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Abstract. In this paper, we propose a new block cipher-based authen-
ticated encryption scheme, dubbed the Synthetic Counter with Mask-
ing (SCM) mode. SCM follows the NSIV paradigm proposed by Peyrin
and Seurin (CRYPTO 2016), where a keyed hash function accepts a
nonce N with associated data and a message, yielding an authentication
tag T , and then the message is encrypted by a counter-like mode using
both T and N . Here we move one step further by encrypting nonces; in
the encryption part, the inputs to the block cipher are determined by T ,
counters, and an encrypted nonce, and all its outputs are also masked
by an (additional) encrypted nonce, yielding keystream blocks.
As a result, we obtain, for the first time, a block cipher-based authenti-
cated encryption scheme of rate 1/2 that provides n-bit security with re-
spect to the query complexity (ignoring the influence of message length)
in the nonce-respecting setting, and at the same time guarantees graceful
security degradation in the faulty nonce model, when the underlying n-
bit block cipher is modeled as a secure pseudorandom permutation. Seen
as a slight variant of GCM-SIV, SCM is also parallelizable and inverse-
free, and its performance is still comparable to GCM-SIV.

Keywords: authenticated encryption, beyond-birthday-bound security, nonce-
misuse resistance, graceful degradation, block cipher

1 Introduction

Authenticated Encryption. Authenticated encryption (AE) aims at achiev-
ing the two fundamental security goals of symmetric key cryptography, namely,
the confidentiality and the authenticity of data. With a significant amount of
research in this area, we now have a rich set of general-purpose AE schemes,
some already standardized (e.g., GCM [21] and CCM [27]) and some expected
to be adopted by new applications and standards (e.g., the CAESAR finalists
COLM [1], Ascon [8], Deoxys II [18], OCB [20], ACORN [28], and AEGIS-128 [29]).
? This work was supported by Institute for Information & communications Technol-
ogy Planning & Evaluation(IITP) grant funded by the Korea government(MSIT)
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Such AE schemes are built on top of various cryptographic primitives such as
permutations and (tweakable) block ciphers. Most of recent constructions accept
associated data (AD), which are authenticated but not encrypted. In this paper,
we will also consider AE schemes with associated data.

Nonce-Misuse Resistance. Nonces or initial vectors (IVs) are used in most
encryption schemes in order to guarantee the variability of the ciphertext. In par-
ticular, nonces will guarantee stronger security in the authentication part than
deterministic constructions when they are never reused. On the other hand, only
a single nonce repetition can completely break the security of the scheme. For
example, GCM leaks its hash key as soon as a single nonce is used twice. How-
ever, it might be challenging to maintain the uniqueness of the nonce in certain
environments, for example, in a stateless device where good quality randomness
is not available. A faulty implementation of the AE scheme might also repeat
nonces. For this reason, there has been a considerable amount of research on the
design of AE schemes achieving nonce-misuse resistance.

Rogaway and Shrimpton [26] formalized the notion of misuse-resistant AE
(MRAE) and proposed a method of turning a deterministic AE scheme into
a nonce-based MRAE scheme. In this way, nonce repetitions do not affect the
overall security of the scheme as long as a triple of nonce, AD and message val-
ues is not repeated. MRAE schemes include EAX [2], SIV [26], AEZ [12], and
GCM-SIV [11]. Later, this notion has been refined by viewing the adversarial
distinguishing advantage as a function of the maximum number of multicolli-
sions in nonce values (amongst all encryption queries) [25]. Recently, Dutta et.
al. [9] introduced the faulty nonce model; an adversarial query is called a faulty
query if there exists a previous query with the same nonce. Here, the adversar-
ial distinguishing advantage is analyzed as a function of the number of faulty
queries. They also proposed a new MAC scheme, dubbed nEHtM, and showed
that it enjoys graceful degradation of security in this model. The two models of
nonce misuse above seem to complement each other; when an m-multicollsion
of a single nonce happens, it implies that there have been at least m− 1 faulty
queries, while any number of faulty queries can be made by multicollisions of
nonces with small multiplicities.

Birthday and Beyond-Birthday Security. Most block cipher-based AE
modes provide only the birthday-bound security (with respect to the size of the
underlying primitive). For example, if an AE mode is based on a 128-bit block
cipher such as AES, then it would guarantee only up to 64-bit security, whereas
this bound might not be sufficient in defense-in-depth applications where higher
security is required.

Some AE schemes enjoy beyond-birthday-bound security. Iwata [14] proposed
the CIP AE mode of rate 4/9 (for the default parameters) and 2n/3-bit security,
and Iwata and Minematsu [15] proposed a variant of GCM-SIV of rate 1/4 and
2n/3-bit security. Bose et al. [4] proved n-bit security of AES-GCM-SIV in the
ideal cipher model. However, in this stronger model, its provable security would
not be called “full” since the underlying ideal primitive accepts (n+κ)-bit inputs,
where κ denotes the key size. Assuming the multi-user security of AES in the
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Fig. 1: Security of SCM in terms of the threshold number of encryption queries
q as a function of the number of faulty queries µ.

standard model, Iwata and Seurin [17] proved 3n/4-bit security of AES-GCM-SIV.
The mGCM mode [3] achieves almost n-bit security with reasonable efficiency (of
rate around 1/2) in the standard model, while it is vulnerable to nonce misuse.

When it comes to tweakable block cipher-based constructions (for simplicity,
assuming that the underlying tweakable block cipher uses n-bit tweaks), SCT [25]
provides n-bit security in the nonce-respecting setting, while its integrity falls
down to the birthday bound as soon as a nonce is repeated. Iwata et al. proposed
ZAE [16], which is a deterministic AE scheme providing n-bit security.

The focus of this paper is put on the construction of (conventional) block
cipher-based nonce-misuse resistant AE schemes with almost n-bit security and
reasonable efficiency assuming the pseudorandomness of the underlying block
cipher in the single-user setting. One of the advantages of block cipher-based
schemes is that it can be instantiated with a widely-used block cipher such
as AES. Due to AES-NI instructions, and a considerable amount of research
on efficient implementation of AES, AES-based schemes are usually faster than
tweakable block cipher-based ones. On the other hand, compared to using an
n-bit tweakable block cipher, it seems more challenging to achieve the same
level of security using an n-bit conventional block cipher with a weaker security
assumption.

1.1 Our Contribution

We propose the Synthetic Counter with Masking (SCM) mode, which turns a
block cipher into a nonce-based authenticated encryption scheme. SCM follows
the NSIV paradigm proposed by Peyrin and Seurin in CRYPTO 2016 [25], where
a keyed hash function accepts a nonce N with associated data and a message,
yielding an authentication tag T , and then the message is encrypted by a counter-
like mode using both T and N . Here we move one step further by encrypting
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AEAD Assumption Rate Security Graceful ReferenceNR NM degradation

GCM PRF 1/2 n/2 − 7 [21]
OCB3 PRP 1 n/2 − 7 [19]
mGCM PRP 1/2 n − 7 [3]

GCM-SIV PRF 1/2 n/2 n/2 3 [11]
CWC+ PRP 1/2 3n/4 n/2† 3† [9]

AES-GCM-SIV muPRP 1/2 3n/4 n/2 3 [17]
AES-GCM-SIV‡ ICM 1/2 n n/2 3 [4]

SCM PRP 1/2 n n/2 3 This work

ΘCB TPRP 1 n − 7 [19]
SCT TPRP 1/2 n n/2 7 [25]
ZAE TPRP 2/3 n n 3 [16]

† Authenticity only. CWC+ does not provide privacy in the nonce-misuse setting.
‡ A variant of AES-GCM-SIV with the key derivation function modified.

Table 1: Comparison of SCM with existing AE modes. NR (resp. NM) represents
the nonce-respecting setting (resp. the nonce-misuse setting).

nonces: from a secret key and a nonce, three encrypted nonces ∆, ∆′ and ∆′′

are computed. The authentication tag T is defined by a variant of nEHtM [9]
using ∆′′. More precisely, for an associated data A and a message M ,

T = EK′(HKh(A,M)⊕ (N ‖ 00))⊕∆′′.

The i-th keystream block Z[i] is defined as

Z[i] = EK(T ⊕ 2i−1∆)⊕∆′,

which is xored to the corresponding message block. We prove that if H is a δ-
almost XOR universal hash function with δ ≈ 1

2n , if E is a secure block cipher,
and if the maximum length of encryption queries is sufficiently small, then SCM
is secure up to O(2n) encryption and decryption queries in the nonce-respecting
setting. Even if nonces are repeated, SCM is secure up to the birthday bound,
enjoying graceful security degradation in the faulty nonce model. Figure 1 shows
the security bounds of SCM in terms of the threshold number of encryption
queries q as a function of the number of faulty queries µ ignoring the maximum
message length. The influence of µ to the threshold number of decryption queries
is negligible as seen in Theorem 1 (with L = n).

Table 1 compares SCM to well-known AE schemes based on (tweakable) block
ciphers. For simplicity of comparison, we assume that the underlying tweakable
block cipher uses n-bit tweaks. To the best of our knowledge, SCM is the first
block cipher-based nonce-misuse resistant AE scheme of rate 1/2 that provides
n-bit security in the nonce-respecting setting when the underlying n-bit block
cipher is modeled as a pseudorandom permutation. Seen as a slight variant of
GCM-SIV, SCM is also parallelizable and inverse-free.
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Fig. 2: The threshold number of the total length of the encryption queries σ as a
function of l, where the number of faulty queries µ is fixed as a small constant.
The solid line is the bound for SCM, while the dashed (resp. dash-dotted) line is
the bound for AES-GCM-SIV in the ideal cipher (resp. multi-user PRP) model.

Figure 2 compares the influence of the maximum message length l to the
threshold number of the total length of the encryption queries σ for SCM and
AES-GCM-SIV, where we distinguish two different models in which AES-GCM-
SIV has been analyzed. When security bounds are not represented by only σ and
l, we use a (loose) bound q ≤ σ. We see that SCM provides stronger bounds than
AES-GCM-SIV in the standard model. We note that GCM, OCB3 and GCM-SIV
are secure when σ � 2n2 , while all the tweakble cipher-based constructions ΘCB,
SCT, and ZAE are secure when σ � 2n, all regardless of the maximum message
length. In [9], CWC+ has been proved to be secure up to 2 2n

3 block cipher queries,
while one can obtain a stronger bound using recent results [3, 6]. Even with this
improvement, its security does not go beyond 2 3n

4 (in terms of σ).
Being nonce-misuse resistant, SCM provides beyond-birthday-bound security

as long as µl� 2n/2, and it can be seen as optimal when µ and l are small enough.
This property is practically relevant for a certain case, where data is broken into
small parts, and they are encrypted with different nonces. For example, in the
TLS network protocol, the maximum transmission unit (MTU) is typically set to
1500B, and each fragment is encrypted with a different nonce using its sequence
number.

Table 2 compares SCM using POLYVAL1 [10] as a universal hash function
to existing AE schemes in terms of efficiency. In this comparison, we focus on
the AE schemes whose reference codes are publicly available (except ZAE). The
efficiency of ZAE has been only approximately estimated based on the speed

1 POLYVAL is a universal hash function used in AES-GCM-SIV
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Mode Cipher Message Reference1KB 4KB 64KB

ChaCha20-Poly1305 - 2.17 1.55 1.47 [22]
GCM AES-128 1.23 0.63 0.56 [21]

AES-GCM-SIV AES-128 1.57 0.89 0.81 [17]
Deoxys-I (≈ ΘCB) Deoxys-BC-256 1.38 0.91 0.77 [18]
Deoxys-II (≈ SCT) Deoxys-BC-256 2.19 1.68 1.52 [18]

ZAE Deoxys-BC-256 ≥1.94 ≥1.41 ≥1.25 [16]
SCM AES-128 0.94 0.86 0.83 This work

Table 2: Performance comparison of SCM to various AE schemes. Throughput
is measured in cycles per byte.

of Deoxys-BC-256 in counter mode (as done in [16]), so the number in Ta-
ble 2 should be understood as rough lower bounds. The implementations of
ChaCha20-Poly1305, GCM, and AES-GCM-SIV are taken from BoringSSL2 and
those of Deoxys-I and Deoxys-II are taken from SUPERCOP3. Our experiments
are done in the Skylake microarchitecture (i7-6700 CPU@4.20GHz) which sup-
ports PCLMUL, AVX, SSE, and AES instructions, using GCC 7.4.0 with opti-
mization level -O2.

Although SCM requires four block cipher calls to encrypt nonces at the be-
ginning of every encryption, our implementation shows that it does not slow
down the overall efficiency since it can be done in parallel with the encryption
of the hash output. We see that SCM is comparable to AES-GCM-SIV.

Overview of the Proof. Our security proof takes a modular approach;
SCM[H,E] (based on a keyed hash function H and a block cipher E) is decom-
posed into a MAC scheme and an encryption scheme, denoted SCM.MAC[H,E]
and SCM.PRNG[E], respectively. We first prove that if both SCM.MAC[H,E]
and SCM.PRNG[E] are secure, then SCM[H,E] is also secure (Lemma 5), where
we need to slightly modify the security model for the encryption part; it takes
as input a random tag T (which can be seen as an initial vector), and T is also
given to the adversary.

The underlying MAC scheme is similar to the nonce-based enhanced hash-
then-mask MAC (nEHtM), whose security has been recently proved up to 2 3n

4

MAC queries [6]. The main difference of SCM.MAC from nEHtM is that the
“encrypted mask” EK(N) used in nEHtM is replaced by EK(N ‖00)⊕EK(N ‖11)
using an (n − 2)-bit nonce N , which can be seen as ρ(N) for a truly random
function ρ. At the cost of an additional block cipher call, SCM.MAC[H,E] is
secure up to 2n MAC queries when H is a δ-almost XOR universal with δ ≈
1

2n (Lemma 6).

2 https://boringssl.googlesource.com/boringssl
3 https://bench.cr.yp.to/supercop.html
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The pseudorandomness of SCM.PRNG[E] is analyzed by two different ap-
proaches. When the number of faulty queries µ is relatively large, we use Mirror
theory in a refined form as given in [6] (and restated in Lemma 3). In Lemma 7,
we prove that SCM.PRNG[E] is pseudorandom up to 2 2n

3 queries, enjoying grace-
ful security degradation as µ increases.

When µ is small, for example, in the nonce-respecting setting, one can ex-
pect even stronger security. In such cases, we make the adversary non-adaptive
by allowing it to repeat each nonce exactly µ times. In this setting, we can
use the χ2-method as restated in Lemma 2, and its interpretation in terms of
Mirror theory as given in Lemma 4. All the bounds contain the sum-of-squares
and sum-of-cubes of component sizes in the graph representation of the tran-
script, and it is the most challenging part of the proof to upper bound their
expectation (Lemma 10 and 12). Finally, we apply the expectation method to
prove the security of SCM.PRNG[E] up to 2n queries in the nonce-respecting
setting (Lemma 8).

2 Preliminaries

2.1 Notation

In all of the following, we fix a positive integer n such that n ≥ 3. We denote
0n (i.e., n-bit string of all zeros) by 0. The set {0, 1}n is sometimes regarded as
a set of integers {0, 1, . . . , 2n − 1} by converting an n-bit string an−1 · · · a1a0 ∈
{0, 1}n to an integer an−12n−1 + · · · + a12 + a0. We also identify {0, 1}n with
a finite field GF(2n) with 2n elements, assuming that 2 cyclically generates all
the nonzero elements of GF(2n). We write {0, 1}∗ to denote the set of all binary
strings including the empty string. For X ∈ {0, 1}∗, |X| denotes its length. For
a nonnegative integer s and a string X ∈ {0, 1}∗ such that |X| ≤ s, msbs(X)
denotes the s most significant bits of X. For a positive integer q, we write
[q] = {1, . . . , q}.

Given a non-empty finite set X , x←$ X denotes that x is chosen uniformly at
random from X . The set of all functions from X to Y is denoted Func(X ,Y), and
the set of all permutations of X is denoted Perm(X ). The set of all permutations
of {0, 1}n is simply denoted Perm(n). The set of all sequences that consist of b
pairwise distinct elements of X is denoted X ∗b. For integers 1 ≤ b ≤ a, we will
write (a)b = a(a− 1) · · · (a− b+ 1) and (a)0 = 1 by convention. If |X | = a, then
(a)b becomes the size of X ∗b.

When two sets X and Y are disjoint, their (disjoint) union is denoted X tY.
For a set X ⊂ {0, 1}n and λ ∈ {0, 1}n, we will write X ⊕ λ = {x⊕ λ : x ∈ X}.
For a graph G = (V, E), we will interchangeably write |V| and |G| for the number
of vertices of G.

2.2 Security Notions

Almost Xor Universal Hash Functions. Let δ > 0, and let H : Kh×M→
X be a keyed function for three non-empty sets Kh,M, and X . H is said to be
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δ-almost XOR universal (AXU) if for any distinct M,M ′ ∈M and X ∈ X ,

Pr [Kh ←$ Kh : HKh(M)⊕HKh(M ′) = X] ≤ δ.

PRPs. Let E : K × {0, 1}n → {0, 1}n be a keyed permutation with key space
K, where E(K, ·) is a permutation for each K ∈ K. We will denote EK(X) for
E(K,X). A (q, t)-distinguisher against E is an algorithm D with oracle access to
an n-bit permutation and its inverse, making at most q oracle queries, running in
time at most t, and outputting a single bit. The advantage of D in breaking the
PRP-security of E, i.e., in distinguishing E from a uniform random permutation
π ←$ Perm(n), is defined as

Advprp
E (D) =

∣∣∣Pr
[
K ←$ K : DEK ,E

−1
K = 1

]
− Pr

[
π ←$ Perm(n) : Dπ,π

−1
= 1
]∣∣∣ .

We define Advprp
E (q, t) as the maximum of Advprp

E (D) over all (q, t)-distinguishers
against E.
Nonce-based MACs. Given four non-empty sets K, N , M, and T , a nonce-
based MAC with key space K, nonce space N , message spaceM and tag space
T is a function F : K × N ×M → T . Stated otherwise, it is a keyed function
whose domain is a cartesian product N×M. We will sometimes write FK(N,M)
to denote F (K,N,M).

For K ∈ K, let AuthK be the MAC oracle which takes as input a pair
(N,M) ∈ N ×M and returns FK(N,M), and let VerK be the verification oracle
which takes as input a triple (N,M, T ) ∈ N ×M×T and returns > (“accept”) if
FK(N,M) = T , and ⊥ (“reject”) otherwise. We assume that an adversary makes
queries to the two oracles AuthK and VerK for a secret key K ∈ K. A MAC query
(N,M) made by an adversary is called a faulty query if the adversary has already
queried to the MAC oracle with the same nonce but with a different message.
For example, if the i-th query is denoted by (Ni,Mi) and there are four distinct
queries, (Ni,Mi) for i ∈ [4] such that N1 6= N2 = N3 = N4, the third and the
fourth queries are faulty and the number of faulty queries is two.

In this work, we will consider the MAC security of F using the advantage of an
adversary trying to distinguish the real world (AuthK ,VerK) and the ideal world.
The ideal world oracles are (Rand,Rej), where Rand returns an independent
random value (instantiating a truly random function) and Rej always returns ⊥
for every verification query. A (µ, q, v, t)-distinguisher against the MAC security
of F is an algorithm D with oracle access to AuthK/Rand and VerK/Rej, making
at most q MAC queries to its first oracle with at most µ faulty queries and at
most v verification queries to its second oracle, and running in time at most t.
We assume that D does not make a verification query by reusing any previous
MAC query. We define

Advmac
F (µ, q, v, t) = max

D

(
Pr
[
K ←$ K : DAuthK ,VerK = 1

]
− Pr

[
DRand,Rej = 1

] )
,

where the maximum is taken over all (µ, q, v, t)-distinguishers D. When we con-
sider information theoretic security, we will drop the parameter t.
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Nonce-based AE Schemes. Given four non-empty sets K, N , A and M, a
nonce-based authenticated encryption (AE) scheme is a tuple

Π = (K,N ,A,M,Enc,Dec),

where Enc and Dec are called encryption and decryption algorithms, respectively.
The encryption algorithm Enc takes as input a key K ∈ K, a nonce N ∈ N ,
an associated data A ∈ A, and a message M ∈ M, and outputs a ciphertext
C ∈ {0, 1}∗. The decryption algorithm Dec takes as input a tuple (K,N,A,C) ∈
K×N ×A×{0, 1}∗, and outputs either a message M ∈M or a special symbol
⊥. We require that

Dec(K,N,A,Enc(K,N,A,M)) = M

for any tuple (K,N,A,M) ∈ K×N ×A×M. We will write EncK(N,A,M) and
DecK(N,A,C) to denote Enc(K,N,A,M) and Dec(K,N,A,C), respectively.

The goal of an adversary D against the nonce-based AE security of Π is to
distinguish the real world (EncK ,DecK) (using a random key K, unknown to D)
and the ideal world. The ideal world oracles are (Rand,Rej), where Rand returns
an independent random string of length |EncK(N,A,M)| and Rej always returns
⊥ for every decryption query. We assume that D does not make a decryption
query by reusing any previous encryption query. The advantage of D breaking
the nAE-security of Π is defined as

AdvnAE
Π (D) =

∣∣Pr
[
K ←$ K : DEncK ,DecK = 1

]
− Pr

[
DRand,Rej = 1

]∣∣ .
A (µ, q, v, σ, l, t)-adversary against the nonce-based AE security of Π is an algo-
rithm that makes at most q encryption queries to its first oracle with at most
µ faulty queries (using repeated nonces) and at most v decryption queries to
its second oracle, and running in time at most t, where the length of each en-
cryption/decryption query is at most l blocks of n bits, and the total length
of the encryption queries (nonce excluded) is at most σ blocks of n bits. When
µ = 0, we say that D is nonce-respecting, otherwise D is said nonce-misusing.
However, the adversary is allowed to repeat nonces in its Dec oracle. We de-
fine AdvnAE

Π (µ, q, v, σ, l, t) as the maximum of AdvnAE
Π (D) over all (µ, q, v, σ, l, t)-

adversaries D against Π. When we consider information theoretic security, we
will drop the parameter t.

2.3 Coefficient-H Technique

We will use Patarin’s coefficient-H technique, more precisely, its refinement called
the expectation method [13]. The goal of this technique is to upper bound the
adversarial distinguishing advantage between a real construction and its ideal
counterpart. In the real and the ideal worlds, an information-theoretic adversary
D is allowed to make queries to certain oracles (with the same oracle interfaces),
denoted Oreal and Oideal, respectively. The interaction between the adversary D
and the oracle determines a “transcript”; it contains all the information obtained
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by D during the interaction. We call a transcript τ attainable if the probability
of obtaining τ in the ideal world is non-zero. We also denote Tid(resp. Tre) the
probability distribution of the transcript τ induced by the ideal world (resp. the
real world). By extension, we use the same notation to denote a random variable
distributed according to each distribution.

We partition the set of attainable transcripts Γ into a set of “good” tran-
scripts Γgood such that the probabilities to obtain some transcript τ ∈ Γgood are
close in the real world and the ideal world, and a set Γbad of “bad” transcripts
such that the probability to obtain any τ ∈ Γbad is small in the ideal world. The
lower bound in the ratio of the probabilities to obtain a good transcript in both
worlds will be given as a function of τ , and we will take its expectation. The
expectation method is summarized in the following lemma.

Lemma 1. Let Γ = ΓgoodtΓbad be a partition of the set of attainable transcripts,
where there exists a non-negative function ε1(τ) such that for any τ ∈ Γgood,

Pr [Tre = τ ]
Pr [Tid = τ ] ≥ 1− ε1(τ),

and there exists ε2 such that Pr[Tid ∈ Γbad] ≤ ε2. Then for any adversary D,∣∣Pr
[
DOreal = 1

]
− Pr

[
DOideal = 1

]∣∣ ≤ Ex [ε1(τ)] + ε2,

where the expectation is taken over the distribution Tid in the ideal world.

We refer to [13] for the proof of Lemma 1.

2.4 Sampling with Replacement Using a Random Permutation

Xoring the outputs of a random permutation is a simple way of generating
pseudorandom samples using a random permutation. A random permutation
can be viewed as a random sampling without replacement.

Fix positive integers w1, . . . , wr ≥ 2. Let σ =
∑
i∈[r] wi, and let

T = (Ti,j)i∈[r],j∈[wi] = (T1,1, · · · , T1,w1 , T2,1, · · · , T2,w2 , · · · , Tr,1, · · · , Tr,wr )

be a sequence sampled from ({0, 1}n)∗σ uniformly at random (i.e., by random
sampling without replacement). Let

S = (Ti,j ⊕ Ti,wi)i∈[r],j∈[wi−1]

= (T1,1 ⊕ T1,w1 , · · · , T1,w1−1 ⊕ T1,w1 , · · · , Tr,1 ⊕ Tr,wr , · · · , Tr,wr−1 ⊕ Tr,wr )

Using the χ2-method, Bhattacharya and Nandi [3] proved the pseudorandomness
of S as follows.
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Lemma 2. Let S be a sequence sampled as described above, and let R be a se-
quence sampled from ({0, 1}n)σ−r uniformly at random.4 Then we have

‖S− R‖ ≤
(

4σ
22n

r∑
i=1

w3
i

) 1
2

+
r∑
i=1

wi(wi − 1)
2n+1 . (1)

For an integer w ≥ 2, let wi = w for i ∈ 1, . . . , r. Then we have

‖S− R‖ ≤
√

2rw2

2n + w(w − 1)r
2n+1 . (2)

We note that (2) is simply a restatement of Theorem 2 in [3], and (1) can also
be derived from the proof of the theorem (see page 327 in [3]).

2.5 Mirror Theory

Mirror theory [23, 24] is one of the main tools for our security proof, whose goal
is to systematically estimate the number of solutions to a system of equations.
Mirror theory is later generalized to extended Mirror theory [7, 9], by including
non-equations in the system.

A system of equations and non-equations can be represented by a graph. Each
vertex corresponds to an n-bit distinct unknowns. By abuse of notation, we will
identify the vertices with the values assigned to them. We distinguish two types of
edges, namely, =-labeled edges and 6=-labeled edges that correspond to equations
and non-equations, respectively. So we consider a graph G = (V, E=tE 6=), where
E= and E 6= denote the set of =-labeled edges and the set of 6=-labeled edges,
respectively. Then G can be seen as a superposition of two subgraphs G= =def

(V, E=) and G 6= =def (V, E 6=).
We will define label functions λ : E= → {0, 1}n and λ′ : E 6= → {0, 1}n. If

two vertices P and Q are adjacent by an =-labeled (resp. 6=-labeled) edge and
λ(P,Q) = c (resp. λ′(P,Q) = c) for some c ∈ {0, 1}n, then it would mean that
P ⊕Q = c (resp. P ⊕Q 6= c). We will write h(G, λ, λ′) to denote the number of
solutions to (G, λ, λ′) such that all the vertices take different values in {0, 1}n.
When there is no 6=-labeled edge, we will simply write h(G, λ).

Throughout this paper, we will consider a graph G such that G= has no cycle.
In this case, G= is decomposed into its connected components, all of which are
trees; let

G= = C1 t C2 t · · · t Cr t D (3)
for some r ≥ 0, where Ci denotes a component of size at least 2, and D denotes
the set of isolated vertices. Any pair of distinct vertices P and Q in the same
component are connected by a unique trail,5 say,

P = P0 − P1 − · · · − Ps = Q.

4 We will view S and R as random variables, and also write them to denote their
probability distributions.

5 A trail is a walk in which all edges are distinct.
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In this case, we define

λ̄(P,Q) def=
r−1∑
i=0

λ(Pi, Pi+1).

By defining λ̄(P,Q) = ⊥ for any pair of vertices P and Q contained in different
components, λ̄ is defined on V∗2, extending λ. For G = (V, E= ∪ E 6=), let

L(G) def= Func(E=, {0, 1}n)× Func(E 6=, {0, 1}n).

We call (λ, λ′) ∈ L(G) bad if one of the following conditions holds:

– there exists (P,Q) ∈ V∗2 such that λ̄(P,Q) = 0;
– there exists (P,Q) ∈ E 6= such that λ̄(P,Q) = λ′(P,Q).

Note that h(G, λ, λ′) = 0 if (λ, λ′) is bad. Let Lbad(G) denote the set of the bad
label functions in L(G). When (λ, λ′) /∈ Lbad(G), we can lower bound h(G, λ, λ′)
using the extended Mirror theory as follows.

Lemma 3. For positive integers q and v, let G = (V, E= ∪ E 6=) be a graph
such that G= has no cycle, |V| ≤ 2n, |E=| = q, and |E 6=| = v. Suppose that
G= is decomposed into its connected components as in (3). Let wi = |Ci| for
i = 1, . . . , r, and let σ =

∑r
i=1 wi. Then, for any (λ, λ′) /∈ Lbad(G), we have

h(G, λ, λ′)
(2n)|V|

≥ 1
2qn

(
1− σ2

22n

r∑
i=1

w2
i −

2v
2n

)
.

The proof of Lemma 3 is given in the full version [5].
From the definition of S and R (given in Section 2.4), (1) can be rephrased

in terms of Mirror theory as follows.

Lemma 4. For positive integers q and v, let G = (V, E= ∪ E 6=) be a graph such
that G= has no cycle, |E=| = q, and E 6= = ∅. Suppose that G= is decomposed
into its connected components as in (3). Let wi = |Ci| for i = 1, . . . , r, and let
σ =

∑r
i=1 wi. Then we have

1
2

∑
λ∈Func(E=,{0,1}n)

∣∣∣∣h(G, λ)
(2n)|V|

− 1
2qn

∣∣∣∣ ≤
(

4σ
22n

r∑
i=1

w3
i

) 1
2

+
r∑
i=1

wi(wi − 1)
2n+1 .

3 The SCM Authenticated Encryption Mode

The SCM AE mode is built on top of a keyed hash function H : Kh × ({0, 1}∗ ×
{0, 1}∗)→ {0, 1}n and a block cipher E : Kb × {0, 1}n → {0, 1}n. Formally, the
SCM mode based on H and E is

SCM[H,E] = (K,N ,A,M,SCM.ENC,SCM.DEC)

12



EK′′ EK′′ EK′′ EK′′

N ‖ 00 N ‖ 01 N ‖ 10 N ‖ 11

∆ ∆′ ∆′′

(a) Encrypting a nonce.

EK′

HKh

(A,M)

T

N ‖ 00

∆′′

(b) Computing a tag.

EK EK EK

T

Z[1]

∆

∆′

T

Z[2]

2∆

∆′

T

Z[m]

2m−1∆

∆′

· · ·

(c) Generating a keystream.

Fig. 3: The SCM mode based on H and E using a key (Kh,K,K
′,K ′′).

where K = Kh×Kb×Kb×Kb, N = {0, 1}n−2, A =M = {0, 1}∗, and SCM.ENC
and SCM.DEC are deterministic algorithms. Given a key (Kh,K,K

′,K ′′) ∈
K, a nonce N ∈ N and a message M ∈ M with associated data A ∈ A,6
SCM[H,E]Kh,K,K′,K′′ generates ∆, ∆′ and ∆′′, where

∆ = EK′′(N ‖ 00)⊕ EK′′(N ‖ 01),
∆′ = EK′′(N ‖ 00)⊕ EK′′(N ‖ 10),
∆′′ = EK′′(N ‖ 00)⊕ EK′′(N ‖ 11).

Then the tag T is defined as

T = EK′(HKh(A,M)⊕ (N ‖ 00))⊕∆′′.

Let M = M [1] ‖M [2] ‖ · · · ‖M [m] for a positive integer m, where |M [α]| = n
for α = 1, . . . ,m − 1, and 0 < M [m] ≤ n. Then, for α = 1, . . . ,m, the α-th
6 We assume that either |A| > 0 or |M | > 0.
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keystream block Z[α] is defined as

Z[α] = EK(T ⊕ 2α−1∆)⊕∆′,

where the last block is truncated so that |Z[m]| = |M [m]|. The keystream Z =
Z[1] ‖Z[2] ‖ · · · ‖Z[m] is xored to the message M , producing the corresponding
ciphertext C = M ⊕ Z (see Figure 3).

As shown in Figure 4, SCM.ENC and SCM.DEC can be described using the
underlying MAC scheme and the PRNG, denoted SCM.MAC and SCM.PRNG,
respectively.

4 Security of SCM

The nAE-security of SCM is summarized by the following theorem.

Theorem 1. Let δ > 0, let H : Kh × ({0, 1}∗ × {0, 1}∗) → {0, 1}n be a δ-
AXU function, and let E : Kb × {0, 1}n → {0, 1}n be a block cipher. Then for
nonnegative integers µ, q, v, σ, l, t such that q+ v ≤ 2n−3, and for any positive
integer L, we have

AdvnAE
SCM[H,E](µ, q, v, σ, l, t) ≤ min

{
8q(µ+ 1)2l2

2n ,
4σ3l + 2σ2µ2l2

22n + 8σl + 4µ2l2

2n

}
+ 16µ4

22n + µ2

2n + 4µ2δ + 4v
2n + (2L+ 1)vδ

+ 2n
(
eµ2

L2n

)L
+ (16

√
2 + 6)(q + v)

2n

+ 3Advprp
E (5q + 5v + σ + vl, t+ t′),

where t′ is the time complexity necessary to compute E for 5q+5v+σ+vl times.

Remark 1. When L = n and µ ≤ 2n2 , we have 2n
(
eµ2

L2n

)L
≤
( 2e
n

)n, which is
close to 0 for a sufficiently large n.

4.1 Proof of Theorem 1

Fix a (µ, q, v, σ, l, t)-adversary D against SCM[H,E]. Up to the prp-security of
E, keyed permutations EK , EK′ , and EK′′ can be replaced by truly random
permutations π, π′, and π′′, respectively. Precisely, the cost of this replacement
is upper bounded by

3Advprp
E (5q + 5v + σ + vl, t+ t′) (4)

since D makes at most 5q + 5v + σ + vl block cipher queries.
Furthermore, by Lemma 2 (with w = 4 and r = q + v in (2)), π′′(· ‖ 00) ⊕

π′′(· ‖ 01), π′′(· ‖ 00) ⊕ π′′(· ‖ 10) and π′′(· ‖ 00) ⊕ π′′(· ‖ 11) (used to encrypt
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SCM.MAC[H,E]
Input: (Kh,K

′,K′′) ∈ Kh ×Kb ×Kb, N ∈ N , A, M ∈ {0, 1}∗
Output: T ∈ {0, 1}n

1 ∆′′ ← EK′′(N ‖ 00)⊕ EK′′(N ‖ 11)
2 X ← HKh(A,M)⊕ (N ‖ 00)
3 T ← EK′(X)⊕∆′′
4 return T

SCM.PRNG[E]
Input: (K,K′′) ∈ Kb ×Kb, N ∈ N , T ∈ {0, 1}n, m: nonnegative integer
Output: Z ∈ {0, 1}∗

1 ∆← EK′′(N ‖ 00)⊕ EK′′(N ‖ 01)
2 ∆′ ← EK′′(N ‖ 00)⊕ EK′′(N ‖ 10)
3 for i = 1, . . . ,m do
4 X[i]← T ⊕ 2i−1∆
5 Z[i]← EK(X[i])⊕∆′

6 Z ← Z[1] ‖ · · · ‖ Z[m]
7 return Z

SCM.ENC[H,E]
Input: (Kh,K,K

′,K′′) ∈ K, N ∈ N , A ∈ A, M ∈M
Output: C ∈ {0, 1}∗, T ∈ {0, 1}n

1 T ← SCM.MAC[H,E]Kh,K′,K′′(N,A,M)
2 m← d|M |/ne
3 Z ← SCM.PRNG[E]K,K′′(N,T,m)
4 Z ← msb|M|(Z)
5 C ←M ⊕ Z
6 return (C, T )

SCM.DEC[H,E]
Input: (Kh,K,K

′,K′′) ∈ K, N ∈ N , A ∈ A, C ∈ {0, 1}∗, T ∈ {0, 1}n

Output: M ∈M or ⊥
1 m← d|C|/ne
2 Z ← SCM.PRNG[E]K,K′′(N,T,m)
3 Z ← msb|C|(Z)
4 M ← C ⊕ Z
5 T ′ ← SCM.MAC[H,E]Kh,K′,K′′(N,A,M)
6 if T 6= T ′ then
7 return ⊥
8 else
9 return M

Fig. 4: Description of the SCM mode in pseudocode.
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nonces) can be replaced by three independent random functions ρ, ρ′, and ρ′′,
respectively, at the cost of

(16
√

2 + 6)(q + v)
2n . (5)

The resulting construction (using independent random permutations π and π′,
and three independent random functions ρ, ρ′, and ρ′′) will be denoted SCM∗[H].

Similarly to SCM[H,E], SCM∗[H] uses two subprocedures SCM.MAC∗[H]
and SCM.PRNG∗; SCM.MAC∗[H] takes as input a nonce N ∈ {0, 1}n−2 and a
message M ∈ {0, 1}∗ with associated data A ∈ {0, 1}∗, and returns the tag T ,
where

T
def= ρ′(N)⊕ π′(HKh(A,M)⊕ (N ‖ 00)).

On the other hand, SCM.PRNG∗ takes as input a nonce N ∈ {0, 1}n−2, a tag T ∈
{0, 1}n and a nonnegative integer m such that m ≤ l, and returns a keystream
Z = Z[1] ‖ · · · ‖ Z[m] and T , where

Z[α] def= π(T ⊕ 2α−1ρ(N))⊕ ρ′(N)

for α = 1, . . . ,m.
For our security proof, we consider a slightly modified variant of SCM.PRNG∗,

denoted SCM.PRNG#, that takes as input a nonce N ∈ {0, 1}n−2 and a nonneg-
ative integer m such that m ≤ l, and returns SCM.PRNG∗π,ρ,ρ′(N,T,m) and T ,
where T is chosen uniformly at random from {0, 1}n. For an adversary B making
oracle queries to SCM.PRNG#, its distinguishing advantage is defined as

Advprg
SCM.PRNG#(B) def=

∣∣∣Pr
[
BSCM.PRNG#

= 1
]
− Pr

[
B$ = 1

]∣∣∣
where the ideal oracle $ takes as input N andm, and returns a tuple of a random
nm-bit string and a random n-bit string. Note that $ is a sampling that returns
a fresh random value for every redundant query.7

A (µ, q, σ, l)-adversary against SCM.PRNG# is an (information-theoretic) al-
gorithm that makes at most q queries with at most µ faulty queries (using
repeated nonces), where m ≤ l for every query, and the sum of m over all the
queries is at most σ. Then we define Advprg

SCM.PRNG#(µ, q, σ, l) as the maximum
of Advprg

SCM.PRNG#(B) over all (µ, q, σ, l)-adversaries B against SCM.PRNG#. With
this notion of security, we can prove the following lemma.

Lemma 5. Let δ > 0, let H : Kh × ({0, 1}∗ × {0, 1}∗) 7→ {0, 1}n be a δ-AXU
function. Then for nonnegative integers µ, q, v, σ, l, we have

AdvnAE
SCM∗[H](µ, q, v, σ, l) ≤ Advmac

SCM.MAC∗[H](µ, q, v) + Advprg
SCM.PRNG#(µ, q, σ, l)

The MAC security of SCM.MAC∗[H] is proved as follows.
7 This property might allow an adversary to distinguish SCM.PRNG# and $ by making
redundant queries, and this aspect will be taken into account in Lemma 7 and 8.
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Lemma 6. Let δ > 0, and let H : K× ({0, 1}∗×{0, 1}∗) 7→ {0, 1}n be a δ-AXU
hash function. For nonnegative integers µ, q, v, such that q + v ≤ 2n−3 and for
any positive integer L, we have

Advmac
SCM.MAC∗[H](µ, q, v) ≤ 16µ4

22n + µ2

2n + 4µ2δ + 4v
2n + (2L+ 1)vδ + 2n

(
eµ2

L2n

)L
.

We remark that the proof of Lemma 5 is similar to the NSIV composition Lemma
by Peyrin and Seurin [25], and the proof of Lemma 6 is similar to the security
proof of nEHtM by Choi et al. [6]. The proofs of Lemma 5 and 6 are given in the
full version [5].

The following lemmas upper bound the adversarial distinguishing advantage
against SCM.PRNG# using two different approaches.

Lemma 7. For nonnegative integers µ, q, σ, and l, we have

Advprg
SCM.PRNG#(µ, q, σ, l) ≤ 4σ3l + 2σ2µ2l2

22n + 8σl + 4µ2l2

2n .

Lemma 8. For nonnegative integers µ, q, σ, and l, we have

Advprg
SCM.PRNG#(µ, q, σ, l) ≤ 8q(µ+ 1)2l2

2n .

The proof of Theorem 1 is complete by (4), (5), Lemma 5, 6, 7 and 8.

4.2 Proof of Lemma 7

Let D be a (µ, q, σ, l)-adversary against the pseudorandomness of SCM.PRNG#,
assuming that D makes exactly q encryption queries without loss of generality.
At the end of the interaction, D will be given ∆i =def ρ(Ni), i = 1, . . . , q, for
free. In the ideal world, dummy masks ∆i will be defined by an independent
random function ρ : N → {0, 1}n, and given to D. Then the transcript is defined
as

τ
def= (Ni,mi, ∆i, Ti, Zi[1] ‖ · · · ‖ Zi[mi])i∈[q].

From this transcript, one can fix Xi = Xi[1] ‖ · · · ‖Xi[mi], where

Xi[α] def= Ti ⊕ 2α−1∆i

for i ∈ [q] and α ∈ [mi]. Let

Nm = {N1, . . . , Nq} ,
V = {π(Xi[α]) : i ∈ [q], α ∈ [mi]} .

For N ∈ Nm, let

VN
def= {π(Xi[α]) : Ni = N, i ∈ [q], α ∈ [mi]} .
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For simplicity of notation, we rename the elements of VN , writing

VN = {VN [1], . . . , VN [sN ]} ,

where sN is the sum of mi over all i ∈ [q] such that Ni = N . The following
bound will be useful in our security proof.

Property 1.
∑
N∈Nm s

2
N ≤ 2σl + µ2l2.

Proof. Let F denote the index set of faulty queries, namely,

F = {i ∈ [q] : Ni = Nj for some j such that j < i} .

Since
∑
i∈[q]\F (sNi −mi) ≤ µl, we have∑

N∈Nm

s2
N =

∑
i∈[q]\F

(mi + (sNi −mi))2

≤
∑

i∈[q]\F

(
2misNi + (sNi −mi)2) ≤ 2σl + µ2l2. ut

For VN [α] ∈ VN such that VN [α] = π(Xi[β]), letWN [α] denote the corresponding
keysteam block Zi[β]. This means that WN [α] = VN [α]⊕ ρ′(N). A transcript τ
is defined as bad if one of the following conditions holds.

– bad1⇔
∨
t≥1 bad1[t], where bad1[t] if and only if there exist (N [i])i∈[t] ∈ N ∗tm ,

(αi)i∈[t] and (βi)i∈[t] such that αi 6= βi and

VN [i][βi] = VN [i+1][αi+1]

for i = 1, . . . , t, with indices taken modulo t;
– bad2⇔

∨
t≥1 bad2[t], where bad2[t] if and only if there exist (N [i])i∈[t] ∈ N ∗tm ,

(αi)i∈[t] and (βi)i∈[t] such that αi 6= βi and

VN [i][βi] = VN [i+1][αi+1]

for i = 1, . . . , t− 1, and

t∑
i=1

(
WN [i][βi]⊕WN [i][αi]

)
= 0.

The probability of each bad event (in the ideal world) is upper bounded as
follows.

Lemma 9. Pr [bad1 ∨ bad2] ≤ 8σl+4µ2l2

2n .

Sketch of Proof. For a fixed t ≥ 1, consider (N [i])i∈[t] ∈ N ∗tm , (αi)i∈[t] and
(βi)i∈[t]. The number of possibilities for such sequences is upper bounded by(∑

N∈Nm s
2
N

)t. Suppose that VN [i][βi] and VN [i+1][αi+1] are defined by the γ-th
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block of the j-th query and the δ-th block of the k-th query, respectively. Then
the equation VN [i][βi] = VN [i+1][αi+1] is equivalent to

Tj ⊕ 2γ−1∆j = Tk ⊕ 2δ−1∆k.

In this way, bad1[t] defines t equations, where we focus on t+1 random variables,
namely, all the ∆-values and the T -value for the last query (with the other
T -values fixed). From the 2(t+1)n possible values for these variables, one can
always find out 2n solutions to this system of equations. Therefore, the system
of equations holds with probability 1

2tn . Then, by Property 1, we have

Pr [bad1] ≤
∞∑
t=1

Pr [bad1[t]] ≤
∞∑
t=1

(
2σl + µ2l2

)t
2tn ,

and hence, Pr [bad1] ≤ 4σl+2µ2l2

2n since

∞∑
t=1

(
2σl + µ2l2

2n

)t
≤ 4σl + 2µ2l2

2n

if 2σl+µ2l2

2n ≤ 1
2 , and

4σl+2µ2l2

2n > 1 otherwise. With a similar argument to the
analysis of bad1, we can also prove that Pr [bad2] ≤ 4σl+2µ2l2

2n , which completes
the proof. ut
If a transcript is not bad, then it will be called a good transcript. For a good
transcript τ , we make some noteworthy observations as follows.

1. Distinct pairs (i, α) ∈ [q] × [mi] and (j, β) ∈ [q] × [mj ] such that Ni =
Nj correspond to distinct elements of VNi(= VNj ) since otherwise we have
bad1[1]. Therefore, we have |VN | = sN for any N ∈ Nm.

2. For any pair of distinct nonces N and N ′, |VN ∩VN ′ | ≤ 1 since otherwise we
have bad1[1] ∨ bad1[2].

3. Assuming ¬(bad1[1]∨ bad1[2]), for each nonce N ∈ Nm, we can define a tree
TN = (VN , E=

N ), and a label function λN on E=
N , where any vertex VN [α] such

that α ≥ 2 is connected with VN [1], and

λN (VN [1], VN [α]) def= WN [1]⊕WN [α].

We define a graph Gτ = (V, E=) and a label function λ : E= → {0, 1}n as the
union of TN and the union of λN over all nonces in Nm, respectively. Then,
(a) there is no cycle in Gτ since otherwise we have bad1;
(b) there is no pair of two vertices P and Q such that λ̄(P,Q) = 0 since

otherwise have bad2.

Due to the above properties, we can apply Lemma 3 to Gτ when τ is a good
transcript. Let Comp(Gτ ) denote the set of connected components of Gτ . We will
lower bound the probability of obtaining the good transcript τ in the real world
by the following steps.
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1. Since the number of distinct nonces used in τ is |Nm|, the probability that
a random function ρ realizes (∆i) is 1

2|Nm|n .
2. The probability that a random sampling realizes (Ti) is 1

2qn .
3. The number of possible assignments of distinct values to the vertices of Gτ

is lower bounded by

(2n)|V|
2|E=|n

1− σ2

22n

∑
C∈Comp(Gτ )

|C|2


by Lemma 3 with |E 6=| = 0. The probability that a random permutation π
realizes each assignment is 1/(2n)|V|.

4. The above assignment uniquely determines ρ′(N) for any N ∈ Nm (without
any contradiction), and the probability that a random function ρ′ realizes
each assignment is 1

2|Nm|n .

Therefore, we have

Pr [Tre = τ ] ≥ 1
2(q+2|Nm|+|E=|)n

1− σ2

22n

∑
C∈Comp(Gτ )

|C|2
 .

Since Pr [Tid = τ ] = 1
2(q+2|Nm|+|E=|)n , we have

Pr [Tre = τ ]
Pr [Tid = τ ] ≥ 1− σ2

22n · ε(τ), (6)

where
ε(τ) def=

∑
C∈Comp(Gτ )

|C|2.

We define ε̄ by extending the domain of ε to Γ ; ε̄(τ) = ε(τ) if τ is good, and
ε̄(τ) = 0 otherwise.

Lemma 10. If
∑
N∈Nm s

2
N ≤ 2n−1, then

Ex [ε̄] ≤ 4σl + 2µ2l2,

where the expectation is taken over the distribution Tid in the ideal world.

Proof. We define a random variable S over Γ such that S(τ) ≥ ε̄(τ) for any
attainable transcript τ .

– For (N,N ′) ∈ N ∗2, we define a random variable IN,N ′ : Γ → {0, 1}. For
τ ∈ Γ , IN,N ′(τ) = 1 if, for a positive integer t, there exists (N [0], . . . , N [t]) ∈
Nm∗(t+1) such that N [0] = N , N [t] = N ′, and VN [i] ∩ VN [i+1] 6= ∅ for
i = 0, . . . , t− 1; IN,N ′(τ) = 0 otherwise.

– For N ∈ N , we define a random variable s̄N on Γ ; for τ ∈ Γ , s̄N (τ) = sN if
N ∈ Nm, and s̄N (τ) = 0 otherwise.
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– Finally, let
S

def=
∑
N∈N

s̄2
N +

∑
(N,N ′)∈N∗2

s̄N s̄N ′IN,N ′ .

Then for a good transcript τ , we have

S(τ) =
∑

N∈Nm

s2
N +

∑
(N,N ′)∈N∗2

m

sNsN ′IN,N ′ .

Suppose that Nm = {N1, N2}. If TN1 and TN2 are distinct components (i.e.,
IN1,N2 = 0), then

∑
C∈Comp(Gτ ) |C|2 = s2

N1
+ s2

N2
, and otherwise,∑

C∈Comp(Gτ )

|C|2 ≤ (sN1 + sN2)2 = s2
N1

+ s2
N2

+ IN1,N2sN1sN2 + IN2,N1sN2sN1 .

By generalizing this observation, we have∑
C∈Comp(Gτ )

|C|2 ≤ S(τ).

Any attainable transcript τ is partitioned as τ = (τ1, τ2), where

τ1 = (Ni,mi, Ti, Zi[1] ‖ · · · ‖ Zi[mi])i∈[q],

τ2 = (∆i)i∈[q].

A set of partial transcripts τ1 (resp. τ2) obtained from attainable transcripts will
be denoted Γ1 (resp. Γ2). Let T1 and T2 denote the marginal distributions of τ1
and τ2, respectively, in the ideal world. So the joint probability distribution of
T1 and T2 becomes Tid.

First, fix τ1 ∈ Γ1. Then it determines Nm. So we have

S =
∑

N∈Nm

s2
N +

∑
(N,N ′)∈N∗2

m

sNsN ′IN,N ′ .

For distinct nonces N,N ′ ∈ Nm and for a positive integer t, let

Pt(N,N ′)
def=
{

(N [0], . . . , N [t]) ∈ Nm∗(t+1) : N [0] = N,N [t] = N ′
}
.

Then, we have

ExT2 [IN,N ′ ] ≤
|Nm|−1∑
t=1

∑
(N [0],...,N [t])∈Pt(N,N ′)

Pr
[
t−1∧
i=0

(VN [i] ∩ VN [i+1] 6= ∅)
]

≤
|Nm|−1∑
t=1

∑
(N [0],...,N [t])∈Pt(N,N ′)

t−1∏
i=0

sN [i]sN [i+1]

2n

≤
∞∑
t=1

sNsN ′

2n

(∑
N ′′∈Nm s

2
N ′′

2n

)t−1

≤ 2sNsN ′
2n ,
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where the expectation is taken over the distribution T2. By Property 1, we have

ExT2 [S] =
∑

N∈Nm

s2
N +

∑
(N,N ′)∈(Nm)∗2

sNsN ′ExT2 [IN,N ′ ]

≤
∑

N∈Nm

s2
N +

∑
(N,N ′)∈(Nm)∗2

2s2
Ns

2
N ′

2n

≤
∑

N∈Nm

s2
N +

∑
N∈Nm

s2
N

(∑
N ′∈Nm 2s2

N ′

2n

)
≤

∑
N∈Nm

2s2
N ≤ 4σl + 2µ2l2,

where the expectation is also taken over the distribution of T2. Since the above
inequality holds for any τ1 ∈ Γ1, we also have Ex[S] ≤ 4σl+ 2µ2l2. The proof is
complete since Ex[ε̄] ≤ Ex[S]. ut

By Lemma 1, 9 and 10, and (6), we have

Advprg
SCM.PRNG#(µ, q, σ, l) ≤ 4σ3l + 2σ2µ2l2

22n + 8σl + 4µ2l2

2n ,

where the right-hand side of the above inequality is greater than 1 when 2n−1 <∑
N∈Nm s

2
N by Property 1.

4.3 Proof of Lemma 8

Let D be a (µ, q, σ, l)-adversary against the pseudorandomness of SCM.PRNG#.
By giving more power to D, we will assume that D makes exactly µ+ 1 queries
for each nonce, whose length is exactly l blocks of n bits, using exactly q distinct
nonces. Since D makes the maximum number of queries for each nonce, and since
each nonce is fed to random functions ρ and ρ′, generating independent masks,
we can assume that D is non-adapative using a fixed set of q distinct nonces.
The set of nonces will be denoted Nm = {N1, . . . , Nq}.

At the end of the interaction, D will be given ∆i =def ρ(Ni), i ∈ [q], for free.
In the ideal world, dummy masks ∆i will be defined by an independent random
function ρ : N → {0, 1}n, and given to D. Then the transcript is defined as

τ
def= (Ni, ∆i, Ti, Zi[1] ‖ · · · ‖ Zi[l])i∈[q̄],

where q̄ = (µ + 1)q. For our security proof, we will partition this transcript as
τ = (τ ′, τ ′′), where

τ ′
def= (Ni, ∆i, Ti)i∈[q̄] ,

τ ′′
def= (Zi[1] ‖ · · · ‖ Zi[l])i∈[q̄] .
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A set of partial transcripts τ ′ (resp. τ ′′) obtained from attainable transcripts will
be denoted Γ ′ (resp. Γ ′′). Let T′ and T′′ denote the marginal distributions of τ ′
and τ ′′, respectively, in the ideal world. We note that T′ and T′′ are independent.

For i ∈ [q̄] and α ∈ [l], one can fix Xi = Xi[1] ‖ · · · ‖ Xi[l], where Xi[α] =
Ti ⊕ 2α−1∆i. Let

V = {π(Xi[α]) : i ∈ [q̄], α ∈ [l]} .

For N ∈ Nm, let

VN = {π(Xi[α]) : Ni = N, i ∈ [q̄], α ∈ [l]} .

For simplicity of notation, we rename the elements of VN , writing

VN = {VN [1], . . . , VN [s]} ,

where s = (µ + 1)l. For VN [α] ∈ VN such that VN [α] = π(Xi[β]), let WN [α]
denote the corresponding keysteam block Zi[β]. This means that WN [α] =
VN [α] ⊕ ρ′(N). We note that VN and V are defined only by τ ′. We will call
a partial transcript τ ′ bad if the following condition holds.

– bad⇔
∨
t≥1 bad[t], where bad[t] if and only if there exist (N [i])i∈[t] ∈ N ∗tm ,

(αi)i∈[t] and (βi)i∈[t] such that αi 6= βi and

VN [i][βi] = VN [i+1][αi+1]

for i = 1, . . . , t, with indices taken modulo t.

The subset of bad parts τ ′ in Γ ′ will be denoted Γ ′bad. Similarly to Lemma 9, we
can prove the following lemma.

Lemma 11. Pr [T′ ∈ Γ ′bad] ≤ 2q(µ+1)2l2

2n .

We will call τ = (τ ′, τ ′′) a good transcript if τ ′ is not bad. Given a good transcript
τ , we can define a tree TN = (VN , E=

N ), and a label function λN on E=
N for each

nonce N ∈ Nm, where any vertex VN [α] such that α ≥ 2 is connected with
VN [1], and

λN (VN [1], VN [α]) def= WN [1]⊕WN [α].

We also define a graph Gτ ′ = (V, E=) and a label function λ : E= → {0, 1}n as
the union of TN and the union of λN over all nonces in N , respectively. We note
that Gτ ′ is determined only by τ ′ (independent of τ ′′). We also see that there is
no cycle in Gτ ′ since otherwise we have bad. Similarly to the proof of Lemma 7,
we have

Pr [Tre = τ ] = 1
2(q̄+2q)n ·

h(Gτ ′ , λ)
(2n)|V|

,

Pr [Tid = τ ] = 1
2(q+q̄+q̄l)n = 1

2(|E=|+q̄+2q)n ,
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since |E=| = q̄l − q. Therefore, we have

‖Tre − Tid‖ = 1
2
∑
τ

|Pr [Tre = τ ]− Pr [Tid = τ ]|

≤ 1
2 Pr [T′ ∈ Γ ′bad] + 1

2
∑

τ ′ /∈Γ ′bad

∑
τ ′′∈Γ ′′

|Pr [Tre = τ ]− Pr [Tid = τ ]|

= q(µ+ 1)2l2

2n + 1
2
∑

τ ′ /∈Γ ′bad

∑
τ ′′∈Γ ′′

1
2(q̄+2q)n

∣∣∣∣h(Gτ ′ , λ)
(2n)|V|

− 1
2|E=|n

∣∣∣∣ . (7)

For each λ ∈ L(Gτ ′) (which is the set of all possible label functions on Gτ ′), the
number of partial transcripts τ ′′ yielding λ is exactly 2qn since one can arbitrarily
choose WN [1] for each N ∈ Nm. Therefore, for a fixed τ ′ /∈ Γ ′bad, we have

1
2
∑

τ ′′∈Γ ′′

∣∣∣∣h(Gτ ′ , λ)
(2n)|V|

− 1
2|E=|n

∣∣∣∣ = 1
2

∑
λ∈L(Gτ′ )

2qn
∣∣∣∣h(Gτ ′ , λ)

(2n)|V|
− 1

2|E=|n

∣∣∣∣
≤ 2qn · ε(τ ′)

where

ε(τ ′) def=

 4q̄l
22n

∑
C∈Comp(Gτ′ )

|C|3
 1

2

+
∑

C∈Comp(Gτ′ )

|C|2

2n+1 (8)

by Lemma 4 with σ ≤ q̄l, where Comp(Gτ ′) denotes the set of connected com-
ponents of Gτ ′ . We define ε̄ by extending the domain of ε to Γ ′; ε̄(τ ′) = ε(τ ′) if
τ ′ ∈ Γ ′ \ Γ ′bad, and ε̄(τ ′) = 0 otherwise. By (7) and (8), we have

‖Tre − Tid‖ ≤
q(µ+ 1)2l2

2n + ExT′ [ε̄], (9)

where the expectation is taken over the distribution T′.

Lemma 12. If q(µ+ 1)2l2 ≤ 2n−1, then

ExT′ [ε̄] ≤
7q(µ+ 1)2l2

2n .

Proof. We define some random variables to upper bound ε̄ as follows.

– For (N,N ′) ∈ Nm∗2, we define a random variable IN,N ′ : Γ ′ → {0, 1}. For
τ ′ ∈ Γ ′, IN,N ′(τ ′) = 1 if, for a positive integer t, there exists

(N [0], . . . , N [t]) ∈ Nm∗(t+1)

such that N [0] = N , N [t] = N ′, and VN [i−1] ∩ VN [i] 6= ∅ for i ∈ [t];
IN,N ′(τ ′) = 0 otherwise. If τ = (τ ′, τ ′′) is good, and IN,N ′(τ ′) = 1, then
two trees TN and TN ′ are in the same component of Gτ ′ .
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– For (N,N ′, N ′′) ∈ Nm∗3, we define a random variable JN,N ′,N ′′ : Γ ′ →
{0, 1}. For τ ′ ∈ Γ ′, JN,N ′,N ′′(τ ′) = 1 if, for integers t ≥ 1 and t′ ≥ 0, there
exist two sequences of nonces

(N [0], . . . , N [t]) ∈ Nm∗(t+1),

(N ′[0], . . . , N ′[t′]) ∈ Nm∗(t
′+1)

such that N [0] = N , N [t] = N ′′, N ′[t′] = N ′, VN [i−1] ∩ VN [i] 6= ∅ for i ∈ [t],
VN ′[i−1] ∩ VN ′[i] 6= ∅ for i ∈ [t′], and

{N [0], . . . , N [t]} ∩ {N ′[0], . . . , N ′[t′]} = {N ′[0]} ;

JN,N ′,N ′′(τ ′) = 0 otherwise. If τ = (τ ′, τ ′′) is good, and JN,N ′,N ′′(τ ′) = 1,
then three trees TN , TN ′ and TN ′′ are in the same component of Gτ ′ .

– Let

S(τ ′) def= qs2 +
∑

(N,N ′)∈Nm∗2

s2IN,N ′(τ ′),

T (τ ′) def= qs3 + 3
∑

(N,N ′)∈Nm∗2

s3IN,N ′(τ ′) +
∑

(N,N ′,N ′′)∈Nm∗3

s3JN,N ′,N ′′(τ ′).

Then for any τ ′ ∈ Γ ′ \ Γ ′bad, we have∑
C∈Comp(Gτ′ )

|C|2 ≤ S(τ ′),
∑

C∈Comp(Gτ′ )

|C|3 ≤ T (τ ′). (10)

For any τ ′ ∈ Γ ′, let τ ′ = (τ1, τ2), where τ1 = (Ni, Ti)i∈[q̄] and τ2 = (∆i)i∈[q̄].
A set of partial transcripts τ1 (resp. τ2) obtained from the transcripts in Γ ′ will
be denoted Γ1 (resp. Γ2). Let T1 and T2 denote the marginal distributions of τ1
and τ2, respectively, in the ideal world.

Similarly to the proof of Lemma 10, we have ExT2 [IN,N ′ ] = 2s2

2n for any
τ1 ∈ Γ1, and hence,

ExT′ [S] ≤ 2q(µ+ 1)2l2. (11)
The next goal is to upper bound ExT′ [T ]; we fix τ1 ∈ Γ1. For distinct nonces
N,N ′, N ′′ ∈ Nm, integers t ≥ 1 and t′ ≥ 0, the number of sequences (N [i]) ∈
Nm∗(t+1) and (N ′[i]) ∈ Nm∗(t

′+1) such that N [0] = N , N [t] = N ′′, N ′[0] = N [j]
for some j ∈ {0, . . . , t}, and N ′[t′] = N ′ is at most (t+1)qt+t′−2, where it cannot
be the case that both t = 1 and t′ = 0. For each of such sequences, we have
VN [i−1]∩VN [i] 6= ∅ for i ∈ [t], and VN ′[i−1]∩VN ′[i] 6= ∅ for i ∈ [t′] with probability

at most
(
s2

2n

)t+t′
. Therefore, we have

ExT2 [JN,N ′,N ′′ ] ≤
∞∑
t′=1

(
2qt
′−1
(
s2

2n

)t′+1)
+
∞∑
t=2

∞∑
t′=0

(
(t+ 1)qt+t

′−2
(
s2

2n

)t+t′)

≤ 4s4

22n + s4

22n

∞∑
t=0

(
(t+ 3)

(
qs2

2n

)t ∞∑
t′=0

(
qs2

2n

)t′)
≤ 20s4

22n ,
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where the expectation is taken over the distribution T2 and the last inequality
holds since qs2 ≤ 2n−1. By (10) and since ExT2 [IN,N ′ ] ≤ 2s2

2n , we have

ExT2 [T ] ≤ qs3 + 6q2s5

2n + 20q3s7

22n ≤ 9qs3 = 9q(µ+ 1)3l3

where the expectation is also taken over the distribution T2. Since the above
inequality holds for any τ1 ∈ Γ1, we have

ExT′ [T ] ≤ 9q(µ+ 1)3l3. (12)

By (8), (10), (11), (12) and Jensen’s inequality, we have

ExT′ [ε̄] ≤
(

4q̄lExT′ [T ]
22n

) 1
2

+ ExT′ [S]
2n+1

≤
(

36q2(µ+ 1)4l4

22n

) 1
2

+ q(µ+ 1)2l2

2n ≤ 7q(µ+ 1)2l2

2n . ut

By (9) and Lemma 12, we have

Advprg
SCM.PRNG∗(q, µ, σ, l) ≤ ‖Tre − Tid‖ ≤

8q(µ+ 1)2l2

2n .

4.4 Using Random IVs

One may want to instantiate nonces with random IVs for convenience of im-
plementation. For the analysis of this instantiation, we need to introduce a new
parameter r that denotes the highest multiplicity in IV collisions. Then we make
the following observations.

1. The expected number of IV collisions is q(q−1)
2n−1 . By defining µ > q

2
3 as a

bad event, one can upper bound µ by q 2
3 , while the probability of this bad

event is upper bounded by 2q
4
3

2n by Markov’s inequality. Following the proof
of Lemma 6 with this bad event, we have

Advmac
SCM.MAC∗[H](q, v) ≤ 16q 8

3

22n + 3q 4
3

2n +4q 4
3 δ+ 4v

2n +(2L+1)vδ+2n
(
eq

4
3

L2n

)L
.

2. By closely looking at the proof of Lemma 7, one see that

Advprg
SCM.PRNG#(µ, q, σ, l) ≤ 2σ2S

22n + 4S
2n

where S = maxτ∈Γ
{∑

N∈Nm s
2
N

}
. Since

∑
N∈Nm s

2
N ≤ σrl and Pr [r ≥ 4] ≤

3q4/23n, we have

Advprg
SCM.PRNG#(q, σ, l) ≤ 6σ3l

22n + 12σl
2n + 3q4

23n .
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3. In the proof of Lemma 8, it is assumed that exactly µ+ 1 queries are made
for each nonce. When nonces are instantiated with random IVs, µ + 1 can
be replaced by r, obtaining the following bound.

Advprg
SCM.PRNG#(q, σ, l) ≤ 72ql2

2n + 3q4

23n .

All in all, we conclude that the security bound is dominated by

min
{

72ql2

2n ,
6σ3l

22n + 12σl
2n

}
,

when q � O(2 3n
4 ) and v � O(2n).
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