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Abstract. Cryptosystems based on the learning with errors (LWE)
problem are assigned a security level that relates to the cost of generic
algorithms for solving the LWE problem. This includes at least the so-
called primal and dual lattice attacks. In this paper, we present an im-
provement of the dual lattice attack using an idea that can be traced
back to work by Bleichenbacher. We present an improved distinguisher
that in combination with a guessing step shows a reduction in the overall
complexity for the dual attack on all schemes. Our second contribution is
a new two-step lattice reduction strategy that allows the new dual lattice
attack to exploit two recent techniques in lattice reduction algorithms,
i.e., the "dimensions for free" trick and the trick of producing many short
vectors in one sieving. Since the incompatibility of these two tricks was
believed to be the main reason that dual attacks are less interesting, our
new reduction strategy allows more efficient dual approaches than primal
attacks, for important cryptographic parameter sets.
We apply the proposed attacks on CRYSTALS-Kyber and CRYSTALS-
Dilithium, two of the finalists in the NIST post-quantum cryptogra-
phy project and present new lower complexity numbers, both classi-
cally and quantumly in the core-SVP model. Most importantly, for the
proposed security parameters, our new dual attack with refined lat-
tice reduction strategy greatly improves the state-of-the-art primal at-
tack in the classical gate-count metric, i.e., the classical Random Ac-
cess Machine (RAM) model, indicating that some parameters are re-
ally on the edge for their claimed security level. Specifically, the im-
provement factor can be as large as 15 bits for Kyber1024 with an ex-
trapolation model (Albrecht et al. at Eurocrypt 2019). Also, we show
that Kyber768 could be solved with classical gate complexity below its
claimed security level. Last, we apply the new attack to the proposed
parameters in a draft version of Homomorphic Encryption Standard (see
https://homomorphicencryption.org) and obtain significant gains. For
instance, we could solve a parameter set aiming for 192-bit security in
2187.0 operations in the classical RAMmodel. Note that these parameters
are deployed in well-known Fully Homomorphic Encryption libraries.

Keywords: Lattice-based cryptography, NIST post-quantum cryptog-
raphy standardization, dual attacks, CRYSTALS, learning with errors,
fast Fourier transform, fully homomorphic encryption.
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1 Introduction

The LWE problem was introduced by Regev [51] and has quickly become one of
the main problems in cryptography. One reason is the fear of future quantum
computers being able to solve the factoring and discrete log problems efficiently.
In the search for new future cryptographic schemes not based on the previous
standard problems factoring and discrete log, the LWE problem has received
a central role. One advantage for LWE is that this problem is claimed to be
as hard as worst-case approximation problems in lattices, such as the shortest
vector problem (SVP) [49,25]. Another reason for the importance of LWE is
its usefulness in a variety of cryptographic constructions and primitives. This,
in particular, includes Fully Homomorphic Encryption (FHE), which is a very
important primitive that allows operations on encrypted data without decrypting
it. The most efficient FHE schemes today are constructed using LWE or some
version of the problem as the underlying difficult problem. Examples of such
FHE schemes can be found in [27,36,26,2,4].

Returning to the post-quantum scenario, the need for new cryptographic
primitives has been identified and in 2015 NIST started the project which we
refer to as the NIST PQC standardization process [5]. The goal was to accept
candidates for public-key encryption schemes (PKE), key encapsulation mecha-
nisms (KEM), and digital signature schemes, and then to evaluate their security
under the assumption that quantum computations can be done. In the end, a
few proposals will be selected for possible standardization. The project has now
entered the third round, where in the move to each round the number of candi-
dates has been reduced. Many of the candidates in the project as a whole as well
as among the remaining round 3 candidates, are based on some LWE-related
problem. The round 3 candidates are split in two groups, being the main and
the alternate ones.

Proposals are giving parameters in relation to target security categories.
Among the 5 defined security categories, category 1,3 and 5 correspond to the
complexity of exhaustive key search on AES with key size 128, 192, and 256,
respectively. A proposal with parameters given for category 1 thus has to meet
the requirement that any attack on the scheme requires a complexity larger than
or comparable to the complexity of exhaustive key search on AES with key size
128.

Any cryptosystem based on the learning with errors (LWE) problem can be
assigned a security level that corresponds to the lowest cost among any possible
attack, which includes generic algorithms for solving the LWE problem. Possible
algorithms include at least the so-called primal and dual lattice attacks. These
attacks make use of the BKZ lattice reduction algorithm [31], which in turn uses
as a subroutine a solver for SVP in projected sublattices (also referred to as
blocks). Connected to both the primal and dual lattice attacks is the cost of per-
forming them, which relates to the cost of running the BKZ algorithm. Due to
the somewhat complicated nature of the BKZ algorithm, there has been several
different cost models used in previous literature [11]. The cost model can either
be an expression for the asymptotic behaviour of the cost of running BKZ, or

2



it can be an attempt to express the actual complexity in number of operations
of some kind. As we are interested in the actual complexity, we use cost models
for this latter case. Another distinguishing factor is the choice of the subrou-
tine for solving SVP in projected sublattices inside BKZ, which can be either
enumeration or lattice sieving [44,45]. Sieving gives the better performance but
requires more memory. Established cost models for BKZ are used by designers
to evaluate the cost of different attacks on their design which in turn gives an
indication of the expected security level.

Briefly, we may describe LWE as the problem of recovering a secret vector
s ∈ Znq after receiving (A,b) for which b = As+ e, where A is an m×n matrix
with entries in Zq and e ∈ Zmq . It is also assumed that both the noise vector e
as well as the secret s ∈ Znq itself are small. It means that the entries are small
in relation to Zq = {−(q−1)2 , . . . , (q−1)2 } (for q odd prime). In the dual attack,
the idea is to find short vectors in the dual lattice defined as Λ′ = {(x,y) ∈
Zm × Zn : ATx = y mod q}. For each short vector, denote it (w,v), we can
observe that wT · b = vT · s+wT · e is somewhat small. So with enough short
vectors from Λ′ we get a distinguisher that can separate whether b is from the
LWE distribution or whether b is from a uniform distribution. The distinguisher
is used in combination with a guessing step where a few entries of the secret s
are guessed and corresponding positions are excluded from A. If the guess is
correct, b will come from the LWE distribution but if the guess is wrong then
b will be from a uniform distribution (or close to). In this way the distinguisher
will recover the guessed entries of s and eventually the full secret is recovered.

1.1 Contributions

In this paper, we present an improvement of the dual lattice attack using an
idea that can be traced back to work by Bleichenbacher [23,22] on attacking
on ECDSA. We present an improved distinguisher that in combination with a
guessing step shows a reduction in the overall complexity for the dual attack on
all schemes. This results in a strictly better dual attack than previous ones.

The main idea is to reduce the FFT distinguisher over a very large alphabetic
size q to another distinguisher with a very small alphabetic size, say of only size
2 (or 3 for certain proposals where q is not a prime but a power of 2). We design
a new mapping technique to map the secret points close to one point in a set of
points equally dividing the cycle. Then one can apply the new FFT techniques to
accelerate the guessing procedure in a combination of guessing some entries only
modulo 2. From an implementation point of view, the transform step can be more
efficiently implemented through a Fast Walsh-Hadamard transform (FWHT)
instead of the standard FFT approach.

The complexity reduction depends on the attacked scheme. In particular,
we apply the proposed dual attack on CRYSTALS-Kyber and CRYSTALS-
Dilithium in the NIST post-quantum cryptography project and present new
lower complexity numbers measured in the core-SVP model (see the second and
the third columns in Table 1).
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Classical core-SVP Refined classical attacks (gates)

Claim [52] New Claim [52] New NIST [6]
Kyber512 118 115 151 147 143
Kyber768 182 174 215 205 207
Kyber1024 256 243 287 272 272

Claim [46] New Claim [46] New NIST [6]
Dilithium-II 123 122 159 154 146
Dilithium-III 182 179 217 210 207
Dilithium-V 252 246 285 274 272

Table 1: The complexity comparison on the security parameter sets of the round-
3 CRYSTALS. Cost is given in log2 of operations.

We also investigate the complexity of the new attack in the classic gate-count
metric, i.e., the Random Access Machine (RAM) model. This model is more in-
teresting in the NIST Post-Quantum Cryptography Standardization Project be-
cause it is difficult to determine if the classical complexity of 2174 in the core-SVP
model meets the security requirement for NIST-3 defined as 2205 classic gates.
The official documents of round-3 Kyber and Dilithium set their security param-
eters by counting the classical gates of primal attacks. One main obstacle is to
measure the classic cost in the RAM model of the Nearest Neighbor Search used
in lattice sieving, which is addressed by Albrecht et al. in [14]. The designers
of Kyber and Dilithium dismiss the dual attack because “.. First, most of those
vectors are larger by a factor

√
4/3, secondly the trick of exploiting all those

vectors is not compatible with the ‘dimension for free’ trick..” (cited from [46]).

We show in this paper that dual attacks could be more efficient in the classical
gate-count metric even if most of short vectors obtained are larger by a factor√
4/3. Our novel idea is a new two-step lattice reduction strategy that could

exploit both the “dimension for free” (d4f) trick and the “exploiting many short
vectors in one sieving” (msv) trick. Furthermore, since BKZ typically includes
calling an SVP oracle for many times, we can sieve in the second step with a
larger dimension to balance the costs of the two steps. From this perspective,
we exploit the d4f trick twice and also produce an exponential number of short
vectors. Similar to the official documents of CRYSTALS [52,46], we employ the
analysis from [14] to evaluate the sieving cost in the classical RAM model.

The classical complexity comparisons in the gate-count metric for CRYSTALS-
Kyber and CRYSTALS-Dilithium are shown in the last columns of Table 1. The
gain is generally significant and could be as large as 15 bits for Kyber1024; some
parameters, therefore, are really on the edge for their claimed security level.
Last, we show that Kyber768 could be solved with complexity below its claimed
security level in the gate-count metric.
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Lastly, we show that the new dual attack with refined lattice reduction strat-
egy could solve certain parameter sets in a draft version of the Homomorphic
Encryption Standard [7] faster than the claimed security levels under the classi-
cal RAM model.

Remarks This algorithmic improvement has very wide applications in lattice-
based cryptography—lattice-based proposals need to recheck their security pa-
rameter sets for the dual attack. It could lead to a security problem if the original
security margin is small. On the other hand, the reported complexity numbers
in the classical RAM model assume that the cost of one RAM query is constant.
These complexity numbers will increase if a more realistic memory access cost
model is taken into consideration. Further research on this is beyond the scope
of the paper.

1.2 Related Works

There are a few different classes of algorithms for solving LWE problems, see
e.g. [16]. The algebraic method of Arora-Ge [18] and its extension using Gröbner
basis techniques [8] is a powerful method when applicable. The combinatorial ap-
proach called BKW [24] and its many extensions [10,41,38] is another approach
that for some parameter choices can be the most efficient solver for LWE. How-
ever, in general both these methods require a larger number of samples than
what is available in the cryptanalysis of LWE-based constructions of KEMs, sig-
natures, or FHEs. So the security of such constructions is almost always derived
by analyzing the cost of attacks based on lattice reduction. These attacks are
either the primal attacks, where one finds the solution by solving a decoding
problem in the lattice, or reduce it to solving unique SVP [44,45,13].

The second type of lattice attack is the dual lattice attacks [47]. The basic
form of the attack builds a distinguisher from many short vectors in the dual
lattice. However, by simply guessing a part of the secret this is turned into a
recovery of the secret vector. An efficient guessing procedure can be achieved by
use of the Fast Fourier Transform [33]. Various improvements can be achieved if
the secret is small and sparse [9,32,28], which is often the case in constructions,
in particular for FHE constructions.

To the best of our knowledge, Albrecht [9] firstly studied the problem of
efficiently producing many short vectors in the dual lattice attacks. He proposed
an amortization approach using re-randomization and lattice reductions with a
smaller dimension, but his approach is more heuristic and has worse performance
compared with our new two-step lattice reduction approach with sieving.

Independently of this work, the paper [35] was recently posted on eprint. This
work also considers the dual attack but in our understanding it uses an idea of
generating LWE instances with bigger noise that correspond to a fraction of the
secret vector, a different approach to the ideas suggested in this paper. Our ap-
proach of reducing the FFT distinguisher over a very large alphabetic size q to
another distinguisher with a very small alphabetic size have some similarity to
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work by Bleichenbacher [22] on attacking on ECDSA. In [29] a similar but dif-
ferent reduction was used in connection with implementing the BKW algorithm.

Finally, these attacks can sometimes be used in the form of hybrid lattice
reduction attacks as introduced in [40]. Such attacks combine a meet-in-the-
middle approach and/or guessing with lattice reduction and this can sometimes
be the best attack [28,42,53].

Notes. We found another independent work [21] on eprint (posted on Feb
12, 2021) studying dual attacks on round-3 lattice-based primitives in the core-
SVP model. Also focusing on the core-SVP model, a first version of our paper
was submitted to Eurocrypt 2021 (with deadline on Oct 8th, 2020). Similar
to [35], the work [21] studies exhaustive guessing in the dual lattice attacks.
We additionally propose a novel FFT distinuisher to further reduce the solving
complexity. Our second main contribution, i.e., a new two-step lattice reduction
algorithm allowing us to exploit the recent advances in lattice algorithms, and the
corresponding complexity results in the classical RAM model are not discussed
in [35,21].

1.3 Organization

The remaining of the paper is organized as follows. We first introduce some
preliminaries in Section 2, and present the newly proposed FFT distinguisher
in Section 3. We then apply this new distinguisher to improve the general dual
lattice-reduction approach in Section 4, which is followed by its applications
to CRYSTALS in the core-SVP model in Section 5. We then present the new
two-step reduction idea and the refined classic attacks beyond the core-SVP
estimation in Section 6. Its application to FHE parameters is shown in Section 7.
The theory is validated by experimental verification in Section 8. We lastly
conclude the paper in Section 9.

2 Preliminaries

We denote vectors in lower-case bold, e.g. a, and matrices in upper-case bold,
e.g. A. All vectors are column vectors by default. We denote aT (or AT ) its
transpose for a vector a (or matrix A). The matrix In is an identity matrix
with dimension n× n. The inner product of two vectors a and b with the same
dimension is denoted by 〈a,b〉. For a vector a with dimension n, we denote its
i-th entry as ai, for 0 ≤ i ≤ n− 1, and define its norm as

‖a‖ =

√√√√n−1∑
i=0

a2i .

For a complex number x ∈ C, we denote Re(x) its real part. Let θq be the
q-th root of unity, i.e., the complex number exp(2πi0/q), where i20 = −1. We
also write it as θ if there is no ambiguity.
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2.1 LWE

The Learning with Errors problem is defined as follows.

Definition 1 ([51]). Let n be a positive integer, q a prime, and let X be an error
distribution. Fix s to be a secret vector in Znq , chosen according to a uniform
distribution. Denote by Ls,X the probability distribution on Znq × Zq obtained by
choosing a ∈ Znq uniformly at random, choosing an error e ∈ Zq according to X
and returning

(a, z) = (a, 〈a, s〉+ e)

in Znq × Zq. The (search) LWE problem is to find the secret vector s given a
fixed number of samples from Ls,X .

The definition above gives the search LWE problem, and one could similarly
define the decision LWE problem to distinguish between samples drawn from
Ls,X and a uniform distribution on Znq × Zq.

The error distribution X is usually selected as the discrete Gaussian distri-
bution on Zq with mean 0 and variance σ2, obtained by assigning a probability
proportional to exp(−x

2

2σ2 ) to each x ∈ Z and then accumulating the probabil-
ity mass function over all integers in each residue class modulo q. The error
distribution is also denoted as Xσ. One useful heuristic assumption is that the
sum of two independent random variables X1 and X2 drawn from Xσ1 and Xσ2

respectively is drawn form X√
σ2
1+σ

2
2

.
It is proven in [25] that LWE with small secrets remains hard, so many

cryptosystems base their security on these variants such as LWE with binary or
ternary secrets.

2.2 Dual Lattice Attacks

A lattice L is a discrete subgroup of Rd. Let the columns b0, . . . ,bd−1 be linearly
independent, and then it is a basis of the lattice {

∑
vibi|vi ∈ Z}. In lattices, a

central hard problem is to find a non-zero shortest vector in this lattice, which
is called the shortest vector problem (SVP).

In the dual attack, the aim is to find a short vector (w,v) in the dual lattice
L′ = {(x,y) ∈ Zm × Zn : ATx = y mod q}. Thus, given a sequence of LWE
instances (A, b) s.t., b = As+ e, we have that

wT · b = wT · (A I)

(
s
e

)
= (vT wT )

(
s
e

)
,

which is small and can be distinguished from the uniform. Therefore, the problem
is transformed to finding a short column vector in the lattice

B =

(
Im 0
AT qIn

)
The efficiency of the dual lattice attacks highly depends on how short the

found vectors are. We have the following lemma to measure the advantage of the
distinguishing problem.
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Lemma 1 ([44]). Given an LWE instance characterized by n, q, σ and a vector
h with length l such that hTA = 0 (mod q), the advantage of distinguishing
〈h, e〉 from random is close to

ε = exp
(
−2π2τ2

)
,

where τ = lσ
q .

It is also known from statistical theory that if O
(
1/ε2

)
independent such samples

are available, the success probability for the distinguisher is close to 1.

2.3 Cost Model for BKZ

To achieve high-quality short vectors, we normally use a class of lattice reduction
algorithms called BKZ, an iterative, block-wise algorithm for basis reduction.
This algorithm solves an SVP problem with a small dimension β and is denoted
BKZβ,d, where d is the dimension of the lattice. The time complexity of BKZβ,d
is denote T (BKZβ,d).

For a lattice L, BKZβ,d produces vectors with length

‖v‖ = δd0 · vol(L)
1
d , (1)

where δ0 ≈
(

β
2πe (πβ)

1
β

) 1
2(β−1)

(see [30] for details), and vol(L) is defined as the
volume of the lattice L.

There are several models to estimate the time complexity of BKZβ,d, which
are generally classified into two categories depending on the method to imple-
ment the SVP solver in the BKZ reduction. Here we mainly focus on the sieving
approach, the most relevant one for choosing security parameters ([34,12]).

The first model we discuss is the core-SVP model, which was proposed in [17]
and is then used in many candidates in the NIST Post-Quantum Cryptography
Standardization Project, such as NewHope [50], CRYSTALS-Kyber [52], and
CRYSTALS-Dilithium [46]. In the core-SVP model, the classic complexity of
BKZ reduction T (BKZβ,d) can be estimated as 20.292β and the quantum com-
plexity is 20.265β . This simplified model is definitely useful and allows us to
compare the security strength of different lattice-based candidates. However,
this model is far from being accurate when considering the security requirement
from NIST, which is defined by the gate complexity.

Another model is the gate-count metric, i.e., the cost in the Random Access
Machine (RAM) model, which has been studied for the primal lattice attack in
the round-3 versions of CRYSTALS-Kyber [52] and CRYSTALS-Dilithium [46].
They use the results from [14] as a black-box to estimate how many gates are re-
quired in one operation called ‘AllPairSearch’. The overall sieving cost can then be
estimated according to the current understanding on sieving algorithms [34,12].
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2.4 The Classic FFT Distinguisher

We now assume for an LWE problem with reduced dimension t, i.e., we have a
list of m LWE samples (aj , bj), where

bj =

t−1∑
i=0

ai,jsi + ej mod q,

for j = 1..m.
The normal approach to use the FFT is to classify the samples by aj and

compute
f(aj) =

∑
j0∈I(aj)

θbj0 , (2)

where I(aj) is the index set such that aj0 = aj for j0 ∈ I(aj).
Then we compute

F (s̃) =
∑
aj

f(aj)θ
−

∑t−1
i=0 ai,j s̃i , (3)

for all possible s̃ by using the Fast Fourier Transformation (FFT), and return
the guessed secret to be s0 s.t.,

s0 = argmax
s̃

Re(F (s̃)), (4)

where Re(F (s̃)) is the real part of F (s̃).
For the right guess, the computed F (s) is exactly

m∑
j=1

θej ,

having a large real part since ej is sampled from a discrete gaussian distribution.
For a wrong guess, the value

Re(
m∑
j=1

θe
′
j )→ 0,

since e′j is uniformly distributed over Zq.
Note that the FFT distinguisher has performance close to the optimal dis-

tinguisher (see [39]). With the distinguishing advantage ε defined in Lemma 1,
we could bound the required number of samples by

O
(
ln(qt)

ε2

)
,

since we need to statistically determine the secret from qt hypotheses. Similar
formulas without the asymptotic notation can be obtained via Hoeffding’s bound
in [33].
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The complexity for the Fast Fourier Transform with size t isO (qt · t · log2(q)).
This complexity quickly becomes prohibitively high since in lattice-based schemes
when increasing the FFT size, as the parameter q is typically chosen as a large
integer. Thus, the length of the partial secret vector that can be guessed via the
FFT is rather small, highly limiting the gain of applying the FFT technique.

3 A New FFT Distinguisher

In this section, we describe a new distinguisher with the FFT technique, where
the underlying idea is similar to that of Bleichenbacher’s attacks on ECDSA [23].
We pick an integer γ much smaller than q and attempt to recover one secret entry
(si mod γ) rather than the exact value of si. Thus, the complexity of the FFT
with dimension t is reduced from O (qt · t · log2(q)) to O (γt · t · log2(γ)), thereby
allowing us to reach a much larger dimension when a certain computational
resource is assumed.

If γ is chosen to be 2, then the employed Fast Fourier Transform is actually a
Fast Walsh-Hadamard Transform over the complex field. For simplicity, we use
the term Fast Fourier Transform (FFT) throughout the paper.

3.1 New Transformation Technique

Let γ be a small element in the ring Zq such that γ · ρ = ±1 mod q, for some
element ρ. So γ−1 is well-defined, i.e., being ρ or −ρ. To be more specific, the
field size q is typically chosen as a prime or a power-of-two integer. When q is a
prime, we could pick γ = 2; for the latter case we pick γ = 3. Now we take the
q prime case as an instance to show how this distinguisher works.

We can rewrite the LWE samples as (âj , bj) such that,

bj =

t−1∑
i=0

âi,j ŝi + ej mod q,

where ŝ = γ−1s mod q and âj = γaj mod q. Note that we assume γ = 2.
We then write the equations in the real set R, i.e.,

bj =

t−1∑
i=0

âi,j ŝi + ej + lj · q,

for each LWE sample. We could then apply some reduction techniques such as
lattice reduction algorithms to make âi,j small. We have that

bj =

t−1∑
i=0

âi,j(q + 1)/2 · si + ej + lj · q

=

t−1∑
i=0

âi,j · q/2 · si +
t−1∑
i=0

âi,j/2 · si + ej + lj · q. (5)
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Let us compute

F (s mod 2) =

m−1∑
j=0

θbj−
∑t−1
i=0 âi,j ·q/2·si =

m−1∑
j=0

θbj · exp(−
t−1∑
i=0

âi,j · si · 2πi0/2).

Here we use the notation F (s mod 2) to define the above computation, so the
function F (·) is different from the one used in Section 2.4.

For the right guess, from Equation (5), the computed value is

m−1∑
j=0

θ
∑t−1
i=0 âi,j/2·si+ej =

m−1∑
j=0

exp

(
2πi0/q · (

1

2
·
t−1∑
i=0

âi,j · si + ej)

)
, (6)

which is biased if âi,j is small. The reason is that the standard deviations of the
random variables si and ej are small. Otherwise, the computed value is close to 0
(see Figure 1 for a graphical illustration). Note that the noise for the t positions
(for 0 ≤ i ≤ t − 1) involved in the Fast Fourier Transform, i.e.

∑t−1
i=0 âi,j · si is

reduced (see Equation (6)).
We next show a smart approach to perform the computation for all possible

guesses using the FFT technique. Since (−1)2 = 1, we could further classify θbj
into 2t groups according to the vector c = (âj (mod 2)) and define

f(c) =
∑

j0∈I(c)

θbj0 .

Here I(c) is the index set such that âj0 (mod 2) is equal to c for j0 ∈ I(c).
We then have the following equation

F (s mod 2) =
∑
c

f(c)(−1)−〈c,s〉. (7)

We exhaustively guess all the binary vector s̃ ∈ Zt2 and compute the correspond-
ing F (s̃). This procedure can be done in O(m+ t · 2t) via using the Fast Fourier
Transform. The guessed vector is a binary vector s0 ∈ Zt2 s.t.,

s0 = argmax
s̃∈Zt2

Re(F (s̃)), (8)

where Re(F (s̃)) is the real part of F (s̃). With sufficient samples, the guessed
vector should be (s mod 2).

Up to this point, the attacker has recovered t bits of the secret information,
which is the most difficult part. If we write s = 2 · s′ + s0 and recover the value
of s0, then the norm of s′ is smaller by a factor of almost 2 compared to s. Let
bj = 〈aj , s〉+ ej mod q, and we rewrite it as

bj − 〈aj , s0〉 = 〈2aj , s′〉+ ej mod q.

Thus, we have a new LWE problem with secret s′. Since ‖s′‖ is much smaller if
we recover a sufficient number of bits, which is true for the parameters discussed
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later, the cost of recovering the remaining secret by iteratively calling the dual
approach is negligible.

The gain. We present a simple example to discuss the pros and cons when
comparing the new FFT distinguisher with the classic FFT distinguisher. Let
q be a prime of size about 212 and assume that the complexity constraint only
allows to perform the classic FFT distinguisher with dimension 2. Thus, two po-
sitions are zeroed-out by this distinguisher. Applying the new FFT distinguisher
with γ = 2, we could instead reduce 24 positions, but a certain amount of noise
remains in each reduced position.

Another small (or practical) gain is that the new FFT distinguisher allows
more flexible parameter selections to meet the time complexity constraint. For
the classical FFT distinguisher, the complexity increases by a factor of about q
if the FFT size is increased by one, which is much larger than the factor, i.e., γ,
increased for the new FFT distinguisher.

3.2 The Distinguishing Property

We show the visual explanation of the distinguishing property in Figure 1. The
FFT distinguisher computes the value

Re(

m∑
j=1

θ
Xj
2q ),

where Xj = Yj + Ej and Ej is drawn from a discrete Gaussian X2σ over Z2q.
The random variable Yj = λ · q is 0 for the right guess. For the wrong guess, the
variable λ is uniformly distributed over Z2 and the FFT distinguisher computes
Re(

∑m
j=1 θ

Xj
2q ) → 0, due to the symmetry. We verified numerically that this is

true for the relevant parameters in this paper since âi,j drawn from a reason-
ably small discrete Gaussian still ensures that âi,j (mod 2) is very close to the
uniform.

Both the new distinguisher and the classic FFT distinguisher are estimating
1
m

∑m
j=1 cos(θ

Xj ), with E[cos(θXj )] having the same value away from 0 for the
right guess and E[cos(θXj )] = 0 for the wrong guess. Hoeffding’s bound could
then be applied, implying that the data complexity of the new distinguisher can
be estimated in a similar manner to the classic FFT distinguisher.

4 Improving the Dual Lattice-Reduction Approach

The new distinguisher is now put into a framework of a dual attack to present a
full LWE solving algorithm. The general steps of the new algorithm are described
in Algorithm 1.
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(a) The right guess case.

0q

(b) The wrong guess case.

Fig. 1: Graphical representation of the new distinguishing property (γ = 2).

Algorithm 1 New dual algorithm for solving LWE.
Input: The m LWE samples.
Output: A partial secret vector.
1: Map the entries in the matrix A as described in Equation (9).
2: Find sufficiently many short vectors in the lattice L via lattice reductions, where
L is the lattice formed in Equation (10).

3: Guess the last t1 positions of s exhaustively.
4: Use the new FFT procedure to guess the last t unknown entries in s mod γ.

Assume that the secret variables are distributed as a discrete gaussian dis-
tribution with standard deviation σ and the noise variables is distributed as a
discrete gaussian distribution with standard deviation c · σ. The general idea is
that we assume for ta = t + t1 positions to be determined partially or fully in
one run of the algorithm. Once the secret is partially determined, the problem
of recovering the remaining positions of the secret is of much lower complexity
and hence this part is discarded in the analysis 1.

We exhaustively guess the last t1 positions in the secret. This may become
beneficial if e.g. the secret variables take values in a very small alphabet. We
write

A =
(
A0 Â1 A2

)
,

where Â1 is an m × t matrix, and A2 an m × t1 matrix, respectively. Here A0

is the matrix that corresponds to the remaining positions that are not directly
affected by our procedure.

We perform the transformation and obtain

A1 = γÂ1 mod q, (9)

1 For all parameter choices used in this paper (where t1 and t are somewhat large),
the statement is true as knowledge of t1 entries and t bits then reduces the difficulty
of the remaining problem considerably. For example, considering the parameters for
solving Kyber768 in the classical RAM model (see Table 5), the cost of solving the
remaining problem can be bounded by 2188, which is negligible compared to the
main cost of 2205.
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so we have a new matrix of
(
A0 A1 A2

)
. The contribution from the t1 positions

that are exhaustively guessed, corresponding to the A2, is just computed and
subtracted from b and can thus be removed.

According to the analysis in the previous section, if we use the FFT to guess
the t values that are secret si (mod γ), then the noise from these t positions are
reduced by a factor of γ. We can thus search for a short vector (w,v0,v1) in the
lattice L constructed as

{(cx,y0,y1/γ) ∈ cZm × Zn−ta × 1

γ
Zt : (A0 A1)

Tx =

(
y0

y1

)
mod q} (10)

to balance the noise from each position. The lattice has dimension d = m+n−t1
and volume cm · q

n−t1

γt with high probability. This scaling trick is similar to [19].
If we compute (w/c)T ·b, then the final noise after partial guessing and FFT

is formed as

e = (w/c)
T
(A0 A1)

(
s0
1
γ s1

)
+ 〈w/c, e〉 = 〈w/c, e〉+ 〈v0, s0〉+ 〈γ · v1, s1〉 ·

1

γ
.

Assume that the norm of the short vector (w,v0,v1) is l. The noise size is
estimated as σ · l, since the standard deviation of each entry in e (s) is cσ (σ).

For a BKZ reduction BKZβ,d, the shortest vector produced is expected to be

of size l = δd0 · (
cm·qn−t1

γt )
1
d , where δ0 ≈

(
β

2πe (πβ)
1
β

) 1
2(β−1)

. For the decision-LWE
problem, the advantage is estimated as

ε = exp(−2π2τ2),

where τ = σ·l
q .

Note that this is a general setting and for the schemes studied in this paper,
i.e. CRYSTALS-Kyber and CRYSTALS-Dilithium, the constant c is always set
to be 1.

4.1 Complexity Analysis

We present the complexity analysis of the new algorithm.

Bounded secret distribution. In many lattice-based primitives, the secret
vector entries are chosen from an bounded alphabet of size B. For instance, the
value B is 3 if the secret is ternary. We also assume that a lattice reduction
algorithm could produce many (say N(β)) short vectors simultaneously with
length l = cs · δd0 · (

cm·qn−t1
γt )

1
d , where cs is a small constant. If cs = 1, we assume

that all the short vectors are as short as the shortest vector obtained from a BKZ
reduction, which is definitely optimistic. Let the required number of samples for
successful distinguishing be

N ≥ c0 · ln(γt ·Bt1)
ε2

, (11)
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where c0 is a constant factor2 chosen as 4 and the factor ln(γt ·Bt1) comes from
the fact that the FFT distinguisher finds the secret among γt ·Bt1 hypotheses. To
count the overall complexity of the new algorithm, we accumulate the complexity
of different steps.

– The first step is a mapping for a small matrix with negligible cost.
– The second step involves max(1, N

N(RED) ) lattice reduction steps to produce
sufficiently many short vectors, where N(RED) denotes the number of short
vectors produced via one lattice reduction. Thus, the complexity is T (RED) ·
max(1, N

N(RED) ), where T (RED) denotes the complexity for one reduction
procedure.

– We then guess t1 positions with Bt1 possibilities in total. For each guess,
the inner product of the guessed partial secret key and the corresponding
coefficient vector needs to be subtracted for N samples outputted from the
previous lattice reduction procedure and a large FFT transform with size t
needs to be performed. For each FFT transform, the complexity is t·γt·log2 γ.

The exhaustive guessing approach could be done using a trick of storing
intermediate values in memory. Now assuming that we need to compute b−〈a, s〉,
where s run through all the vectors of length t1 and each entry in s has B choices.
Notice that this computation needs to be done for N times since we have N short
vectors from the previous lattice reductions.

We first build a table by computing B · t1 vectors of length N with entry aisi
for 0 ≤ i ≤ t1 − 1 and si runs through all B choices. The cost B · t1 ·N is much
smaller than Bt1 · N for our targeted parameters; we, therefore, omit this cost
in the complexity formula.

We could then enumerate all the possible s and build an enumeration tree of
depth t1. The starting point is an all-zero vector and the computation is trivial.
The output b of the all-zero guess of s is placed in a leaf node and all the nodes
in the path from the root to this all-zero leaf store the same vector b of length
N . Afterwards, the computation of a new guess is only to add the vector stored
in the parent node and a vector from a look-up table, which costs roughly N
operations. Note that it is unnecessary to store all the enumeration tree, since
only the vector in its parent node is needed to compute the vector in the new
node. The memory cost of this enumeration is at most O(t1 ·N).

This technique is a general method used in different scenarios such as Infor-
mation Set Decoding. As the complexity of the exhaustive guessing procedure
can be bounded by the size of the guessing tree, the overall complexity is then
estimated as

C = T (RED) ·max(1,
N

N(RED)
) +Bt1 · (N + t · γt · log2 γ). (12)

2 For solving the Learning Parity with Noise (LPN) problem, this constant is chosen
to be 4, which is verified in [37]. We adopt this setting and verify it via experiments
in Sect. 8. Theoretical results [33,35] from Hoeffding’s inequality bounds this value
by roughly 8 multiplying some other terms related to the success probability.

15



Another optimization trick. One general optimization trick is to guess a
fixed number of most probable choices in the alphabet and take into account the
probability P0 that the partial secret is one of the guessed vectors. Thus, in such
an approach the overall complexity can be estimated as C

P0
.

In lattice research, we usually pick the secret pattern with bounded Euclidean
distance. Now assuming the number of guessed patterns is N(guess), we have
the following theorem to bound the complexity of the new algorithm.

Theorem 1. Let n, q, σ, c be the parameters for the LWE problem and m be the
number of LWE samples used. Let t1 be the guessing positions and t be the FFT
size. Let the constants c0, cs and γ be as defined before. Assume that the lattice
reduction algorithms include BKZ reductions BKZβ,d to produce a reduced basis
with good quality and one reduction procedure can produce N(RED) short vectors

with norm l = cs ·δd0 ·(
cm·qn−t1

γt )
1
d , d = m+n−t1 and δ0 ≈

(
β

2πe (πβ)
1
β

) 1
2(β−1)

. Let
T (RED) denote the complexity for one reduction procedure and N the required
number of short vectors for the distinguisher. Let N(guess) be the number of
guessed patterns in the exhaustively guessing step.

The time complexity of the new algorithm can be estimated as C
P0
, where P0

is the probability that the partial secret is one of the guessed vector and,

C = T (RED) ·max(1,
N

N(RED)
) +N(guess) · (N + t · γt · log2 γ), (13)

supposing that

N ≥ c0 · ln(γt ·N(guess))

ε2
,

where ε = exp(−2π2τ2) and τ = σ·l
q .

Remarks. We describe a general formula for estimating the complexity of the
new dual attack in Theorem 1. We mainly discuss two types of cost models in
this paper, i.e., the core-SVP model and the classical RAM model (also called
the gate-count model in the official documents of CRYSTALS). In different mod-
els, many functions, such as T (RED), N(RED), and l, need to be specified. For
instance, a typical assumption in the core-SVP model is that a BKZ procedure
BKZβ,d could produce 20.2075β short vectors that are as short as the shortest one.
In the RAM model, we use more realistic settings where T (RED) and N(RED)
are studied in [14], and the produced short vectors are larger by a factor of√
4/3 than the shortest one. Note that the latter assumption is suggested by

theoretical analysis in [48], and is extensively verified in recent works [34,12,15].

5 Application to CRYSTALS

In this section we discuss the application of the algorithm to two of the seven fi-
nalists, i.e., CRYSTALS-Kyber [52] and CRYSTALS-Dilithium [46], in the NIST
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Post-Quantum Cryptography Standardization Project, under the core-SVP es-
timation model. In the core-SVP model, the lattice reduction procedure is one
BKZ reduction, denoted BKZβ,d, with time complexity 20.292β for a classic com-
puter and 20.265β for a quantum computer. Such a reduction step is supposed
to output 20.2075β short vectors with size as short as the shortest one. Thus, in
this model T (RED) is 20.292β for a classic computer and is 20.265β for a quantum
computer, N(RED) = 20.2075β , and l = cs · δd0 · (

cm·qn−t1
γt )

1
d with cs = 1.

These two cryptosystems are both from the “Cryptographic Suite for Alge-
braic Lattices” (CRYSTALS) [1], thus sharing similar designs. We fix γ to be
2 since in CRYSTALS the parameter q is always selected as an odd prime. We
also know c = 1 since the secret distributions are the same as the noise ones.

The security of Kyber and Dilithium is related to solving LWE problems
with different parameters. We numerically investigate the concrete complexity
for solving the transformed LWE problems in the core-SVP model and show the
estimation in Table 2 and 4.

Kyber512 Kyber768 Kyber1024

Claimed security level NIST-1 NIST-3 NIST-5
n 512 768 1024
q 3329 3329 3329
η 3 2 2
Classical core-SVP
Claim [52] 118 182 256
Sect. 5 115 174 243
BKZ block-size β 394 595 829
Guessing size t1 10 23 32
FFT size t 75 113 163
Quantum core-SVP
Claim [52] 107 165 232
Sect. 5 105 160 223
BKZ block-size β 397 602 840
Guessing size t1 7 15 21
FFT size t 72 117 163

Table 2: The complexity estimation on the security parameters of CRYSTALS-
Kyber in the core-SVP model. Here n is the dimension when transforming the
key-recovery problem to an LWE problem and q is the alphabetic size. Cost is
given in log2 of operations. Here γ = 2.

Kyber. CRYSTALS-Kyber [52] is an IND-CCA2-secure KEM in the finalists
of the NIST Post-Quantum Cryptography Standardization Project. We describe
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the detailed parameter sets of Kyber in Table 2. The scheme fixes the alphabetic
size to 3329. In the round-3 specification, each secret/noise entry is sampled from
a centered binomial distribution Bη, where Bη is implemented as

1. Sample (a1, . . . , aη, b1, . . . , bη)←$ {0, 1}2η;
2. Output

∑η
i=1(ai − bi).

For Kyber768 and Kyber1024, the secret and noise distributions are set to
be B2, while the distributions are B3 for Kyber512. The distribution of B2 is
shown in Table 3.

0 ±1 ±2

Probabilities 3
8

1
4

1
16

Table 3: The distribution of B2.

We could have an efficient approach to guess a vector of dimension t1 with
entries sampled from B2 for Kyber768 and Kyber1024. For such a vector, we
numerically compute the distribution of the norm of the vector. We pick a bound
R to ensure that the probability that the norm of the vector is smaller than R
is larger than P0. In our estimation, we fix P0 to be 0.9 to reduce the cost of
searching for the optimal parameter. We could then count N(guess), the number
of patterns that the norm is no larger than R. This optimization trick could offer
a small gain of less than 1 bit for the targeted parameter sets.

We see from Table 2 that our new attack could have a gain in the core-SVP
model as large as 13 bits classically and 9 bits with quantum computers, for
Kyber1024. The gain is also significant for Kyber768.

Dilithium. CRYSTALS-Dilithium [46] is an EUF-CMA-secure digital signature
algorithm in the finalists of the NIST Post-Quantum Cryptography Standardiza-
tion Project. It has a large alphabetic size q = 8380417 and a larger dimension
(than Kyber) for the same security level. For Dilithium-2 and Dilithium-5, the
secret/noise distributions are set to be S2, while they are S4 for Dilithium-3.
Here Sη is the uniform distribution over integers in [−η, η]. Under the core-
SVP model, we describe in detail the attack complexity on parameter settings of
Dilithium in Table 4. This table shows that we could improve the state-of-the-art
attacks for all the three parameter sets, though the gain is smaller than that for
Kyber.

6 Beyond Core-SVP Estimation

In the previous section, we have shown the improvement from the new dual
attacks in the core-SVP model. However, it is unclear to compare these numbers
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Dilithium-2 Dilithium-3 Dilithium-5

Claimed security level NIST-2 NIST-3 NIST-5
n 1024 1280 1792
q 8380417 8380417 8380417
η 2 4 2
Classical core-SVP
Claim [46] 123 182 252
Sect. 5 122 179 246
BKZ block-size β 417 613 842
Guessing size t1 13 15 29
FFT size t 75 116 163
Quantum core-SVP
Claim [46] 112 165 229
Sect. 5 111 163 225
BKZ block-size β 419 616 848
Guessing size t1 9 10 19
FFT size t 76 116 164

Table 4: The complexity of the new attack on the security parameters of
CRYSTALS-Dilithium in the core-SVP model. The value n is the dimension
of the transformed LWE problem, q the alphabetic size and η the parameter in
the noise generation of Sη. Cost is given in log2 of operations. Here γ = 2.

with the security requirements from NIST. In the official documents of round-3
Kyber and Dilithium, the designers also presented security numbers in the gate-
count metric. They, however, excluded the analysis against dual attacks since “..
First, most of those vectors are larger by a factor

√
4/3, secondly the trick of

exploiting all those vectors is not compatible with the ’dimension for free’ trick
of [34]..” (cited from [46]).

We in this section investigate the complexity of our new dual attacks in the
gate-count metric and show that dual attacks could be more efficient even if
most of short vectors obtained are larger by a factor

√
4/3. The novel idea is

rather simple – we propose a new two-step lattice reduction algorithm where
the first and second steps exploit the “dimension for free” (d4f) gain and the
“many short vectors” (msv) gain, respectively. Also, a BKZ procedure typically
includes calling an SVP oracle for many times. Thus, in the second step we could
perform a sieving algorithm with a larger dimension to balance the costs of the
two steps. From this perspective, we exploit the d4f trick twice and also produce
an exponential number of short vectors.

6.1 A New Lattice Reduction Strategy

We describe the new two-step lattice reduction algorithm. The framework is
shown in Algorithm 2. The first step is just a BKZ reduction where the d4f
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Algorithm 2 Two-step Lattice Reduction
Input: A lattice.
Output: A list of short vectors.
1: Do BKZ reductions with size β. Then we obtain a reduced basis with a short vector

b0 as the first vector in the basis.
2: For the lattice L′ generated by the first β0 vectors in the reduced basis, we perform

a sieving step and get a list of N(β0) short vectors with size no larger than
√

4/3 ·
λ1(L′), where λ1(L′) is the shortest vector in the lattice L′.

gain could be exploited, meaning that for a BKZ reduction BKZβ,d, the actual
costs correspond to a smaller β′. We use this step to improve the quality of the
reduced basis.

Exploiting the d4f gain. It is observed in [34] that the SVP in dimension β
could be solved using a sieve in dimension β′ = β−d4f , where d4f = Θ(β/ log β).
Actually, this d4f gain comes from the fact that one sieving procedure could
produce many short vectors. In [34], an “optimistic” estimation for d4f is given
as

d4f =
β log(4/3)

log(β/(2πe))
. (14)

This estimation is asymptotic and denoted by the Asymptotic Model. However, it
is shown in [12] that the G6K sieve framework can achieve a larger dimension for
free via a technique called “on the fly” lifting. By extrapolating from experimental
data, they set d4f as

d4f = 11.46 + 0.0757 · β. (15)

We denote the latter extrapolated estimation the G6K Model.

Exploiting the msv gain. The second step is just one sieving procedure on
the lattice L′ generated by the first β0 vectors in the reduced basis outputted
by the previous step. We could then get a list of N(β0) short vectors with size
no larger than

√
4/3 · λ1(L′), where λ1(L′) is the shortest vector in the lattice

L′. One important problem is thus to estimate the value of λ1(L′).
As we already know a short vector b0 in the lattice L′, we could use ‖b0‖

to upper-bound the value of λ1(L′). One could also use Gaussian Heuristics to
estimate the value of λ1(L′). Note that the two approaches lead to quite close
complexity numbers (see Section 6.3 for details). The number of short vectors
produced is denoted N(β0), where N(β0) = 1/Caps(β0, π/3) and Caps(β0, π/3) is
the probability that a vector randomly drawn from the unit sphere of dimension
(β0 − 1) has angle at most π/3 with some fixed vector. The number N(β0) can
be concretely estimated from the source code in the appendix of [14].
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6.2 Complexity Analysis

We analyze the complexity of the algorithm in the gate-metric count model.
Let the lattice dimension be d = m+ n− t1. Theorem 1 could also apply since
the structure of the dual algorithm is unchanged, but the terms T (RED) and
N(RED) and the length of the short vectors need to be updated.

We use a similar approach to that in round-3 Kyber [52] and Dilithium [46]
for analyzing the cost of sieving and BKZ in the gate-metric count. To be more
specific, we employ the analysis in [14] of the gate count of a ‘AllPairSearch’
operation for different sieving dimensions. We build a table with table entry
GT (β) storing this cost in gate count metric for dimension β.

Also, similar to [52], we assume that the ‘AllPairSearch’ operation needs to
be called only once using progressive sieving [43,34], and define the progres-
sivity overhead cpo = 1/(1 − 2−0.292) = 5.46, i.e., the limit of ratio between∑
i≤b 2

0.292i+o(i) and 20.292b+o(b) as b grows. We estimate T (RED) as follows.

– For the first BKZ size β, we compute the sieving dimension β′ = β − d4f
and could check the GT table to have the complexity GT (β′). Similar to the
analysis in [52], the complexity for BKZ is (d− β)c2poGT (β′).

– For the second step of the reduction, as the basis has been well-reduced
by the first BKZ reduction and the d4f gain is no longer achieved, we do
progressive sieving and the sieving complexity is estimated as cpo · GT (β0)
for a sieving dimension β0. So we set (d−β)cpo ·GT (β′) ≈ GT (β0) to balance
the cost, and produce N(β0) short vectors. We could achieve a slightly larger
dimension of β0 than β′. Also, the term N(RED) is equal to N(β0), estimated
with the concrete analysis from [14].

Thus, one new two-step reduction algorithm will cost

T (RED) = (d− β)c2po ·GT (β′) + cpo ·GT (β0).

The short vectors are as short as
√

4/3 · λ1(L′), where λ1(L′) can be estimated
using the Gaussian Heuristic or be upper-bounded by

‖b0‖ = δd0 · (
cm · qn−t1

γt
)

1
d .

We have δ0 ≈
(

β
2πe (πβ)

1
β

) 1
2(β−1)

. For Kyber and Dilithium, the constant c is
always 1 and γ is 2 since the secret and noise distributions are the same and q
is a prime.

When analyzing the primal attacks in the official documents of CRYSTALS,
the designers use BKZ simulators to replace the simple geometric-series assump-
tion, mainly due to its inaccuracy caused by the “tail” phenomenon. The situation
is different in our dual lattice attack where the “head” phenomenon of BKZ re-
duction is the most important. Bai et al. in [20] stated that “Our simulator, which
accurately predicts the head phenomenon, suggests that the head phenomenon
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vanishes when the block-size becomes large .. Quantitatively, the phenomenon
has almost fully disappeared for β ≈ 200”.

The focus of the paper is to assess the strength of the security parameters
proposed in various cryptographic primitives with the BKZ block-size β � 200.
Thus, the geometric-series assumption is accurate, and we stick with it mainly
due to its simplicity. It could be more accurate to instead use BKZ simulators
when discussing the complexity of solving smaller LWE instances (with the BKZ
block-size β � 200).

Kyber512 Kyber768 Kyber1024

Claimed security level NIST-1 NIST-3 NIST-5
n 512 768 1024
q 3329 3329 3329
η 3 2 2
Claim [52] 151.5 215.1 287.3
Sect. 6
Asymptotic Model 148.3 207.3 275.4
BKZ block-size β 398 604 848
BKZ sieving dimension β′ = β − d4f 361 555 785
Second sieving dimension β0 400 596 827
Guessing size t1 20 36 45
FFT size t 78 118 166
G6K Model [12] 147.1 205.2 272.3
BKZ block-size β 399 606 850
BKZ sieving dimension β′ = β − d4f 357 548 774
Second sieving dimension β0 396 589 816
Guessing size t1 20 36 45
FFT size t 77 116 164
Required by NIST 143 207 272

Table 5: The gate complexity comparison on the security parameters of
CRYSTALS-Kyber. Here n is the dimension when transforming the key-recovery
problem to an LWE problem and q is the alphabetic size. Cost is given in log2
of operations. Here γ = 2.

6.3 Results

We show in Table 5 and 6 the estimated complexity in the classical RAM model
(also called gate-count metric in the official documents of CRYSTALS) for the
security parameter sets of round-3 Kyber and Dilithium. The gain compared
with the primal lattice attack is generally significant, ranging from 4 bits to 15
bits in the G6K Model (and from 3 bits to 12 bits in the Asymptotic Model),
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Dilithium-2 Dilithium-3 Dilithium-5

Claimed security level NIST-2 NIST-3 NIST-5
n 1024 1280 1792
q 8380417 8380417 8380417
η 2 4 2
Claim [46] 158.6 216.7 285.4
Sect. 6
Asymptotic Model 155.4 212.9 278.1
BKZ block-size β 418 620 853
BKZ sieving dimension β′ = β − d4f 380 570 790
Second sieving dimension β0 424 616 837
Guessing size t1 25 24 41
FFT size t 81 126 167
G6K Model [12] 153.8 210.4 274.4
BKZ block-size β 418 621 854
BKZ sieving dimension β′ = β − d4f 374 562 774
Second sieving dimension β0 418 608 824
Guessing size t1 26 24 41
FFT size t 80 120 165
Required by NIST 146 207 272

Table 6: The gate complexity of the new attack on the security parameters of
round-3 CRYSTALS-Dilithium. The value n is the dimension of the transformed
LWE problem, q the alphabetic size and η the parameter in the noise generation
of Sη. Cost is given in log2 of operations. Here γ = 2.

and the gain in the gate-count metric is larger than that in the core-SVP model,
since in the prior model we could have a larger guessing size and also a larger
FFT size.

These two tables show that some parameter sets such as Kyber512, Dilithium-
2 and Dilithium-3 have a rather limited security margin, some such as Kyber1024
and Dilithium-5 are really on the edge, and the parameter set Kyber768 fails3
to achieve the security requirement from NIST. In these tables, we use ‖b0‖
to upper-bound the value of λ1(L′). We also employ the Gaussian Heuristics
to estimate λ1(L′) and obtain similar complexity numbers. For instance, the
complexity of solving Kyber768 increases from 205 bits to 206 bits, but is still
below its claimed security level.

3 One may argue that the extrapolated G6K Model could be optimistic when the
dimension is large. As the log2 of the gate count in the Asymptotic Model is so close
to the NIST requirement (207.3 v.s. 207) for Kyber768, however, a small number of
extra dimensions for free could make the scheme insufficient for its claimed security
level.
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Security Level n log2(q) uSVP dec dual New Dual
(from [7]) (RAM model)

128 1024 27 131.6 160.2 138.7 131.6
192 1024 19 193.0 259.5 207.7 187.0
256 1024 14 265.6 406.4 293.8 251.1

Table 7: The complexity comparison for the security parameters in the Homo-
morphic Encryption Standardization draft aiming for classic security. Here n is
the dimension when transforming the key-recovery problem to an LWE problem
and q is the alphabetic size. Cost is given in log2 of operations. The secret dis-
tribution is a uniform distribution from {−1, 0, 1}. The columns of uSVP, dec,
and dual represent the complexity of the methods of uSVP, decoding, and dual,
respectively, stated in the official documents of the Homomorphic Encryption
Standard [7]. Here we pick γ = 3.

This new method can be partially understood as a time-memory trade-off
trick since we use a sieving procedure with larger dimension (i.e, β0) to produce
more short vectors. We also have some other memory costs such as the cost for
the FFT procedure. However, these costs are negligible compared with the cost
of the main sieving step.

7 Application to the Homomorphic Encryption Standard

The Homomorphic Encryption Standard [7] was initiated by several famous
researchers/research groups in this area during the Homomorphic Encryption
Standardization Workshop [3], hosted at Microsoft Research in Redmond. It
suggests security parameters at security level of 128, 192, and 256, respectively.

In the suggested parameter settings, the standard deviation of the noise vari-
able is chosen to be 3.2. The secret distribution could be uniform, the same as
noise, or the bounded size in {−1, 0, 1}. We focus on the bounded secret case
since it is the main parameter choice of many important implementations (e.g.,
the default parameters in the Microsoft SEAL [4]) that could lead to preferable
performance.

We set γ = 3, and the complexity comparison for the security parameters
aiming for classic security is shown in Table 7. We only consider the classic gate
complexity, i.e., the cost in the Random Access Machine (RAM) model and we
fix n to be 1024. The improvement factors vary for different parameter sets. For
a parameter set designed for 256-bit security, the new dual approach with the
refined lattice reduction strategy could lead to a security loss of about 5 bits.
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8 Experimental Verification

In this section we experimentally verify the theoretical complexity estimation.
The assumptions in lattice reduction algorithms, such as the d4f gain and the msv
gain, have been verified in previous research [34,12,15]. Thus, we mainly perform
experimental validation of the success rate of the new FFT distinguisher.

We have generated the samples in Zq s.t.,

bj =

t−1∑
i=0

âi,j ·
q + 1

2
· si,+ej ,

in the simulation, where each âi,j was generated from a discrete Gaussian dis-
tribution Xσ1

and ej was from another discrete Gaussian distribution Xσ2
. We

then implemented the new distinguisher to recover the secret vector of length
t. These experiments simulate the processing steps after receiving many short
vectors from the BKZ reduction algorithms. The alphabetic size q is set to be
3329, the same value as that in CRYSTALS-Kyber. For simplicity, we generated
si from a uniform distribution in Z2. Note that, for parameter sets in public key
encryption primitives, the secret si is usually set to be small and the variables
âi,j and ej are (a sum of) entries from reduction algorithms, thus being wide.

We aim to verify in the experiments that

1. the sample complexity estimation in Equation (11) is correct;
2. and it is sufficient to choose c0 to be 4 to ensure a high success probability.

For the first purpose, we designed two types of experiments with different values
of σ1 and σ2, since different noise parts contribute to the final noise with different
weights (scales) according to our theoretical analysis. For the second purpose,
we ran experiments with sample complexity computed by Equation (11) where
c0 is set to 1, 2 and 4, respectively.

In each experiment, we chose a typical key with length t and weight t
2 and

ran the simulation test for 1000 times. The success probabilities in simulation
are shown in Table 8. The experimental data match the theoretical prediction
from Equation (11) very well. To be more specific, the success probabilities are
always 100% in our experiments when the value c0 is set to 4. We already ensure
a high success probability (of 95%) when setting c0 = 2.

In addition, we have simulated the success probability when generating a new
key in each run of the test. The secret entry si, as before, was generated from a
uniform distribution in Z2, but the weight of the secret vector was not controlled.
Thus, the error probability could be slightly higher if the weight of the secret is
high. We have only run Type-II experiments with the FFT dimension 8 and
16, respectively, and performed 10000 tests in each setting. The coefficient c0 is
set to 4, the value in the theoretical prediction. We succeeded 9979 times for
t = 8 and 9975 times for t = 16, strongly supporting our theoretical estimation.
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t c0 #(samples) #(success) #(test) success rate
log2(·)

Type-I experiments (σ1 = 700, σ2 = 1350)
8 4 16.36 1000 1000 100%

2 15.36 976 1000 97.6%
1 14.36 701 1000 70.1%

12 4 18.20 1000 1000 100%
2 17.20 990 1000 99.0%
1 16.20 741 1000 74.1%

16 4 19.87 1000 1000 100%
2 18.87 999 1000 99.9%
1 17.87 770 1000 77.0%

Type-II experiments (σ1 = 500, σ2 = 1500)
8 4 17.32 1000 1000 100%

2 16.32 956 1000 95.6%
1 15.32 677 1000 67.7%

12 4 18.55 1000 1000 100%
2 17.55 979 1000 97.9%
1 16.55 686 1000 68.6%

16 4 19.60 1000 1000 100%
2 18.60 991 1000 99.1%
1 17.60 651 1000 65.1%

Table 8: Experimental success probabilities with the novel FFT distinguisher.
Here γ = 2 and the prime field size q is 3329. The value t is the FFT dimension
and c0 is the coefficient in Equation (11). The rows with c0 = 4 correspond to
the experiments with number of samples predicted by our theory.

9 Concluding Remarks

We have presented a novel fast dual-type lattice attack for solving the LWE
problem, based on two main contributions. Firstly, we have proposed a new
efficient distinguisher using the FFT technique with a small alphabetic size.
Secondly, we have described a new two-step reduction strategy that first uses a
BKZ reduction for a high-quality lattice basis and then employs a progressive
sieving step to produce many short vectors. This new reduction framework al-
lows us to take into account the recent advances in lattice algorithms, such as the
“dimensions for free” trick and more precise gate estimations on nearest neigh-
bor search. The proposed new algorithm improves the complexity of solving the
security parameter sets in the round-3 submissions of CRYSTALS-Kyber and
CRYSTALS-Dilithium in both the core-SVP model and the gate-count metric.
This new algorithm could recover the secret key of Kyber768 with classical gate
complexity below its claimed security level under a model in [12] extrapolated
from experimental data. Also, this new algorithm could improve the best-known
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attacks on certain FHE parameters. This new dual attack has rather wide ap-
plications and could affect many lattice-based primitives.
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