
Automatic Classical and Quantum Rebound
Attacks on AES-like Hashing by Exploiting

Related-key Differentials⋆

Xiaoyang Dong1, Zhiyu Zhang3,4, Siwei Sun2,5 �, Congming Wei1

Xiaoyun Wang1,6,7, and Lei Hu3,4

1 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China.
{xiaoyangdong,wcm16,xiaoyunwang}@tsinghua.edu.cn

2 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China.
siweisun.isaac@gmail.com

3 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China.

{zhangzhiyu,hulei}@iie.ac.cn
4 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,

China.
5 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China.

6 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, China.

7 School of Cyber Science and Technology, Shandong University, Qingdao, China

Abstract. Collision attacks on AES-like hashing (hash functions con-
structed by plugging AES-like ciphers or permutations into the famous
PGV modes or their variants) can be reduced to the problem of find-
ing a pair of inputs respecting a differential of the underlying AES-like
primitive whose input and output differences are the same. The rebound
attack due to Mendel et al. is a powerful tool for achieving this goal,
whose quantum version was first considered by Hosoyamada and Sasaki
at EUROCRYPT 2020. In this work, we automate the process of search-
ing for the configurations of rebound attacks by taking related-key dif-
ferentials of the underlying block cipher into account with the MILP-
based approach. In the quantum setting, our model guide the search
towards characteristics that minimize the resources (e.g., QRAM) and
complexities of the resulting rebound attacks. We apply our method to
Saturnin-hash, SKINNY, and Whirlpool and improved results are ob-
tained.

Keywords: Quantum computation · Collision attacks · Rebound at-
tacks · Saturnin· SKINNY· Whirlpool· MILP

1 Introduction

A cryptographic hash function is a primitive that maps a binary string of arbi-
trary length into a short fixed-length digest, enjoying collision resistance, preim-

⋆ The full version of the paper is available at https://eprint.iacr.org/2021/1119

https://eprint.iacr.org/2021/1119

2 Xiaoyang Dong, et. al.

age resistance, and second-preimage resistance. One popular approach for build-
ing a cryptographic hash function is to plug a secure block cipher into one of
the twelve secure PGV modes [46] to build the compression function, and then
iterate it with the Merkle-Damg̊ard paradigm [13,41]. In this work, we focus on
the collision resistance of hash functions constructed in this way with AES-like
ciphers (named as AES-like hashing) in both the classical and quantum setting.

The differential attack plays an important role in analyzing the collision
resistance of a hash function H, since a successful collision attack implies a
pair of inputs x and x′ with nonzero difference x ⊕ x′ such that the output
difference H(x)⊕H(x′) is zero. In the context of AES-like hashing, due to the
feed-forward mechanism of the PGV modes, a collision means the identification
of a pair of different inputs conforming a differential of the underlying block
cipher whose input and output differences are the same. To be more concrete,
let us consider the MMO mode (one of the twelve secure PGV modes) shown in
Figure 1: H(x)⊕H(x′) = 0 implies (m⊕ EK(m))⊕ (m⊕∆⊕ EK(m⊕∆)) = 0
or EK(m) ⊕ EK(m ⊕ ∆) = ∆. Therefore, finding a collision is equivalent to
finding a pair conforming a differential of the underlying block cipher whose
input and output differences are of the same value. One method for achieving
this goal is the rebound attack [39], which is the main technique involved in this
work.

mi−1 EK hi

hi−1

Fig. 1: (MMO) Matyas-Meyer-Oseas

fbw fin ffw

Inbound

OutboundOutbound

Fig. 2: The Rebound Attack

1.1 The Rebound Attack

The rebound attack was first introduced by Mendel et al. at FSE 2009 [39]. Es-
sentially, it is a technique for generating a pair of inputs fulfilling a differential
δ → ∆ for a block cipher. In the rebound attack, the targeted primitive with a
truncated differential trail whose input and output differences share a common
pattern is divided into three parts as shown in Figure 2. Then, the attacker
generates a lot of pairs (named as starting points in the literature) conforming
the inbound differential. Finally, the starting points are propagated forward and
backward to identify data pairs fulfilling the outbound differentials and the addi-
tional constraint that the input and output differences of the whole trail should
be equal.

To increase the number of rounds covered by the inbound differential for
AES-like ciphers, the super S-box technique was introduced independently by
Gilbert et al. [21] and Lamberger et al. [38], where two consecutive AES-like
rounds are considered as a whole with several super S-boxes. Later, Sasaki et al.

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 3

[48] showed that the memory complexity of the rebound attack can be signif-
icantly reduced by exploiting the differential property of non-full-active Super
S-boxes. At CRYPTO 2011, Naya-Plasencia further improved the rebound at-
tack by using better algorithms for merging large lists and finding solutions of
the underlying differential trail [43]. The rebound attack has become a basic
technique for collision attacks [49,30,32,31,40,16] and distinguishing attacks on
various hash functions. It even finds applications in the context of DS-MITM
attacks [15,14].

The Role of the Key Expansions. In rebound attacks, the generation of the
starting points relies on the degrees of freedom from the encryption data path of
the underlying block cipher. A natural idea is to utilize the degrees of freedom
from the key-schedule algorithm if we do not require the key to be a prefixed value
(e.g., the IV). For the sake of simplicity, let us consider the MMO mode with a
single message block (see Figure 1). A standard collision message pair (m,m′)
satisfies H(IV,m) = H(IV,m′), where the master key of the underlying block
cipher is fixed and thus no degrees of freedom from the key-schedule algorithm
can be used. However, for a semi-free-start collision H(u,m) = H(u,m′) (u ̸=
IV) or a free-start collision H(v,m) = H(v′,m′) (v ̸= v′), the key is allowed
to be changed and thus the degrees of freedom from the key-schedule algorithm
may be utilized. At ASIACRYPT 2009, Lamberger et al. presented the semi-
free-start collision attacks on reduced Whirlpool by exploiting the degrees of
freedom from the key schedule algorithm [38]. Since there is no difference in the
key material, this type of attack can be modeled with the MILP-based method
presented in [26,18]. At ASIACRYPT 2012, Sasaki et al. [49] applied the rebound
attack on Whirlpool with an 8-round related-key truncated differential trail
and find an 8-round free-start collision attack. To the best of our knowledge,
no automatic method is available to find such free-start collisions based on the
rebound attack. Finally, we would like to emphasize the importance of free-start
collision attacks: The Merkle-Damg̊ard security reduction assumes that any type
of collision for the compression function should be intractable for the attacker,
including free-start collisions.

1.2 Collision Attacks with Quantum Computing

For a long time, it was believed that quantum computing would have a limited
impact on symmetric ciphers due to the quadratic speedup of an exhaustive
search attack based on Grover’s algorithm [25]. In ISIT 2010, Kuwakado and
Morii showed how to break some provable secure schemes in the quantum set-
ting [36], and this naive view started to change. Some follow-up works break
more constructions [37,34]. However, a key step in these attacks involving the
application of Simon’s algorithm on a function with a hidden period related to
the secret key, which requires the access to the keyed quantum oracle of the
target. This is a strong requirement whose practical relevance is questioned.
Hence, quantum attacks with higher complexities are still meaningful if they

4 Xiaoyang Dong, et. al.

do not need to make online queries to superposition oracles of keyed primitives
[7,29,35,44,24,28,6].

As keyless primitives, hash functions can be quantumly implemented offline
and the thus attackers can freely make quantum superposition queries. For a
hash function with n-bit output, classical algorithms find collisions with time
complexity O(2n/2). In the quantum setting, we have the following bounds in-
duced by generic quantum attacks on hash functions.

– The BHT algorithm [8] equipped with a qRAM with size S finds a collision

with a time complexity T = 2n/2
√
S
. It achieves optimal tradeoff when T = 2n/3

and S = 2n/3.
– Since the existence of large qRAM is still doubtful [23,22], there is a time-

space tradeoff attack without qRAM, namely the quantum version of parallel

rho’s algorithm [50,26,4]. It achieves a time complexity of T = 2n/2

S with S
processors.

– The CNS algorithm [10] finds a collision with time complexity T = 22n/5

requiring a classical memory of size 2n/5 and O(n) qubits.

At EUROCRYPT 2020, Hosoyamada and Sasaki [26] introduced the first
dedicated quantum attack on hash functions (a quantum version of the rebound
attack), which reveals that a differential trail whose probability is too low to be
used in the classical setting may be exploitable in quantum attacks. However, the
presented attacks are inferior to the CNS attack when there is no large qRAMs.
At ASIACRYPT 2020, Dong et al. [18] reduced or even avoid the use of qRAM
in the quantum rebound attacks by leveraging the non-full-active Super S-box
technique. Recently, Hosoyamada and Sasaki [27] converted the classical semi-
free-start collision attack on reduced SHA-2 into quantum collision attack and
significantly improved the number of rounds attacked. At ToSC 2021, Chauhan
et al. [11] found quantum collisions on reduced AES-256 in double block length
hashing. Ni et al. [45] investigated the quantum collision attacks on reduced
Simpira v2 in hashing modes.

1.3 Our Contribution

In this paper, we introduce an automatic tool to determine the related-key dif-
ferentials, which are optimized for rebound attacks. More concretely, we focus
on the free-start collision attacks based on rebound attack technique.

The main task is to increase the probability of the differential trail of the
outbound part by properly consuming the degrees of freedom of the key. In
addition, we have to deal with the linear incompatibility, which are frequently
encountered in various automatic tools about related-key differential on AES-
like ciphers, such as [5,20,12]. At CRYPTO 2013, Fouque et al. [20] find that the
difference cancellation between the AES-128’s key state and the round state in
some round imposes some linear relationship between the key and state differ-
ences. Hence, difference cancellation in a different round cannot be independently
simulated.

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 5

On ciphers with linear key schedule, Cid et al. [12] described an MILP model
to search the related-key differentials, i.e., Deoxys-BC [33]. Since the relationship
between Deoxys-BC’s round keys are somewhat weakened by the LFSRs, they
do not need to consider incompatibilities between many rounds. In this paper,
we study a more complex case, i.e., Saturnin [9], a round 2 candidate of NIST
LWC competition, proposed by Canteaut et al. In Saturnin, the round keys
are identical for the even or odd rounds, respectively, and the round key in the
odd rounds are derived by shifting the key in even round by 5 cells. Hence, the
relationships between the round keys in Saturnin are stronger, and Cid et al.’s
model may lead to many incompatible solutions for Saturnin. To deal with the
problem, we build an efficient method to fast abandon the incompatible solutions,
where the incompatibilities come from many rounds, for example, contradictions
between the truncated differentials in round 0 and round 6. In addition, we also
model the inbound phase with key differences, where both the 2-round and 3-
round inbound phases are considered. We build a uniform objective function on
the time complexity to perform the rebound attack, that takes the complexity
of solving the inbound phase and the probability of the outbound phase as a
whole. Thereafter, we find an 8-round trail for the rebound attacks and generate
an 8-round quantum free-start collision attack on the compression function of
Saturnin-hash. In addition, we also identify a 7-round quantum collision attack
on Saturnin-hash based on a 7-round single-key rebound attack trail.

We also apply the automatic model to SKINNY-128-384 [3]. Since SKINNY

adopts non-MDS matrix, we build a dedicated method to solve the super S-
box with non-MDS matrix. Compared to the usual super S-box with MDS ma-
trix, our method explores the details of the non-MDS matrix of SKINNY and
decomposes the super S-box into a sequence of small S-boxes. Our super S-box
technique with non-MDS matrix does not need to precompute the differential
distribution of the super S-box even in the full active case, which works effi-
ciently in quantum attack without qRAM and large classic memory. Concretely,
about

√
2c time is needed to solve the full active super S-box with non-MDS

matrix quantumly without qRAM, while the time is
√
2dc for full active super

S-box with MDS matrix, where d = 4 for SKINNY and AES. Thereafter, we give
the 16-round free-start quantum collision attacks on the hashing modes with
SKINNY-128-384.

On ciphers with nonlinear key schedule, we study the compression function
of ISO standard hash function, Whirlpool [2]. In the automatic model, we place
the 3-round inbound phase in both the key schedule path and data encryp-
tion path (we do not find better trail with the two-round inbound phases). In
its quantum attack, we nest mutiple Grover’s algorithms to solve several local
searching problems. For Saturnin, the role of the consumption of degrees of
freedom for key schedule is mainly to increase the probability of the outbound
phase of the encryption data path. However, for Whirlpool, we have to consume
the degrees of freedom of the key to increase the probabilities of the outbound
phases in both the key schedule and the encryption data path. Finally, we intro-
duce a 9-round quantum free-start collision attack on the compression function

6 Xiaoyang Dong, et. al.

of Whirlpool, while the best previous attack is 8-round in classical setting [49].
The results are summarized in Table 1. Our quantum attacks do not need qRAM
or classical memories, which perform better than the generic quantum collision
attacks by parallel rho’s algorithm [50,26,4]. However, certain time complexities
may be inferior to the quantum attacks equipped with large classical memory
by Chailloux, Naya-Plasencia, and Schrottenloher’s algorithm [10].

Table 1: A Summary of the results.

Whirlpool

Target Attack Rounds Time C-Mem qRAM Setting Ref.

Hash
Collision

4/10 2120 216 - Classic [39]

function

5/10 2120 264 - Classic [21,38]
6/10 2228 - - Quantum [26]
6/10 2248 2248 Classic [17]

Preimage
5/10 2504 28 -

Classic
[47]

6/10 2481 2256 - [49]
7/10 2497 2128 [1]

Compression
Semi-free-start 5/10 2120 216 - Classic [39]

function
Semi-free-start 7/10 2184 28 - Classic [38]
free-start 8/10 2120 28 - Classic [49]
free-start 9/10 2220.5 - - Quantum Sect. 6
any any 2256 - - Quantum [50,26,4]
any any 2170.7 - 2170.7 Quantum [8]
any any 2204.8 2102.4 - Quantum [10]

Saturnin-hash

Hash
Collision

5/16 264 266 - Classic Full Ver. [19]
7/16 2113.5 - - Quantum Full Ver. [19]

Preimage 7/16 2232 248 - Classic [17]

Compression
Free-start 6/16 280 266 - Classic Full Ver. [19]

function
Semi-free 7/16 290.99 - - Quantum Full Ver. [19]
Free-start 8/16 2122.5 - - Quantum Sect. 4
any any 2128 - - Quantum [50,26,4]
any any 285.3 - 285.3 Quantum [8]
any any 2102.4 251.2 - Quantum [10]

SKINNY-128-384-MMO/MP

Compression func. Free-start 16 259.8 - Quantum Sect. 5
any any 264 - Quantum [50,26,4]
any any 242.7 - 242.7 Quantum [8]
any any 251.2 225.6 - Quantum [10]

2 Preliminaries

2.1 Quantum Computation and Quantum RAM

The state space of an n-qubit quantum system is the set of all unit vectors in C2n

under the orthonormal basis {|0 · · · 00⟩ , |0 · · · 01⟩ , · · · , |1 · · · 11⟩}, alternatively
written as {|i⟩ : 0 ≤ i < 2n}. Quantum computation is achieved by manipulating
the state of an n-qubit system by a sequence of unitary transformations and
measurements.

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 7

Superposition Oracles for Classical Circuit. The superposition oracle of
a Boolean function f : Fn

2 → F2 is the unitary transformation Uf acting on an
(n+ 1)-qubit system with the following functionality

Uf

∑

x∈Fn
2

ai |x⟩ |y⟩

 =

∑

x∈Fn
2

ai |x⟩ |y ⊕ f(x)⟩ .

Grover’s Algorithm. Given a quantum black-box access to a Boolean function
f : Fn

2 → F2 with 0 < f−1(1) ≪ 2n. Grover’s algorithm finds an element x ∈ Fn
2

such that f(x) = 1 with O(
√
2n/|f−1(1)|) calls to the quantum oracle Uf that

outputs
∑

x ax |x⟩ |y ⊕ f(x)⟩ upon input of
∑

x ax |x⟩ |y⟩. To be more specific,
Grover’s algorithm iteratively apply the unitary transformation (2 |ψ⟩ ⟨ψ|−I)Uf

to the uniform superposition |ψ⟩ = 1√
2n

∑
x∈Fn

2
|x⟩ of all basis vectors produced

by applying the Hadamard transformation H⊗n to |0⟩⊗n
. During this process,

the amplitudes of those values x with f(x) = 1 are amplified. Then, a final
measurement gives a value x of interest with an overwhelming probability [25].

Quantum Random Access Memories (qRAM). A quantum random ac-
cess memory (qRAM) uses n-qubit to address any quantum superposition of 2n

memory cells. For a list of classical data L = {x0, · · · , x2n−1} with xi ∈ Fm
2 , the

qRAM for L is modeled as an unitary transformation UL
qRAM such that

UL
qRAM

(∑

i

ai |i⟩ ⊗ |y⟩
)

=
∑

i

ai |i⟩ ⊗ |y ⊕ xi⟩ .

Currently, it is unknown how a large qRAM can be built. Therefore, quantum
algorithms using less or no qRAM are preferred.

2.2 The Full-Active and Non-full-active Super S-box Technique

The super S-box technique proposed by Gilbert et al.[21] and Lamberger et
al. [38] extends the Mendel et al.’s [39] inbound part into 2 S-box layers, by
identifying four non-interfering F32

2 → F32
2 permutations across two consecutive

AES rounds and regarding them as four super S-boxes as shown in Figure 3 (a).
In [48], Sasaki et al. further reduced the the memory complexity by considering
non-full-active super S-boxes as shown in Figure 3 (b).

Full-active super S-box.We consider a more general scenario that the internal
state of the cipher is a d× d matrix of c-bit cells. As shown in Figure 3 (a) with

d = 4, for the ith super S-box SSBi and given input difference ∆X
(i)
1 , we compute

∆Y
(i)
2 = SSBi(x ⊕ ∆X

(i)
1) ⊕ SSBi(x) for x ∈ Fdc

2 . Store the pair (x, x ⊕ ∆X
(i)
1)

in a table L(i)[∆Y
(i)
2]. In the inbound phase, given ∆in = ∆Z0, we compute

∆X
(i)
1 for 0 ≤ i ≤ d − 1, then we compute the d tables L(0), L(1), ..., L(d−1).

8 Xiaoyang Dong, et. al.

Z0

MC

W0

X1

SB

Y1

SR

Z1

MC

W1

X2

SB

Y2

SR

Z2

MC

W2

Z0

MC

W0

X1

SB

Y1

SR

Z1

MC

W1

X2

SB

Y2

SR

Z2

MC

W2

(a): Super Sbox (b): Non-full-active Super Sbox

Fig. 3: A differential with non-full-active super S-box

For each ∆out = ∆W2 ∈ Fdc
2 , compute ∆Y

(i)
2 with 0 ≤ i ≤ d − 1 to access the

table L(i)[∆Y
(i)
2] to generate a pair conforming the truncated differential of the

inbound part. Hence, for given ∆in, we need d × 2dc memory to store the four
tables, and will generate |∆out| = 2dc pairs on average satisfying the inbound
part.

At EUROCRYPT 2020, Hosoyamada and Sasaki [26] converted the classical
super S-box technique into a quantum one. They introduced two quantum ways.
The first one is to use the qRAM to replace the classical memory to store the
super S-box, which needs a exponential size of qRAM. The second one is to
apply the Grover’s algorithm to search a conforming pair for a given input-

output difference (∆X
(i)
1 , ∆Y

(i)
2) of SSBi. This method needs about 2dc/2 super

S-box computations to find the right pair.

Non-full-active super S-box. For the non-full-active super S-box in Figure 3
(b), the Property 1 of MDS in MC is used. Look at ∆W1 = MC(∆Z1), suppose
there are totally s non-active cells (s < d) and 2d − s active cells in ∆Z1 and
∆W1 (s = 3 in Figure 3 (b)), then by guessing the differences of d−s active cells,
we can determine other differences according to Property 1. Then, for a fixed

input-output differences (∆X
(i)
1 , ∆Y

(i)
2) of SSBi, we can deduce all the input-

output differences for the 2d − s active cells of two S-box layers for each guess
and then deduce their values by accessing the differential distribution table (DDT)
of the S-box. Now, for the equation W1 = MC(Z1), we have 2d − s known cells
in W1 and Z1, hence it acts of probability 2−(2d−s−d)c = 2(s−d)c. Hence, for a

fixed (∆X
(i)
1 , ∆Y

(i)
2), we get 2(d−s)c · 2(s−d)c = 1 conforming pair on average.

The time complexity is 2(d−s)c. The memory is 22c to store the DDT of S-box.

Property 1. MC · (Z[1], Z[2], · · · , Z[d])T = (W [1],W [2], · · ·W [d])T can be used to
fully determine the remaining unknowns if any d cells of Z, W are known.

In the quantum setting, Dong et al. [18] converted the non-full-active super
S-box technique into a quantum one by searching the 2(d−s)c differences with
Grover’s algorithm, which gains a square root speedup. Both in quantum and
classical setting, the complexity is determined by the number of inactive cells in

(∆X
(i)
1 , ∆Y

(i)
2), i.e., s.

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 9

2.3 Inbound Part with Three Full Rounds

X3 Y3 Z3 W3

SB SC MR AC

X2 Y2 Z2 W2

SB SC MR AC

X1 Y1 Z1 W1

SB SC MR AC

Z0 W0

SC MR AC

0

8

16

24

32

40

48

56

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

Fig. 4: Details in inbound phase covering 3 rounds

As shown in Figure 4, given fixed differences ∆Z0 and ∆W3, Jean et al.
[30] introduced an algorithm to find the pairs of conforming to the 3-round
differential. At EUROCRYPT 2020, Hosoyamada and Sasaki [26] introduced a
memoryless algorithm (see Algorithm 9 of our full version paper). The time

complexity is 2d
2c/2+dc and there expects one conforming pair. Hosoyamada and

Sasaki [26] also introduced the quantum variant shown in Section 6.

3 Modeling Rebound Attacks in the Related-key Setting

In the related-key setting, taken MMO mode as an example in Figure 1, we
construct free-start collisions using related-key truncated differential trail of EK ,
which meets Equation (1):

(m⊕ EK(m))⊕ (m⊕∆m⊕ EK⊕∆K(m⊕∆m)) = ∆m⊕∆m = 0. (1)

The procedures of the related-key rebound attack are:

1. Find a related-key truncated differential for EK ,
2. Choose a key pair (K,K ′) which meets the differential in the key-schedule,
3. Perform the rebound attack in the encryption data path with (K,K ′).

The Outbound Phase. In the single-key setting, previous works [26,18] con-
sider the probability of the truncated differential, which is mainly due to the

10 Xiaoyang Dong, et. al.

cancellations of MC operation. In the related-key setting, we try to use simi-
lar method directly, i.e., calculating the probability of differential transition by
counting the number of inactive cells in the output of linear operations (e.g.
MC, AK etc.) whose input is active. We use the round function of AES as an ex-
ample without the SR. In Figure 5(a), the four cells in first column of Yi are
active which are the input to the MC operation. The first column of Zi has one
inactive cell. Assume the differences in all active cells are independent uniform
random, then Prob(Yi → Zi) ≈ 2−c (one cell of the state is of c bits). Similarly,
Prob(Zi → Wi) ≈ 2−c. Thus the probability of the truncated differential trail
in Figure 5(a) is about 2−2c.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Ki

Xi Yi Zi Wi

SB SR MC AK

⊕

Ki

Xi Yi Zi Wi

SB SR MC AK

⊕

(a): Example I (b): Example II

Fig. 5: AES rounds in forward outbound phase.

The method borrowed from single-key rebound attack seems to work well,
but in related-key setting, this method may lead to a lower probability than the
reality. For example, in Figure 5(b), two active cells are cancelled by AK oper-
ation. Using the above method, we can calculate the probability of the trail is
about 2−2c. Note that in the related-key rebound attack, the key pair is first de-
termined, then perform the rebound attack in the encryption data path, where
key materials act as constants. Hence, the probability of the outbound phase in
the encryption data path is computed under a fixed key difference. Therefore,
∆Ki[0, 1] = ∆Zi[0, 1] and ∆Zi[0, 1] is fixed. Due to Property 1, all other ac-
tive cells of differences in Yi and Zi are determined. Hence, the probability of
the differential is determined by the differential propagation of the S-box, i.e.,

Prob(∆Xi[15]
S-box−−−−→ ∆Yi[3]) > 2−c with DDT, which is bigger than 2−2c. In de-

tail, we derive the relationship between the first column of Yi and Zi from MC as
shown in Equation (2).

∆Zi[0]
∆Zi[1]
∆Zi[2]
∆Zi[3]

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

∆Yi[0]
∆Yi[1]
∆Yi[2]
∆Yi[3]

 . (2)

As 3 cells in the 1st column of ∆Yi are 0 and ∆Zi[0, 1] = ∆Ki[0, 1], we have

∆Ki[0]
∆Ki[1]
∆Zi[2]
∆Zi[3]

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

0
0
0
∆Yi[3]

 ,

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 11

which shows that ∆Yi[3] = ∆Ki[0] = ∆Ki[1]. Hence, ∆Ki[0] and ∆Ki[1] are
related to each other. We call the number of cells in key, whose differences can
be chosen independent randomly, the degree of freedom in the key differential
states. In Figure 5(b), key states have four active cells, among them two cells
meet the condition ∆Ki[0] = ∆Ki[1] that consumes one-cell degree of freedom.
Hence, the degrees of freedom in the key differential states are 4-1=3 in Figure
5(b). Therefore, the degree of freedom in K is reduced to increase the probability
of the trail in Figure 5(b) from 2−2c to about 2−c. The consumption of freedom
in the whole differential trail should not be higher than the number of active
cells in key. Note that similar technique has already been used by Cid et al. [12]
in the cryptanalysis of Deoxys against related-key differential attack. We apply
the technique to the rebound attack by taking the features of rebound attack
into the model.

Degree of Freedom. For a target with linear key schedule algorithms (e.g.
Saturnin [9] and SKINNY [3]), we formulate its degree of freedom in the follow-
ing. Taking Saturnin as an example, if there are t active cells in the master
key, then we say that the initial degree of freedom for the key difference is t-
cell (denoted by DoK=t), since there are about (2c)t different choices for the
key difference. However, as discussed previously, in rebound attacks exploiting
related-key differentials, we may constrain the key difference by a system of lin-
ear equations with the active cells in the master key as variables to increase the
probability of the outbound differentials. Assuming we have l independent linear
equations, then l-cell degree of freedom is consumed (denoted by DoK− = l).
Therefore, to ensure there is at least one solution for the master key difference, we
require DoK ≥ DoK−. Otherwise, we have an over-defined system of equations
for the active cells of the master key, which may have some conflicts.

Besides the degree of freedom from the master key difference, another source
of degree of freedom should be considered. For a given master key difference,
we can form (2c)n̄ key pairs satisfying the given difference, where the key is
of n̄ c-bit cells. Taking the encryption data path into account and supposing
that for a given (∆in, ∆out) and key pair (K,K ′), there is one solution for the
inbound part in the data encryption path on average, then we can generate
(2c)DoK−DoK

−+n̄(|∆in| · |∆out|) starting points as (K,M,K ′M ′), which is called
the degrees of freedom for the rebound attack [39] (denoted by DoA). To expect
one solution fulfilling the outbound differential with probability p, we require
that (2c)DoA = (2c)DoK−DoK

−+n̄(|∆in| · |∆out|) ≥ 1
p .

3.1 Dedicated Modelings and Case Study on Saturnin-hash

Saturnin is a suite of lightweight symmetric algorithms proposed by Canteaut
et al. [9]. It is among the 2nd round candidates of the NIST LWC. Based on a
256-bit AES-like block cipher with 256-bit key, two authenticated ciphers and a
hash function are designed. In this section, we focus on its hash function, called
Saturnin-Hash. The round function only consists of AK, SB layer and linear
layer, where MixRows (MR) and MixColumns (MC) are applied alternatively in

12 Xiaoyang Dong, et. al.

even or odd number of round. The key schedule is linear and simple. In even
round, K is used and in odd round the K is rotated by 5 cells (denoted as K̃).

Related-key Truncated Differential Model. For an R-round primitive, we
use several binary variables xi,jr and yi,jr to represent the state before and after
the MR (or MC) operations in the r-th round, where i and j mean that the cell is in
i-th row and j-th column. These variables are 1 if and only if the corresponding
cell is active. For the key states, we use Ki,j and K̃i,j to represent the rotated
key and the master key in the same way.

Without loss of generality, we only consider MR operation now. To model the
MR operations (similar constraints are also applied to MC), we use binary variables
bir to express MR operations are active or not in the i-th row of r-th round, and
use branch number to generate constraints just like Mouha et al.’s model [42].

Another operation is key addition. The constraint of key addition are quite
like constraint of XOR, except the result of two active cells addition can be
active or inactive.

The Outbound Phase. As shown in Figure 5(b), the number of cancelled cells
could not show the real probability in a related-key model. Hence, the constraints
in our model are different from single-key models. We use Probir to represent
the probability of the i-th row in round r.

In forward part of the outbound phase, we use cir to represent the number
of cells cancelled after the r-th round MR operation in row i, and c̃ir to represent
the number of cells cancelled after the next key addition operation in row i.
If
∑j≤3

j=0 x
i,j
r ≥ cir + c̃ir (like the trail in Figure 5(a)), then the probability of

this MR operation in this row is estimated by cir + c̃ir (to show the connection
of probabilities and variables in our MILP model, the probabilities are taken
in −log2c). If

∑j≤3
j=0 x

i,j
r < cir + c̃ir (like the trail in Figure 5(b)), then the

probability is
∑j≤3

j=0 x
i,j
r , and the degree of freedom in key states is consumed

cir + c̃ir −
∑j≤3

j=0 x
i,j
r . Thus, Probir = min(cir + c̃ir,

∑j≤3
j=0 x

i,j
r).

Ki

Yi+1Yi Zi Xi+1

SBMR AK

⊕

Ki

Yi+1Yi Zi Xi+1

SBMR AK

⊕

(a): Example III (b): Example IV

Fig. 6: Saturnin rounds in backward outbound phase.

Similar to forward part, in backward part, we also use cir to represent the
number of cells that are cancelled by the r-th round MR−1 operation in row i, and
c̃ir to represent the number of cells are cancelled before the next key addition

operation in row i. If
∑j≤3

j=0 x
i,j
r+1 ≥ cir (like the trail in Figure 6(a)), then the

probability of this MR operation in this row is cir + c̃ir. If
∑j≤3

j=0 x
i,j
r+1 < cir(like

the trail in Figure 6(b)), then the cancellation of this MR operation in this row is

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 13

∑j≤3
j=0 x

i,j
r+1, and the degree of freedom in key states is consumed cir −

∑j≤3
j=0 x

i,j
r .

Thus, Probir = min(cir + c̃ir,
∑j≤3

j=0 x
i,j
r+1).

To limit the consumption of freedom, we add the following constraint
∑

Forward

(cir + c̃ir − Probir) +
∑

Backward

(cir − Probir) ≤
∑

0≤i,j≤3

Ki,j .

The Inbound Phase. We use a variable l to determine the inbound part and
outbound part, and the inbound part includes rin rounds. Thus round l + 1 to
l + rin are inbound part, while other rounds are outbound parts. If rin = 2, we
use the super S-box techniques to solve the inbound part. In classical setting,
it usually does not increase the overall time complexity, and only need some
memories as shown in Section 2.2. However, in quantum setting without qRAM,
the overall time complexity is also affected by the super S-box technique. As
shown by Dong et al. [18], if the super S-boxes are not fully active, the time
for quantum attack may be reduced. Following the notations in Section 2.2, the
number of inactive S-boxes in the i-th super S-box SSBi is denoted as si. Then the
quantum time to solve the inbound part is about

√
2d−min{s0,s1,s2,s3} according

to Dong et al. [18], where d is the number of cells in each row, and d = 4 for
Saturnin. In related-key setting, some cells in super S-boxes can be determined
by key difference. As we shown in Algorithm 2 of Section 4, cells with known
difference play the same role as inactive cells in non-full active super S-boxes
technique. Thus si denote the number of cells whose difference is fixed before or
after the MR or MC operation in the middle of a super S-box.

When rin = 3, the inbound phase in solved by the methods of Jean et al. [30]
classically or Hosoyamada et al. [26] quantumly. Both the time complexities are
fixed and independent to the rebound attack trails as shown in Section 2.3. We
will give more details in the attack on Whirlpool, whose rebound trail includes
a 3-round inbound part in both the key schedule and encryption data path.

Time Complexity and Objective Function. In quantum setting without
qRAM, we have two time complexities according to rin:

▶ rin = 2, the time complexity is about
√
2(

∑
Probir+

∑
xi,j
0 +d−min{s0,s1,s2,s3}),

where
∑
Probir corresponds to the probability of the truncated difference of

the outbound phase,
∑
xi,j0 are the number of active cells to be collided for

the plaintext and ciphertext, d−min{s0, s1, s2, s3} corresponds to the time
to solve the inbound part. Hence, when rin = 2, the objective function is to
minimize

∑
Probir +

∑
xi,j0 + d−min{s0, s1, s2, s3}.

▶ rin = 3, the objective function is
∑
Probir +

∑
xi,j0 .

The Incompatibilities within Many Rounds. Cid et al. [12] described an
MILP model to search the related-key differentials on ciphers with linear key
schedule, e.g., Deoxys-BC [33]. Since the relationship between Deoxys-BC’s round
keys are somewhat weakened by the LFSRs, they do not need to consider in-
compatibilities between many rounds. In Saturnin, the round keys are iden-
tical for many rounds, which lead to strong relationship on the round keys.

14 Xiaoyang Dong, et. al.

Though we limit the consumption of degree of freedom in our MILP model,
a trail can be incompatible when the same key cell needs to satisfy two dif-
ferent relationships in different rounds. For example, in Figure 7, from Y2 to
X3 we have (∆Z2[2], ∆k11, ∆k15, ∆k0) = MR(∆Y2[2], 0, 0, 0). From Y4 to X5 we
have (∆k7, ∆k11, ∆k15, ∆k0) = MR(∆Y4[2], 0, 0, 0). The above two linear equa-
tions have 6 same cells., Due to Property 1, ∆Z2[2] = ∆k7, then ∆X3[2] should
be 0, which is a contradiction.

Z2

SB MR

AK SB MC

AK SB MR

AK SB MC

⊕

⊕

⊕

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4

X5 Y5 Z5

K

K̃

K̃

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

Fig. 7: An incompatible trail of Saturnin

K

Yi Zi Xi+1

MC AK

⊕

K

Yj Zj Xj+1

MC AK

⊕

Fig. 8: An incompatible trail

K

Yi Zi Xi+1

MC AK

⊕

K

Yj Zj Xj+1

MC AK

⊕

Fig. 9: A compatible trail

Adding more constraints to remove this kind of contradictions in MILP model
is quite hard. According to Property 1, a set of equations of MC (or MR) operation
has 8 cells of variables, and if two sets of equations have at least 4 same cells,
then all cells of variables in the two sets of equations should be same. We use
this property to fast delete the incompatible trails. Figure 8 and Figure 9 show

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 15

examples of incompatible and compatible trails. The inactive cells are in white
and active cells are in gray and green, and the difference in green cells are
determined by key difference. We can encode the truncated difference in Y and
Z to a 8-dimensional vector S = (y0, y1, y2, y3, z0, z1, z2, z3), where ym = 1 if
∆Y [m] is inactive with 0 ≤ m ≤ 3, else ym = 0; zm = 1 if ∆Z[m] is 0 or
equals to key differences, else zm = 0. For example, in Figure 8, we have Si =
(1, 1, 0, 0, 1, 1, 0, 0) for round i and Si = (1, 1, 1, 0, 1, 1, 0, 0) for round j with the
same K. The dot product of two vectors Si and Sj is the number of same cells
of two sets of equations of MC (or MR) operations. For example, ⟨Si,Sj⟩ = 4 in
Figure 8, hence, due to Property 1, all the cells of differences in Yi and Yj (also
for Zi, Zj and Xi+1, Xj+1) should be the same. However, Yi[2] is active but
Yj [2] is inactive, which leads to contradiction and Figure 8 is an incompatible
trail. In Figure 9, we have Si = (1, 1, 0, 0, 1, 1, 0, 0) and Sj = (1, 0, 0, 0, 1, 1, 0, 0)
with ⟨Si,Sj⟩ = 3 < 4, hence the trail is compatible.

Since we can derive the vector Si from the solutions of our MILP model, we
use the PoolSearchMode of Gurobi to get many solutions for our MILP model
and then check if one of the solutions does not have this kind of contradiction.
For 8-round Saturnin with l ≥ 1 and rin = 2, we get thousands of different
truncated differentials from our MILP model through the PoolSearchMode and
after checking them with the above method, none of them are left; for 8-round
Saturnin with l = 0 and rin = 2, we get a hundred of different truncated
differentials and most of them are compatible. For those left solutions, we pick
one trail to launch our rebound attacks. See supplementary materials for the
source code of constructing MILP model and detecting contradiction. We have
put the source code for the automatic model of Saturnin-hash in a public
domain at https://github.com/rebound-rk/rebound-rk

4 Free-Start Collision on 8-round Saturnin-hash

By applying the MILP model, we find an 8-round truncated differential on
Saturnin as shown in Figure 10(a). We perform the quantum collision attack
based on the truncated differential. The inbound phase covers from Y0 to X3,
including two SB layers. The two outbound phases are from Y0 to the plaintext
and X3 to the ciphertext. In the inbound phase, there are four parallel non-full
active super S-boxes. The input difference ∆in = ∆X1 is determined by ∆Y0.
At round 2 and 3, from MR(∆Y2)⊕∆K̃ = ∆X3, at the 3rd row, we get

MR−1(∆k7, ∆k11, ∆k15, ∆k0) = (∆Y2[2], 0, 0, 0). (3)

For row 3 of the computation from ∆Y4 to ∆X5, and from ∆Y6 to ∆X7, the
same requirement of Equation (3) is also applied, since the subkeys are all K̃
and the truncated form are the same.

At round 3 to 4, in the first column of the computation from ∆Y3 to ∆X4,
we have ∆Z3[0] = ∆k0 and ∆Z3[1] = ∆k1. Further, we get

MC−1
(
∆k0, ∆k1, ∆Z3[2], ∆Z3[3]

)T
=
(
0, 0, 0, ∆Y3[3]

)T
. (4)

https://github.com/rebound-rk/rebound-rk

16 Xiaoyang Dong, et. al.

AK SB MR

AK SB MC

AK SB MR

AK SB MC

AK SB MR

AK SB MC

AK SB MR

AK SB MC

AK

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

P

C

X0 Y0 Z0

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4

X5 Y5 Z5

X6 Y6 Z6

X7 Y7 Z7

K

K

K

K

K

K̃

K̃

K̃

K̃

k0

k1

k2

k3

k0

k1

k2

k3

k0

k1

k2

k3

k0

k1

k2

k3

k0

k1

k2

k3

k4

k5

k6

k7

k4

k5

k6

k7

k4

k5

k6

k7

k4

k5

k6

k7

k4

k5

k6

k7

k8

k9

k10

k11

k8

k9

k10

k11

k8

k9

k10

k11

k8

k9

k10

k11

k8

k9

k10

k11

k12

k13

k14

k15

k12

k13

k14

k15

k12

k13

k14

k15

k12

k13

k14

k15

k12

k13

k14

k15

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) Truncated Differential

text

AK SB MR

AK SB MC

AK SB MR

AK SB MC

AK SB MR

AK SB MC

AK SB MR

AK SB MC

AK

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

P

C

C2
09

FD
E0
09
12
20
9C
AC
06

03
37

90
C1

CE
0F

FD
E0
09
12

20
9C
AC
06

03
37

90
C1

CE
0F

0F
DE

03
37

90
C1

CE
0F

FD
E0
09
12

03
37

90
C1

CE
0F

FD
E0
09
12

C2
09

FD
E0
09
12
20
9C
AC
06

03
37

90
C1

CE
0F

FD
E0
09
12

03
37

90
C1

CE
0F

FD
E0
09
12

90
C1

CE
0F

FD
E0
09
12

90
C1

CE
0F

FD
E0
09
12

20
9C
AC
06

03
37

90
C1

CE
0F

2−12

2−59.8

2−16

2−59.8

0F
DE

03
37

90
C1

CE
0F

FD
E0
09
12

03
37

90
C1

CE
0F

FD
E0
09
12

03
37

90
C1

CE
0F

FD
E0
09
12

03
37

90
C1

CE

0F

FD
E0
09
12

03
37

90
C1

CE
0F

FD
E0
09
12

03
37

90
C1

CE
0F

FD
E0
09
12

03
37

90
C1

CE
0F

FD
E0
09
12

00
5A

00
5A

0F
DE
50
19

CD
03

47
10

00
59

FD
E0
09
12

03
37

40
28

B2
09

A3
50

D0
E9

7C
06

5E
B0

70
33

X0X0 Y0 Z0

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4

X5 Y5 Z5

X6 Y6 Z6

X7 Y7 Z7

K

K

K

K

K

K̃

K̃

K̃

K̃

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(b) Differential Trail

Fig. 10: 8-round Related-key Rebound-attack Trail on Saturnin-hash

The condition of Equation (4) also applies to the computation from∆Y5 to∆X6.
Hence, for Equation (4) and (3), if we fixed ∆k0, then ∆k7, ∆k11, ∆k15, and
∆k1 are determined by Property 1. As shown in Figure 10(a), at Round 0 and
1, ∆X1[2] = ∆k7 ⊕ ∆Z0[2] = 0, so ∆Z0[2] = ∆k7. From ∆Z0 = MR(∆Y0), for
the third row, we have ∆Y0[2, 10, 14] = 0 and ∆Z0[2] = ∆k7 and Equation (5)
is derived. Hence, if ∆k7 is fixed, all other differences in the active cells of ∆Y0

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 17

and ∆Z0 in row 3 are deduce by Property 1.

MR−1(∆k7, ∆Z0[6], ∆Z0[10], ∆Z0[14]) = (0, ∆Y0[6], 0, 0). (5)

Algorithm 1: Determine the Differences From the Truncated Form

1 for ∆k0 ∈ F16
2 do

2 Deduce ∆k7, ∆k11, ∆k15, ∆k1 by Equation (4) and (3) and Property 1
3 /* All the differences in the key schedule are determined. */

4 Round 2: Deduce ∆Z2[2, 6, 10, 14], ∆Y2[2]
5 Round 3: Deduce ∆Y3[3] by Equation (4) and Property 1. Then

Z3[0, 1, 2, 3] and X4[2, 3] are fixed.
6 Round 4: Similar to Round 2 to get ∆Z4[2, 6, 10, 14], ∆Y4[2]. In addition,

we have ∆Z4[15] = ∆k1
7 Round 5: Similar to Round 3 to get ∆Y5[3], Z5[0, 1, 2, 3] and X6[2, 3]
8 Round 6: Similar to Round 2 to get ∆Z6[2, 6, 10, 14], ∆Y6[2]. In addition,

we have ∆Z6[15] = ∆k1
9 Round 0: With Equation (5), we deduce ∆Z0[6, 10, 14] and ∆Y0[6]. Then

∆X1[6, 10, 14] are determined.
10 Round 1: Since ∆Z1[0] = ∆k0 and ∆Z1[1] = ∆k1, ∆Z1[0] and ∆Z1[1] is

fixed.
11 Round 7: In Saturnin-hash (MMO hashing mode), the plaintext is

XORed into the ciphertext of the internal block cipher to output the
digest. We have T = P ⊕ C = X0 ⊕K ⊕ Z7 ⊕K = X0 ⊕ Z7. Then, if two
message collide, we have ∆T = 0 = ∆X0 ⊕∆Z7.

12 As shown in Figure 10(b), from ∆X4 to ∆Y5, multiple differential trails
are taken into account.

We derive an 8-round rebound-attack characteristic in Figure 10(b) from the
truncated form in Figure 10(a) by Algorithm 1. By traversing ∆k0 ∈ F16

2 in
Algorithm 1, we find characteristic with as higher probability as possible. The
best trail is given in Figure 10(b), whose total probability of the outbound phase
is 2−(12+59.8+16+59.8+64) = 2−211.6 including the probability of ∆X0 = ∆Z7. In
round 4, 2−59.8 is the total probability of a cluster differential trails from ∆X4

to ∆Z4. The same happens to round 6.

As shown in Figure 10(b), the 2nd, 3rd and 4th super S-boxes are typical
non-full-active super S-boxes, where there are only 5 active cells among the 8
input-ouput cells between MC in round 1 in each super S-box. However, the first
super S-box is not a typical one. In fact, between MC in round 1 in the first Super-
Sbox, there are one non-active cell and two cells with fixed differences. However,
we can regard the two cells with fixed differences as another two “non-active”
cells to perform the quantum version of non-full active super S-box technique
[18] whose details will be given in Algorithm 2.

For the ith (i = 0, 1, 2, 3) non-full-active super S-box, we define G(i) : F16
2 ×

F3
2 7→ F2 as G(i)(K,K ′, ∆X(i)

1 , ∆Y
(i)
2 ;x, β), where x = X

(i)
1 [0] ∈ F16

2 and β =

β0∥β1∥β2 ∈ F3
2. G

(i)(K,K ′, ∆X(i)
1 , ∆Y

(i)
2 ;x, β) = 1 if and only if (x, β) leads to

18 Xiaoyang Dong, et. al.

a valid connection of (∆X
(i)
1 , ∆Y

(i)
2) under the key pair (K,K ′). The quantum

implementation of UG(0) is given in Algorithm 2.

Complexity of UG(0) is given in Algorithm 2. The time is bounded by Line 7 to
Line 9 of Algorithm 2, which is about (including uncomputing) 3× π

4 ·
√
216 ·2·2 =

211.24 Sbox evaluations.

Algorithm 2: Implementation of UG(0) without using qRAMs

Input: |K,K′,∆X
(0)
1 ,∆Y

(0)
2 ;X

(0)
1 [0], β⟩ |y⟩ with β = (β0, β1, β2) ∈ F3

2

Output: |K,K′,∆X
(0)
1 ,∆Y

(0)
2 ;X

(0)
1 [0], β⟩ |y ⊕G(0)(K,K′,∆X

(0)
1 ,∆Y

(0)
2 ;X

(0)
1 [0], β)⟩

1 /* Please focus on the super Sbox marked by blue box in Fig. 10 */

2 Y
(0)
1 [0]← S(X

(0)
1 [0])

3 ∆Y
(0)
1 [0]← S(X

(0)
1 [0]⊕∆X

(0)
1 [0])⊕ S(X

(0)
1 [0])

4 Solving the system of equations MC(∆Y
(0)
1) = ∆Z

(0)
1 with the knowledge of

∆Z
(0)
1 [0] = 0xFDE0, ∆Z

(0)
1 [1] = 0x0912 and ∆Y

(0)
1 [2] = 0

5 /* All differences of cells in ∆Y
(0)
1 , ∆Z

(0)
1 are known */

6 Let gj : F16
2 → F2 be a Boolean function such that gj(δin, δout, βj = 0;x) = 1 if

and only if S(x)⊕ S(x⊕ δin) = δout and x ≤ x⊕ δin, and
gj(δin, δout, βj = 1, x) = 1 if and only if S(x)⊕ S(x⊕ δin) = δout, and
x > x⊕ δin.

7 Run the Grover search on the function g0(∆X
(0)
1 [1],∆Y

(0)
1 [1], β0; ·) : F16

2 → F2.

Let X
(0)
1 [1] be the output.

8 Run the Grover search on the function g1(∆X
(0)
1 [3],∆Y

(0)
1 [3], β1; ·) : F16

2 → F2.

Let X
(0)
1 [3] be the output.

9 Run the Grover search on the function g2(∆X
(0)
2 [3],∆Y

(0)
2 [3], β2; ·) : F16

2 → F2.

Let X
(0)
2 [3] be the output.

10 Compute Y
(0)
1 [1], Y

(0)
1 [3] and Z

(0)
1 [3] ; /* Y

(0)
1 [0] is known */

11 Solve the equation MC(Y
(0)
1) = Z

(0)
1 for other unknown cells, i.e., Y

(0)
1 [2],

Z
(0)
1 [0, 1, 2], and X

(0)
1

12 /* the value Y
(0)
1 is known */

13 if S(Z
(0)
1 [2]⊕∆Z

(0)
1 [2]⊕K′[2])⊕ S(Z

(0)
1 [2]⊕K[2]) = ∆Y

(0)
2 [2] then

14 return |K,K′,∆X
(0)
1 ,∆Y

(0)
2 ;X

(0)
1 [0], β⟩ |y ⊕ 1⟩

15 else

16 return |K,K′,∆X
(0)
1 ,∆Y

(0)
2 ;X

(0)
1 [0], β⟩ |y⟩

Since the probability of the outbound phase is 2−211.6, after traversing 2211.6

starting points computed by the inbound phase, it is expected to find one col-
lision. Given the key difference ∆K = K ⊕ K ′, there are 2256 valid key pairs
(K,K ′). Hence, we have enough degrees of freedom to find the collision. For

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 19

simplicity, we just fix the input difference ∆X1 of the inbound phase and com-
pute the starting points by traversing a 212-bit K to find the collision. Define
F : F212

2 × F3
2 7→ F2 as F (∆K,∆X1, ∆Y2;x, α), where x = K ∈ F212

2 and α =
α0∥α1∥α2 ∈ F3

2. F (∆K,∆X1, ∆Y2;x, α) = 1 if and only if (∆K,∆X1, ∆Y2;x, α)
leads a collision. The implementation of UF is given in Algorithm 3.

Algorithm 3: Implementation of UF without using qRAMs

Input: |∆K,∆X1,∆Y2;K,α⟩ |y⟩ with α = (α0, α1, α2) ∈ F3
2

Output: |∆K,∆X1,∆Y2;K,α⟩ |y ⊕ F (∆K,∆X1,∆Y2;K,α)⟩

1 Compute K′ = K ⊕∆K
2 for i ∈ {0, 1, 2} do
3 Derive the ∆X

(i)
1 and ∆Y

(i)
2 for SSB(i) from the ∆X1 and ∆Y2

4 Run Grover search on the function G(i)(K,K′,∆X
(i)
1 ,∆Y

(i)
2 ; ·) : F19

2 7→ F2.

Let X
(i)
1 [0] ∈ F16

2 , β(i) ∈ F3
2 be the output.

5 Run Line 2 to Line 11 of Algorithm 2 with X
(i)
1 [0] ∈ F16

2 , β(i) ∈ F3
2 as

input. Let X
(i)
1 as ouput.

6 Let X̃
(i)
1 = max{X(i)

1 , X
(i)
1 ⊕∆X

(i)
1 } if αi = 0, else

X̃
(i)
1 = min{X(i)

1 , X
(i)
1 ⊕∆X

(i)
1 }

7 Derive the ∆X
(3)
1 and ∆Y

(3)
2 for SSB(3) from the ∆X1 and ∆Y2

8 Run Grover search on the function G(3)(K,K′,∆X
(3)
1 ,∆Y

(3)
2 ; ·) : F19

2 7→ F2.

Let X
(3)
1 [0] ∈ F16

2 , β(3) ∈ F3
2 be the output.

9 Run Line 2 to Line 11 of Algorithm 2 with X
(3)
1 [0] ∈ F16

2 , β(3) ∈ F3
2 as input.

Let X
(3)
1 as ouput.

10 Let X̃
(3)
1 = max{X(i)

1 , X
(i)
1 ⊕∆X

(i)
1 }

11 /* Create the starting point (K,X1) with (∆K,∆X1,∆Y2) */

12 X1 ← (X̃
(0)
1 , X̃

(1)
1 , X̃

(2)
1 , X̃

(3)
1)

13 X ′
1 ← X1 ⊕∆X1

14 Compute forward and backward to the beginning and ending of the 8-round
trail from (X1, X

′
1) with (K,K′)

15 if (X1, X
′
1) and (K,K′) lead to a collision then

16 return |∆K,∆X1,∆Y2;K,α⟩ |y ⊕ 1⟩
17 else
18 return |∆K,∆X1,∆Y2;K,α⟩ |y⟩

Complexity of UF in Algorithm 3. There are four Grover searches on G(i) in
Line 4 and 8. There are four calls of Algorithm 2 in Line 5 and Line 9. Those
proceduces bound the time complexity of UF as 4·π4 ·

√
219·211.24+4·211.24 = 222.39

S-box evaluations.
To find the collision on 8-round Saturnin-hash, we apply Grover search on

F (∆K,∆X1, ∆Y2; ·) : F212+3
2 7→ F2 with UF in Algorithm 3, which costs

π

4
·
√
2212+3 · 222.39 = 2129.54 S-box evaluations.

20 Xiaoyang Dong, et. al.

Since there are 16× 8 = 128 Sbox applications, the time complexity to find the
collision is about 2129.54/128 = 2122.54 8-round Saturnin-hash.

In our full version paper, we also present a 7-round quantum collision attack,
a 5-round classical collision attack and a 6-round classical free-start collision
attack, and a 7-round quantum semi-free-start collision on Saturnin-hash.

5 Free-Start Collision on reduced SKINNY-n-3n-MMO/MP

SKINNY is a family of lightweight block ciphers designed by Beierle et al. [3]. In
this section, we apply our method to SKINNY-n-3n. Please find the structure of
SKINNY-n-3n in [3] or our full version paper. The MC operation is non-MDS:

MC

a
b
c
d

 =

a⊕ c⊕ d

a
b⊕ c
a⊕ c

 and MC
−1

α
β
γ
δ

 =

β

β ⊕ γ ⊕ δ
β ⊕ δ
α⊕ δ

 . (6)

¬

®

¯

A0

SB

¬

®

¯

B0

⊕

K

¬

®

¯

C0

MC ¬

®

¯

D0

SB ¬

®

¯

A1 Index

0

1

2

3

Fig. 11: Super S-box with SKINNY’s non-MDS matrix

Since SKINNY applies non-MDS matrix in MC, we will adapt the method of
super S-box technique for SKINNY. Different from the super S-box technique
with MDS matrix [21,38], we do not need to an exponential memory to store the
differential distribution of the super S-box, which is friendly to quantum attacks.

5.1 Super S-box with Non-MDS Matrix

As shown in Figure 11 (SR is omitted), the circled numbers indicate the compu-
tation sequence. When computing the super S-box, the key pair is fixed, i.e., K
and K ′ are known.

1. In step ①, we have D0[1] = C0[0] due to Equation (6), then we have

∆A1[1] = S(D0[1])⊕ S(D′
0[1])

= S(C0[0])⊕ S(C′
0[0]) = S(S(A0[0])⊕K[0])⊕ S(S(A′

0[6])⊕K′[0])
= S(S(A0[0])⊕K[0])⊕ S(S(A0[0]⊕∆A0[0])⊕K′[0]).

(7)

Hence, given input-output differences (∆A0[0], ∆A1[1]), we compute one con-
forming value of A0[0] that satisfy Equation (7) by traversing a space of 2c

for A0[0]. After that, all cells marked by “①” are determined.

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 21

2. In step ②, we have D0[3] = C0[0]⊕C0[2] due to Equation (6), then we have

∆A1[3] = S(D0[3])⊕ S(D′
0[3]) = S(C0[0]⊕ C0[2])⊕ S(C′

0[0]⊕ C′
0[2])

= S(S(A0[0])⊕K[0]⊕ S(A0[2]))⊕ S(S(A′
0[0])⊕K′[0]⊕ S(A′

0[2]))
= S(S(A0[0])⊕K[0]⊕ S(A0[2]))⊕ S(S(A0[0]⊕∆A0[0])⊕K′[0]⊕ S(A0[2]⊕∆A0[2])).

(8)

Since all the input-output differences of the super S-box and the pair of K
are fixed, and A0[0] is determined by in step ①, only A0[2] is unfixed. We
search A0[2] in a space of 28 to find the right one that make Equation (8)
holds. All cells marked by “②” are fixed.

3. In step ③, we have D0[2] = C0[1]⊕C0[2] due to Equation (6), then we have

∆A1[2] = S(D0[2])⊕ S(D′
0[2])

= S(C0[1]⊕ C0[2])⊕ S(C′
0[1]⊕ C′

0[2])
= S(S(A0[1])⊕K[1]⊕ S(A0[2]))⊕ S(S(A′

0[1])⊕K′[1]⊕ S(A′
0[2]))

= S(S(A0[1])⊕K[1]⊕ S(A0[2]))⊕ S(S(A0[1]⊕∆A0[1])⊕K′[1]⊕ S(A0[2]⊕∆A0[2])).
(9)

Since all the input-output differences of the super S-box and the pair of K
are fixed, and A0[2] is determined by in step ②, only A0[1] is unfixed. We
search A0[1] in a space of 28 to find the right one that make Equation (9)
holds. All cells marked by “③” are fixed.

4. In step ④, we have D0[0] = C0[0]⊕ C0[2]⊕ C0[3] due to Equation (6), then
we have

∆A1[0] = S(D0[0])⊕ S(D′
0[0])

= S(C0[0]⊕ C0[2]⊕ C0[3])⊕ S(C′
0[0]⊕ C′

0[2]⊕ C′
0[3])

= S(S(A0[0])⊕K[0]⊕ S(A0[2])⊕ S(A0[3]))⊕ S(S(A′
0[0])⊕K′[0]⊕ S(A′

0[2])⊕ S(A′
0[3]))

= S(S(A0[0])⊕K[0]⊕ S(A0[2])⊕ S(A0[3]))⊕
S(S(A0[0]⊕∆A0[0])⊕K′[0]⊕ S(A0[2]⊕∆A0[2])⊕ S(A0[3]⊕∆A0[3])).

Since all the input-output differences of the super S-box and the pair of K
are fixed, and A0[0] and A0[2] are already determined by in step ② and ③,
only A0[3] is unfixed. We search A0[3] in a space of 28 to find the right one
that make Equation (9) holds. All cells marked by “④” are fixed.

Following the above computing order, given an input-output difference (∆A0, ∆A1)
with fixed key pair, we find the conforming pair for the full active super S-box
in time complexity of about 28 two-round computations without any memory.
Note that if the MC operation adopts MDS matrix, without memory, we need 232

classical time to find a conforming pair for full active super S-box.

5.2 Collision on Hashing Modes with Reduced SKINNY-128-384

By applying the model given in Section 3, we find 16-round rebound trail for
SKINNY-128-384 (see Figure 19 in our full version paper). The inbound phase
covers round 11 and round 12. The probability of the outbound phase is 2−112.
We apply similar technique of super S-box with non-MDS matrix to the inbound
phase of the 16-round rebound trail, whose quantum time complexity is about

22 Xiaoyang Dong, et. al.

Y8 Z8 W8 T

⊕SB SC MR

A8 B8 C8

SB SC MR

Y6 Z6 W6 X7

⊕SB SC MR

A6 B6 C6

SB SC MR

Y7 Z7 W7 X8

⊕SB SC MR

A7 B7 C7

SB SC MR

Y4 Z4 W4 X5

⊕SB SC MR

A4 B4 C4

SB SC MR

Y5 Z5 W5 X6

⊕SB SC MR

A5 B5 C5

SB SC MR

Y2 Z2 W2 X3

⊕SB SC MR

A2 B2 C2

SB SC MR

Y3 Z3 W3 X4

⊕SB SC MR

A3 B3 C3

SB SC MR

Y0 Z0 W0 X1

⊕ ⊕SB SC MR

A0 B0 C0

SB SC MR

Y1 Z1 W1 X2

⊕SB SC MR

A1 B1 C1

SB SC MR

0

8

16

24

32

40

48

56

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

Fig. 12: Free-start collision attack on 9-round Whirlpool

28.65 S-box evaluations. To be more clear, we list the details for solving the
inbound phase in Section D in our full version paper.

Define F : F112
2 × F3

2 7→ F2 as F (∆K,∆X11, ∆Y12;x, α), where x = K ∈
F112
2 and α = α0∥α1∥α2 ∈ F3

2. F (∆K,∆X11, ∆Y12;x, α) = 1 if and only if
(∆K,∆X11, ∆Y12;x, α) leads a collision. The overall time complexity is

π

4
·
√
2112+3 · 4 · 28.65 = 267.8 S-box evaluations,

which is about 267.8/256 = 259.8 16-round SKINNY-128-384, since there are 256
S-boxes in the 16-round SKINNY-128-384.

6 Free-Start Collision Attack on 9-Round Whirlpool

Different from Saturnin and SKINNY, the key schedule of Whirlpool is nonlinear.
Hence, we have to tweak the automatic tool in Section 3 which targets on linear

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 23

key schedule ciphers. For Whirlpool, we place the rebound attacks in both the
encryption data path and the key schedule path just like Sasaki et al.’s work
[49]. For the inbound part of the key schedule path, we only have input and
output differences∆K

in and∆K
out that act as the degrees of freedom to preform the

rebound attack in the key. We expect to get |∆K
in| · |∆K

out| key pairs conforming to
the inbound part of key schedule path. For each key pair, we will get |∆E

in|·|∆E
out|

pairs conforming to the inbound part of the encryption data path. Suppose the
total probability of outbound paths in the key and encryption path is p, then
the condition |∆K

in| · |∆K
out| · |∆E

in| · |∆E
out| ≥ 1/p should be satisfied to finally find

a key pair and data pair fulfilling the whole trails in the key schedule and the
encryption data path. We embed the 2-round full/non-full active super S-box
technique [21,48] or 3-round-inbound technique [30] in the inbound part. The
inbound phase in related-key setting is quite similar to the single-key setting. A
slight different point is to deal with the operation of XOR the key difference into
the internal state, where the constraint [42] for truncated differential in XOR
operation is applied. The outbound phase is also similar to single-key setting,
where only propagations of truncated differential are constrained with MILP.

At ASIACRYPT 2012, Sasaki et al. [49] introduced a free-start collision at-
tack on 8-round Whirlpool. In this section, we find a new 9-round rebound
characteristic in Figure 12, and based on it, we give the quantum free-start
collision on 9-round Whirlpool.

6.1 Comparison between Sasaki et al’s Trail and Ours

The number of active S-boxes in Sasaki et al’s 8-round trail is shown below:
{

Key : 64
1stR−→ 8

2ndR−→ 1
3rdR−→ 8

4thR−→ 64
5thR−→ 8

6thR−→ 1
7thR−→ 8

8thR−→ 64,

Data : 0
1stR−→ 8

2ndR−→ 1
3rdR−→ 8

4thR−→ 0
5thR−→ 8

6thR−→ 1
7thR−→ 8

8thR−→ 64.

The number of active S-boxes in our 9-round trail is shown below:
{

Key : 64
1stR−→ 8

2ndR−→ 1
3rdR−→ 8

4thR−→ 64
5thR−→ 64

6thR−→ 64
7thR−→ 8

8thR−→ 8
9thR−→ 64,

Data : 0
1stR−→ 8

2ndR−→ 1
3rdR−→ 0

4thR−→ 64
5thR−→ 64

6thR−→ 64
7thR−→ 8

8thR−→ 8
9thR−→ 64.

In the key schedule, Sasaki et al’s inbound phase “8
4thR−→ 64

5thR−→ 8” is replaced

by a longer inbound phase “8
4thR−→ 64

5thR−→ 64
6thR−→ 64

7thR−→ 8” in our trail, namely
we gain a 2-round extension in the inbound phase. In the meantime, Sasaki et

al.’s outbound part “8
6thR−→ 1

7thR−→ 8
6thR−→ 64” is shortened to “8

8thR−→ 8
9thR−→ 64”

to gain enough degrees of freedom. In Sasaki et al.’s 8-round trail, the full active
state to match in the inbound phase only happens to the key schedule data path.
In the inbound part of the encryption data path, many cells are inactive, so that
one can assign arbitrary values. Hence, we do not worry about the degree of
freedom for Sasaki et al.’s trail. However, in our 9-round trail, both the key and
data path adopt full state active inbound part, so that the internal states are
fully determined by a match-in-the-middle approach and the degree of freedoms

24 Xiaoyang Dong, et. al.

only comes from the possible input and output differences of the inbound part.
Hence, the outbound phase is different to gain enough degrees of freedom for
the collision attack.

In the key schedule path, the inbound part covers from ∆B3 to ∆C6 that
includes 3 SB layers. We apply Jean et al.’s [30] 3-round-inbound technique and
their quantum version by Hosoyamada and Sasaki [26] to perform the attack.
We first define G in Algorithm 4 which marks the compatible cells in Figure
4 for (X1, X

′
1) for a given input difference ∆X1 and output difference ∆Y3.

Complexity of UG in Algorithm 4 . Taken uncomputing into account, there are
32× 2× 2× 2 = 128 S-boxes operations in Line 3. In Line 5 to Line 8, we need
8 · π

4 ·
√
264 · 16× 2 = 239.65 S-boxes operations.

In Line 10 of Algorithm 4, only the cells are needed to compute backward
to X1, hence, 32 × 2 × 2 × 2 = 128 S-boxes operations are needed. Totally, we
need about 239.65 S-boxes operations to implement UG.

Given (∆X1, ∆Y3), run Grover’s algorithm on UG to find the correct cells
for (X1, X

′
1) in Figure 4. UG outputs 1 with probability of 2−256. Hence, the time

complexity to find the correct value with Grover’s algorithm is

π

4
·
√
2256 · 239.65 = 2167.3 S-boxes operations. (10)

6.2 Free-Start Collision on 9-round Whirlpool

Classical Analysis on the 9-round Rebound Trail. As shown in Figure
12, in the key schedule part, given an input-output difference ∆B3 and ∆C6

of the inbound part, we have one conforming pair on average. In the outbound
phase of the key schedule, the probability that the truncated differential ∆C2

propogates to ∆B2 is 2−56. Hence, there will be 264×2−56 = 272 valid key pairs
that meet the truncated differential in the key schedule path. For each valid
key pair, we look at the encryption data path. ∆X4 is fixed by ∆C3, and there
are 264 possible differences in ∆W6. There is also a 3-round inbound phase
in the encryption data path with input difference ∆X4 and output difference
∆W6. With a given (∆X4, ∆W6), it is expected to find one data pair (X4, X

′
4).

Together with the key pair, we compute backward with the data pair (X4, X
′
4).

Since ∆W2 = ∆C2 and ∆B2 = MR−1(∆C2) whose row 0 is of (∗, 0, 0, 0, 0, 0, 0, 0),
∆Z2 is also of the truncated form (∗, 0, 0, 0, 0, 0, 0, 0) with probability 1. At round
0, ∆W0 = ∆C0 ⊕ ∆X1 = 0 holds with probability of 2−64. At the last round,
∆B8 = ∆Z8 holds with probability 2−64, which finally leads to a collision. The
total degrees of freedom are derived from ∆B3, ∆C6 and ∆W6, which consists
of 2192 possible differences (24-byte). The probability to generate a collision is
2−56−128 = 2−184. The classical time complexity to solve the 3-round inbound
phase is about 2320. Obviously, the classical complexity will be much larger that
a generic birthday attack, which only needs 2256 time to find the 512-bit collision.

Quantum Free-Start Collision Attack on 9-round Whirlpool. In the key
schedule path, for given C6[U] with U = {0, 15, 22, 29, 36, 43, 50, 57} positions of

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 25

Algorithm 4: Implementation of UG without using qRAMs

Input: |∆X1,∆Y3;X1[]⟩ |y⟩
Output: |∆X1,∆Y3;X1[]⟩ |y ⊕G(∆X1,∆Y3;X1[]⟩

1 /* X1[] means the value of 32 cells in state X1 shown in Figure

4, and X ′
1[] is for state X ′

1 */

2 Compute X ′
1[] = ∆X1 ⊕X1[]

3 Compute Z2[] and Z′
2[] by X1[] and X ′

1[], respectively

4 Define gj : F8×8
2 7→ F2 for row j = 0, 1, 2..., 7 of Z2. E.g., for row 0, define

g0(Z2[], Z′
2[];x), where x is the cells of Z2 and Z′

2 in row 0, i.e.,
x = Z2[1, 2, 3, 4]∥Z′

2[1, 2, 3, 4] ∈ F8×8
2 . g0(Z2[], Z′

2[];x) = 1 if and only if
SB(MR(Z2[0, 1, ..., 7]))⊕ SB(MR(Z′

2[0, 1, ..., 7])) = ∆Y3[0, 1, ..., 7]. Similar
property holds for other gj

5 Run the Grover search on g0(Z2[], Z′
2[]; ·) : F8×8

2 7→ F2. Let
Z2[1, 2, 3, 4]∥Z′

2[1, 2, 3, 4] be the output.
6 Run the Grover search on g1(Z2[], Z′

2[]; ·) : F8×8
2 7→ F2. Let

Z2[10, 11, 12, 13]∥Z′
2[10, 11, 12, 13] be the output.

7
...

8 Run the Grover search on g7(Z2[], Z′
2[]; ·) : F8×8

2 7→ F2. Let
Z2[56, 57, 58, 59]∥Z′

2[56, 57, 58, 59] be the output.
9 /* Now the whole states Z2 and Z′

2 are fixed. */

10 Compute backward from Z2 and Z′
2 to X1 and X ′

1

11 if X1[]⊕X ′
1[] = ∆X1[] then

12 return |∆X1,∆Y3;X1[]⟩ |y ⊕ 1⟩
13 else
14 return |∆X1,∆Y3;X1[]⟩ |y⟩

active cells in C6, we define f : F8×8
2 7→ F2 as f(∆C6[U];x), where x = ∆B3[V] ∈

F8×8
2 with V = {0, 9, 18, 27, 36, 45, 54, 63}. f(∆C6[U];x) = 1 if and only if the key

pair derived by solving the 3-round inbound satisfies the truncated differential
from ∆C2 to ∆B2. The implementation of Uf is given in Algorithm 5.

Complexity of Uf . The time is bounded by Line 2 of Algorithm 5, which is about
2167.3 S-boxes operations according to Equation (10).

Run Grover’s algorithm on f(∆C6[U]; ·), we will find a key pair (K,K ′) that
conforms to the truncated differential in Figure 12. In encryption data path, for
the computed key pair (K,K ′), we define f̃ : F8×8

2 7→ F2 as f̃(K,K ′;x), where
x = ∆W6[U] ∈ F8×8

2 . f̃(K,K ′;x) = 1 if and only if a collision occurs in the digest
that happens with probability of 2−128. The implementation of Uf̃ is given in
Algorithm 6.

Complexity of Uf̃ . The time complexity is bounded by Line 3 of Algorithm 6,

which is also 2167.3 S-boxes operations according to Equation (10).
We define F : F8×8

2 7→ F2 as F (x), where x = ∆C6[U] ∈ F8×8
2 with U =

{0, 15, 22, 29, 36, 43, 50, 57}. F (x) = 1 if and only if the digests of two messages
collide. The implementation of UF is given in Algorithm 7.

26 Xiaoyang Dong, et. al.

Algorithm 5: Uf of the quantum attack on 9-round Whirlpool

Input: |∆C6[U];∆B3[V]⟩ |y⟩
Output: |∆C6[U];∆B3[V]⟩ |y ⊕ f(∆C6[U];∆B3[V])⟩

1 Compute ∆C3 and ∆A6 from ∆B3[V] and ∆C6[U]
2 Run Grover’s algorithm on G(∆C3,∆A6; ·) with UG implemented in

Algorithm 4. Let A4[] be the output
3 /* A4[] are the cells in A4 in Figure 12 */

4 Run Line 2 to Line 10 of Algorithm 4 with input (∆C3,∆A6;A4[]). Let
(C3, C

′
3) be the output

5 Compute backward from (C3, C
′
3) to (B2, B

′
2)

6 if row 0 of ∆B is of the truncated form (∗, 0, 0, 0, 0, 0, 0, 0) then
7 return |∆C6[U];∆B3[V]⟩ |y ⊕ 1⟩
8 else
9 return |∆C6[U];∆B3[V]⟩ |y⟩

Algorithm 6: Uf̃ of the quantum attack on 9-round Whirlpool

Input: |K,K′;∆W6[U]⟩ |y⟩
Output: |K,K′;∆W6[U]⟩ |y ⊕ f̃(K,K′;∆W6[U])⟩

1 Compute ∆X4 from (K,K′)
2 Compute ∆Y6 from ∆W6[U]
3 Run Grover’s algorithm on G(∆X4,∆Y6; ·) with UG implemented in

Algorithm 4. Let Y4[] be the output
4 /* Y4[] are the cells in Y4 in Figure 12 */

5 Run Line 2 to Line 10 of Algorithm 4 with input (∆X4,∆Y6, Y4[]). Let
(X4, X

′
4) be output

6 Together with (K,K′), compute backward from (X4, X
′
4) to (X1, X

′
1) and

forward to (W8,W
′
8)

7 Compute (C0, C
′
0) and (C8, C

′
8) by (K,K′)

8 if ∆X1 = ∆C0 and ∆W8 = ∆C8 then
9 return |K,K′;∆W6[U]⟩ |y ⊕ 1⟩

10 else
11 return |K,K′;∆W6[U]⟩ |y⟩

Complexity of UF . The time complexity of the implementation of UF in Algo-
rithm 7 is bounded by Line 1 and Line 4, which is π

4 ·
√
264−8 · 2167.3 + π

4 ·
√
264 ·

2167.3 = 2199.04 S-boxes operations.
. UF returns |∆C6[U]⟩ |y ⊕ 1⟩ with probability of 264−128 = 2−64. Hence,

applying Grover’s algorithm on F (x) will finally find the collision. Since only the
correct state ∆C6[U] is output, we have to re-run Line 1 to Line 6 of Algorithm
7 to finally find the collision. The total time complexity is bounded by the step
of applying Grover’s algorithm on F (x), which is

π

4
·
√
264 · 2199.04 = 2230.7 S-boxes operations.

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 27

Since there are 128×9 = 1152 S-boxes operations in the 9-round Whirlpool, the
total time complexity of the attack is 2230.7/1152 = 2220.5 9-round Whirlpool.

Algorithm 7: UF of the quantum attack on 9-round Whirlpool

Input: |∆C6[U]⟩ |y⟩
Output: |∆C6[U]⟩ |y ⊕ F (∆C6[U])⟩

1 Run Grover’s algorithm on f(∆C6[U]; ·) with implementation of Uf in
Algorithm 5. Let ∆B3[V] as output

2 /* Note that the truncated differential ∆C2 to ∆B2 holds with

probability of 2−56, hence, about π
4

√
256 Grover iterations on

f(∆C6[U]; ·) are needed to find a good one. */

3 Run Line 1 to Line 5 of Algorithm 5 to get (C3, C
′
3), then compute the key

pair (K,K′)
4 Run Grover’s algorithm on f̃(K,K′; ·) with implementation of Uf̃ in

Algorithm 6. Let ∆W6[U] as output
5 /* Note that since Uf̃ returns 1 with probability of 2−128, however,

the size of its domain is 264. Then after 232 Grover iterations,

if a right ∆W6[U] is in the domain, then it will output. If all

the ∆W6[U] are wrong, then a random ∆W6[U] will output. */

6 Run Line 1 to Line 7 of Algorithm 6 to get (X1, X
′
1), then compute the

message pair (M,M ′) with (K,K′)
7 if (M,K)’s digest collides with (M ′,K′)’s then
8 return |∆C6[U]⟩ |y ⊕ 1⟩
9 else

10 return |∆C6[U]⟩ |y⟩

7 Conclusion

By taking the degrees of freedom of the key materials into consideration, we
build the automatic tools for the so-called related-key rebound attack, where
the degrees of freedom are used to increase the probability of the outbound
phase. We develop the new technique to deal with the incompatibilities when
searching rebound-attack trails on Saturnin, whose subkeys have very strong
relationships. Besides the automatic model, we build new super S-box technique
with non-MDS matrix for SKINNY, which is not seen before. For Whirlpool,
multiple nested Grover’s algorithms are applied to deal with the complex case
that both the key schedule path and encryption path adopt rebound attacks. All
in all, we achieve certain best free-start collision attacks.

Acknowledgments. This work is supported by National Key R&D Program of
China (2018YFA0704701, 2018YFA0704704), the Major Program of Guangdong
Basic and Applied Research (2019B030302008), Major Scientific and Techo-
logical Innovation Project of Shandong Province, China (2019JZZY010133),

28 Xiaoyang Dong, et. al.

Natural Science Foundation of China (61902207, 61772519, 62072270) and the
Chinese Major Program of National Cryptography Development Foundation
(MMJJ20180101, MMJJ20180102).

References

1. Zhenzhen Bao, Jian Guo, Danping Shi, and Yi Tu. MITM meets guess-and-
determine: Further improved preimage attacks against AES-like hashing. IACR
Cryptol. ePrint Arch., 2021:575, 2021.

2. Paulo S.L.M. Barreto and Vincent Rijmen. The WHIRLPOOL hashing function.
Submitted to NESSIE, 2000.

3. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In CRYPTO 2016,
Proceedings, Part II, pages 123–153. Springer, 2016.

4. Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum computers
make SHARCS obsolete. SHARCS 2009 9: 105.

5. Alex Biryukov and Ivica Nikolic. Automatic search for related-key differential char-
acteristics in byte-oriented block ciphers: Application to AES, Camellia, Khazad
and others. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110, pages
322–344. Springer, 2010.

6. Xavier Bonnetain, Akinori Hosoyamada, Maŕıa Naya-Plasencia, Yu Sasaki, and
André Schrottenloher. Quantum attacks without superposition queries: The offline
Simon’s algorithm. In ASIACRYPT 2019, Kobe, Japan, December 8-12, 2019,
Proceedings, Part I, pages 552–583, 2019.

7. Xavier Bonnetain, Maŕıa Naya-Plasencia, and André Schrottenloher. Quantum
security analysis of AES. IACR Trans. Symmetric Cryptol., 2019(2):55–93, 2019.

8. Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash
and claw-free functions. In LATIN ’98, Campinas, Brazil, April, 20-24, 1998,
Proceedings, pages 163–169, 1998.

9. Anne Canteaut, Sébastien Duval, Gaëtan Leurent, Maŕıa Naya-Plasencia, Léo Per-
rin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of lightweight
symmetric algorithms for post-quantum security. IACR Trans. Symmetric Cryp-
tol., 2020(S1):160–207, 2020.

10. André Chailloux, Maŕıa Naya-Plasencia, and André Schrottenloher. An efficient
quantum collision search algorithm and implications on symmetric cryptography.
In ASIACRYPT 2017, Hong Kong, China, December 3-7, 2017, Proceedings, Part
II, pages 211–240, 2017.

11. Amit Kumar Chauhan, Abhishek Kumar, and Somitra Kumar Sanadhya. Quantum
free-start collision attacks on double block length hashing with round-reduced AES-
256. IACR Trans. Symmetric Cryptol., 2021(1):316–336, 2021.

12. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A security anal-
ysis of Deoxys and its internal tweakable block ciphers. IACR Trans. Symmetric
Cryptol., 2017(3):73–107, 2017.

13. Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor,
CRYPTO ’89, volume 435, pages 416–427.

14. Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-the-middle
and impossible differential attacks. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part II, volume 9815, pages 157–184.

Automatic Classical and Quantum Rebound Attacks on AES-like Hashing 29

15. Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round AES in the single-key setting. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881, pages 371–387.

16. Patrick Derbez, Paul Huynh, Virginie Lallemand, Maŕıa Naya-Plasencia, Léo Per-
rin, and André Schrottenloher. Cryptanalysis results on Spook - bringing full-round
Shadow-512 to the light. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172, pages 359–388. Springer.

17. Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, and Lei Hu.
Meet-in-the-middle attacks revisited: Key-recovery, collision, and preimage attacks.
In CRYPTO 2021, Proceedings, Part III, volume 12827, pages 278–308.

18. Xiaoyang Dong, Siwei Sun, Danping Shi, Fei Gao, Xiaoyun Wang, and Lei Hu.
Quantum collision attacks on AES-like hashing with low quantum random access
memories. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020 Part
II, volume 12492, pages 727–757.

19. Xiaoyang Dong, Zhiyu Zhang, Siwei Sun, Congming Wei, Xiaoyun Wang, and Lei
Hu. Automatic classical and quantum rebound attacks on AES-like hashing by
exploiting related-key differentials. Cryptology ePrint Archive, Report 2021/1119.

20. Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Structural evaluation of
AES and chosen-key distinguisher of 9-round AES-128. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042, pages 183–203. Springer.

21. Henri Gilbert and Thomas Peyrin. Super-Sbox cryptanalysis: Improved attacks
for AES-like permutations. In FSE 2010, pages 365–383, 2010.

22. Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Architectures for a quan-
tum random access memory. Physical Review A, 78(5):052310, 2008.

23. Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access
memory. Physical review letters, 100(16):160501, 2008.

24. Lorenzo Grassi, Maŕıa Naya-Plasencia, and André Schrottenloher. Quantum algo-
rithms for the k-xor problem. In ASIACRYPT 2018, pages 527–559, 2018.

25. Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212–219, 1996.

26. Akinori Hosoyamada and Yu Sasaki. Finding hash collisions with quantum com-
puters by using differential trails with smaller probability than birthday bound.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume
12106, pages 249–279. Springer.

27. Akinori Hosoyamada and Yu Sasaki. Quantum collision attacks on reduced SHA-
256 and SHA-512. In CRYPTO 2021, volume 12825, pages 616–646. Springer.

28. Akinori Hosoyamada and Yu Sasaki. Cryptanalysis against symmetric-key schemes
with online classical queries and offline quantum computations. In CT-RSA 2018,
San Francisco, CA, USA, April 16-20, 2018, Proceedings, pages 198–218, 2018.

29. Akinori Hosoyamada and Yu Sasaki. Quantum Demiric-Selçuk Meet-in-the-Middle
Attacks: Applications to 6-Round Generic Feistel Constructions. In SCN 2018,
pages 386–403, 2018.

30. Jérémy Jean, Maŕıa Naya-Plasencia, and Thomas Peyrin. Improved rebound attack
on the finalist Grøstl. In FSE 2012, pages 110–126, 2012.

31. Jérémy Jean, Maŕıa Naya-Plasencia, and Thomas Peyrin. Multiple limited-
birthday distinguishers and applications. In SAC 2013, pages 533–550, 2013.

32. Jérémy Jean, Maŕıa Naya-Plasencia, and Martin Schläffer. Improved analysis of
ECHO-256. In SAC, pages 19–36, 2011.

33. Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Submission to
CAESAR : Deoxys v1.41, October 2016.

30 Xiaoyang Dong, et. al.

34. Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-Plasencia.
Breaking symmetric cryptosystems using quantum period finding. In CRYPTO
2016, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages
207–237, 2016.

35. Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-Plasencia.
Quantum differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol.,
2016(1):71–94, 2016.

36. Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between the 3-
round Feistel cipher and the random permutation. In ISIT 2010, June 13-18, 2010,
Austin, Texas, USA, Proceedings, pages 2682–2685, 2010.

37. Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type Even-
Mansour cipher. In ISITA 2012, Honolulu, HI, USA, October 28-31, 2012, pages
312–316, 2012.

38. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and
Martin Schläffer. Rebound distinguishers: Results on the full Whirlpool compres-
sion function. In ASIACRYPT 2009, pages 126–143.

39. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The rebound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In FSE 2009,
pages 260–276.

40. Florian Mendel, Vincent Rijmen, and Martin Schläffer. Collision attack on 5 rounds
of Grøstl. In FSE 2014, pages 509–521, 2014.

41. Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor,
CRYPTO ’89, volume 435, pages 428–446.

42. Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and linear
cryptanalysis using mixed-integer linear programming. In Chuankun Wu, Moti
Yung, and Dongdai Lin, editors, Inscrypt 2011, volume 7537, pages 57–76, 2011.

43. Maŕıa Naya-Plasencia. How to improve rebound attacks. In CRYPTO 2011, pages
188–205, 2011.

44. Maŕıa Naya-Plasencia and André Schrottenloher. Optimal merging in quantum
k-xor and k-xor-sum algorithms. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part II, volume 12106, pages 311–340. Springer.

45. Boyu Ni, Xiaoyang Dong, Keting Jia, and Qidi You. (quantum) collision attacks
on reduced simpira v2. IACR Trans. Symmetric Cryptol., 2021(2):222–248, 2021.

46. Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block
ciphers: A synthetic approach. In Douglas R. Stinson, editor, CRYPTO ’93, volume
773, pages 368–378.

47. Yu Sasaki. Meet-in-the-middle preimage attacks on AES hashing modes and an
application to Whirlpool. In FSE 2011, pages 378–396, 2011.

48. Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, and Kazuo Ohta. Non-full-active
Super-Sbox analysis: Applications to ECHO and Grøstl. In ASIACRYPT 2010,
pages 38–55, 2010.

49. Yu Sasaki, Lei Wang, Shuang Wu, and Wenling Wu. Investigating fundamental
security requirements on Whirlpool: Improved preimage and collision attacks. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658, pages
562–579.

50. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with crypt-
analytic applications. J. Cryptol., 12(1):1–28, 1999.

	Automatic Classical and Quantum Rebound Attacks on AES-like Hashing by Exploiting Related-key Differentials

