ Gi, the product ag ∈ Gi is well-defined. We
write vectors in boldface and inner-products are defined naturally, i.e., for all
a = (a1, . . . , an) ∈ Znq and g = (g1, . . . , gn) ∈ Gni we define 〈a,g〉 :=

∑n
i=1 aigi.

Let G ∈ G1 and H ∈ G2 be generators and let e : G1 ×G2 → GT be a non-
trivial bilinear mapping, i.e., e is a pairing such that e(G,H) generatesGT . Then,
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a tuple (q,G1,G2,GT , e,G,H) defines a bilinear group. For vectors G ∈ Gn1 and
H ∈ Gn2 the following inner-product is defined e(G,H) :=

∑n
i=1 e(Gi, Hi).

We say that the Symmetrical External Diffie-Hellman (SXDH) holds in a
bilinear group (q,G1,G2,GT , e,G,H), if the DDH assumption holds in both
G1 and G2 [7]. By the above assumption that the DDH assumption holds in
all Gi, it follows that the SXDH assumption holds for all bilinear groups that
are considered in this work. The SXDH assumption implies that there is no
efficiently computable isomorphism from G1 to G2, or from G2 to G1 [3], i.e.,
we only consider bilinear groups of Type III [22].

2.2 Proofs of Knowledge

We recall some standard notions regarding Proofs of Knowledge (PoKs) following
the notation and definitions of [4, 5]. A relation R is a set of statement-witness
pairs (x;w). A µ-move protocol Π for relation R is an interactive protocol with µ
communication rounds between a prover P and verifier V. It allows P to convince
V that it knows a witness w for statement x, i.e., (x;w) ∈ R. Protocol Π is also
called an interactive proof for relation R. The statement x is public input for
both P and V and the witness w is private input only for P. In our protocol
descriptions this is written as Input(x;w), i.e., the public and private input
are separated by a semicolon. As the output of the protocol V either accepts or
rejects P’s claim. The messages sent between P and V in one protocol execution
are also referred to as a conversation or transcript. If V accepts the associated
transcript, it is called accepting.

An interactive proof is said to be public coin, if all message from V are
chosen uniformly at random and independent from prior messages. Interactive
protocols that are public-coin can be made non-interactive by the Fiat-Shamir
transformation [21], as proven in [8], without increasing the communication costs
from P to V. All interactive proofs in this work are public-coin.

Let us now describe some desirable (security) properties.

Definition 1 (Completeness). An interactive proof Π is called perfectly com-
plete, if on any input (x;w) ∈ R, the verifier V always accepts.

Definition 2 (Knowledge Soundness). An interactive proof Π = (P,V) is
said to be knowledge sound with knowledge error κ : N→ [0, 1), if there exists a
polynomial q : N → N and an algorithm χ (extractor) with the following prop-
erties. For each (potentially dishonest) PPT prover P?, for each x ∈ {0, 1}?,
whenever (P∗,V)(x) outputs accept with probability ε(x) ≥ κ(|x|), the extractor
χ, given input x and rewindable oracle access to the P∗, runs in expected polyno-
mial time and successfully outputs a witness w for statement x with probability
at least (ε(x)− κ(|x|))/q(|x|).

Definition 3 (Proof/Argument of Knowledge). An interactive proof that
is both complete and knowledge sound is said to be a Proof or Knowledge (PoK).
PoKs for which knowledge soundness only holds under computational assump-
tions are also referred to as Arguments of Knowledge.
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Witness extended emulation [38] gives an alternative notion for knowledge
soundness, sufficient for most practical scenarios, and it is known to be implied
by knowledge soundness [38]. For details we refer to [38, 31, 4].

We now recall a generalization of the special-soundness property. Special
soundness is in general easier to handle than knowledge soundness. We first
introduce the notion of a tree of accepting transcripts.

Definition 4 (Tree of Accepting Transcripts). Let Π be a (2µ + 1)-move
protocol. A (k1, k2, . . . , kµ)-tree of accepting transcripts for protocol Π is a set of∏µ
i=1 ki accepting transcripts that are arranged in the following tree structure.

The nodes in this tree correspond to the prover’s messages and the edges corre-
spond to the verifier’s challenges. Every node at depth i has precisely ki children
corresponding to ki pairwise distinct challenges. Every transcript corresponds to
exactly one path from the root node to a leaf node.

Definition 5 (Special Soundness). A (2µ + 1)-move protocol is said to be
(k1, k2, . . . , kµ)-special-sound, if there exists an efficient algorithm that on input
a (k1, k2, . . . , kµ)-tree of accepting transcripts for statement x, outputs a witness
w for x. A 3-move protocol is said to be special-sound if it is 2-special-sound.

Recently, it was shown that (k1, k2, . . . , kµ)-special-soundness tightly implies
knowledge soundness [6]. Therefore, protocols that are complete and special-
sound are also referred to as proofs of knowledge (PoKs).

Definition 6 (Honest Verifier Zero-Knowledge (HVZK)). An interactive
proof Π is said to be honest verifier zero-knowledge (HVZK), if there exists a
PPT simulator that, on input a statement x that admits a witness w, outputs
an accepting transcript, such that simulated transcripts follow exactly the same
distribution as transcripts between an honest prover and an honest verifier. If
the simulator proceeds by first sampling the random challenges, the protocol is
said to be special honest verifier zero-knowledge (SHVZK).

Finally, we recall that two protocols, Πa for relation Ra and Πb for relation
Rb, are said to be composable, if the final message of protocol Πa contains a
witness for relation Rb [4]. In this case, the composition Πb �Πa runs Protocol
Πa but replaces the witness for relation Rb in its final message by an appropriate
instantiation of Protocol Πb. If protocol Πa is (k1, . . . , kµ1)-special-sound and
protocol Πb is (k′1, . . . , k′µ2

)-special-sound, then the composition Πb�Πa is easily
seen to be (k1, . . . , kµ1 , k

′
1, . . . , k

′
µ2

)-special-sound.

3 Commitment Schemes

CompressedΣ-protocols allow a prover to prove that a committed vector satisfies
some public constraint. These protocols crucially depend on the homomorphic
properties of the commitment scheme. In this section, we describe a number of
homomorphic commitment schemes for committing to vector x ∈ Zn0

q × Gn1
1 ×

Gn2
2 ×GnTT with coefficients in a bilinear group (q,G1,G2,GT , e,G,H).
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First, the Pedersen vector commitment scheme [40] considers the case n1 =
n2 = nT = 0, i.e., the committed vector is a Zq-vector. Recall that group oper-
ations are written additively.

Definition 7 (Pedersen Vector Commitment [40]). Let G be an Abelian
group of prime order q. Pedersen vector commitments to vectors x ∈ Znq are
defined by the following setup and commitment phase:

– Setup: g = (g1, . . . , gn)←R Gn, h←R G.
– Commit: Com : Znq × Zq → G, (x, γ) 7→ hγ + 〈g,x〉.

Abe et al. [2] constructed a similar commitment scheme that works with
bilinear groups (q,G1,G2,GT , e,G,H) and allows a prover to commit to vec-
tors of group elements x ∈ Gn1 . A straightforward generalization shows that
this approach allows a prover to commit to vectors x ∈ Zn0

q × Gn1
1 [35]. The

commitment scheme is perfectly hiding and computationally binding under the
DDH assumption in G1. Analogously, this construction results in a commitment
scheme for vectors x ∈ Zn0

q ×Gn2
2 .

Definition 8 (Commitment to (Zq,G1)-vectors [2, 35]). Let
(q,G1,G2,GT , e,G,H) be a bilinear group and let n0, n1 ≥ 0. The follow-
ing setup and commitment phase define a commitment scheme for vectors in
Zn0
q ×Gn1

1 :

– Setup: g = (g1, . . . , gn0)←R Gn0
T , h←R GT , H = (H1, . . . ,Hn1)←R Gn1

2 .
– Commit: Com : Zn0

q ×Gn1
1 × Zq → GT , (x,y, γ) 7→ hγ + 〈g,x〉+ e(y,H).

Remark 1. As an application of the commitment scheme of Definition 8, Abe et
al. [2] mention commitments to Pedersen vector commitments. A commitment to
n n-dimensional Pedersen vector commitments is namely a commitment to an n2-
dimensional Zq-vector. This two-tiered commitment scheme only requires 2n+1
public group elements. By contrast, Pedersen’s commitment scheme requires n2+
1 public group elements to commit to an n2-dimensional Zq-vector. Replacing
the Pedersen vector commitment scheme in, for example, [11, 13, 4] by this two-
tiered commitment scheme results in arithmetic circuit ZK protocols with exactly
the same communication complexity, but with a square root improvement in the
size of the public parameters.

In addition, Lai et al. [35] show how this approach can be extended to
construct a commitment scheme for vectors with coefficients in Zq, G1 and
G2. In contrast to the previous commitments, a commitment to a vector
x ∈ Zn0

q × Gn1
1 × Gn2

2 consists of two target group elements. Informally, the
reason is that, with high probability, (S,−R) ∈ G1×G2 is a non-trivial solution
for the equation e(x,R) + e(S, y) = 1, where (S,R) ∈ G1 × G2 is sampled uni-
formly at random. Such a solution would break the binding property of the naive
generalization in which commitments consist of only one target group element.
However, with high probability, there does not exist a solution (x, y) ∈ G1 ×G2
to the system of equations e(x,R1) + e(S1, y) = 1 and e(x,R2) + e(S2, y) = 1,
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where (S1, R1), (S2, R2) ∈ G1 × G2 are sampled uniformly at random. For this
reason, the commitments consist of two target group elements and breaking their
binding property can be reduced to solving a similar system of equations. The
resulting commitment scheme is described in Definition 9. It is computationally
hiding under the DDH assumption in GT , and it is computationally binding
under the SXDH assumption [35]. The scheme can be made perfectly hiding by
introducing an additional randomizer γ2 ∈ Zq.

Definition 9 (Commitment to (Zq,G1,G2)-vectors [35]). Let
(q,G1,G2,GT , e,G,H) be a bilinear group and let n0, n1, n2 ≥ 0. The fol-
lowing setup and commitment phase define a commitment scheme for vectors in
Zn0
q ×Gn1

1 ×Gn2
2 :

– Setup: g←R G2×n0
T , h←R G2

T , H←R G2×n1
2 ,G←R G2×n2

1 .
– Commit: Com1 : Zn0

q ×Gn1
1 ×Gn2

2 ×Zq → G2
T , (x,y, z, γ) 7→ hγ+ 〈g,x〉+

e(y,H) + e(G, z), where

hγ + 〈g,x〉+ e(y,H) + e(G, z) :=(
h1γ + 〈g1,x〉+ e(y,H1) + e(G1, z)
h2γ + 〈g2,x〉+ e(y,H2) + e(G2, z)

)
.

(1)

The aforementioned commitment schemes do not allow a prover to commit
to elements of the target group GT of the bilinear pairing e : G1×G2 → GT . For
this reason, we introduce the homomorphic commitment scheme of Definition 10.
This scheme is based on the El Gamal encryption scheme [23]. The commitment
scheme is unconditionally binding and hiding under the DDH assumption in GT .

Definition 10 (Commitment to (GT )-vectors [23, 35]). Let GT be an
Abelian group of prime order q. The following setup and commitment phase
define a commitment scheme for vectors in GnTT :
– Setup: g←R GnTT , h←R GT .

– Commit: Com2 : GnTT × Zq → GnT+1
T , (x, γ) 7→

(
hγ

gγ + x

)
.

Note that, in contrast to the schemes of Definitions 7, 8 and 9, this commit-
ment scheme is not compact, i.e, a commitment to a vector x ∈ GnTT contains
nT + 1 group elements. For this reason, the compression techniques applicable
to compact commitments are of no benefit for commitments to GT -vectors, and
we will treat commitments to target group elements separately.

Altogether, for a bilinear group (q,G1,G2,GT , e,G,H), we obtain the fol-
lowing commitment scheme:

Com :Zn0
q ×Gn1

1 ×Gn2
2 ×GnTT × Z2

q → GnT+3
T ,

(x,y, γ1, γ2) 7→
(

Com1(x; γ1)
Com2(y; γ2)

)
,

(2)

where x ∈ Zn0
q × Gn1

1 × Gn2
2 , y ∈ GnTT , Com1 is the commitment scheme from

Definition 9, and Com2 is the commitment scheme from Definition 10.
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4 Compressed Σ-Protocol for Opening Homomorphisms
In this section, we describe a compressed Σ-protocol for proving that a commit-
ted vector x ∈ Zn0

q × Gn1
1 × Gn2

2 × GnTT satisfies a linear constraint f(x) = y
captured by an arbitrary homomorphism f . We also say that this protocol allows
a prover to open a homomorphism f .

We present our protocols in an abstract language. More precisely, let

Ψ : H1 ×H2 → H, (x1, x2)→ Ψ(x1, x2),

be a homomorphism between Zq-modules. We construct a compressed Σ-
protocol for proving knowledge of a pre-image x = (x1, x2) of y = Ψ(x). In-
stantiating this abstract protocol with H1 = Zn0+1

q ×Gn1
1 ×Gn2

2 , H2 = Zq×GnTT
and Ψ = (Com1,Com2, f), where f is understood to ignore the commitment
randomness in x1 and x2, results in exactly the desired functionality.

Prior works [5, 6] have considered similar abstractions of compressed Σ-
protocols. However, we adapt these approaches in order to be able to treat the
compact and non-compact parts of the commitment scheme separately. More
precisely, we explicitly consider homomorphism where the domain is a Cartesian
product H1 ×H2 and apply the compression techniques only to the H1-part.

In Section 4.1, we construct a basic Σ-protocol for proving knowledge of
a Ψ -pre-image. In Section 4.2, we describe the compression mechanism that
reduces the communication complexity of a Σ-protocol. In Section 4.3, we in-
troduce the compressed Σ-protocol for our abstract problem. This protocol is
the recursive composition of the Σ-protocol and the compression mechanism.
In Section 4.4 and Section 4.5, we describe efficiency improvements applicable
to the special case where the homomorphism Ψ is defined over a bilinear group.
Finally, in Section 4.6, we compose the different building blocks and describe
our compressed Σ-protocol for opening homomorphisms on a committed vector
x ∈ Zn0

q ×Gn1
1 ×Gn2

2 ×GnTT .

4.1 Basic Σ-Protocol
Protocol 0, denoted by Π0, is a basic Σ-protocol for proving knowledge of a pre-
image of a homomorphism Ψ : H1 × H2 → H. More precisely, it is a Σ-protocol
for the following relation

RΨ =
{

(y;x) : y = Ψ(x)
}
. (3)

Protocol 0 follows the generic design for q-one-way homomorphisms [17, 18] and
its main properties are summarized in Theorem 1. Note that this Σ-protocol
does not yet rely on the special structure of the homomorphism Ψ , i.e., it does
not rely on the fact that the domain of Ψ is a Cartesian product H1 ×H2.
Theorem 1 (Homomorphism Evaluation). Π0 is a Σ-protocol for relation
RΨ . It is perfectly complete, special honest-verifier zero-knowledge and uncondi-
tionally special-sound. Moreover, the communication costs are:
– P → V: 1 H-element, 1 H1-element and 1 H2-element.
– V → P: 1 Zq-element.

12



Protocol 0 Σ-protocol Π0 for relation RΨ
Σ-protocol for proving knowledge of the pre-image of a Zq-module homomor-
phism Ψ : H1 ×H2 → H.

Input(y;x)

y = Ψ(x)
Prover Verifier

r ←R H1 ×H2

t = Ψ(r) t−−−−−−→
c←R Zq

c←−−−−−−
z = cx+ r

z−−−−−−→ Ψ(z) ?= cy + t

4.2 Compression Mechanism

In [4], it was observed that the final message z of Σ-protocol Π0 is actually a
witness for the statement cy + t of relation RΨ , i.e., the final message of this
Σ-protocol constitutes a trivial proof of knowledge for relation RΨ in which the
witness is simply revealed. Moreover, replacing this trivial PoK by a PoK with
smaller communication costs would improve the communication-efficiency of the
overall protocol. Note that the alternative protocol does not have to be zero-
knowledge, because the trivial PoK clearly is not.

In order to construct a more efficient PoK for relation RΨ , let us assume that
H1 is the Cartesian product of a group H0 with itself, i.e., H1 = H0×H0. In this
case, for all x1 ∈ H1, we can write x1 = (xL1 , xR1 ) with xL1 , xR1 ∈ H0.

The compression mechanism is a proof of knowledge for relation RΨ with
communication costs smaller than the communication-costs of the trivial PoK.
The main idea of this compression mechanism is that, after receiving a challenge c
from the verifier, the prover folds the secret element x1 ∈ H1 in half by computing
the response z = xL1 + cxR1 ∈ H0. Note that z ∈ H0 and x1 ∈ H1 = H0 × H0,
so this folding procedure indeed reduces the size of the witness. The cost of this
reduction is that the prover has to send two “cross-terms” a = Ψ((0, xL1 ), 0) and
b = Ψ1((xR1 , 0), 0) to the verifier before receiving the challenge.

This compression mechanism is an adaptation of the compression mechanisms
of [4, 5]. The difference with these prior works is that here the folding procedure
is only applied on the first part of the secret witness, i.e., the H1-part. The
compression mechanism, denoted by Π1, is described in Protocol 1 and its main
properties are summarized in Theorem 2.

Theorem 2 (Compression Mechanism). Π1 is a 3-move protocol for rela-
tion RΨ . It is perfectly complete and unconditionally 3-special-sound. Moreover,
the communication costs are:

– P → V: 2 H-elements, 1 H0-element and 1 H2-element.
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Protocol 1 Compression Mechanism Π1 for relation RΨ .

Input (y;x = (x1, x2))

y = Ψ(x)
Prover Verifier

a = Ψ((0, xL1 ), 0)
b = Ψ((xR1 , 0), 0) a,b−−−−−−−−−−−−−−→

c←R Zq
c←−−−−−−−−−−−−−−

z = xL1 + cxR1
z,x2−−−−−−−−−−−−−−→ Ψ((cz, z), cx2) ?= a+ cy+ c2b

– V → P: 1 Zq-element.

The proof of Theorem 2 is almost identical to the proofs of [4, Theorem 2]
and [5, Theorem 2].

Proof. Completeness follows directly.
3-Special Soundness: Let (a, b; c1; z1, x1), (a, b; c2; z2, x2) and

(a, b; c3; z3, x3) be three accepting transcripts for distinct challenges
c1, c2, c3 ∈ Zq and with common first message (a, b). Let α1, α2, α3 ∈ Zq
be such that  1 1 1

c1 c2 c3
c2

1 c
2
2 c

2
3

α1
α2
α3

 =

0
1
0

 .

Note that, since the challenges are distinct, this Vandermonde matrix is invertible
and a solution to this equation exists. Let z̄ =

∑3
i=1 αi((cizi, zi), cixi). Then,

since Ψ is a homomorphism, it follows that Ψ(z̄) = y. Hence, z̄ is a witness for
statement y of relation RΨ , which completes the proof.

4.3 Abstract Compressed Σ-Protocol

The the final message (z, x2) of Π1 is again a witness, but now for statement
a + cy + c2b of relation RΨ ′ where Ψ ′(z, x2) = Ψ((cz, z), cx2). Hence, if H0 is
the Cartesian product of a group H′0 with itself, the compression mechanism can
be applied again, i.e., instead of sending (z, x2) the prover and verifier run an
appropriately instantiated compression mechanism. In particular, if H1 = Hn0 ,
the compression mechanism can be applied recursively, i.e., the first part of the
witness is folded until it consists of only one H0 element.

The recursive composition of Σ-protocol Π0 and compression mechanism Π1
is a compressed Σ-protocol for relation RΨ . It is denoted by

Πabs = Π1 � · · · �Π1︸ ︷︷ ︸
µ times

�Π0, (4)
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where µ = dlog2(n)e. Note that if n is not a power of 2 it can be appended
with zeros. The basic Σ-protocol requires the prover to send one H1-element,
or equivalently n H0-elements. By contrast, the compressed Σ-protocol only has
to send 1 H0-element. However, this reduction comes at the cost of sending a
logarithmic number of 2µ+3 H-elements. The properties of Πabs are summarized
in Theorem 3. Note that Πabs is SHVZK because Π0 is.

Theorem 3 (Abstract Compressed Σ-Protocol). Let n ∈ N, µ =
dlog2(n)e and Ψ : Hn0 × H2 → H be a Zq-module homomorphism. Then Πabs is
a 2µ + 3-move protocol for relation RΨ . It is perfectly complete, special honest-
verifier zero-knowledge and unconditionally 3-special-sound. Moreover, the com-
munication costs are:

– P → V: 2µ+ 1 H-elements, 1 H0-element and 1 H2-element.
– V → P: µ+ 1 Zq-elements.

4.4 Efficiency Improvements for Bilinear Instances

In this section, we consider the following Zq-module homomorphism

Ψ : Zn0+2
q ×Gn1

1 ×Gn2
2 ×GnTT → GnT+3

T × Zq ×G1 ×G2 ×GT ,
(x1,x2) 7→

(
Com1(x1),Com2(x2), f(x1,x2)

)
,

where the vectors x1 = (x′1, γ1) ∈ Zn0+1
q ×Gn1

1 ×Gn2
2 and x2 = (x′2, γ2) ∈ GnTT ×

Zq both include the commitment randomness γ1, γ2 ∈ Zq and the homomorphism
f is understood to ignore this commitment randomness. This notation allows the
commitment randomness to be treated implicitly.

Instantiating compressed Σ-protocol Πabs with homomorphism Ψ allows a
prover to show that a committed vector x ∈ Zn0

q ×Gn1
1 ×Gn2

2 ×GnTT satisfies the
linear constraint f(x) = y. In Section 4.7, it is explained why we can restrict
ourselves to linear relation captured by homomorphisms with codomain Zq ×
G1 × G2 × GT . This instantiation therefore immediately results in the desired
linear functionality. However, we describe two improvements that are applicable
to this specific instantiation of compressed Σ-protocol Πabs.

First, we note that in this case the first message (a, b) of compression mech-
anism Π1 is always of the form

a = Ψ((0, xL1 ), 0) =
(
Com1(0, xL1 ),Com2(0), f((0, xL1 ), 0)

)
,

b = Ψ((xR1 , 0), 0) =
(
Com1(xR1 , 0),Com2(0), f((xR1 , 0), 0)

)
.

Hence, the second component of both a and b equals Com2(0) = 0 and does not
have to be sent to the verifier. For this reason, we understand Πabs to omit this
information from the first message.

Second, we observe that in every iteration of the compression mechanism the
prover has to send two evaluations of the homomorphism f to the verifier. This
step can be made more efficient by a pre-processing step in which part of the
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evaluation of f is “incorporated into the commitment”. The goal is not to hide
the evaluation y = f(x), in fact y is still public, but to reduce the overall com-
munication complexity that is achieved after compression. Ultimately, this step
will reduce a relevant constant in the communication costs of our compressed Σ-
protocol by a factor 1/2. This technique was first deployed in [13] to improve the
communication complexity of certain protocols [11] for inner-product relations
defined over Zq. Here, it is generalized to our bilinear setting.

To this end, we write f = (f1, f2) with f1(x) ∈ Zq×G1×G2 and f2(x) ∈ GT
for all x. The reason is that the commitment scheme is not compact on the
GT -part. Hence incorporating f2(x) into the commitment will not reduce the
communication complexity of the protocol.

The pre-processing step proceeds as follows. After the verifier has sent a
random challenge ρ to the prover, the problem of proving knowledge of a pre-
image for Ψ is reduced to proving knowledge of a pre-image for

Ψρ(x1,x2) = (Com1(x1, ρ · f1(x1,x2)),Com2(x2), f2(x1,x2)) ,

where the domain of Com1 has been increased from Zn0+1
q × Gn1

1 × Gn2
2 to

Zn0+2
q ×Gn1+1

1 ×Gn2+1
2 . Note that, since Com1 is compact, the codomain of Ψρ

is smaller than the codomain of Ψ . Because the challenge ρ is sampled uniformly
at random and the commitment scheme Com1 is binding, the reduction is sound,
i.e., a prover that knows a pre-image for Ψρ must also know a pre-image for Ψ .

The reduction, denoted by Πr, is formalized in Protocol 2 and its main
properties are summarized in Lemma 1. Note that, in contrast to the previ-
ous protocols, Πr only has computational soundness. Moreover, this protocol is
clearly not special-honest verifier zero-knowledge; the secret witness x is sent to
the verifier. However, since the final message of this reduction will be replaced
by an appropriate compressed Σ-protocol Πabs, it does not have to be SHVZK.

Protocol 2 Argument of Knowledge Πr for RΨ
Reduction from relation RΨ to relation RΨρ , where Ψ(x1,x2) =
(Com1(x1),Com2(x2), f(x1,x2)).

Input(z = (P1, P2, y1, y2); x)

z = Ψ(x)
y1 = f1(x)
y2 = f2(x)

Prover Verifier
ρ←−−−−− ρ←R Zq
x−−−−−→

Ψρ(x) ?= z + (Com1(0, ρ · y1), 0, 0)
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Lemma 1. Πr is a 2-move protocol for relation RΨ . It is perfectly complete
and computationally special-sound, under the assumption that the commitment
scheme Com1 is binding. Moreover, the communication costs are:

– P → V: 1 element of Zn0+2
q ×Gn1

1 ×Gn2
2 ×GnTT .

– V → P: 1 element of Zq.

Proof. Completeness follows directly.
Special soundness:We show that there exists an efficient algorithm χ that,

on input two accepting transcripts, either extracts a witness for Rψ, or finds two
different openings to the same commitment, and thereby breaks the binding
property of the Com1.

So let (ρ,x) and (ρ′,x′) be two accepting transcripts with ρ 6= ρ′, then by
subtracting the two verification equations and since Com1(·) is a homomorphism,

Com1 (x− x′, ρf1(x)− ρ′f1(x′)) = Com (0, (ρ− ρ′)y1, 0) .

Hence, either we have extracted two different openings to the same commitment,
or x = x′, ρf1(x) − ρ′f1(x′) = (ρ − ρ′)y1. In the latter case, it follows that
f1(x) = f1(x′) = y1. Moreover, in this case it follows that

Com1 (x1, ρf1(x)) = P1 + Com1 (0, ρy1) ,

which implies that Com1 (x1) = P1. Hence, Ψ(x) = z and x is a witness for
statement z of relation RΨ , which completes the proof.

4.5 Reduced Communication for El Gamal Based Commitments

The basic Σ-protocol Π0 of Section 4.1 follows the generic design for q-one-way
group homomorphisms Ψ [17, 18]. However, for some instantiations of Ψ this
generic approach is sub-optimal as it leads to unnecessarily high communication
costs. This is the case for our bilinear instantiation that makes use of the El
Gamal based commitment scheme Com2 of Definition 10,

Com2 : GnTT × Zq → GnT+1
T , (x, γ) 7→

(
hγ

gγ + x

)
.

Here, we describe a more efficient approach tailored to the commitment scheme
Com2. Subsequently, we explain how this improvement translates to a reduction
of the communication costs of our compressed Σ-protocol.

The main observation is that to open a Com2-commitment P = (P1, P2) ∈
GT ×GnTT , a prover merely has to reveal γ ∈ Zq with hγ = P1. The committed
vector x ∈ GnTT can be computed from the commitment P and the opening γ, i.e.,
x = P2 − gγ. Hence, proving knowledge of a commitment opening is equivalent
to proving knowledge of a discrete logarithm (in base h). The latter problem has
a natural Σ-protocol with constant communication complexity. By contrast, the
natural Σ-protocol for proving knowledge of a pre-image of the homomorphism
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Com2 has communication costs linear in the dimension nT of the committed
vector. A straightforward extension of this protocol allows a prover to prove
that the committed vector satisfies an arbitrary linear relation.

The resulting protocol, denoted by ΠEG, is a protocol for relation

REG =
{ (
P ∈ GnT+1

T , y ∈ H; x ∈ GnTT , γ ∈ Zq
)

: P = Com2 (x, γ) , f(x) = y
}
.

Its properties are summarized in Theorem 4. A detailed protocol description and
the proof of Theorem 4 are given in the full version of this paper [1].

Theorem 4 (Σ-Protocol for El Gamal Based Commitments). ΠEG is a
Σ-protocol for relation REG. It is perfectly complete, special honest-verifier zero-
knowledge and unconditionally special-sound. Moreover, the communication cost,
from prover to verifier, is 1 element in GT ×H× Zq.

4.6 Composition of the Protocols

Let Πc be the compressed Σ-protocol obtained by instantiating Πabs with ho-
momorphism

Ψ : Zn0+2
q ×Gn1

1 ×Gn2
2 ×GnTT → GnT+3

T × Zq ×G1 ×G2 ×GT ,
(x1,x2) 7→

(
Com1(x1),Com2(x2), f(x1,x2)

)
,

and incorporating the efficiency improvements of Section 4.4 and Section 4.5.
These efficiency improvements are applicable, because we restrict ourselves
to homomorphisms Ψ defined over a bilinear group. More precisely, for µ =
dlog2 (max(n0 + 1, n1, n2))e,

Πc = Π1 � · · · �Π1︸ ︷︷ ︸
µ times

�Π0 �Πr, (5)

where Π0 is understood to apply the improved Σ-protocol of Section 4.5 to Ψ ’s
GT -part. This protocol allows a prover to prove that a committed vector x ∈
Zn0
q ×G

n1
1 ×G

n2
2 ×G

nT
T satisfies a linear constraint f(x) = y. The properties ofΠc

are summarized in the Theorem 5. Note that, by the improvement of Section 4.5,
the communication costs are independent of the dimension nT of the GT -part of
the committed vector, even though the size of the commitment is linear in nT .

Theorem 5 (Compressed Σ-Protocol for Opening Homomorphisms).
Πc is a (2µ + 4)-move protocol for relation RΨ , where µ =

dlog2 (max(n0 + 1, n1, n2))e. It is perfectly complete, special honest-verifier zero-
knowledge and computationally (2, 2, 3, . . . , 3)-special-sound, under the assump-
tion that the commitment scheme Com2 is binding. Moreover, the communica-
tion costs are:

– P → V: 6µ+3 GT -elements, 2 Zq-elements, 1 G1-element and 1 G2-element.
– V → P: µ+ 2 Zq-elements.
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Remark 2. The compressed Σ-protocols of [4], for relations defined over Zq,
have a similar structure as Πc. However, there a variant of the reduction Πr is
applied after applying the Σ-protocol. By contrast, we first apply reduction Πr

and subsequently apply the basic Σ-protocol Π0. This adaptation yields a minor
improvement as it reduces the communication costs by 3 elements.

4.7 Amortization

Standard amortization techniques apply to the basic Σ-protocol Π0 for relation
RΨ , and thereby also to compressed Σ-protocol Πc. These amortization tech-
niques allow a prover to open many homomorphisms on one commitment, or one
homomorphism on many commitments, without increasing the communication
costs from the prover to the verifier. For details we refer to [4, Section 5.1].

These amortization techniques allow us to restrict ourselves to homomor-
phisms with the codomain Zq × G1 × G2 × GT . Namely, opening a homomor-
phism f with codomain Zs0

q ×Gs1
1 ×Gs2

2 ×GsTT can be casted as opening max(si)
homomorphisms with codomain Zq ×G1 ×G2 ×GT .

5 Threshold Signature Schemes

In this section, we describe a threshold signature scheme (TSS), as an application
of the compressed Σ-protocol Πc for proving linear statements on committed
vectors x. Informally a k-out-of-n threshold signature can only be computed
given k valid signatures issued by a k-subset of n players. We first describe the
formal definition of a TSS. Subsequently, we give our construction based on the
compressed Σ-protocol Πc.

5.1 Definition and Security Model

We deviate from standard TSS definitions and aim for a strictly stronger func-
tionality. In standard TSS definitions [43, 9], a non-transparent mechanism gen-
erates a single public key and n private keys that are distributed amongst the n
players. The private keys allow individual players to generate partial signatures
on messagesm. There is a public algorithm to aggregate k partial signatures into
a threshold signature. The threshold signature can be verified with the public
key.

By contrast, we define a TSS as an extension of a digital signature scheme.
Our fundamental strengthening of the definitions of [43, 9] and related works, is
that the public and private keys are generated by the players locally. Public keys
are published on a bulletin board and thereby publicly tied to the player’s identi-
ties. This setup is thus transparent (called “bulletin board” in [12] and formalized
as FCA in the UC framework [16]). The players can individually sign messages
by using their private keys. The aggregation algorithm now takes as input k
signatures, instead of partial signatures, to generate a threshold signature.
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For simplicity we assume the threshold k to be fixed. We will explain later
why our construction (trivially) satisfies some stronger properties.

Let us first give a definition for the basic building block of our TSS.

Definition 11 (Digital Signature). A digital signature scheme consists of
three algorithms:

– keygen is a randomized key generation algorithm that outputs a public-
private key-pair (pk, sk).

– sign is a (possibly randomized) signing algorithm. On input a message m ∈
{0, 1}∗ and a secret key sk, it outputs a signature σ = sign(sk,m).

– verify is a deterministic verification algorithm. On input a public key pk,
a message m and a signature σ, it outputs either accept or reject.

A signature scheme is correct if verify (pk,m, sign(sk,m)) = accept for all
key-pairs (pk, sk) ← keygen and messages m ∈ {0, 1}∗. If verify(pk,m, σ) =
accept we say that σ is a valid signature on message m. Moreover, an adversary
that does not know the secret key sk should not be able to forge a valid signature.
This security property is formally captured in the widely accepted definition
Existential Unforgeability under Chosen-Message Attacks (EUF-CMA) [9]. We
assume digital signature schemes to be correct and EUF-CMA by definition.

Definition 12 (Threshold Signature). A k-out-of-n threshold signature
scheme (TSS) is a digital signature scheme (keygen, sign,verify) appended
with two algorithms:

– k-aggregate is a (possibly randomized) aggregation algorithm. On input n
public keys (pk1, . . . , pkn), k signatures (σi)i∈S for a k-subset S ∈ {1, . . . , n}
and a message m ∈ {0, 1}∗, it outputs a threshold signature Σ.

– k-verify is a deterministic verification algorithm. On input n public keys
(pk1, . . . , pkn), a message m and a threshold signature Σ, it outputs either
accept or reject.

Let S ⊂ {1, . . . , n} be some k-subset of indices and let (σ)i∈S be signatures,
such that verify(pki,m, σi) = accept, for all i ∈ S, and for some message
m ∈ {0, 1}∗. Then a TSS is correct, if for all (pk1, . . . , pkn), m, S and (σ)i∈S ,

k-verify
(

(pk1, . . . , pkn),m, k-aggregate
(
m, (σi)i∈S

))
= accept.

If k-verify
(

(pk1, . . . , pkn),m,Σ
)

= accept we say that Σ is a valid thresh-
old signature. Moreover, an adversary with at most k − 1 valid signatures on a
message m should not be able to construct a valid threshold signature. This un-
forgeability property can be formalized by the following security game. Consider
an adversary that is allowed to choose a subset of k − 1 indices I ⊂ {1, . . . , n}
and impose the values of the keys pki in this subset. Assume that all remaining
keys pki were generated honestly from keygen and therefore correspond to se-
cret keys ski. The adversary is allowed to query polynomially many signatures
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σ′i = sign(ski,m′) for arbitrary messages m′. The TSS is said to be unforgeable,
if the adversary is incapable of producing a valid k-out-of-n threshold signature
on some message m that has not been queried. We assume threshold signatures
schemes to be correct and unforgeable by definition.

5.2 Our Threshold Signature Scheme

We follow a non-standard, but conceptually simple, approach for constructing a
threshold signature scheme. The starting point of our TSS is a digital signature
scheme (keygen, sign,verify) and the k-aggregation algorithm k-aggregate
simply produces a proof of knowledge of k valid signatures on a message m, i.e.,
a PoK for the following relation:

RT =
{

(pk1, . . . , pkn,m;S, (σi)i∈S) :
|S| = k, verify(pki,m, σi) = accept ∀i ∈ S

}
.

(6)

The obvious approach is to capture this relation by an arithmetic circuit, i.e.,
reduce it to a number of constraints defined over Zq, and apply a communication-
efficient proof of knowledge for arithmetic circuit relations in a black-box manner.
A significant drawback of this indirect approach is that it relies on an inefficient
reduction to arithmetic circuit relations. For this reason, we follow a direct ap-
proach avoiding these inefficient reductions.

We instantiate our TSS with the BLS signature scheme [10] defined over
a bilinear group (q,G1,G2,GT , e,G,H). Let us now briefly recall the BLS sig-
nature scheme, instantiated in our n-player setting. All players i, 1 ≤ i ≤ n,
generate their own private key ui ∈ Zq, and publish the associated public key
Pi = uiH ∈ G2. To sign a message m ∈ {0, 1}∗, player i computes signature
σi = uiH(m) ∈ G1, where H : {0, 1}∗ → G1 is some public hash function. The
public verification algorithm accepts a signature σi if

e(σi, H) = e(H(m), Pi). (7)

By the bilinearity of e, all honestly generated signatures are accepted. The un-
forgeability follows from the co-CDH assumption [10]. Note that in [10], where
G1 = G2, this collapses to the “gap-group” assumption.

We will be using the commitment scheme from Definition 8:

Com : Zn0
q ×Gn1

1 × Zq → GT , (xZq ,xG1 , γ) 7→ hγ +
〈
g,xZq

〉
+ e(xG1 ,H).

This commitment scheme requires the slightly stronger DDH assumption in G1
to hold. Note that, in contrast to the general case considered in Section 4, here
we do not need to be able to commit to G2- and GT -coefficients. Therefore, we
can use the somewhat simpler commitment scheme of Definition 8. In particular,
these commitments consist of only 1 instead of 2 GT -elements.

Instantiating relation RT with the BLS signature scheme therefore results in
the following relation,

RTSS = {(P1, . . . , Pn,m;S, (σi)i∈S) : |S| = k, e(σi, H) = e(H(m), Pi) ∀i ∈ S} .
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The k-aggregate algorithm simply computes a proof of knowledge for relation
RTSS . The main challenge is that the prover only knows k-out-of-n signatures.
To handle this problem the k-out-of-n case is reduced to the n-out-of-n as follows.
The k signatures are appended with n−k signatures σi = 0 and a binary vector
that allows the prover to eliminate the n − k new and invalid signatures. The
left hand side of the verification remains the same, while the right hand side
is multiplied by corresponding coefficient of the binary vector. This approach
results in a TSS with the desired properties. However, it requires the prover
to prove a number of non-linear statements, i.e., that the committed binary
vector is binary and contains at most n − k zeros. Although this can be done
efficiently, e.g., with the range proofs of [4], a recent result on k-out-of-n proofs
of partial knowledge [5] gives an even more efficient solution, that completely
avoids non-linearities.

The proof of partial knowledge technique allows us to reduce relation RTSS
to a linear relation defined over the bilinear group (q,G1,G2,GT , e,G,H). Let
p(X) = 1 +

∑n−k
j=1 ajX

j ∈ Zq[X] be the unique polynomial of degree at most
n−k with p(i) = 0 for all i ∈ {1, . . . , n}\S. Note that this polynomial defines an
(n− k, n) secret sharing of 1, with shares si = 0 for all i /∈ S. The k-aggregator
defines σ̃i = p(i)σi, where σ̃i is understood to be equal to 0 for i /∈ S, i.e.,
the secret sharing defined by p(X) eliminates the signatures (σi)i/∈S that the
k-aggregator does not know. Subsequently, the k-aggregator commits to

x = (a1, . . . , an−k, σ̃1, . . . , σ̃n) ∈ Zn−kq ×Gn1 .

Now note that the committed vector x satisfies fi(x) =
fi(a1, . . . , an−k, σ̃1, . . . σ̃n) = e(H(m), Pi) for all 1 ≤ i ≤ n, where

fi : Zn−kq ×Gn1 → GT , x→ e(σ̃i, H)−
n−k∑
j=1

aji
je(H(m), Pi). (8)

Hence, by proving that the committed vector satisfies these relations, it follows
that the k-aggregator knows a non-zero polynomial p(X) of degree at most n−k
and group elements σ̃1, . . . σ̃n ∈ G1 such that e(σ̃i, H) = p(i)e(H(m), Pi) for all
1 ≤ i ≤ n. Therefore, the k-aggregator must know valid signatures for all indices
i with p(i) 6= 0, and since p(X) is non-zero and of degree at most n− k, at least
k of its evaluations are non-zero. Because the mappings fi are homomorphisms,
the required proof of knowledge follows from an appropriate instantiation of
compressed Σ-protocol Πc. We apply the amortization techniques of Section 4.7
to prove all n relations of eq. (8) for essentially the price of one. Moreover, we ap-
ply the Fiat-Shamir transform to make protocol Πc non-interactive. Altogether
the threshold signature contains a commitment P ∈ GT to the vector x together
with a non-interactive proof of knowledge π of an opening of P that satisfies
the aforementioned linear constraints. The k-aggregate algorithm is summa-
rized in Algorithm 3. The associated k-verification algorithm k-verify simply
runs the verifier of Πc. Correctness of the resulting threshold signature follows
immediately from the completeness of Πc, and unforgeability follows from the
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soundness of Πc. The properties of the TSS are summarized in Theorem 6. Note
that our TSS has some additional properties not required by the definition of Sec-
tion 5.1. For instance, since the proof of knowledge Πc is special honest-verifier
zero-knowledge, our threshold signatures hide the k-subset S of signers.

Algorithm 3 k-Aggregation Algorithm k-aggregate

Public Input : Public Keys P1, . . . , Pn ∈ G2
Message m ∈ {0, 1}∗

Private Input : k − Subset S ⊂ {1, . . . , n}
Signatures (σi)i∈S ∈ Gk1

Output : Threshold Signature. Σ = (π, P ) ∈ Zq ×G1 ×G4dlog2(n)e+3
T ∪ {⊥}

1. If ∃i ∈ S such that e(σi, H) 6= e(H(m), Pi) output ⊥ and abort.
2. Compute the unique polynomial p(X) = 1 +

∑n−k
i=1 ajX

j ∈ Zq[X] of degree at
most n− k such that p(i) = 0 for all i ∈ {1, . . . , n}\S.

3. Compute σ̃i := p(i)σi for all i ∈ S and set σ̃i = 0 for all i /∈ S.
4. Let x = (a1, . . . , an−k, σ̃1, . . . , σ̃n) ∈ Zn−kq × Gn1 and compute commitment P =

Com(x, γ) ∈ GT for γ ∈ Zq sampled uniformly at random.
5. Run the non-interactive variant of Πc to produce a proof π attesting that the

committed vector x satisfies fi(x) = fi(a1, . . . , an−k, σ̃1, . . . σ̃n) = e(H(m), Pi) for
all 1 ≤ i ≤ n, where fi are homomorphisms defined in Equation (8).

6. Output commitment P and the non-interactive proof π ∈ Zq ×G1 ×G4dlog2(n)e+2
T .

Theorem 6 (Threshold Signature Scheme). The k-out-of-n threshold sig-
nature scheme defined by the BLS signatures scheme [10] appended with the
algorithms (k-aggregate, k-verify) is correct and unforgeable. Moreover:

– A threshold signature contains exactly 4 dlog2(n)e + 3 GT -elements, 1 G1-
element and 1 Zq-element.

– A threshold signature is zero-knowledge on the identities of the k signers.
– The threshold k can be chosen at aggregation time.
– It resists against an adaptive adversary which can replace the public keys of

corrupted players.

Proof. See the full version of this paper [1].

6 Generalized Circuit Zero-Knowledge Protocols

The Compressed Σ-Protocol Πc of Section 4 allows a prover to prove linear
statements. In this section, we show how to handle non-linear statements. Our
approach is a generalization of the linearization techniques of [4], where it was
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shown how to linearize non-linearities in arithmetic circuit relations. More pre-
cisely, we aim to find a SHVZK PoK for proving knowledge of a witness x such
that C(x) = 0 for some circuit C defined over a bilinear group, i.e., a protocol
for the following circuit satisfiability relation:

Rcs = {(C; x) : C(x) = 0}. (9)

Circuits defined over a bilinear group have the following form:

C : Zn0
q ×Gn1

1 ×Gn2
2 ×GnTT → Zs0

q ×Gs1
1 ×Gs2

2 ×GsTT .

These circuits are also called bilinear group arithmetic circuits [35] and they are
composed of addition gates and the following 5 types of bilinear gates:

Gate0 : Zq × Zq → Zq, (a, b)→ ab,
Gate1 : G1 × Zq → G1, (g, a)→ ga,
Gate2 : G2 × Zq → G2, (h, a)→ ha,
Gate3 : GT × Zq → GT , (k, a)→ ka,
Gate4 : G1 × G2 → GT , (g, h)→ e(g, h).

(10)

Each wire of C corresponds to a variable that takes values in a group W ∈
{Zq,G1,G2,GT }. We assume all gates to have fan-in two and unbounded fan-
out. Note that these circuits are indeed generalizations of arithmetic circuits,
where wires take values in Zq, and gates are addition or multiplication gates.

Bilinear gates taking one constant and one variable input value are linear
mappings. Hence, circuits C containing no bilinear gates with two variable inputs
are handled directly by the techniques from Section 4. In this case, C(x) =
f(x) + a for a homomorphism f and a fixed constant a. A protocol for relation
Rcs then goes as follows:
1. The prover commits to x ∈ Zn0

q ×Gn1
1 ×Gn2

2 ×GnTT .
2. The prover and the verifier run Πc to open the homomorphism f , i.e., the

prover reveals a value y and proves that f(x) = y.
3. The verifier checks that y + a = 0.

When C contains bilinear gates, we cannot express the circuit in this linear
manner. To handle non-linearities, the prover appends the secret vector x with a
vector aux containing auxiliary information, i.e., in the first step of the protocol
the prover commits to the appended vector (x, aux). The approach is a general-
ization of the secret sharing based techniques from [4]; linearizing non-linearities.

Let c be the vector of wire values associated to the output wires of all the
bilinear gates in C(x). Note that c depends on the secret vector x. Then, there
exists a homomorphism f and a constant a, independent from x, such that
C(x) = f(x, c) + a. A naive generalization of the above approach to arbitrary
circuits is now obtained by taking aux = c. However, this approach does not
guarantee that the committed vector (x, c) is of the appropriate form, i.e., that
c corresponds to the outputs of bilinear gates when C is evaluated in x.

To prove that the committed vector (x, c) is of the appropriate form the in-
puts and outputs of the bilinear gates are encoded in polynomials f ∈ A[X] where
A ∈ {Zq,G1,G2,GT }. We first describe some properties of these polynomials.
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6.1 Polynomials over Groups of Prime Order

The Zq-module structure of the groups Gi naturally extends to their polyno-
mial rings, i.e., Gi[X] is a Zq[X]-module for all i and the product h(X) of two
polynomials f(X) ∈ Zq[X] and g(X) ∈ Gi[X] is defined naturally.

Since Gi is a Zq-module, a polynomial f =
∑n
i=0 aiX

i ∈ Gi[X] defines
a mapping f : Zq → Gi, ρ → f(ρ) =

∑n
i=0 aiρ

i, called the “evaluation”
mapping. Moreover, every ρ ∈ Zq defines a mapping:

Fρ : Gi[X]→ Gi, f =
n∑
i=0

aiX
i → f(ρ) =

n∑
i=0

aiρ
i,

called the “evaluation at ρ” mapping, which is linear.
A bilinear gate Gate : L×R → U can be extended to act on polynomials:

Gate
( n∑
i=0

aiX
i,

m∑
j=0

bjX
j
)

=
n∑
i=0

m∑
j=0

Gate(ai, bj)Xi+j ∈ U[X]. (11)

By the bilinearity of Gate it follows that this mapping commutes with polynomial
evaluation, i.e., for all ρ ∈ Zq it holds that Gate(f(ρ), g(ρ)) = Gate(f, g)(ρ).

The following lemma shows that a non-zero polynomial f has at most deg(f)
zeros. From this it follows that, for a fixed non-zero polynomial f and a random
challenge c, the probability that f(c) = 0 is at most deg(f)/q.

Lemma 2. Let f(X) ∈ A[X] be non-zero, for some A ∈ {Zq,G1,G2,GT }. Then
f(X) has at most deg(f) zeros.

Proof. Recall that A has prime order q and let g be a generator of A. Then
it is easily seen that f(X) = f ′(X)g for some polynomial f ′(X) ∈ Zq[X] with
deg(f) = deg(f ′). Moreover, since g is a generator of A, it holds that f(a) = 0
if and only if f ′(a) = 0. The lemma now follows from the fact that a non-zero
polynomial f ′ defined over the field Zq has at most deg(f ′) zeros.

The following lemma describes an approach for testing whether three polyno-
mials f(X), g(X) and h(X) satisfy a bilinear relation defined by Gate: L×R →
U. More precisely, when the bilinear relation holds in a random evaluation point
c ∈ Zq then, with high probability, it holds for the polynomials f , g and h.

Lemma 3. Let f(X) ∈ L[X], g(X) ∈ R[X] and h(X) ∈ U[X] with
deg(f),deg(g) ≤ n and deg(h) ≤ 2n. Then, for d ∈ C ⊂ Zq sampled uniformly
at random, it holds that

Pr (Gate (f(d), g(d)) = h(d)|Gate (f(X), g(X)) 6= h(X)) ≤ 2n/ |C| .

Proof. The polynomial h(X) − Gate (f(X), g(X)) ∈ U[X] has degree at most
2n. The lemma now follows from Lemma 2.
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6.2 Linearization of Bilinear Gates

We are now ready to describe the linearization approach. To this end, for 0 ≤
i ≤ 4, let mi be the number of gates Gatei : Li×Ri → Ui of type i in circuit
C. Then, for a circuit evaluation C(x), we let ai ∈ Lmii and bi ∈ Rmi

i be the
vectors of left and right input values of these gates. Similarly, we let ci ∈ Umi

i

be the vector of output values for the gates of type i.
The protocol now goes as follows. First, for each i, the prover samples two

polynomials fi(X) ∈ Li[X]≤mi and gi(X) ∈ Ri[X]≤mi of degree at most mi

uniformly at random under the condition that fi(j) = ai,j and gi(j) = bi,j
for all 1 ≤ j ≤ mi. Note that these polynomials define packed Shamir secret
sharings [42] with (mi + 1)-reconstruction and 1-privacy of the vectors ai and
bi, i.e., the vectors ai and bi can be reconstructed from any mi + 1 evaluations
of fi(X) and gi(X) and any single evaluation outside {1, . . . ,mi} is independent
from the vectors ai and bi.

Second, the prover computes the polynomial hi(X) = Gatei (fi(X), gi(X)).
By the strong-multiplicativity of Shamir’s secret sharing scheme, hi(X) ∈ Ui[X]
defines a packed secret sharing of the vector ci ∈ Umi

i with 2mi + 1 recon-
struction. More precisely, hi(X) is of degree at most 2mi and hi(j) = ci,j for
all 1 ≤ j ≤ mi. Subsequently, the prover sends a commitment to the following
secret vector to the verifier:

y =
(
x, f0(0), g0(0), h0(0), . . . , h0(2m0), . . . ,
f4(0), g4(0), h4(0), h4(1), . . . , h4(2m4)

)
.

The vector y = (x, aux) contains the vector c = (c1, . . . , c`) of the output values
of all bilinear gates as a sub-vector. Hence, all wire values can be expressed as
the evaluation of some public homomorphism in y plus a public constant value.
This holds in particular for the evaluations fi(j) and gi(j) for all 1 ≤ i ≤ ` and
1 ≤ j ≤ mj . Hence, for every i, mi + 1 evaluations of fi and gi can be computed
as affine functions evaluated in y, i.e., y uniquely defines polynomials fi(X) and
gi(X) of degree at most mi. Similarly, y uniquely defines polynomials hi(X) of
degree at most 2mi. By the linearity of Lagrange interpolation it follows that, in
addition to the wire values, all evaluations of the polynomials fi(X), gi(X) and
hi(X) can be expressed as some homomorphism evaluated in y plus a constant.

These properties allow the prover to convince the verifier that the vector
y is of the appropriate form by proving that certain linear constraints hold.
Namely, in the next step of the protocol, the verifier samples a random chal-
lenge d ∈ Zq \ {1, . . . ,max(mi)} uniformly at random and asks the prover to
run protocol Πc to open C(x), fi(d), gi(d) and hi(d) for all 1 ≤ i ≤ `. Note
that all these values correspond to homomorphisms evaluated in the committed
vector y = (x, aux). To further reduce the communication costs, the amortiza-
tion techniques mentioned in 4.7 are applied. Finally, the verifier verifies that
C(x) = 0 and that Gate (fi(d), gi(d)) = hi(d) for all 0 ≤ i ≤ 4. By Lemma 3
this final verification implies that Gate (fi(X), gi(X)) = hi(X), and therefore
that Gate (ai,j , bi,j) = ci,j for all j, with probability at least 1 − 2mi/(q −mi).
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If mi is polynomial and q is exponential in the security parameter, this proba-
bility is overwhelming. The protocol is SHVZK because the polynomials fi(X),
gi(X) and hi(X) define secret sharings with 1-privacy, and because protocol Πc

is SHVZK. For a more detailed discussion we refer to [4] in which this approach
is restricted to arithmetic circuits.

The resulting protocol, denoted by Πcs, is described in the full version of this
paper [1]. To state the properties of protocol Πcs observe that

y = (x, aux) ∈ Zn0+2m0+6
q ×Gn1+2m1+3

1 ×Gn2+2m2+3
1 ×GnT+2m3+2m4+3

T ,

where y is the vector to which the prover commits in the first round of protocol
Πcs. For ease of notation we define the following parameters:

m := max(mi), s := max(s0 + 6, s1 + 3, s2 + 3, sT + 3),
N := max (n0 + 2m0 + 7, n1 + 2m1 + 3, n2 + 2m2 + 3) ,
NT := nT + 2m3 + 2m4 + 3.

Note that we make a distinction between the (Zq,G1,G2)-part, for which the
commitment scheme is compact, and the GT -part of the vector y. Using this
notation, the properties of Πcs are summarized in Theorem 7.

Theorem 7 (Circuit Zero-Knowledge Protocol for Bilinear Circuits).
Πcs is a (2µ + 7)-move protocol for circuit relation Rcs, where µ = dlog2 (N)e.
It is perfectly complete, special honest-verifier zero-knowledge, under the DDH
assumption in GT , and computationally (2m + 1, s, 2, 2, 3, . . . , 3)-special-sound
under the SXDH assumption. Moreover, the communication costs are:

– P → V: 6µ + NT + 9 GT -elements, 4 G1-elements, 4 G2-elements and 8
Zq-elements.

– V → P: µ+ 4 Zq-elements.

Remark 3. Without the improvement of Section 4.5, for El Gamal based com-
mitments, the prover would have to communicate 2NT additional GT elements
in protocol Πcs. Hence, this improvement causes the constant in front of the
only linear term of the communication costs to be reduced from 3 down to 1.

6.3 Comparison of the Communication Costs

In this section, we compare the communication costs of our protocol Πcs to
the bilinear circuit ZK protocol of [35]. We note that, a rigorous comparison
is difficult, for the following two reasons. First, we consider arbitrary bilinear
circuits, whereas they assume certain structural properties. The communication
costs stated in [35] hold only for circuits in which the gates with GT outputs are
output gates. Second, we consider a strictly stronger scenario in which the prover
proves that the committed input values satisfy some bilinear relation, instead of
merely proving knowledge of a satisfying input vector without being committed
to this input vector, i.e., we consider a commit-and-proof functionality. This

27



difference explains why their communications costs are independent of the input
dimensions n0, n1 and n2.

Despite these two aspects, showing that we consider a stronger application
scenario, it is interesting to note that our communication costs are smaller in
certain parameter regimes. From Theorem 7 it follows that our Protocol Πcs

requires the prover to send a total of 6 dlog2 (N)e + NT + 28 elements (group
and field elements) to the verifier, i.e., the communication costs associated to
the (Zq,G1,G2)-part are logarithmic and the communications costs associated
to the GT -part are linear. By contrast, the protocol of [35] results in a total
communication cost of 16 log2 (`mix) + 3nT + 71 elements, where `mix = 2m′0 +
m′1 +m′2 +nTm

′
3 +m′4. Here, the variable m′i counts all gates of type i, including

the ones taking a constant input value, i.e., m′i ≥ mi. Hence, we have reduced
the constant of the logarithmic part from 16 down to 6, and the constant of the
linear part from 3 down to 1. However, when comparing the linear parts of the
communication complexity, we note that there exist bilinear circuits for which
3nT < NT = nT + 2m3 + 2m4 + 3, e.g., circuits with nT = 0 and m4 > 0.
Therefore, depending on the bilinear circuit our linear communication costs can
be larger. This can partially be explained by the fact that Lai et al. [35] make
structural assumptions on the bilinear circuit. For instance, they assume that
only input and output wires can take values in GT , whereas our protocol works
for arbitrary bilinear circuits.

Nevertheless, as opposed to general bilinear circuits, there are specific
quadratic inner-product relations for which the approach of Lai et al. [35] can
result in communication costs lower than those obtained by applying our generic
approach. These relations exploit the fact that their approach reduces bilinear
circuit relations to sets of inner-product constraints. These techniques are fur-
ther improved in Bünz et al. [14], who focus on communication-efficient protocols
for quadratic inner-product relations. By contrast, for the example of threshold
signature schemes, which only rely on linear circuits, application of the latter
approach would result in unnecessary overhead as compared to our compressed
Σ-protocol approach.
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