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Abstract. Stacked Garbling (SGC) is a Garbled Circuit (GC) improve-
ment that efficiently and securely evaluates programs with conditional
branching. SGC reduces bandwidth consumption such that communica-
tion is proportional to the size of the single longest program execution
path, rather than to the size of the entire program. Crucially, the parties
expend increased computational effort compared to classic GC.
Motivated by procuring a subset in a menu of computational services
or tasks, we consider GC evaluation of k-out-of-n branches, whose in-
dices are known (or eventually revealed) to the GC evaluator E. Our
stack-and-stagger technique amortizes GC computation in this setting.
We retain the communication advantage of SGC, while significantly im-
proving computation and wall-clock time. Namely, each GC party garbles
(or evaluates) the total of n branches, a significant improvement over the
O(n · k) garblings/evaluations needed by standard SGC. We present our
construction as a garbling scheme.
Our technique brings significant overall performance improvement in var-
ious settings, including those typically considered in the literature: e.g.
on a 1Gbps LAN we evaluate 16-out-of-128 functions ≈ 7.68× faster
than standard stacked garbling.
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1 Introduction

Garbled circuits (GCs) allow two mutually untrusting parties to securely com-
pute arbitrary functions of their private inputs while revealing only the func-
tions’ outputs. GC was formalized by [BHR12] as a primitive. It is foundational
in secure multiparty computation (MPC).

Research that improves the practical cost of GC, e.g. [NPS99, KS08, BHKR13,
KMR14, ZRE15, BMR16], focuses on two metrics:

• Communication. GC constructions require that the GC generator G send to
the GC evaluator E a large collection of ciphertexts that encode the truth
tables for each gate. Reducing the number of required ciphertexts improves
network utilization.



• Computation. Typical GC constructions encode each gate’s truth table using
a hash function or key derivation function H. Reducing the number of calls
to H improves each party’s CPU utilization.

Stacked Garbling (or SGC) [HK20c, HK20b] is a recent GC improvement that
reduces GC communication consumption for functions that contain conditional
branching, e.g. as the result of a program if or switch statement. SGC shows that
G need not send material proportional to the entire circuit; sending material
proportional only to the longest program execution path is sufficient.

While traditionally communication is considered the bottleneck in the GC
performance, SGC’s communication improvement changed that status quo, as
it did not bring a corresponding computation improvement. In many settings,
computation now limits GC performance, sometimes severely (see examples and
use cases discussed in our work).

SGC improves evaluation of 1-out-of-n circuits. In this work, we consider a
generalization to secure evaluation of k-out-of-n circuits, but with the constraint
that the GC evaluator E knows (or learns) the identities of the active branches.
Such evaluation is well motivated, see Section 1.1. While SGC can be directly
employed to solve this problem, the resulting solution is computationally ineffi-
cient: we could use the 1-out-of-n SGC solution k times, but this leads to each
party (i.e. G and E) garbling each of n branches O(k) times1. Already for k > 3
computation may overtake communication as the limiting resource (see, e.g.,
Figure 6).

This overhead is unfortunate, particularly because standard garbling without
stacking does not require this computation overhead. In standard garbling, the
generator G simply generates each of the n circuits once and includes a special
multiplexer circuit that propagates the output of the k active branches only.
Thus each party processes a circuit only O(n) times. However, adopting this
approach sacrifices the communication benefit of SGC.

Thus, if we wish to securely evaluate k-out-of-n branches, we must either
compromise computation or communication. Fortunately, this dilemma can be
resolved, and we can get the best of both above techniques.

In this work, we show that we can retain the communication advantage of
SGC, while only garbling an (almost) optimal number of branches. Specifically,
like the standard SGC-based approach, we consume communication proportional
to only k circuits, while reducing the computation to n garblings by G and n−k
garblings by E(compare to the total of SGC’s O(n · k) garblings). The resulting
wall-clock time improvement is surprisingly significant, with the total runtime
almost k× smaller than SGC for a wide range of parameters (see Section 10).

In sum, we note that network bandwidth is a limited resource, and should
be consumed with care. At the same time, it is not pragmatic to reduce com-
munication by indiscriminately sacrificing computation: even mainstream CPUs
1 Because of our setting, we consider a corresponding special case of SGC where E

knows the active branch; hence to evaluate 1-out-of-n functions, the parties consume
only linear work in n. General SGC, where neither party knows the active branch,
requires O(n logn) computation [HK21].
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generate GC at the rate only 3× the speed of 1Gbps LAN, and are expensive
both in dollar cost and power consumption. Our approach strikes a balance be-
tween network utilization and hardware utilization and potentially allows use
with cheap, computationally weak devices whose use, e.g. in IoT, is exploding.

Our Setting. We summarize our considered setting.
GC generator G and evaluator E agree on a set of n functions of which k will

be evaluated. Both G and E provide input into the functions (common input
can be reused across functions).

E knows a priori or receives as output from the GC the identity of the k
branches. If the active branches are revealed by the GC, then the revelation must
be completed before the k-out-of-n conditional can run.

We formalize our approach as a garbling scheme [BHR12], not a protocol.
Garbling schemes are flexible primitives that can be plugged into a number
of cryptographic protocols. For example, our implementation (Section 10) uses
our scheme to implement a typical constant-round 2PC protocol secure against
semi-honest adversaries.

The k-out-of-n branching can be sequentially composed and nested (see dis-
cussion in Sections 7.3 and 7.4).

1.1 Motivation

Consider a server that offers a suite of various services to clients, and suppose
that these services have privacy concerns for both the server and client. The client
may a priori know which services it wishes to request, but may wish that even
the choice of services are kept secret. Alternatively, the identity of the provided
services might be computed securely, but might be implied by the client’s output.
In such cases, an efficient k-out-of-n secure computation can allow the server to
securely provide k out of its offered n services while learning only the number
of requested services k.

As an example, suppose a telehealth company offers services that screen
concerned patients for a variety of medical conditions. In this example, both
parties may have privacy concerns: the patient may not wish to disclose her
health data and the server may use sensitive health data of other individuals to
aid in the screening or use proprietary data. The patient may a priori know that
a number of medical conditions are unlikely to be the source of her symptoms
(e.g. it is unlikely that the patient’s headaches are caused by athlete’s foot).
Hence, the client may only wish to be screened for k health conditions out of the
possible n. By employing our k-out-of-n construction, the telehealth company
can potentially offer its services to the client at a cheaper rate.

We note that high speed networking (e.g., LAN or WiFi modules) are cheap
(a few U.S. dollars) and low-power, while even mainstream CPUs are expen-
sive both in cost and power. Thus, our approach is particularly suited for use
with cheaper computationally weaker and/or battery-powered devices, whose
use, e.g., in IoT, is exploding.
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1.2 Contribution
We improve GC evaluation of k-out-of-n functions where the k choices are known
(either a priori or revealed by the computation) to the GC evaluator E. In
particular we:
• Present a modification to Stacked Garbling [HK20b] that retains O(k) com-

munication consumption, but that improves the total number of branch gar-
blings performed by G and E from O(n · k) to only 2n− k.
• Prove our construction secure as a garbling scheme [BHR12]. Garbling schemes

can be used as a primitive to instantiate secure protocols, e.g. semi-honest
2PC protocols.
• Implement and experimentally evaluate our approach. The implementation

instantiates a semi-honest 2PC protocol. Our experimental results indicate
that our computation improvement (and wall clock time!) over standard
Stacked Garbling indeed scales with k. For example, for n = 128 and k = 16
we improve over Stacked Garbling by ≈ 7.68×.

1.3 High Level Intuition
Stacked Garbling improves communication needed to evaluate 1-out-of-n circuits
by bitwise XORing, or stacking, the n GC materials needed to evaluate each of
the branches. For each inactive branch, E receives a compact seed used to derive
all of G’s randomness when garbling it. This allows E to securely reconstruct
and unstack material for the n − 1 inactive branches, so that she can recover
the material for the active branch and evaluate normally. Unfortunately, naively
extending this technique to k-out-of-n branches incurs factor k increase in the
cost to garble and unstack material.

At the highest level, our technique shows that G can send to E k stacks of
linearly independent combinations of exactly n materials. Crucially, each stack
will now contain garblings of both inactive and active branches. The inactive
garblings can be easily removed from these k stacks via seeds. The remnants
are a collection of k stacks that each contain k active materials. To transform
these k stacks into the k materials, we use the linear independence: E uses an
optimized form of Gaussian elimination to quickly transform the k stacks into k
materials and then uses the results to evaluate the k active circuits.

Because we reuse the same n materials across all k branch evaluations, we
reduce garbling computation by factor k. We choose our linear combinations
carefully such that this stacking and unstacking can be achieved using only
simple XOR operations. Our technique must consume O(n · k) calls to XOR
to stack/unstack the linear combinations, but these XOR calls are significantly
cheaper than the gate-by-gate construction of circuit garblings. Hence our tech-
nique significantly improves performance.

2 Related Work
Stacked Garbling. Ours is in a line of works that improve GC evaluation of
conditional branches [KKW17, Kol18, HK20c, HK20b, HK21]. The more recent
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of these works introduce Stacked Garbling, improving GC communication by up
to the program branching factor.

While [HK20b] and [HK21] consider the general case of branching where
neither party knows the active branch, [Kol18] and [HK20c] consider special
cases where one party knows the branch. Our work builds on [HK20c] which
considers the case where E knows the active branch, and we review its technique
in Section 4.

[Kol18] considers the dual case where G knows the active branch. We briefly
explain why we do not instead build on this work.

Firstly, the setting is less flexible, since G, unlike E, cannot non-interactively
receive messages from the GC. Hence G must choose the active branches. In
contrast, our approach allows E to choose the active branches or alternatively
allows the branches to be chosen by the GC and revealed to E as part of her
output.

Secondly, GC players G and E enjoy asymmetric levels of trust: security
against malicious E is often trivially attained simply from the authenticity prop-
erty of GC. Therefore, changing the roles of the MPC participants (e.g. switching
Alice from being G to E) results in a corresponding trust model change, which
may not be desired. In the context of the motivation discussed in Section 1.1, G
is more naturally played by the (more trusted) service provider.

Finally, and most importantly, the [Kol18] technique also incurs O(n · k)
computation, though for different reasons than [HK20c]. In particular, the tech-
nique requires G to simply send to E k GC materials corresponding to the active
branches. Upon receiving these, E who does not know the branches, tries to eval-
uate each branch with each material; hence she evaluates O(n · k) times. When
E makes a bad guess, her evaluation results in so-called garbage output labels,
which must be discarded in favor of valid output labels. [HK20b] showed that
garbage can be collected without additional interaction via a special multiplexer,
but constructing the multiplexer requires G to emulate E’s bad evaluation. Thus,
in this construction, both G and E perform O(n·k) times, and it is not clear how
this can be improved. In contrast, the [HK20c] technique allows for an efficient
Gaussian elimination technique that we present in this work.

Other Improved Secure Conditional Branching. Outside GC, improved condi-
tional branching has begun to emerge. Although our emphasis is constant round
2PC, we mention these works for completeness.

In the Zero Knowledge setting, some branching improvements have been
made. [GGHAK21] developed a compiler for sigma protocols that takes advan-
tage of disjunctive proofs. [BMRS20] developed an efficient interactive ZK proof
system that incorporates a stacking optimization. Like our work, [BMRS20] also
considers k-out-of-n branching, though their protocol and setting are entirely
different.

In the MPC setting, conditional improvements to the classic GMW protocol
and to Beaver Triples have been shown [HKP20, HKP21].
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Prior work motivated by similar scenarios. We discuss several prior works, whose
setting and motivation is related to ours. These works address different MPC
aspects, and we don’t compare our work to them, e.g., w.r.t. performance.

Multiple executions of (identical) functions was considered by [HKK+14,
LR14]. Both works designed improved cut-and-choose algorithms for batched
execution. We can view our work as improving a batched execution of a sub-
set of different functions. We note that improvements of bare garbling schemes
are more rare than improvements in the richer world of constructions built on
garbling schemes.

[KNT06] considered private policy negotiation. Here the negotiation pro-
cess itself, i.e. determining what data will be revealed under what conditions, is
considered privacy-sensitive. One method of policy selection considered in this
work involves one player privately evaluating k-out-of-n matching functions. A
related question is of multi-factor authentication or policy match check, where
authentication (policy check) succeeds if k out of n private conditions hold.

3 Notation and Assumptions

Notation.

• G is the GC generator. We refer to G as he/him.
• E is the GC evaluator. We refer to E as she/her.
• κ denotes the computational security parameter (e.g. 128).
• [n] denotes the sequence of natural numbers 0, ..., n− 1.
• We work with vectors/matrices and bitstrings (i.e., vectors of bits). We index

vectors and matrices with subscripts and use 0-based indexing, e.g. x0 or Ai,j .
• We consider GC evaluation of k-out-of-n circuits:
• n is the number of branches.
• k is the number of target branches.
• Ci is the Boolean circuit that implements branch i.
• M denotes the vector of n materials corresponding to the garbling of

each branch. Informally, the material Mi is the collection of encrypted
truth tables needed for E to evaluate branch Ci.

• t denotes the target set, which is the set of active branches. Since t always
has size k, we treat it interchangeably as a vector of k elements.

Cryptographic Assumptions. Our garbling scheme (Section 7) requires only
standard assumptions.

Our implementation builds on top of the state-of-the-art Boolean circuit half-
gates technique [ZRE15] which uses the Free XOR technique [KS08]. Thus our
implementation assumes a circular correlation robust hash functionH [CKKZ12].
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4 Preliminaries – Stacked Garbling [HK20c]

Our work can be viewed as an extension to the Stacked Garbling (SGC) tech-
nique [HK20b, HK20c] which improves the communication consumption of GC
in the context of conditional branching.

Even though our focus is secure 2PC, not ZK, the most relevant to our work
is the technique of [HK20c], which improves GC-based ZK (GCZK). Indeed,
their core technique does not actually require the simpler ZK setting. Instead,
it simply requires that the GC evaluator E knows the identity of each active
branch. In such cases, [HK20c] shows that it suffices to send garbled material
proportional to the longest conditional branch rather than to the entire circuit.

[HK20c] is built on two ideas:
1. The material produced by garbling each conditional can be handled as a

bitstring. This means that materials can be XORed, or stacked, with one
another to reduce communication.

2. Material can be expanded from a pseudorandom seed. If all random choices
used to generate a circuit garbling are derived from a seed, then material is
a deterministic expansion of that seed. Thus, a seed is a compact represen-
tation of a circuit material.
As a seed uniquely determines all wire labels in the GC, it is insecure to
send material via a seed to the circuit evaluator. However, [HK20c] shows
that it is secure to reveal a seed for an inactive branch.
Let {C1, . . . , Cn} be a set of conditionally composed circuits. Let Ct be the

active (target) branch and let E know t. G knows each Ci, but does not know
and must not learn t.

G chooses n seeds si and uses each si to garble circuit Ci. The result is a vector
of n ‘materials’ M , which are the collections of encrypted truth tables needed
to evaluate the GC. Rather than sending the concatenation of these materials,
G instead stacks the materials by sending to E the following XOR sum:⊕

i
Mi

(Shorter materials are padded with trailing zeros such that each material has
the same length.) Of course, the XOR sum of the n materials is shorter than the
concatenation, and hence SGC greatly reduces communication consumption.

The parties then ensure that E receives the n − 1 seeds si 6=t corresponding
to each inactive branch. These seeds can be conveyed from G to E via oblivious
transfer (OT) or can be conveyed by the GC itself [HK20b]2. Because E holds
these seeds, she can reconstruct each material Mi6=t by simply replaying the
actions of G. E now computes:(⊕

i
Mi

)
⊕
(⊕

i 6=t
Mi

)
= Mt

2 Namely, at runtime E will hold garbled labels corresponding to the branch condition
t; G can include an encrypted table that allows E to decrypt different seeds depend-
ing on the semantic value of t. Thus, E can receive the seeds without additional
interaction. This is useful when t is implied by E’s output rather than by her input.
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Therefore E can recover the material Mt corresponding to the active branch.
Crucially, although E successfully recovers the branch material, she never re-
ceives the sensitive seed st

3. From here, E can evaluate the active branch nor-
mally. We can exit the conditional and continue GC evaluation by including a
multiplexer component4. Thus, [HK20c] evaluates 1-out-of-n circuits while re-
quiring only enough communication for the single longest circuit.

5 Technical Overview

Let C0, . . . , Cn−1 denote n circuits of which k should be evaluated. For sake of
example, suppose that k = 2; our approach generalizes to arbitrary k. Let α, β
denote the indices of the two circuits to be evaluated.

Let us first consider evaluation of circuit Cα. As reviewed in Section 4, stan-
dard Stacked Garbling [HK20c] allows the GC generator G to first generate
each circuit Ci from a seed si. Let M denote the vector of n resulting GC mate-
rials (i.e., the collections of encoded gate truth tables). Rather than sending the
concatenation of these materials, G instead sends to E the following XOR sum:⊕

i
Mi

E then receives each seed si 6=α, uses these seeds to regenerate each material
Mi 6=α, and then computes:(⊕

i
Mi

)
⊕
(⊕

i6=α
Mi

)
= Mα

Thus, E can recover the material for the target branch using communication
proportional to only the single longest material. From here, E can use GC input
labels to correctly evaluate circuit Cα.

Now, consider evaluation of Cβ . Unfortunately, the above work cannot be
re-used when evaluating Cβ . Namely, it is not secure for G to re-use any above
materials Mi: E has already received sβ , and it is not secure for E to hold a
seed used to generate evaluated material. Instead, G must start from fresh seeds
s′i and generate fresh materials M ′. Similarly, E must receive all seeds s′i 6=β and
regenerate each material M ′i6=β . In general, E and G each generate each of n
circuits k times.
3 The seed st conceptually contains both the material Mt and all ‘wire labels’, and so

it is not secure for E to view this seed. If she did, she could decrypt the wires on
the active branch. It is secure for her to receive seeds on inactive branches because
we can ensure that inactive branches hold no semantic values via a demultiplexer
component [HK20b].

4 [HK20b] and [HK21], which consider the more general case where neither party
knows the active branch, require significant extra computation to generate the mul-
tiplexer. This extra computation is needed because E does not know the active
branch t, and hence makes “mistakes” during evaluation that need to be cleaned up.
[HK20c] and we assume that E does know t, and hence the multiplexer is extremely
efficient to generate by simply enumerating a garbled table based on t.

8



Our Approach. Let us return to the point where G had computed each material
Mi, but before any stacking and sending had taken place. We allow the parties
to re-use the same n materials Mi to evaluate all k target circuits. Thus, we
reduce the number of needed materials from n · k to only n.

Our key idea is to view each material Mi as an element in a (very large)
finite field GF(2`). From here, G computes and sends to E k linearly independent
combinations of the n materials. For example, when k = 2, G sends the following
two stacks:

M0 ⊕M1 ⊕M2 ⊕ · · · ⊕Mn−1

M0 ⊕ 2 ·M1 ⊕ 4 ·M2 · · · ⊕ 2n−1 ·Mn−1

The GC then conveys to E (via a garbled gadget) all seeds si 6=α,β ; hence E
can reconstruct all materials Mi6=α,β . This information suffices for E to perform
Gaussian elimination. In particular, E XORs both stacks with (multiples of) her
reconstructed materials and hence recovers:

Mα ⊕Mβ

2α ·Mα ⊕ 2β ·Mβ

E can now solve for Mα and Mβ and then use these materials to securely evaluate
Cα and Cβ . Crucially, (1) we re-use the same n materials to evaluate all k circuits,
(2) we retain SGCs O(k) communication complexity, and (3) we ensure that E
does not obtain the seed for any active branch. Hence, we can securely and
efficiently evaluate k-out-of-n functions inside the GC.

5.1 Gaussian Elimination via ‘Staggering’
In practice, we choose our field GF(2`) and our linear combinations such that
all operations can be implemented by simple XORs. This ensures that we can
both stack and unstack material using efficient hardware instructions. Hence,
the approach is efficient in practice.

Specifically, the materials in each stack are ‘staggered’ (see Figure 1) by
multiplying them by some power of two in the field. The powers of two for each
stack are chosen such that all stacks are linearly independent combinations of
the materials and hence contain sufficient information to unstack. We choose the
field GF(2`) such that even multiplying a material by the largest such power of
two will not cause “wrap-around” in the field, and hence no modular reduction
is needed to implement multiplication. Formally, if m is the size of the largest
material, ` ≥ m+n ·k is (more than) sufficient to ensure no modular reduction is
needed. From here on, we largely ignore the size of the field and simply assume
it is large enough to avoid need for modular reduction.

6 Garbling, Stacked and Staggered
We now formalize the key algorithms for our staggered stacking technique dis-
cussed above. Section 7 later hosts these algorithms in a garbling scheme [BHR12]
such that our technique can be used in GC protocols.
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M2

M0

M2

M1

M3

M1

M3

M0

Fig. 1: An example of our staggered stacking for n = 4 and k = 2. Suppose
C0 and C2 are the active branches. Hence E reconstructs from seeds inactive
branch materials M1 and M3. G sends to E two stacks of all material, but
the materials in the second stack are “staggered” by prepending materials with
varying numbers of zeros. E unstacks (indicated in grey) M1 and M3. Notice
that E can directly extract the first bits of M0 from the second stack. She then
unstacks these bits from the first stack, allowing her to view the first bits of M2.
By repeatedly unstacking portions of materials from the stacks, E eventually
unstacks all k target materials.

Parameters:

• A finite field F , GF (2`).
• Number of branches n.
• Number of targets k.
• The stacking matrix A for n and k (see Definition 1).

Input: A vector of materials M ∈ Fn.
Output: A vector of stacks of material S ∈ Fk where S , A ·M .
Procedure:

S ← 0k

for i ∈ [k] :
for j ∈ [n] :

if Ai,j 6= 0 :
. � denotes bitwise left shift.
Si ← Si ⊕ (Mj � logAi,j)

return S

Fig. 2: G’s procedure for stacking n materials into k stacks. The procedure imple-
ments simple matrix multiplication by the stacking matrix A (see Definition 1).
We take advantage of zeros in A to reduce the number of needed XOR operations.

Figure 1 depicts the bit-shift interpretation of our staggering technique for
n = 4 and k = 2. We expound on this intuition, formalizing the technique for
arbitrary n and k by using our field multiplication interpretation.
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Parameters:

• A finite field F , GF (2`).
• Number of branches n.
• Number of targets k.
• Maximum material length len < `.
• The stacking matrix A for n and k (see Definition 1).

Input:

• A set of targets t.
• A vector of stacks S′ ∈ Fn where materials for inactive branches Ci/∈t have been

XORed out.

Output: A vector of materials for the active branches Ci∈t. I.e., the vector of mate-
rials Mi∈t = Strike(t,A)−1 · S′.
Procedure:

delayi ,
{
t0 · (k − 1) if i = k − 1
delayi+1 + i · (tk−j−1 − tk−j−2) otherwise

out← 0k

. Iterate through the stacks bit by bit.
for b ∈ [len + delay0] :
. Iterate through each stack, recovering and unstacking one bit per stack.
for i ∈ k − 1, ..., 0 :

if delayi ≤ b < delayi + len :
. α denotes the branch index associated with stack Si.
α← tk−i−1

p← b− delayi
. shift denotes the bit index of the bth bit of Mα.

shift← log (Ai,α) + p

outi,p ← S′i,shift

. Unstack the bit outi,p from each stack.
for i′ ∈ [k] :

if Ai′,α > 0 :
shift′ ← log (Ai′,α) + p

S′i′,shift′ ← S′i′,shift′ ⊕ outi,p
return out

Fig. 3: Our unstacking algorithm allows E to perform efficient Gaussian elimina-
tion and to unstack k materials from k stacks. Strike is defined in Definition 2.
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The key object in our formalization is a k×n matrix which we refer to as the
stacking matrix. The stacking matrix formalizes the bit shift distance for each
material in each stack.

Definition 1 (Stacking Matrix). Let n be a number of branches and k be a
number of targets. The stacking matrix for n and k is a k × n matrix A whose
entries are defined as follows:

Ai,j ,

{
0 if ((i+ j) mod n) < k − 1
2i·(i+j+k−1) otherwise

The stacking matrix is notationally complex, but its structure can be under-
stood through example:

Example 1 (4×6 stacking matrix). The 4×6 stacking matrix is defined as follows:

A ,


0 0 0 1 1 1
0 0 1 2 4 0
0 1 4 16 0 0
1 8 64 0 0 0


Notice that each matrix row has k − 1 zeros; other entries are powers of

two, and the powers of two increase with the rows. We choose varying rows to
ensure linear independence which will be important when allowing E to unstack
material.

To stack n materials in M into k stacks S, G simply computes S , A ·M .
We choose A with this matrix-vector multiplication in mind. In particular, (1)
we maximize the number of zero entries in the matrix and (2) non-zero entries
are powers of two. These properties allow for an efficient algorithm that stacks
material using only simple XORs (see Figure 2).

G then sends the k stacks S to E and E obliviously receives n − k seeds
corresponding to the inactive branches. Let t denote the set of active branch
identifiers. From here, E reconstructs the n − k inactive materials: she recon-
structs each Mi/∈t. E then constructs the following n element vector M ′:

M ′ ,

{
Mi if i /∈ t
0 otherwise

Now, E can remove the n − k reconstructed materials from her stacks by
computing the following:

S′ , S ⊕ A ·M ′

In other words, E shifts each material by the appropriate amount (according
to A) before XORing it with each stack. The resulting vector S′ contains linear
combinations of the k materials Mi∈t only.

To define how E transforms these k stacks into the k active branch materi-
als, we first give a helper definition that allows E to remove columns from the
stacking matrix A:
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Definition 2 (Strike). Let A be a k × n matrix and let s be a set of indices
such that |s| < n. Then Strike(s,A) is the k × (n− |s|) matrix that contains all
columns in A except those whose index appears in s.

Example 2 (Strike two columns from 4 × 6 stacking matrix). Let A denote the
4× 6 stacking matrix and let s = {1, 4}:

Strike(s,A) =


0 0 1 1
0 1 2 0
0 4 16 0
1 64 0 0


Note that the following equality holds:

S′ = Strike(t̄,A) ·Mi∈t

This equality holds simply from the fact that E already removed each inactive
branch material from S′.

Thus, to transform the k stacks into the k target materials, E needs to
invert Strike(t̄,A). The stacking matrix A is designed with this inversion in
mind: by construction, any choice of k columns are linearly independent. Thus,
our approach allows E to perform Gaussian elimination to unstack any choice
of k-out-of-n branches. To complete the unstacking, E computes the following:

Mi∈t = Strike(t̄,A)−1 · S′

Like our stacking procedure (Figure 2), this unstacking can also be achieved using
simple XORs only; see Figure 3. Unlike our stacking procedure, this unstacking
procedure is nontrivial. This may be surprising, since the case for k = 2 (e.g.
Figure 1) is quite simple. However, with k > 2 the algorithm must carefully
coordinate the order in which bits are unstacked. Nevertheless, due to the special
case of the matrix A, we can unstack materials using only O(k2 · `) bit XORs,
where ` is the length of the longest stack.

We explain in greater detail our unstacking algorithm in the following cor-
rectness lemma:

Lemma 1 (Unstack Correct). Upon inputs t and S′, the procedure in Fig-
ure 3 indeed computes:

Strike(t̄,A)−1 · S′

Proof. By inspection of Figure 3.
Recall, e.g., from Example 1 that each material is shifted by some amount,

according to the stacking matrix A. Our algorithm extracts bits one by one from
the stacks. Each stack will be used to recover a single material. In particular,
stack i will be used to recover material Mtk−i−1 We say that stack i is associated
with material Mtk−i−1 and with branch Ctk−i−1 .

In the general case, we extract one bit per stack per iteration. However, note
that on the first iteration (i.e. before anything has been unstacked), some stacks
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may have more than one material stacked into the first bit (for reference, see
Figure 1). Therefore, we add a per-stack delay which ensures that we do not
attempt to recover bits prematurely. For example, in Figure 1, we must first
unstack a bit of material from the second stack before we can recover a bit of
material from the first.

We formalize the delay for stack i with the following expression:

delayi ,
{
t0 · (k − 1) if i = k − 1
delayi+1 + i · (tk−j−1 − tk−j−2) otherwise

This delay formalizes the distance between (1) the bit location in the ith stack
where its associated material begins and (2) the bit location in the (i + 1)th
stack where its associated material begins. Note that the delay is quite complex
because we must account for the fact that some materials (i.e. those for inactive
branches) have been a priori removed from each stack. The delay for stack i
depends on (1) the delay of its neighboring stack i+ 1, (2) the shift distance for
stack i which is itself i, and (3) the difference between the indexes of the two
target branches associated with stack i and stack i + 1. Note that the smallest
delay occurs for stack k − 1, which corresponds to the fact that we can start
extracting material from this stack first.

Now, view the collection of stacks as a matrix S where Si,j denotes the jth
bit of stack i. Consider an arbitrary bit Si,j . Before we begin to unstack, this
bit is a stacking of (in the general case) k bits from each of the k materials.
Therefore, we must ensure that k− 1 bits from the non-associated materials are
each removed before we attempt to extract the bit. This is exactly the purpose
of the above delay.

We show that our algorithm ensures bit Si,j is correctly unstacked by con-
sidering two cases of the other bits originally in Si,j : those associated with stack
r > i and those associated with stack r < i:

1. Consider a bit b associated with stack r > i originally XORed into Si,j . By
the time our algorithm attempts to extract Si,j , b will have already been
unstacked. This is ensured because delayr < delayi by definition.

2. Consider a bit b associated with stack r < i originally XORed into Si,j . By
the time our algorithm attempts to extract Si,j , b will have already been
unstacked. This is ensured because we choose delay according to the shift
distance of each stack. Thus, although stack r has longer delay than stack i,
its associated material is not shifted as much, and hence it will have already
been unstacked.

Thus, we correctly recover each bit Si,j , and so Figure 3 is correct.

Thus G conveys k circuit materials at the cost of only O(n) circuit garblings.
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7 Stacked and Staggered Garbling Scheme

We formalize our technique as a garbling scheme [BHR12] which we call S&S.
S&S allows G and E to securely evaluate k-out-of-n functions where E outputs
the identity of the evaluated functions.

A garbling scheme is a five-tuple of algorithms:

(ev,Gb,En,Ev,De)

These five algorithms specify how G and E handle the GC. Namely, (1) En
specifies how G encodes cleartext inputs as input labels, (2) Gb specifies how
G constructs the garbled circuit, (3) Ev specifies how E evaluates the garbled
circuit and obtains output labels, (4) De specifies how output labels are decoded
to cleartext outputs, and (5) ev specifies circuit semantics. En, Gb, Ev, and De
should together securely implement ev.

Additionally, [BHR12] formalizes the garbling scheme properties correctness,
obliviousness, privacy, and authenticity (we provide definitions of these proper-
ties as we prove them). By proving our garbling scheme satisfies these properties,
we ensure that the scheme may be plugged into GC protocols as a black box.

Underlying garbling scheme. Because our focus is conditional evaluation
only, we adopt a formalization technique of [HK20c] whereby our scheme focuses
exclusively on the handling of k-out-of-n branching; we leave the handling of
the functions in each branch to another underlying garbling scheme which we
refer to as Base. S&S may be instantiated with different schemes for Base. Our
implementation instantiates Base with the state-of-the-art Boolean-circuit-based
half-gates technique [ZRE15].

We require that Base satisfies the [BHR12] properties of correctness, oblivi-
ousness, privacy, and authenticity. Additionally, [HK21] introduced a property
called strong stackability which ensures that the garbling scheme produces gar-
bled material that may be safely stacked. We provide their definition of strong
stackability; a candidate garbling scheme must satisfy the property to instantiate
Base.

Definition 3 (Strong Stackability). A garbling scheme is strongly stackable
if:
1. For all circuits C and all inputs x,

(C,M,En(e, x)) c= (C,M ′, X ′)

where (M, e, ·) = Gb(1κ, C), X ′ ← {0, 1}|X|, and M ′ ← {0, 1}|M |.
2. The scheme is projective [BHR12]. I.e., the input encoding string e and

output decoding string d are vectors of pairs of labels.
3. There exists an efficient deterministic procedure Color that maps strings to
{0, 1} such that for all C and all projective label pairs A0, A1 ∈ d:

Color(A0) 6= Color(A1)

where (·, ·, d) = Gb(1κ, C).
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4. There exists an efficient deterministic procedure Key that maps strings to
{0, 1}κ such that for all C and all projective label pairs A0, A1 ∈ d:

Key(A0) || Key(A1) c= {0, 1}2κ

where (·, ·, d) = Gb(1κ, C).

The first sub-property ensures that GC material looks random, which ensures
that E cannot determine the active branch by simply looking at the garbling5.
Second, properties (2–4) allow our scheme to work with the output labels that
emerge when evaluating Base. More precisely, (3) corresponds to the classic
point-and-permute technique to reduce the number of PRF calls in evaluating
the GC gates. The Color procedure produces a bit that instructs which garbled
row to decrypt. (4) allows us to extract a suitable PRF key from each label.

7.1 Garbling Scheme Algorithms

Construction 1 (S&S Garbling Scheme). Let Base denote an underlying gar-
bling scheme that is correct, oblivious, private, authentic, and strongly stack-
able. S&S is the tuple of algorithms specified in Figure 4.

In Section 7.5, we prove Construction 1 correct, oblivious, private, and authen-
tic, as defined by [BHR12]. Note that Construction 1 is not strongly stackable;
see Section 7.4 for discussion.

The algorithms in Figure 4 host our staggering technique (Section 6) into
a garbling scheme. This hosting is relatively straightforward; we note the more
interesting details:

• S&S is a projective garbling scheme [BHR12]: i.e., each circuit wire has ex-
actly two possible GC labels. Formally, the input encoding string e and
output decoding string d are simple vectors of pairs of GC labels. This
means that our procedures En and De are standard, and are implemented as
straightforward mappings between cleartext values and garbled labels (i.e.,
they index e and d).

• S&S handles k-out-of-n branching only. We leave the handling of low level
details of branch internals to Base. Additionally, our scheme can be hosted
inside another garbling scheme in order to sequentially compose multiple
k-out-of-n computations (see Section 7.3). This way, our formalization can
cleanly focus on our contribution without sacrificing expressivity.

• As written, S&S does not directly support nested k-out-of-n computations.
We discuss nesting, including explaining how it can be added to our scheme,

5 It may seem strange that we require GC material look random, given that we reveal
the active branch to E. However, we need this strong property to meet the [BHR12]
definition of obliviousness. Informally, our scheme ensures that the garbling of a
circuit provides no information to E. Only once output decoding tables d are revealed
to E does E learn the branch conditions, which allow her to evaluate.
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S&S.Gb(1κ, C):
k, C0, .., Cn−1 ← C
T ← ({0, 1}κ)n
for i ∈ [n] :
Mi, ei, di ← Base.Gb[Ti](1κ, Ci)

e′,Mdem ← GbDem(T, e0..en−1)
e← T || e′
d′,Mmux ← GbMux(T, d0..dn−1)
d← T, d′

Mstack ← Stack(k,M0, ..,Mn−1)
M ←Mdem || Mstack || Mmux
return M, e, d

S&S.Ev(C,M,X, t):
k, C0, .., Cn−1 ← C
Mdem,Mstack,Mmux ←M
T,X ′ ← X
j ← 0
for i /∈ t :
Mi, ei, di ← Base.Gb[Tj ](1κ, Ci)
j ← j + 1

Mi∈t ← Unstack(t,Mstack,Mi/∈t)
X0, .., Xk−1 ← EvDem(t, T,Mdem, X

′)
for i ∈ [k] :
Yi ← Base.Ev(Cti ,Mti , Xi)

Y ← EvMux(t, T,Mmux, Y0, .., Yk−1)
return T, Y

S&S.ev(C, x):
k, C0, .., Cn−1 ← C
t, x′ ← x
y ← empty-string
for i ∈ [k] :
y ← y || Base.ev (Cti , x′)

return t, y

S&S.En(e, x):
X ← empty-string
for i ∈ [|x|] :
X0, X1 ← ei
if xi = 0 then Xi ← X0;
else Xi ← X1;

return X

S&S.De(d, Y ):
y ← empty-string
for i ∈ [|Y |] :
Y 0, Y 1 ← di
if Yi = Y 0 then yi ← 0;
else if Yi = Y 1 then
yi ← 1

else return ⊥;
return y

Fig. 4: Our garbling scheme S&S. The procedure Stack refers to the procedure
specified in Figure 2. The procedure Unstack refers to the procedure described in
Section 6 whereby E first computes S′ , S⊕A ·M ′ and then performs Gaussian
elimination via Figure 3. Our Ev procedure is nonstandard because we pass the
set of target branches t as an extra cleartext argument. This models the fact that
E knows the targets. T denotes a bitwise encoding of the set t. If Ti encodes zero,
then branch Ci is not active; otherwise Ci is active. We use the zero encoding
for Ti as a seed to garble branch Ci; Gb[Ti] denotes configuring the randomness
in the procedure Gb according to the seed Ti. GbMux and EvMux respectively
garble and evaluate the multiplexer component. GbDem and EvDem respectively
garble and evaluate the demultiplexer component.
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in greater length in Section 7.4. Note that we can nest 1-out-of-n oblivious
branching inside our scheme by instantiating Base with an existing stacked
garbling scheme [HK21].

• Our scheme invokes procedures Stack and Unstack. These procedures use
the algorithms in Figures 2 and 3 to stack and unstack material.

• By convention, the first n bits of input to our circuits encode the target set
t. The ith target bit indicates if branch Ci is a target. If branch Ci is a target,
then E will obtain an encoding of one for the ith target bit. Each target bit’s
zero encoding is used as the seed to garble branch Ci. Hence, E can garble
inactive branches.

• We add an additional input t to S&S.Ev to model the fact that E knows
the target set t. The set t is also formalized as a circuit output. This, again,
models the fact that E knows the target set. In particular, this output allows
us to prove privacy (see Theorem 3).

• Our top level circuit feeds input to (resp. collects output from) the active
branches via a demultiplexer (resp. multiplexer). See below for extended
discussion of these gadgets.

7.2 Multiplexer and Demultiplexer

Our construction routes inputs to and collects outputs from the k active branches
via a demultiplexer and a multiplexer. These garbled gadgets are simple, and
can be built using standard GC techniques: namely, according to the inputs we
build an encrypted function table such that E can decrypt only the appropriate
outputs. Both gadgets are similar to the gadgets used in [HK20b, HK21].

For simplicity and because they are constructed in a standard way, we do not
fully specify garbled algorithms for these components. However, we do specify
the cleartext functions that they compute.

The demultiplexer takes as input a target set t and an input string x. For each
of the n branches Ci, the demultiplexer computes the following simple function:

demux(t, x) ,
{
x if i ∈ t
⊥ otherwise

Namely, the demultiplexer forwards the input x to each active branch and prop-
agates a garbage value to each inactive branch. In the GC, our demultiplexer
encodes ⊥ values by producing a uniform GC label that is distinct yet indistin-
guishable from the label’s in the encoding string e. This ensures that E does not
learn the active branch set t until she sees the output decoding string d, which
is needed to show that our scheme is oblivious.

The multiplexer takes as input a target set t and n output strings yi. It
concatenates and propagates the output from the k active branches in t:

mux(t, y0, ..., yn−1) , yt0 || ... || ytk−1
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7.3 Sequential Composition

As mentioned above, our scheme explicitly handles k-out-of-n branching only.
Nevertheless, our scheme can be used to achieve more general circuits, where a
k-out-of-n conditional may occur multiple times within another circuit (here we
cover sequential composition; nested composition is discussed in Section 7.4).

To achieve this kind of sequential composition of circuits, i.e. where another
circuit appears before and/or after a k-out-of-n conditional, we can host our
scheme inside another garbling scheme. This outer scheme can handle the details
of threading the outputs from one circuit to inputs of another. Such sequential
composition is not hard, and e.g., the formalization of [HK21] can be used with
our scheme to achieve sequential composition.

We emphasize that our scheme requires the outer scheme to pass the target
set t as a cleartext argument to S&S.Ev. This can be easily achieved in both the
case where t is part of E’s input or if t is computed by a prior circuit component
and released as output to E. Technically, the latter release to E is achieved
by including t as formal output, and into the corresponding decoding table d.
Because t must be available to E prior to the evaluation of the conditional,
(at least) the corresponding portion of d must be available to E during GC
evaluation.

7.4 Nested Branching

We do not prove our garbling scheme strongly stackable [HK21]. Indeed, our gar-
bling scheme will not in general work for embedding inside a stacked conditional
where neither party knows the target branch. Indeed, to use our construction,
E must know in cleartext the target set t. Therefore, if S&S is in an inactive
branch, E will obtain a uniformly sampled set t, which may be distinguishable
from a real-execution t, which will break SGC properties.

However, it is easy to see that it is secure to nest our scheme inside itself,
e.g. to allow a tree of k-out-of-n branching: in this case, the above distinguisher
does not apply, since E already knows the targets of all outer conditionals.

Unfortunately, the [BHR12] framework is not suitable for proving that nest-
ing our scheme is secure. The problem is that [BHR12] provides no mechanism
for revealing intermediate circuit values to E. Rather than either losing the
modularity of our scheme or performing a complete overhaul to the [BHR12]
framework, we instead provide a modular and informal discussion of the changes
that would be needed to prove that nesting our scheme is secure.

Our approach to resolving this is the introduction of the notion of mandatory
outputs, which will play a special role in composition. Namely, each circuit, in
addition to having a collection of regular outputs, has a second formal collection
of mandatory outputs. When composing more than one garbling scheme to build
up complexity, the outer scheme is required to verbatim forward all mandatory
outputs of its inner schemes as its own mandatory outputs. With this change
added, we could set each target set t as a mandatory output. This would in
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particular ensure that E learns the control flow path through k-out-of-n condi-
tionals as required. Since E learns the full path through the conditionals, she
can correctly evaluate. Moreover, E’s view is simulatable since the control flow
path is implied by the mandatory outputs.

As discussed above (Section 7.3), these mandatory outputs need to be re-
leased over time to E. I.e., to begin evaluating a k-out-of-n conditional, E must
know the target set t.

As a final detail, to achieve obliviousness (see Definition 5) when nesting
branches, our multiplexer and demultiplexer must produce material indistin-
guishable from uniform strings. This ensures that E cannot learn the active set
t before learning the GC decoding string d.

7.5 Proofs

S&S satisfies the [BHR12] definitions of correctness, obliviousness, privacy, and
authenticity. We include definitions and proofs of each of these properties.

Definition 4 (Correctness). A garbling scheme is correct if for all circuits
C and all inputs x:

De(d,Ev(C,M,En(e, x))) = ev(C, x)

where (M, e, d) = Gb(1κ, C).

Correctness requires that the garbling scheme algorithms implement the se-
mantics specified by ev.

Theorem 1. If Base is correct and strongly stackable, S&S is correct.

Proof. By the correctness and strong stackability of Base.
S&S.En and S&S.De are straightforward mappings between cleartext values

and GC labels and so are trivially correct. Thus the core task is to show that
given valid input encodings X corresponding to input x, Gb and Ev jointly ensure
an output encoding Y corresponding to ev(C, x).

Recall that our scheme handles k-out-of-n conditionals only. The conditional
is preceded by a demultiplexer, which routes inputs to active branches, and
followed by a multiplexer, which collects outputs from the active branches (see
Section 7.2).

Recall that for active branch set t, the demultiplexer computes for each
branch Ci the following simple function:

demux(t, x) ,
{
x if i ∈ t
⊥ otherwise

I.e., the input x is routed to each active branch. The demultiplexer (formally
GbDem and EvDem) is implemented as a standard garbled gadget built from
an encrypted function table and is correct.
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The core of our approach is the stacking and unstacking of material. Correct-
ness of this step can be inferred from discussion in Sections 5 and 6. In short,
Gb stacks the n circuit materials by left multiplying the stacking matrix A (see
Definition 1 and Figure 2). Recall from Figure 4 that each branch material is con-
structed using a zero label in the encoding T . Ev computes the inactive branch
zero labels and hence can reconstruct and unstack all inactive branch materials.
From here, Ev performs Gaussian elimination (via Figure 3, see Lemma 1) to
extract the active branch materials. Thus, Ev correctly unstacks materials. Base
is assumed correct, so invoking Base.Ev on correct material yields correct output
labels for each active branch.

Finally, Ev routes the outputs of each active branch to the multiplexer (for-
mally GbMux and EvMux). Importantly, Base is assumed strongly stackable, so
the Color procedure is available. This allows us to construct the multiplexer as
a standard garbled gadget based on point and permute [BMR90]. This gadget
implements the following simple function:

mux(t, y0, ..., yn−1) , yt0 || ... || ytk−1

Hence output labels are properly propagated from the active branches.
S&S is correct.

Definition 5 (Obliviousness). A garbling scheme is oblivious if there exists
a simulator Sobv such that for any circuit C and all inputs x, the following are
indistinguishable:

(C,M,X) c= Sobv(1κ, C)

where (M, e, ·) = Gb(1κ, C) and X = En(e, x).

Obliviousness ensures that the material M and encoded input labels X reveal
no information about the input x or about the output ev(C, x).

Theorem 2. If Base is oblivious and strongly stackable, then S&S is oblivious.

Proof. By constructing an obliviousness simulator Sobv.
Sobv simply does the following: (1) run S&S.Gb(1κ, C) to generate a fresh gar-

bling (M ′, e′, d′), (2) run S&S.En(e′, 0) to generateX ′, and (3) output (C,M ′, X ′).
In other words, the simulator simply constructs a fresh garbling and encodes the
all zeros string. We claim that this simulation is indistinguishable from real.

For our k-out-of-n setting, the most notable point is that the garbling does
not leak the target set t. The target set t is disclosed to E by the decoding string
d which is not available to the obliviousness distinguisher, so t must be hidden.
As an informal aside, obliviousness can be useful when E may never eventually
evaluate a particular GC, e.g. in cut-and-choose. Hiding the target set t from E
until it is explicitly revealed by d allows our scheme to satisfy obliviousness.

Our scheme composes three subcomponents: the n branches themselves, the
multiplexer, and the demultiplexer. We consider each.
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Recall (from Section 7.2) that the demultiplexer forwards valid input labels
to the active branches only; inactive branches are instead given labels that en-
code ⊥. The demultiplexer is built as a standard GC gadget, and so it hides
the semantic values of its inputs. If branch Ci is active, then the demultiplexer
outputs labels in the encoding string ei. Each of these encoding strings hold
uniform values due to strong stackability (Definition 3). If branch Ci is inac-
tive, then the demultiplexer instead outputs a uniform string that encodes ⊥.
Hence, the demultiplexer supports indistinguishability. Both in the real world
and the simulation, the demultiplexer maps input labels to uniform labels for
every branch.

The branches themselves support obliviousness because their garbling is uni-
form due to strong stackability. This is crucial, since it means that a distinguisher
cannot attempt to unstack material to determine which of the t branches are
active.

Finally, the multiplexer trivially supports obliviousness since it is built as a
standard GC gadget, and maps uniform input labels (due to strong stackability)
to output labels.

Hence the simulation is indistinguishable and S&S is oblivious.

Definition 6 (Privacy). A garbling scheme is private if there exists a simu-
lator Sprv such that for any circuit C and all inputs x, the following are compu-
tationally indistinguishable:

(M,X, d) c= Sprv(1κ, C, y),

where (M, e, d) = Gb(1κ, C), X = En(e, x), and y = ev(C, x).

Privacy ensures that E, who is given (M,X, d), learns nothing about the
input x except what can be learned from the output y.

Theorem 3. If Base is oblivious and strongly stackable, S&S is private.

Proof. We prove privacy by constructing a simulator Sprv.
By Theorem 2, S&S is oblivious, and hence there exists an obliviousness

simulator Sobv. Sprv first runs Sobv(1κ, C), resulting in a simulated garbling
(C,M ′, X ′). From here, Sprv must construct a decoding string d′ that together
with M ′ and X ′, is indistinguishable from (M,X, d) even given the output y.

We now show how Sprv simulates d.
Sprv holds M ′ and X ′; it also knows the set t of the target branches. (Recall

by our syntactic convention, t is always included in the output of S&S.) Sprv
uses these strings to invoke Y ′ = Ev(C,M ′, X ′, t) and obtains Y ′, which holds
the output labels for all target branches. The key issue is to now simulate d′ such
that S&S.De(d′, Y ′) = y. Indeed, if this decoding does not hold, then there is
clearly a distinguisher. Constructing such d′, given Y ′ and y is easy: Sprv simply
populates the 2-dimensional table of d′ with the corresponding to y labels of Y ′.
It then fills in the remaining slots of d′ with simulated labels. Note, here we rely
on the property that unseen labels of the GC can be simulated. This holds for
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standard GC schemes, e.g. half-gates, standard Yao, etc. Hence the multiplexer,
which ultimately produces our output labels and is built using such standard
techniques, produces simulatable labels.

It is easy to see that this simulation is indistinguishable from the real exe-
cution. Indeed, the simulated d′ successfully decodes the true output y, and its
entries are indistinguishable from the entries of the real d.

Definition 7 (Authenticity). A garbling scheme is authentic if for all cir-
cuits C, all inputs x, all target sets t, and all poly-time adversaries A the fol-
lowing probability is negligible in κ:

Pr (Y ′ 6= Ev(C,M,X, t) ∧ De(d, Y ′) 6= ⊥)

where (M, e, d) = Gb(1κ, C), X = En(e, x), and Y ′ = A(C,M,X, t).

Authenticity ensures that even an adversarial E cannot construct labels that
successfully decode except by running Ev as intended.

Theorem 4. If Base is authentic and strongly stackable, S&S is authentic.

Proof. Authenticity follows from the fact that (1) the multiplexer and the demul-
tiplexer are implemented as garbled gadgets using standard GC that is authentic
and (2) Base is assumed authentic.

Our proof starts at the end of a circuit and proceeds backwards, at each step
showing that A cannot forge outputs of a circuit component without forging
inputs to that component. Thus, A cannot forge overall circuit outputs without
forging overall circuit inputs, and so the circuit is authentic.

Recall that our scheme handles k-out-of-n circuits only, so we need only prove
the related subcomponents authentic.

• As stated above, the multiplexer is built as a standard authentic GC gadget.
It is authentic.
• The n branches are authentic by assumption on Base. Note that n − k of

these branches are inactive and A holds the seeds for each of these branches.
Hence, she may forge arbitrary outputs from each inactive branch. However,
the logic of the multiplexer component discards inactive branch outputs, so
forging values inside inactive branches does not help A forge outputs of the
overall conditional.
• The demultiplexer, like the multiplexer, is a standard authentic GC gadget.

Note that our scheme can compose the three above components because
of the strong stackability of Base: namely, our multiplexer and demultiplexer
can directly manipulate the wire labels of the base scheme. Strong stackability
ensures this manipulation is authentic (resp. correct) by including Key (resp.
Color) procedures.

S&S is authentic.
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8 Application to Zero Knowledge Proofs (ZKP)

We point out an immediate application of our garbling scheme to Zero Knowl-
edge. ZK is a natural application for the setting where the k choices are known
to the GC evaluator E (prover in GC-ZK). Our garbling scheme can be directly
used in GC-ZK, resulting in a corresponding computation improvement from
O(n · k) to only 2n − k of symmetric key operations. Unlike the MPC setting,
our k-out-of-n branching does not place additional assumptions on the prover; in
particular, branching can be placed anywhere in the proof statement. We don’t
view this as our core contribution, since IT-MAC-based ZK [HK20a, WYKW21,
YSWW20, BMRS21, DIO20] overtook GC-ZK in performance in the area of
interactive ZK.

9 Implementation and Experimental Setup

We implemented S&S in C++ and used it to instantiate a semi-honest 2PC
protocol such that we can evaluate our approach (see Section 10).

Implementation Details. We instantiated the underlying garbling scheme
Base with [ZRE15]’s state-of-the-art half-gates technique. Our computational
security parameter κ is 127: we reserve the 128th bit for the classic permute-and-
point technique [BMR90]. We instantiated oblivious transfer, needed to convey
input labels from G to E, via the OT extension of [IKNP03] as implemented by
EMP [WMK16].

Our formal constructions present our staggering technique at the bit-level.
I.e., the stacking matrix A (Definition 1) staggers stacks by low powers of two. To
achieve higher concrete efficiency, our implementation shifts at the word level of
our machine. Specifically, we shift materials by multiples of 128 bits. This coarse
granularity ensures that the implementation need not even perform bit shifts; we
instead simply load from/store to the correct location in memory to implement
staggering.

Further low level improvements to our implementation are possible. For ex-
ample, our current implementation does not stream the GC stacks from G to E
as they are produced. Instead, we send all stacks in a batch across the network.

Compared Garbling Schemes. To compare the performance of our technique,
we implemented two other GC-based techniques for handling k-out-of-n circuits:

1. Standard Stacked Garbling. Our primary point of comparison is stacked gar-
bling without our staggering optimization. Namely, rather than using Gaus-
sian elimination to extract k materials from k stacks, G separately garbles
each of the n circuits k times.
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2. Standard GC. For further reference, we also instantiate k-out-of-n branching
using a basic Boolean circuit with no stacking optimization. This technique
consumes communication/computation independent of k6.

Evaluation Machine. We run both G and E on a single commodity laptop.
The laptop runs Ubuntu 20.04 and features an Intel(R) Core(TM) i5-8350U CPU
@ 1.70GHz and 16GB RAM. Each party runs on a single thread of execution.

Network Settings. We consider two simulated network settings:

1. LAN: A simulated ethernet connection with 1Gbps bandwidth and 2ms
round-trip latency.

2. WAN: A simulated wide area network connection with 100Mbps bandwidth
and 20ms round-trip latency.

Networks are simulated by the tc program.

Benchmark. To provide a clean point of comparison, we evaluate the three
GC techniques on a program that conditionally evaluates k-out-of-n different
instances of SHA-256. It is, of course, unrealistic that each branch would hold the
same circuit, but our goal is to capture performance characteristics only. Despite
using the same circuit for each branch, we take no shortcuts. For example, we
generate the cleartext circuit once for each branch and keep each separately in
memory. Similarly, we garble the circuits separately for each branch.

Note that we do not expect our performance to diminish when faced with
smaller circuits: our technique is lean as Gaussian elimination is implemented
only with XORs. However, traditional stacked garbling must pay cost linear in
the number of the conditional’s inputs and outputs, and we inherit this cost.
Thus, our approach is best applied when the circuits are large in comparison to
the total number of inputs/outputs of the conditional.

The SHA-256 circuit has ≈ 9× 104 AND gates.

10 Evaluation

We report experimental results obtained when running our system against both
standard Stacked Garbling and standard garbled circuits without stacking.

We used all three implementations to handle k-out-of-n circuits where each
circuit is SHA-256. We set n to 16 and to 128 and then varied k from 2 to n− 1.
See Section 9 for further details on the experimental setup. Figures 5 and 6 plot
the results.

6 Technically, a full standard GC implementation would have variable performance in
k due to the need to multiplex the branch outputs. For simplicity, our standard GC
implementation does not multiplex outputs. This omission yields a small difference in
performance that is strictly in favor of the standard technique: the circuit is smaller.
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Fig. 5: S&S’s and compared schemes’ communication consumption as a function
of k. The experiments confirm that our technique maintains the communication
advantage of stacked garbling [HK20c].

Communication. Recall that our technique improves computation when eval-
uating k-out-of-n circuits. Figure 5 demonstrates that our method achieves this
computation improvement without sacrificing communication.

Specifically, our technique has similar communication to the [HK20c]-based
method. From the n = 128 chart, it is clear that our implementation of stan-
dard SGC has higher communication; we discuss why shortly. Technically, our
approach’s branch GC materials are slightly longer than those for the [HK20c]-
based method because of our staggering (see e.g. Figure 1). In the last stack,
each material is shifted by k − 1 blocks (in practice we shift each material in
128-bit blocks). Assuming all n materials are XORed into each stack, the last
material is shifted by (k − 1)(n− 1) blocks. This is our increase in stack length
over [HK20c]. For k = 15, this increase is only ≈ 7KB and is small compared to
the size of GC material even for small circuits.

We note and briefly explain the poor communication performance of the SGC
protocol, which is particularly evident in the n = 128 case of Figure 5. This is
due to the need to manage k · n sets of inputs and outputs, since the k SGC
stacks are processed independently. I.e. our standard SGC implementation pays
factor k overhead for multiplexers/demultiplexers. We note that it should be
possible to reduce the SGC costs to be in line with ours; we did not implement
this engineering optimization.

Wall-Clock Time. Figure 6 plots the wall-clock run-time for all three ap-
proaches and on both a LAN and a WAN. For n = 16, we averaged each data
point over 100 runs. For n = 128, we averaged each data point over 10 runs.

Our experiments show that we indeed concretely improve computation in
both network settings. We greatly reduce computation as compared to the stan-
dard Stacked Garbling technique, which must pay significant overhead to re-
garble each circuit k times. Our run-time improvement over standard garbling
without stacking is less pronounced, but recall that our communication is signifi-
cantly improved. Thus, in a sense we achieve the best of both worlds: we capture

26



k

W
al

l-c
lo

ck
 ti

m
e 

(s
)

0
1
2
3
4
5

2 4 6 8 10 12 14

Our Approach Stacked Garbling GC

LAN Total Time (n = 16)

k

W
al

l-c
lo

ck
 ti

m
e 

(s
)

0
2
4
6
8

10

2 4 6 8 10 12 14

Our Approach Stacked Garbling GC

WAN Total Time (n = 16)

k

W
al

l-c
lo

ck
 ti

m
e 

(s
)

5
10

50
100

500

25 50 75 100 125

Our Approach Stacked Garbling GC

Log Scale LAN Total Time (n = 128)

k

W
al

l-c
lo

ck
 ti

m
e 

(s
)

5
10

50
100

500

25 50 75 100 125

Our Approach Stacked Garbling GC

Log Scale WAN Total Time (n = 128)

Fig. 6: S&S’s and compared schemes’ wall-clock runtime on both a WAN and
a LAN as a function of k. As k increases, our staggering technique offers much
lower computation overhead than standard Stacked Garbling. Hence, we greatly
improve in terms of wall clock time. Standard GC without stacking has essen-
tially constant performance because the parties must execute all n branches,
regardless of parameter k.

the low communication utilization of standard Stacked Garbling, but without
high computation.

Notice that in both settings, our performance is roughly upper bounded by
the performance of standard GC without stacking. Specifically, our wall clock
time approaches that of standard garbling as k approaches n. This can be ex-
plained by our choice of stacking matrix A: as k approaches n, A features in-
creasing numbers of zeros, which reduces the cost to both stack and unstack
material. In the special case n = k, A features zeros everywhere except on one
diagonal, where it is ones (it is a mirror of the identity matrix). Hence in this
special case, our scheme and standard GC perform essentially identical actions.

We highlight specific features of the plots in Figure 6:

• LAN wall-clock time. On our moderately fast LAN, we improve over
standard Stacked Garbling by ≈ 6.4× for 15-out-of-16 circuits, and by ≈
46.6× for 127-out-of-128 circuits. We do not achieve k× improvement for two
reasons. First, while we reduce the number of AES invocations from O(n ·k)
to O(n), to stack and unstack materials both techniques use the same number
of XOR operations. Second, both approaches consume the same amount of
bandwidth, which cuts into our advantage. When we instead run the 15-out-
of-16 experiment on localhost (i.e., without simulating a bandwidth limit)
we achieve ≈ 10.8× improvement, much closer to the 15× limit. For 16-out-
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of-128 circuits and on LAN, we improve over standard Stacked Garbling by
≈ 7.68× and over standard GC by ≈ 4.82×.

• WAN wall-clock time. On this weaker network, bandwidth consumption
becomes a greater concern. Our advantage over standard Stacked Garbling
thus decreases, but our advantage over garbling without stacking increases.
For 15-out-of-16 branches, we achieve ≈ 2.1× speedup over standard stacked
garbling; for 127-out-of-128 branches, we achieve ≈ 10.8× speedup. In a 16-
out-of-128 setting, we improve over standard Stacked Garbling by ≈ 7.22×
and over standard GC by ≈ 3.44×.
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