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Abstract. We give an attribute-based encryption system for Turing
Machines that is provably secure assuming only the existence of identity-
based encryption (IBE) for large identity spaces. Currently, IBE is known
to be realizable from most mainstream number theoretic assumptions
that imply public key cryptography including factoring, the search Diffie-
Hellman assumption, and the Learning with Errors assumption.

Our core construction provides security against an attacker that makes
a single key query for a machine T before declaring a challenge string
w∗ that is associated with the challenge ciphertext. We build our con-
struction by leveraging a Garbled RAM construction of Gentry, Halevi,
Raykova and Wichs [33]; however, to prove security we need to introduce
a new notion of security called iterated simulation security.

We then show how to transform our core construction into one that is
secure for an a-priori bounded number q = q(λ) of key queries that can
occur either before or after the challenge ciphertext. We do this by first
showing how one can use a special type of non-committing encryption
to transform a system that is secure only if a single key is chosen before
the challenge ciphertext is declared into one where the single key can
be requested either before or after the challenge ciphertext. We give a
simple construction of this non-committing encryption from public key
encryption in the Random Oracle Model. Next, one can apply standard
combinatorial techniques to lift from single-key adaptive security to q-key
adaptive security.

1 Introduction

Attribute-based encryption (ABE) [58] provides a method for encrypting data
which allows for sharing at a much finer-grained level than standard public key
cryptography. In an ABE system one associates a ciphertext with an attribute
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string w when encrypting message m to form a ciphertext ct. A secret key (as
issued by some authority) is associated with a predicate function f . A decryption
algorithm using skf on the ciphertext will be able to return the message m if
and only if f(w) = 1.

The initial and many subsequent ABE constructions (e.g. [43, 12]) provided
functionality for when f was a boolean formula or circuit that would operate
over a fixed set of attributes. This works well for the setting when an attribute
string could say represent a record that was of a fixed form, however, would not
work as well in a setting where we want the attribute string structure to be less
rigid and of arbitrary length. Initial progress towards resolving such issue was
by Waters [60] who provided the first ABE construction for a uniform model of
computation where the attribute string w ∈ {0, 1}∗ could be an arbitrary length
string and f is a Deterministic Finite Automata (DFA). A user in such a setting
can decrypt a ciphertext whenever the DFA f accepts w.

Since then, ABE systems in uniform models of computation have been very
well studied, with subsequent works roughly falling into the following three cat-
egories grouped by the hardness assumption.

– The ABE construction of Waters [60] for DFAs was built from bilinear maps
and was collusion resistant in that it allowed for an unbounded number
of private keys to be issued, but was only selectively secure in that the
attacker was required to submit a challenge string w∗ before seeing the public
parameters of the system. Unlike constructions where the length of w is fixed
by the security parameter, there is no known way of generically moving from
selective to adaptive security using complexity leveraging and assuming sub-
exponential hardness. Subsequent works [9, 10, 1, 37, 4, 38] in the bilinear
map setting improved upon the security arguments in this setting as well as
gave “ciphertext-policy” variants of the construction.

– A second cohort of constructions [16, 44, 50, 13] arise by constructing ABE
for Turing Machines from obfuscation culminating in the work of Ananth
and Sahai [8] that achieves functional encryption for Turing Machines from
indistinguishability obfuscation with no a-priori bound on the input size
or machine description. We refer the reader to [8] for a discussion of the
tradeoffs present in prior works.

– In a third line of work, Agrawal and Singh [5] gave a construction of a single-
key secure functional encryption scheme provably secure under the Learning
with Errors (LWE) [56] assumption. They could prove security only when
the single private key was requested before the challenge ciphertext. Addi-
tionally, in their model the encryptor had to specify the maximum time t
that the Turing Machine computation is allowed to run for during decryp-
tion. The work of Gentry et al. [34] also gave a construction for single-key
secure functional encryption for RAM computation from single-key secure
functional encryption for circuits and garbled RAM, but the key generator
not only takes the RAM program as input but the input size and run-time
bound as well. Thus, the encryption algorithm could only encrypt messages
of a-priori fixed length.
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For unbounded collusions, Boyen and Li [15] gave constructions for DFAs
from the LWE assumption and Agrawal, Maitra, and Yamada [3] did this for
NFAs, but in the secret key setting. Ananth, Fan and Shi [6] give an LWE
solution for unbounded collusions in the problem of constructing ABE for
RAM Turing Machines. However, the maximum number of machine steps is
given as a parameter to the setup algorithm and will serve as a bound for
the system.

One common thread of the above works is that they all depended upon a
specific number theoretic setting. Even in the case of indistinguishability obfus-
cation, the best known construction in the recent breakthrough work [47] relies
on a careful combination of multiple specific algebraic assumptions.

Here we pursue a new direction of obtaining Attribute-Based Encryption for
uniform computation models from general assumptions. In particular, we provide
solutions that assume Identity-Based Encryption (IBE) [59, 14]. We believe IBE
is a good platform for this pursuit as it is known under most “mainstream” num-
ber theoretic assumptions that imply public key cryptography such as factoring,
search Diffie-Hellman, and Learning with Errors [14, 20, 35, 22].

Our Results In this work we show how to achieve Attribute-Based Encryption for
Turing Machines that is adaptively secure against any attacker that requests at
most q = q(λ) private keys where q can be any polynomial function determined
at system setup. Our work is logically broken into two parts.

In the first part we develop our core construction which is an ABE system
for Turing Machines secure against any poly-time attacker that requests a single
key before declaring the attribute string w∗ for a challenge ciphertext. In this
system the maximum running time t of the Turing Machine is determined by
the encryption algorithm as in [5].

Our approach leverages a garbled RAM construction due to Gentry, Halevi,
Raykova, and Wichs (GHRW) [33] which intuitively allows a sequence of t gar-
bled programs to run while maintaining a persistent database across invocations.
We combine this with an IBE system in a spirit motivated by [22, 23, 31, 27]
which allows us to securely evaluate a Turing Machine computation that deliv-
ers the message on decryption only if the machine accepts. One challenge we
encounter is that the GHRW definition of simulation security is defined as dis-
tinguishing between a real garbled RAM and a simulated one over the whole
computation. However, this notion of simulation is not fine-grained enough for
our purposes. Instead we need to introduce a notion of iterated simulation se-
curity where it is hard to distinguish whether the first i or i+ 1 programs were
simulated, and not just indistinguishability of the entire computation. Fortu-
nately, we were able to show that the existing GHRW construction satisfies this
notion of security as well. Since the GHRW Garbled RAM itself only relies on
IBE, the entire security of our construction still depends on IBE only.

The second part of our work is focused on moving from a single key system
that is limited to coming before the challenge ciphertext to a q-query system
that allows for key requests to come at arbitrary times. We first tackle the ques-
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tion of giving flexibility for when the key query is placed. To do this we use
a very relaxed form of non-committing encryption [17, 21, 48] where the non-
committing simulation property must hold when an attacker is given the secret
key of a public key encryption system. (But not the randomness for encryp-
tion and key generation as in [17].) We show that this form of non-committing
encryption is strong enough to transform our single key ABE system into one
where the key query can come before or after the challenge ciphertext. We follow
this transformation with another one to allow for q queries by applying standard
combinatorial techniques. To complete the transformation we provide a simple
construction for such a non-committing encryption scheme from public key en-
cryption in the case of bounded length messages, while for unbounded messages
we additionally rely on hash function modeled as a Random Oracle [11]. The
non-committing encryption we consider in this work is very similar to that of
receiver non-committing encryption [18].

We want to emphasize that prior to our work, all other ABE systems in
uniform computation models either relied on specific algebraic assumptions, or
powerful notions such as succinct function encryption and program obfusca-
tion. That is, unlike for non-uniform models where we have numerous generic
constructions (e.g., [57, 39, 7]) from general assumptions such as public-key
encryption, it was believed that relying on algebraic manipulation or powerful
encryption/obfuscation primitives might be necessary for handling uniform mod-
els where the attribute space is not statically fixed. Ours is the first work that
dispels this belief. Thus, we want to highlight that one of our main take-away
messages is that the central source of hardness is only full collusion resistance,
and not the underlying model of computation in functional encryption.

Organization We begin by providing a technical overview of our approach in the
next section. Since our bounded collusion secure ABE system for TM predicates
relies extensively on garbled RAM, thus we start by describing our notations
and other standard cryptographic primitives in Section 2, and recalling the defi-
nition of garbled RAM along with the our proposed iterated simulation security
definition in Section 3. In Section 4, we describe our main construction for ABE
for TMs via the usage of IBE and garbled RAM. In the full version [42], we
describe how to lift our core construction to general q-query adaptively secure
scheme.

1.1 Technical Overview

The overview is split into two parts where we first describe our core construction
from garbled RAM and identity-based encryption. This construction gives us 1-
query secure ABE scheme for TMs where the secret key query must be made
before obtaining the challenge ciphertext. In the second part, we describe how
to lift the security of any ABE scheme for TMs, which guarantees security in
this restricted 1-query key-selective setting, to provide general bounded collusion
security via a sequence of generic black-box transformations. We conclude with
some interesting open directions for further investigation.
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Core construction: 1-query key-selective ABE for TMs

As highlighted in the previous section, the aspect of ABE systems in a uniform
model of computation (such as Turing Machines in our case) that makes it quite
appealing is that it allows an encryptor to specify an a-priori unbounded length
attribute during encryption while still enabling a fixed decryption key to work on
all such varying length ciphertexts. From a mechnical perspective, this suggests
that ciphertexts for such computation models should possess a self-reducibility
feature. By this we mean that in a structural sense the ciphertext could be
broadly divided into two components — one being reusable, while other being
execution time-step dependent. Here we expect the reusable component to store
the current state of computation during decryption, and the time-step dependent
component to self-reduce, i.e. to be used piece-by-piece (with each piece anno-
tated with an execution time-step) for updating the reusable component thereby
guiding the decryption process to either the plaintext or failure depending on
the predicate.

Comparing this mechnical view with that for ABE systems in a non-uniform
model of computation, the stark difference comes up in the implementation of
the reusable component which for non-uniform models could mostly be relegated
to the predicate key instead, since each key already fixes an upper bound on
the number of such re-use operations/computation steps. This restriction is very
consequential both for the construction as well as proof purposes. Circumventing
such unbounded reusability problems under standard cryptographic assumptions
has been a difficult task so far.

Our approach is to start with the simplest goal which is of security in pres-
ence of a single key corruption where the challenge attribute as well as the
TM key queried must be selectively chosen by the attacker.4 Now we already
know that the concept of garbled circuits [62] have been tremendously useful in
building bounded collusion secure ABE systems in a non-uniform circuit model
(and bounded collusion secure functional encryption more generally) [57, 39].
A natural question is whether the same could be stated if we switch to a uni-
form computation model such as TMs since, despite the strengthening of the
computation model, the targetted encryption primitive still provides only an
all-or-nothing style guarantee.

A building block construction. First, note that plugging in TMs as the model
of computation in the mechnical picture described above, we get the reusable
ciphertext component to correspond to the tape of the TM being operated on,
while the time-step dependent component is being used to emulate a step-by-
step execution of the TM itself. Next, consider a highly simplified TM model
where the number of states as well as the size of the TM tape are a-priori
fixed polynomials, say N and L respectively. (Although this simplified model
no longer resembles our targetted TM model of computation, this will serve as

4As we later show, such a core encryption scheme with such simple and weak security
guarantees could be generically amplified to better and more general bounded collusion
security guarantees.
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a good starting point to convey the main idea which we afterwards extend to
capture the more general model.) It turns out that for such a model there is a
natural candidate ABE system from just plain public-key encryption and garbled
circuits.

Let us start by sharing our methodology for encrypting a message m under
attribute string w with time bound t.5 At a high level, the idea is to let encryptor
create a sequence of t step circuits, where each step circuit takes as input the
entire state of TM (which contains the current state, location of the tape header,
and the entire tape of the TM) and it performs one execution step (that is,
applies one transition) and its output is the entire TM state after this execution
step (that is, output state, tape header and full tape contents). Here the last
step circuit simply outputs the encrypted message m if the execution lands in
accepting state. An encryptor then garbles each such step circuit starting from
the last one (that is, t-th step circuit first), and encodes the wire labels for the
i-th garbled step circuit in the (i − 1)-th step circuit. Now each garbled circuit
must not output the wire labels in the clear, thus it instead encrypts the labels
corresponding to the TM state for next step circuit under a group of carefully
selected PKE public keys. The idea here is that during setup we sample a pair
of PKE public-secret keys for each state transition6, and a secret key for any
TM in this system consists of a sequence of PKE secret keys corresponding to
all the state transition supported by the corresponding TM.

Intuitively, a ciphertext consists of a sequence of t garbled circuits, and a
secret key consists of a polynomial-sized set of PKE secret keys such that to
decrypt a ciphertext, one evaluates each garbled circuit in a sequential order
thereby revealing the state of the TM computation after each execution step
encrypted under appropriate PKE public keys. An honest decryptor can always
recover the relevant garbled circuit wires along its path of computation, and fi-
nally recovers the message if the machine accepts within the ciphertext specified
time bound t. One could also provide security of this construction by a straight-
forward sequence of hybrids where the simulator would, instead of computing
the garbled circuits honestly, replace each garbled circuit with a simulated gar-
bled circuit one by one. And, since our assumption was the tape size and number
of states to be polynomially bounded, thus this scheme is efficient (i.e., runs in
polynomial time) as well.

Looking ahead, the above approach serves as a good warm-up construction
for our core construction which does not suffer from the above limitations. Very
briefly, we make the following observations. First, note that the above construc-
tion does not exploit the fact that a given step circuit does not need to look
at the entire TM tape, but instead it needs to make changes right next to the
location of tape header. Thus, instead of passing around the entire TM tape to
each step circuit, we can maintain a persistent storage that contains the full TM
tape while each step circuit only affects a few particular locations in the storage.

5Recall that in this work we require the encryptor to provide an upper bound on the
running time of the TM.

6Since the number of states is polynomially bounded, thus this is efficient.
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To this end, we replace our usage of garbled circuits with garbled RAMs [53]
thereby bypassing the above problem. Second, we assumed that the number of
states are a-priori polynomially bounded. This was mainly needed so to avoid
the exponential blow-up due to the exponential state space which we could not
hope to generically encode using only public-key encryption. To solve this issue,
we use an identity-based encryption scheme to provide a succinct mechanism to
encode the state transitions without this exponential blow-up. Similar ideas of
encoding exponential size strings succinctly have been used in numerous other
contexts [40, 22, 27, 26, 2].

Main construction. Before moving to a more technical description of our scheme,
we fix our notation and interpretation of a TM. This will help in understanding
our main construction more clearly. We consider a TM to be represented by a
large set T of state transitions

{
(qin, bin, qout, bout, dir)

}
, where each transition is

associated with an input state qin, the input bit read bin, the output state qout,
the bit to written bout, and the direction dir in which the tape head moves. Also,
let each state q be represented as an n-bit string.

As hinted previously, a central component of our construction is the notion
of garbled RAMs. Recall that a RAM program P gets random access to a large
memory D (upon which it can perform arbitrary reads and writes) along with
a short input x, and at the end of its computation it produces an output y.
Here we will be interested in multi-program versions of RAM programs where
given a sequence of RAM programs P1, . . . , P` and corresponding short inputs
x1, . . . , x`, and an initial memory D, the programs are run in succession on their
respective inputs wherein say program Pi outputs some result yi and updates
the database D which is then used by the next program Pi+1.

Garbled RAMs. The notion of garbled RAMs is a generalization of circuit
garbling to RAM programs, where the memory owner first garbles the memory
D generating a pair of garbled database D̃ along with a garbling key kD. The
garbling key kD can then be used to garble any RAM program P with respect
to program index j to produce a garbled program P̃ along with input labels
{labi,b}i,b. Here the program index j is meant to capture the number of programs
that have been run (including P ).7 For example, to garble the previously defined
sequence of ` RAM programs, when the garbling party runs the program garbling
procedure for program Pj it specifies index j as the program index since it wants
Pj to be the j-th RAM program being evaluated in the sequence. Also, as in the

case of circuit garbling, to evaluate a garbled program P̃ with labels {labi,b}i,b
on an input x, the evaluator selects the labels corresponding to bits of x, i.e. y =

EvalD̃(P̃ , {labi,xi
}i) where y is the output of running P on x with memory D. The

standard security property considered in most prior works [53, 33, 54, 32, 29, 28]
is of static (full) simulation security wherein an adversary must not be able to

7For the purposes of a technical overview, we significantly simplify and relax the no-
tation. Here we consider each program to be of fixed length, and not take time range
among other things as additional inputs. Later in the main body, we define it in full
generality.
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distinguish a sequence of honestly garbled RAM programs and database from a
simulated sequence of programs and database, where the simulator only knows
the corresponding outputs {yi}i of each RAM program (but not the database
D, or any of the individual programs Pi, or their corresponding inputs xi).

Core construction: switching from garbled circuits to garbled RAMs. With
all the notation set, our main construction is very simple to follow. The setup
of our system simply corresponds to sampling a IBE master public-secret key
pair. (Recall that previously in our simplified building block construction, the
setup was sampling a large number of PKE public-secret key pairs. As we noted
then, here we use IBE instead of do the same more efficiently.) Next, to generate
a secret key for a TM represented by a set T of transitions, the key generator
encodes each transition (qin, bin, qout, bout, dir) ∈ T into (n+ 2) distinct identities.
(The identity-encodings we employ are the well known bit-decomposition style
encodings where one encodes the output state qout bit-by-bit into n strings of
the form (i, qout[i]) ∈ [n]×{0, 1}.) Here n of these IDs jointly encode the output
state qout, while the other two encode the output bit to written bout, and the
direction dir separately.

The encryption algorithm in our core construction follows a similar paradigm
to that described in our building block construction with the only major change
being we move to using garbled RAMs instead. Concretely, to encrypt a message
m under an unbounded length attribute string w ∈ {0, 1}∗ with time bound t,
the encryptor first creates an empty memory D of size t+ 1.8 It then writes the
attribute w on the RAM memory D, and garbles it to get the corresponding
garbled database D̃. (Basically this memory is used as the tape of the TM
embedded in the predicate keys during decryption.) Next, the encryptor creates a
sequence of t RAM programs where the i-th program takes as input the TM state
qin, bit to be written bout, and the direction dir that was output by the previous
(i.e., (i− 1)-th) program/TM transition. Given these inputs, the RAM program
writes the bit bout at the current tape header, updates the tape header location
depending on dir, and encrypts the garbled labels for the next (i.e., (i + 1)-
th) RAM program under appropriate identities. (Note that here we crucially
rely on our bit-decomposition style identity-encodings of the output state while
encrypting the next program labels.) Thus, a ciphertext contains t such garbled
RAM programs in which the programs are garbled one-by-one from the last to
first since each program contains labels for the next successive garbled program.
Connecting this to original mechnical viewpoint, the garbled database should be
thought of as the reusable ciphertext component while the garbled programs as
the time-step dependent components. During decryption, an evaluator simply
decrypts the wire labels depending on the current state of its TM execution and
evaluates the garbled programs to recover encryptions of the wire labels for the

8Since the ciphertexts need only be decryptable by keys whose corresponding TMs ac-
cept the word within time t, thus the encryptor only needs to instantiate the database
with t bits of memory. To be fully accurate, we actually a little more memory for stor-
ing the TM state which we discuss later in the main body.
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next program. Doing this successively, an evaluator recovers the message if its
TM accepts the attribute word within the ciphertext specified time bound.

Security: how to prove it? Although the above simple scheme seems to
be secure when an adversary makes only a single key query and that too before
receiving the challenge ciphertext, proving the same seems a bit challenging. This
stems from the fact that a natural proof strategy seems to be incompatible with
the full simulation security guaranteed by the underlying garbled RAM scheme.
To better understand this, first recall that the garbled RAM security property
for multi-program version states that no adversary can distinguish between a
sequence of honestly garbled RAM programs (along with half of the honestly
computed corresponding garbled labels) from a sequence of simulated garbled
RAM programs (again along with half of the simulated garbled labels), where
the garbled labels provided depend on the input to be fed to each RAM program.
Next, observe that in our construction, the RAM programs which we garble are
not independent programs but instead each RAM program in our construction
directly depends on the garbling of the next RAM program in the sequence
(since the i-th RAM program contains labels for the (i+ 1)-th RAM program).
Juxtaposing these two facts, we get that no reduction algorithm in the proof
could even statically define the sequence of RAM programs it wants garbled
without interacting with the garbled RAM challenger.

Thus, this circularity/interdependence prevents a natural proof strategy from
working. But it turns out that the problem is a bit deeper than what one can per-
ceive at this point. That is, suppose we could somehow make the RAM programs
(that we want to garble) fully independent, the problem is that the underlying
sequence of RAM programs that we want to simulate will still be executing the
TM step-by-step where each program reveals the labels for the next garbled pro-
gram, thus a reduction algorithm can only simulate the garbled programs one
at a time, and not all at once. Let us clarify this second issue further by first
suggesting a modification to our current construction to solve the first interde-
pendence problem.

The modification to our construction for solving this interdependence prob-
lem is to sample a fresh PRF keys for each label of the garbled RAM program at
the beginning, and instead of letting a RAM program output encryptions of the
labels for the next program, we make each program output encryptions of the
corresponding PRF keys. Once we set the underlying RAM programs this way,
we garble them and to tie them together we encrypt the labels for the (i+ 1)-th
RAM program under PRF keys hardwired in the i-th RAM program. Intuitively,
this means evaluating the garbled RAM programs an evaluator learns encryp-
tions of some of the PRF keys which are then used to recover the garbled labels
outside of this garbled RAM structure.

Getting back to proving security, the problem we still encounter is that as
a reduction algorithm it is unclear on how to simulate all the garbled RAM
programs at once, since for simulation the reduction needs to able to generate the
ciphertext given only half of the wire labels, but those wire labels are encrypted
under PRF keys which are hardwired inside each RAM program. Therefore, for
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a proof to go through a reduction algorithm needs to first remove information
about half of garbled labels from the ciphertexts for which it needs to remove
the information about half of the corresponding PRF keys which means the
reduction must be able to simulate the garbled programs instead which is what
we were trying to do in the first place. This circularity stems from the fact
that the garbled RAM full simulation security only guarantees security when
all the garbled programs are being simulated at the same time, instead of being
partially/sequentially simulated.

Strengthening garbled RAM security. To fix the above problem we
introduce a stronger security notion for garbled RAMs which we call iterated
simulation security.9 To us, it seems a more natural notion of security for multi-
program garbled RAM versions, and also captures the kind of garbled RAM
security we need for our proof to go through. We describe it in detail later
in Section 3, but very briefly it states that there exists an efficient simulator such
that for any sequence of ` programs and inputs, it is hard to distinguish between
simulations of the first i programs and inputs along with honest garblings of the
remaining `− i programs from simulations of the first i+ 1 programs and inputs
along with honest garblings of the remaining `− i− 1 programs. That is, partial
executions of the multi-program garbled RAMs are also simulatable.

Plugging in the strengthened garbled RAM security property, we are able
to prove security of our ABE scheme by organizing an iterated hardwiring-style
proof strategy where we start by simulating the first garbled program, then
remove the information about labels for the next program by relying on PRF
security (and the fact that only half of the PRF keys are needed to simulate the
first garbled program), and keep on interleaving garbled RAM security with PRF
security to eventually remove the plaintext information whenever the underlying
TM does not accept the attribute word.

In order to complete the proof, we need to construct such a garbled RAM
scheme that achieves our notion of iterated simulation security. Fortunately, we
were able to show that most existing garbled RAM schemes already are secure
under this partial simulation framework. In the full version, we show that the
IBE-based garbled RAM construction in [33] is an iterated simulation secure
garbled RAM scheme.

Lifting the core construction to q-query adaptive security

After a closer look at the proof overview provided for our core construction, the
reason behind our construction only enabling a proof in key-selective model (that
is, where the key query must be made before receiving the challenge ciphertext)
becomes apparent. Very briefly, the bottleneck is that the reduction algorithm
needs to know the current state of partial TM execution while embedding the
challenge ciphertext with partially simulated components. Thus, the reduction
must know the TM of the key query before creating the challenge ciphertext.

9Although prior works [53, 33, 54, 32, 34, 29, 28, 50, 13] have studied other adaptive and
reusable variants of garbled RAM security notions, our notion of iterated simulation
security has not yet been explicitly studied previously to the best of our knowledge.
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Now instead of modifying our core construction to resolve this bottleneck,
we instead observe that if the adversary gets to corrupt at most one key, then
we could generically amplify key-selective security in a black-box manner to
adaptive security. The only tool needed for such an amplification is a relaxed
notion of non-committing encryption (NCE) [17, 21, 48] which we call weak
non-committing encryption (wNCE). In a wNCE system, there is an efficient
simulator that could “open” the ciphertext to any message by providing a simu-
lated secret key after already committing to the public key in the beginning. For
security, it is only required that the distribution of simulated keys and ciphertext
is computationally indistinguishable from the distribution generated by the real
encryption protocol.10

Given such a weak NCE scheme, the idea is pretty straightforward. During
setup, we would additionally sample a wNCE key pair, and encryption algo-
rithm will be a simple double encryption where each (key-selective secure) ABE
ciphertext will be encrypted under the wNCE system. Each predicate key now
contains the wNCE secret key as well as the underlying ABE key, where during
decryption, the decryptor first decrypts the outer wNCE ciphertext to learn the
core ABE ciphertext which it then decrypts using the core ABE key. Now the
adaptive security of this transformed scheme follows directly from wNCE sim-
ulation security and the key-selective ABE security. The idea there is that the
challenge ciphertext will be computed as a simulated wNCE ciphertext instead,
and when the adversary makes the post-challenge key query, then the reduction
algorithm opens the wNCE ciphertext to the challenge ciphertext provided by
the key-selective security ABE challenger, and answers the adversary’s key query
with a simulated wNCE secret key along with the core ABE key provided by the
ABE challenger. Similar ideas were also used in [39] in the context of simulation
secure functional encryption.

Since there is a very simple construction for a weak NCE scheme from reg-
ular public key encryption, this seems to suggest that any 1-query key-selective
secure ABE scheme could be generically lifted to achieve 1-query adaptive secu-
rity instead, however there is an important caveat. The caveat is that this weak
NCE construction from PKE has public-secret keys whose sizes grow linearly
with length of the messages. Recall that in our generical transformation we en-
crypt the key-selective ABE ciphertext using the wNCE scheme. If the size of
key-selective ABE ciphertext is fixed at setup time, then the transformation goes
through as is, but this is not true for ABE in uniform models of computation
where the whole motivation is being able to encrypt messages under unrestricted
length attributes, thus the ciphertext sizes are a-priori unbounded. This implies
that for the above transformation to work in the case of ABE for TMs we need
a succinct weak NCE, where by succinct we mean that the system supports en-
cryption of unbounded length messages. To this end, we show another generic

10In regular notions of non-committing encryption, the simulator must also be able to
indistinguishably explain the ciphertexts by providing encryption randomness too.
We do not require that, thus regard our notion as a weak NCE system. Our notion
is similar to that of receiver non-committing encryption [18].
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transformation that takes any non-succinct weak NCE scheme and compiles it
into a succinct NCE scheme albeit in the Random Oracel Model (ROM) [11].
Very briefly, the idea here is use the ROM as an adaptive programmable PRF to
indistinguishably open simulated ciphertexts to arbitrary messages. During en-
cryption, an encryptor chooses a random λ-bit string K which it encrypts under
the non-succinct NCE scheme, and then encrypts the unbounded length message
block-by-block using K as a secret key and ROM as a PRF. The simulatability
of this scheme follows directly from the simulatability of the non-succinct scheme
and programmability of the ROM. This is discussed in detail in the full version.
We want to point out that building a succinct weak NCE scheme as described
above is impossible in the standard model [55], thus adaptive security of our
construction crucially relies on the usage of ROM.

Combining the above ideas, we obtain a 1-query adaptively secure ABE
scheme for TMs. To conclude, we show that by using standard combinatorial
techniques, the security could be improved to q-query adaptive security for any
a-priori fixed polynomial q(·). Since we are dealing with just an ABE scheme,
thus this transformation is much simpler than for other related transformations
such as the one for functional encryption in [39]. For completeness, we provide
it in the full version.

Related work, other suggested approaches, and future directions

Comparison with Agrawal-Singh [5]. Closest to us is the work of Agrawal-Singh [5]
who construct a 1-query functional encryption scheme for Turing Machines
where, like our ABE system, the encryption algorithm depends on the worst case
running time of the TM. Ours and their construction share the same mechnical
perspective of traversing through a sequence of garbled circuits for encrypting
unbounded length inputs, however differ in overall execution since they rely on a
succinct single-key FE scheme with the TM evaluation happening under the FE
hood, whereas we work with more general primitives such as IBE and garbled
RAM thereby our TM evaluation happens on encrypted pieces that come out
as outputs of garbled RAM evaluations. The usage of a succinct single-key FE
scheme has the benefit of the resulting encryption scheme being a FE scheme
with short keys (and not just an ABE scheme like ours), but given the current
state-of-the-art [36] it also means relying on the LWE assumption, while we rely
on much weaker primitives thus are not tethered to the LWE assumption. Like
our core key-selective secure ABE scheme, they also prove security in the weaker
model where there is a single-key query which must be made before receiving the
challenge ciphertext. Although they do not provide any follow-up transforma-
tions to improve security like us, we believe our non-committing encryption idea
could also be used with their FE construction. However, extending to q-query
bounded collusion security would be more tricky than our case, but might be
possible to adapt a more elaborate transformation along the lines of [39].

ABE via laconic OT. Cho et al. [19] introduced the concept of laconic trans-
fer for secure computation over large inputs. They described an application of
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laconic OT to non-interactively compute in the RAM setting. Although this ap-
plication does not directly lead to ABE schemes that supports (RAM) Turing
Machine computation, it might be possible to repurpose the underlying ideas to
build ABE by going through laconic OT along with garbling techniques. One
would need to be careful in executing this idea so that the description size of
the Turing Machine does not need to be a-priori bounded at setup time, and
this might require adjusting the definition of the corresponding primitives. Ad-
ditionally, such an approach would need one to rely on laconic OT whereas we
chose to focus on IBE since it is both supported by multiple number theoretic
assumptions as well as there are multiple number theoretic IBE constructions
that do not themselves invoke garbling and thus avoid a double layer of garbling
in the eventual construction. There have been prior works [23, 49] which observe
that laconic OT could be replaced by IBE in certain applications, and it would
be interesting to look at whether same could be done for this alternate approach.
In our work, we provide a much direct construction directly from any regular
IBE scheme.

Future directions. In this work we focus on proving standard semantic secu-
rity of our ABE scheme, but we believe one could extend it to CCA security by
either relying on the ROM, or on other generic transformations such as [51], and
prove it to be a 1-sided predicate encryption scheme directly without relying on
generic transformations [41, 61]. An interesting open question is whether one
could extend our current approach to either achieve succinctness similar to [5],
or extend it to FE without relying on stronger assumptions. Another related
question is whether we could avoid the ROM for amplifying the security of our
core ABE scheme from key-selective to fully adaptive. It might be useful look
at the graph pebbling techniques [25, 24, 46, 45, 52] to develop a more intri-
cate hybrid structure for proving adaptive security directly. Another interesting
thought might be to rely on adaptive security of garbled RAM schemes [30] in-
stead, however it is unclear how to leverage having an adaptive garbled RAM in
our setting. Briefly, the reason is that the extra adaptivity it provides is useful
in cryptosystems where an attacker is able to see some of the garbled RAM pro-
grams and then somehow influence the inputs or programs for the rest of them;
while in our case all the garbling program calls are bundled together in a single
call to the encryption oracle. Lastly, another important question is whether these
techniques could be used to build ABE systems for TMs where the encryption
algorithm no longer depends on the worst case running of the TM.

2 Preliminaries

Due to space constraints, we describe our notation, the Turing machine and RAM
program formalisms, and definitions of secret key encryption and identity-based
encryption later in the full version.
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2.1 Attribute-Based Encryption for Turing Machines

An Attribute-Based Encryption (ABE) scheme ABE for set of attribute space
{0, 1}∗, Turing Machines classes T = {Tλ}λ∈N, and message spacesM = {Mλ}λ∈N
consists of four polynomial time algorithms (Setup,KeyGen,Enc,Dec) with the
following syntax:

Setup(1λ)→ (pp,msk). The setup algorithm takes as input the security param-
eter λ. It outputs the public parameters pp and the master secret key msk.

KeyGen(msk, T )→ skT . The key generation algorithm takes as input the master
secret key msk and a Turing Machine T ∈ Tλ. It outputs a secret key skT .

Enc(pp,m, (w, t))→ ct. The encryption algorithm takes as input the public pa-
rameters pp, a message m ∈Mλ, and a pair (w, t) consisting of an attribute
w ∈ {0, 1}∗, and a positive integer time bound t. It outputs a ciphertext ct.

Dec(skT , ct)→ m/⊥. The decryption algorithm takes as input a secret key skT
and a ciphertext ct. It outputs either a message m ∈Mλ or a special symbol
⊥.

Correctness. We say an ABE scheme ABE = (Setup,KeyGen,Enc,Dec) satisfies
correctness if for all λ ∈ N, (pp,msk) ← Setup(1λ), T ∈ Tλ, m ∈ Mλ, skT ←
KeyGen(msk, T ), t ∈ N, and w ∈ {0, 1}∗ for which T accepts w within t steps,
and ct← Enc(pp,m, (w, t)) we have that Dec(skT , ct) = m.

Efficiency. We require that the algorithm Setup(1λ) runs in time polynomial in
the security parameter λ. We require that the algorithm KeyGen(msk, T ) runs in
time polynomial in the security parameter λ and the size |T | of T . We require
that the algorithm Enc(pp,m, (w, t)) runs in time polynomial in the security
parameter λ, the length |m| of the message m, the length |w| of the attribute w,
and the time bound t. We require that the algorithm Dec(skT , ct) runs in time
polynomial in the security parameter λ and the size |ct| of the ciphertext ct.

Security. Next, we define the security notions we consider for ABE systems.

Definition 2.1 (adaptive security). We say an ABE scheme ABE = (Setup,
KeyGen,Enc,Dec) is fully secure if for any PPT adversary A = (A0,A1) there
exists a negligible function negl(·), such that for all λ ∈ N the following holds

Pr

AKeyGen(msk,·)
1 (st, ct) = β :

(pp,msk)← Setup(1λ); β ← {0, 1}
(st,m0,m1, (w, 1

t))← AKeyGen(msk,·)
0 (pp, 1λ)

ct← Enc(pp,mβ , (w, t))

 ≤ 1

2
+negl(λ),

where all Turing Machines T queried by A do not accept the word w within t
steps.

In this work, we focus on bounded collusion security for ABE systems where
the adversary is restricted to make an a-priori bounded number of key generation
queries, say at most Q queries (for some polynomially bounded function Q(λ)).
The definition is given below.
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Definition 2.2 (Q-query adaptive security). An ABE scheme is said to be
Q-query adaptively secure if in the above security game (see Definition 2.1), the
adversary can make at most Q queries to the key generation oracle.

We also define the weaker notion which we call key-selective security, where
the adversary to must make all key queries before it is given the challenge ci-
phertext. The definition is given below.

Definition 2.3 (Q-query key-selective security). An ABE scheme is said to
be Q-query key-selective secure if in the above security game (see Definition 2.1),
the adversary can make at most Q queries to the key generation oracle, and all
key queries must be made before getting the challenge ciphertext.

3 Garbled RAM with Iterated Simulation Security

In this section we define a notion of Garbled RAM security which abstracts
out properties of Garbled RAM constructions in previous works which we will
use in our construction of ABE. At a high level, our security notion, which we
call Iterated Simulation Security requires that there exists an efficient simulator
such that for any sequence of ` programs and inputs, it is hard to distinguish
simulations of the first k programs and inputs along with honest garblings of the
remaining `−k programs from simulations of the first k+1 programs and inputs
along with honest garblings of the remaining ` − k − 1 programs. Our security
definition will actually be a notion of security with Unprotected Memory Access
(UMA), that is security in which the garbling may leak the contents of the
garbled database D, and the memory access patterns accessj of the programs.
We drop the label UMA in the subsequent to reduce clutter.

A Garbled RAM scheme GRAM consists of three polynomial time algorithms
(GData,GProg,Eval) with the following syntax:

GData(1λ, D)→ (D̃, kD). The data garbling algorithm takes as input the secu-
rity parameter λ and a database D ∈ {0, 1}m. It outputs a garbled database

D̃ and program garbling key kD.
GProg(1λ, kD,m, P, 1

n, (tinit, tfin))→ (P̃ , {labin
i,b}i∈[n],b∈{0,1}). The program gar-

bling algorithm takes as input the security parameter λ, a program garbling
key kD, a database size m, a program P which operates on a database of
size m and takes an input of length n, and time range given as a pair of an
initial time tinit and final time tfin. It outputs a garbled program P̃ and a
collection of input labels {labin

i,b}i∈[n],b∈{0,1}.
EvalD̃(P̃ , {labin

i }i∈[n])→ ỹ. The evaluation algorithm takes as input a garbled

database D̃, a garbled program P̃ , and a collection of n labels {labin
i }i∈[n]. It

outputs a value ỹ. As in [33], we will think of the evaluation algorithm as a

RAM program operating on database D̃ which is able to perform arbitrary
reads and writes on D̃. We slightly abuse notation, and will write

EvalD̃((P̃1, {labin,1
i }i∈[n1]), ..., (P̃`, {lab

in,`
i }i∈[n`]))→ (ỹ1, . . . , ỹ`)
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to denote that for all j ∈ `, ỹj is the result of the evaluation algorithm

on garbled program P̃j with labels {labin,j
i }i∈[nj ] on garbled database D̃

after running the evaluation algorithm on garbled programs P̃j′ with labels

{labin,j′

i }i∈[nj′ ]
in sequence on D̃ for all j′ < j with changes made to D̃

persisting across evaluations.

Correctness. Fix parameters λ, `,m ∈ N, a database D ∈ {0, 1}m, and pro-
grams and inputs {(Pj , xj ∈ {0, 1}nj , nj , tinit,j , tfin,j)}j∈[`]. Let

(y1, . . . , y`)← (P1(x1), . . . , P`(x`))
D

be the result of sequentially running the programs Pj on inputs xj operating on
persistent database D. We say a garbled RAM scheme GRAM = (GData,GProg,
Eval) satisfies correctness, if for all j ∈ [`] the following holds

Pr

ỹj = yj :

(D̃, kD)← GData(1λ, D)

∀j ∈ [`], (P̃j , {labin,j
i,b }i∈[nj ],b∈{0,1})← GProg(1λ, kD,m, Pj , 1

nj , (tinit,j , tfin,j))

(ỹ1, . . . , ỹ`)← EvalD̃((P̃1, {labin,j
i,xj [i]

}i∈[nj ]), . . . , (P̃1, {labin,j
i,xj [i]

}i∈[nj ]))

 = 1.

Definition 3.1 (iterated simulation security). We say a garbled RAM scheme
GRAM = (GData,GProg,Eval) satisfies iterated simulation security if there exists
a polynomial time simulator Sim such that for any PPT adversary A = (A0,A1)
there exists a negligible function negl(·), such that for all λ ∈ N, the following
holds

Pr

A1(st, chal) = β :

β ← {0, 1}
(st, k,D, {(Pj , xj , nj , (tinit,j , tfin,j))}j∈[`])← A0(1λ)

chal← Expλk−β(D, {(Pj , xj , nj , (tinit,j , tfin,j))}j∈[`])

 ≤ 1

2
+negl(λ),

where for 0 ≤ k ≤ `, the output of Expλk(D, {(Pj , xj , nj , (tinit,j , tfin,j))}j∈[`]) is
defined
(
D̃, {(P̃j , {labin,j

i }i)}j∈[k],
{(P̃j , {labin,j

i,b }i,b)}j∈[k+1,`]

)
:

(D̃, kD)← GData(1λ, D)

∀j > k, (P̃j , {labin,j
i,b }i∈[nj ],b∈{0,1})

← GProg(1λ, kD, |D|, Pj , 1nj , (tinit,j , tfin,j))

∀j ≤ k, (P̃j , {labin,j
i }i∈[nj ],b∈{0,1})
← Sim(kD, 1

nj , |Pj |, yj , accessj , (tinit,j , tfin,j))


where for all j, |Pj | is the size of the program Pj, yj is the result of running Pj
with input xj on the database D after having run the previous j − 1 programs
and inputs, and accessj is the memory access pattern of Pj. Note, that all the

inputs to Sim(·), can be computed from the inputs to Expλk .

Remark 3.2. As a point of comparison with the simulation security notions con-
sidered in prior works such as [33], we would want to highlight that in prior
works the simulator always outputs a fully simulated execution of the garbled
RAM which must be indistinguishable from honestly garbled programs. We, on
the other hand, consider indistinguishability in between these partial execution
steps.
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Efficiency. We require that the algorithm GData(1λ, D) runs in time polynomial
in the security parameter λ and the size |D| of the database D. We require that

the algorithms GProg(1λ, kD,m, P, 1
n, (tinit, tfin)) and EvalD̃(P̃ , {labin

i }i∈[n]) both
run in time polynomial in the security parameter λ, log(m) where m is the size
of D, the size |P | of P , the size n of the input taken by P , and the total number
of steps (tfin − tinit) taken by P .

4 ABE for Turing Machines

In this section we give our main construction of an ABE scheme for Turing
Machines. The scheme will be for message spaces M = {{0, 1}λ}λ∈N.

The primitives used by our construction are as follows. Let GRAM = (GData, GProg, Eval)
be a garbled RAM scheme satisfying Iterated Simulation Security. In addition,
let IBE be a secure IBE scheme which can encrypt messages of length λ, and
assume there is some polynomial n(·) for which the identity space of IBE in-
cludes identities of length n′(λ) := n(λ) + dlog(n + 2)e + 2. In the subsequent
discussion we will simply write n as shorthand for n(λ). Our scheme additionally
uses a secret key encryption scheme SKE = (SKE.Setup,SKE.Enc,SKE.Dec). For
simplicity of exposition, we assume (w.l.o.g.) that the IBE encryption algorithm
takes as input λ-bits of randomness.

In our scheme, we will allow secret key queries for deterministic Turing Ma-
chines T = (Q,Σ, qstart, F, δ) with the following restrictions. We assume:

– All machines have state space Q ⊂ {0, 1}n.

– The alphabet Σ is binary. That is Σ = {0, 1}.
– The all 0 state 0n is reserved as the unique start state qstart for all machines.

– The all 1 state 1n is reserved as the unique accept state qaccept ∈ F .

– The transition relation δ is a partial function. In particular, all machines are
deterministic.

The above assumptions are essentially without loss of generality for deterministic
Turing Machines. In particular, any deterministic Turing Machine with constant
size alphabet and a polynomial number of states can be transformed in to a
machine satisfying these assumptions with at most polynomial blowup. We will
identify each machine T with the set of possible transitions it can make under
δ:

T = {(qin, bin, qout, bout, dir) : δ(qin, bin) = (qout, bout, dir)}

Thus, the notation |T |, will simply be the cardinality of the right hand side of
the above.

The secret keys of our scheme will be carefully chosen sets of identity secret
keys from the IBE scheme IBE. In particular, each identity secret key will be for
an identity id ∈ {0, 1}n+dlog(n)e+2.
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4.1 Construction

We now formally describe the construction of our ABE scheme, ABE = (Setup,KeyGen,Enc,Dec).

Setup(1λ)→ (pp,msk). The setup algorithm chooses (pp,msk)← IBE.Setup(1λ),
and outputs (pp,msk).

KeyGen(msk, T )→ skT . Let the Turing machine T be given as the set of possible
transitions it can make under its transition relation δ:

T = {(qin, bin, qout, bout, dir) : δ(qin, bin) = (qout, bout, dir)}

For each transition (qin, bin, qout, bout, dir) ∈ T the key generation algorithm
samples n+2 identity secret keys. Let IDT be the set of (n+2)·|T | identities
described below:

IDT =

(qin, bin, i, β) ∈ {0, 1}n
′

: (qin, bin, qout, bout, dir) ∈ T ∧

 (i ∈ [n] ∧ β = qout[i]) ∨
(i = n+ 1 ∧ β = bout) ∨

(i = n+ 2 ∧ β = bdir)


(1)

where in the above bdir = 0 if dir = L and bdir = 1 if dir = R.
Next, the key generation algorithm samples an IBE secret key for each iden-
tity in IDT . Concretely, it chooses

∀ (qin, bin, i, β) ∈ IDT , sk(qin,bin,i,β) ← IBE.KeyGen(msk, (qin, bin, i, β)).

Finally, the key generation algorithm sets the key to be the machine descrip-
tion T and the entire set of identity secret keys it chose:

skT =
(
T,
{
sk(qin,bin,i,β)

}
(qin,bin,i,β)∈IDT

)
.

Enc(pp,m, (w, t))→ ct. The encryption algorithm garbles a database D along
with several copies of a step program P . We formally describe the RAM
program P in Fig. 1 before moving on to the encryption algorithm.
The encryption algorithm proceeds as follows.

1. The encryption algorithm sets a database D ∈ {0, 1}t+1+dlog(t+1)e. It
sets the first |w| bits of D to match w, and sets the remaining bits to 0.
More formally,

D := w||0t+1+dlog(t+1)e−|w|

where || denotes concatenation. The algorithm next garbles the database

(D̃, kD)← GData(1λ, D).
2. For each (i, b, j) ∈ [n + 2] × {0, 1} × [t + 1], the algorithm samples

randomness r
(j)
i,b and SKE secret keys K

(j)
i,b as r

(j)
i,b ← {0, 1}λ,K(j)

i,b ←
SKE.Setup(1λ).

3. Let P be the RAM program described as described in Fig. 1. For each

j ∈ [t+ 1], the algorithm sets Pj as Pj := P [pp, {K(j)
i,b }i,b,m, j; {r

(j)
i,b }i,b].
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4. Let ` be the number of steps P takes to run on a database of length |D|.
For each j ∈ [t+ 1], the algorithm garbles the program Pj , computing

(P̃j , {labin,j
i,b }i,b)← GProg(1λ, kD, t+1+dlog(t+1)e, Pj , 1n+2, (1+(j−1)·`, j·`)).

5. For each (i, b, j) ∈ [n+2]×{0, 1}×[t], the algorithm computes ciphertexts

c̃t
(j)
i,b ← SKE.Enc(K

(j)
i,b , lab

in,j+1
i,b ).

6. Let {labin,1
i,b }i,b be the set of input labels computed when garbling pro-

gram P1. Recall that the all zero state is the canonical start state. The
algorithm outputs the ciphertext

ct = (w, t, D̃, {labin,1
i,0 }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]).

The step program
P [pp, {Ki,b}(i,b)∈[n+2]×{0,1},m, j; {ri,b}(i,b)∈[n+2]×{0,1}](q

in, bout, bdir)

The program P operates on a database D of size t + 1 + dlog(t + 1)e.
For convenience, we will think of the database as a length t + 1 array
D′ concatenated with an integer index idx ∈ [t + 1] i.e D := D′||idx.
The program P has hard-coded the public parameters pp of an instance
of IBE, a set of SKE secret keys {Ki,b}(i,b)∈[n+2]×{0,1}, a message m, an
integer j ∈ [t+ 1], and a set of randomness strings {ri,b}(i,b)∈[n+2]×{0,1}.

It takes as input an n-bit state q, a bit bout, and a bit bdir.

1. If j > 1, the program reads the index idx, and then it overwrites
the idx-th bit of D′ with bout i.e. it sets D′[idx] := bout. Otherwise if
j = 1, the program ignores the input bout.

2. If j > 1, idx > 1, and bdir = 0, the program overwrites idx with
idx − 1. Else if j > 1, idx = 1, and bdir = 0, for each i ∈ [n + 2]
and b ∈ {0, 1}, the program re-sets Ki,b := 0. (This instruction is
to prevent decryption if the tape head tries to move left off of the
tape.) Else, if j > 1 and bdir = 1, the program overwrites idx with
idx + 1. Else, if j = 1, the program ignores the input bdir.

3. The program reads the bit bin := D′[idx] at the updated idx. For
each pair (i, b) ∈ [n+ 2]× {0, 1}, the program computes

cti,b := IBE.Enc(pp,Ki,b, (q
in, bin, i, b); ri,b).

4. Finally, if qin = accept, the program outputs
({cti,b}(i,b)∈[n+2]×{0,1},m). Otherwise it outputs
({cti,b}(i,b)∈[n+2]×{0,1},⊥).

Fig. 1: The step program P.
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Dec(skT , ct)→ m/⊥. The decryption algorithm parses the ciphertext and secret
key as

ct = (w, t, D̃, {labin
i }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]),

skT =
(
T,
{
sk(qin,bin,i,β)

}
(qin,bin,i,β)∈IDT

)
.

Let t′ ≤ t be the maximum number of well defined transitions the machine
T can make on input w within t time steps. Let

{(qin
j , b

in
j , q

out
j , bout

j , dirj)}j∈[t′]

be the t′ transitions T makes on input w. The decryption algorithm sets
lab1 := {labin

i }i∈[n+2], and then proceeds to evaluate the garbled RAM pro-
grams in ascending order for j = 1 to j = t′ + 1 as follows:
1. The decryption algorithm evaluates the jth garbled RAM program P̃j

on the current value of the garbled database D̃ with the input given by
labels in labj :

({ct(j)i,b }i,b, ỹj)← EvalD̃(P̃j , labj).

Note that the garbled database D̃ has now been updated after running
Eval(·).

2. If ỹj 6= ⊥, the algorithm breaks and exits the loop, sets m := ỹj , and
outputs m.

3. Otherwise, if ỹj = ⊥ it continues. Let (qin
j , b

in
j , q

out
j , bout

j , dirj) be the jth
transition T makes on input w. Also, for i ∈ [n + 2], let bi,j denote the
following bit

bi,j :=


qout
j [i] if i ∈ [n]

bout
j if i = n+ 1

bdir
j otherwise.

where in the above bdir
j = 0 if dirj = L and bdir

j = 1 if dirj = R. The
algorithm computes the labels for the next program as follows. For i ∈
[n+ 2], it decrypts the IBE and SKE ciphertexts as:

K
(j)
i,bi,j

= IBE.Dec(sk(qin,bin,i,bi,j), ct
(j)
i,bi,j

), labin
i,bi,j ← SKE.Dec(K

(j)
i,bi,j

, c̃t
(j)
i,bi,j ).

4. If j < t′ + 1, the algorithm sets the labels for the garbled program P̃j+1

as
labj+1 := {labin

i,bi,j}i∈[n+2]

and otherwise if j = t′ + 1, the algorithm exits the loop and returns ⊥.

4.2 Correctness

Due to space constraints, we describe the correctness proof later in the full
version.
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4.3 Efficiency

We discuss the efficiency of the algorithms of the above construction. Since
Setup(λ) simply runs IBE.Setup(λ), the runtime is poly(λ) whenever the runtime
of IBE.Setup(λ) is poly(λ). Next, the algorithm KeyGen(msk, T ) runs IBE.KeyGen(msk, ·)
a total of n+ 2 times for each transition of T . Since n is bounded by poly(λ), we
have that if the runtime of IBE.KeyGen(msk, ·) is poly(λ) then KeyGen(msk, T ) has
runtime |T | · poly(λ). Next, the algorithm Enc(pp,m, (w, t)) runs GData(1λ, D)
on a database of size O(t), and garbles t + 1 copies of the step-program P .
Assume |w| ≤ t and that each P has representation of size poly(λ) · polylog(t).
If IBE.Enc(pp, ·) has runtime poly(λ), GData(1λ, D) has runtime |D|·polylog(|D|)·
poly(λ), and GProg(1λ, log(|D|), P, 1n, (tinit, tfin)) has runtime |P |·polylog(|D|, |P|)·
poly(λ), then Enc(pp,m, (w, t)) has runtime t · polylog(t) · poly(λ). Finally, the
algorithm Dec(skT , ct) evaluates a garbled program and decrypts a set of n ci-
phertexts of the IBE system t′ + 1 many times, where t′ is the time T takes to
accept the underlying attribute w used to compute ct. Thus, if IBE.Dec(skid, ct)

has runtime poly(λ) and if EvalD̃(P̃ , lab) has runtime |P | · polylog(|D|) · poly(λ)
then Dec(skT , ct) has runtime t′ · polylog(t) · poly(λ) where t′ is the time T takes
to accept the attribute w used when computing ct and t is the time bound set
at encryption time when computing ct.

4.4 Security

Next, we prove the following.

Theorem 4.1. Let IBE be a secure IBE scheme, SKE be a secure symmetric
key encryption scheme, and GRAM be a garbled RAM scheme satisfying Iterated
Simulation Security as per Definition 3.1. Then ABE described above is an ABE
scheme satisfying 1-query key-selective security as per Definition 2.3.

We prove Theorem 4.1 via a sequence of hybrid games. First, we describe the
games and later on prove that any two adjacent games are indistinguishable.

Game 0. This game corresponds to the original 1-query key-selective security
game.

– Setup Phase: The challenger chooses (pp,msk)← IBE.Setup(1λ), and sends
pp to the adversary. (Note that Setup in our scheme is precisely IBE.Setup.)

– Key Query Phase: The adversary submits a single key query for machine
T to the challenger. Let the Turing machine T be given as the set of possible
transitions it can make under its transition relation δ:

T = {(qin, bin, qout, bout, dir) : δ(qin, bin) = (qout, bout, dir)}.

Let IDT be the set of (n + 2) · |T | identities as defined in Eq. (1). The
challenger samples an IBE secret key for each identity in IDT . Concretely,
it chooses

∀ (qin, bin, i, β) ∈ IDT , sk(qin,bin,i,β) ← IBE.KeyGen(msk, (qin, bin, i, β)).
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Finally, it sends the key skT =
(
T,
{
sk(qin,bin,i,β)

}
(qin,bin,i,β)∈IDT

)
to A.

– Challenge Phase: The adversary submits two challenge messages (m0,m1)
and the challenge attribute and time bound (w, 1t) to the challenger. It must
be the case that the machine T for which the adversary was given a secret
key skT during the key query phase does not accept the word w within t
steps.
The challenger samples a bit β ← {0, 1}, and computes the challenge cipher-
text as follows.

1. The challenger sets a database D ∈ {0, 1}t+1+dlog(t+1)e. It sets the first
|w| bits of D to match w, and sets the remaining dlog(t+ 1)e bits to 0.
More formally,

D := w||0t+1+dlog(t+1)e−|w|

where || denotes concatenation. It next garbles the database (D̃, kD)←
GData(1λ, D).

2. For each (i, b, j) ∈ [n + 2] × {0, 1} × [t + 1], the challenger samples

randomness r
(j)
i,b and SKE secret keys K

(j)
i,b as r

(j)
i,b ← {0, 1}λ,K(j)

i,b ←
SKE.Setup(1λ).

3. Let P be the RAM program described as described in Fig. 1. For each

j ∈ [t+1], the challenger sets Pj as Pj := P [pp, {K(j)
i,b }i,b,mβ , j; {r(j)i,b }i,b].

4. Let ` be the number of steps P takes to run on a database of length |D|.
For each j ∈ [t+ 1], the challenger garbles the program Pj , computing

(P̃j , {labin,j
i,b }i,b)← GProg(1λ, kD, t+1+dlog(t+1)e, Pj , 1n+2, (1+(j−1)·`, j·`)).

5. For each (i, b, j) ∈ [n+2]×{0, 1}×[t], the challenger computes ciphertexts

c̃t
(j)
i,b ← SKE.Enc(K

(j)
i,b , lab

in,j+1
i,b ).

6. Let {labin,1
i,b }i,b be the set of input labels computed when garbling pro-

gram P1. Recall that the all zero state is the canonical start state. The
challenger outputs the ciphertext

ct∗ = (w, t, D̃, {labin,1
i,0 }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]).

– Guess Phase: The adversary submits its guess β′, and wins the game if
β = β′.

Game k.1 (1 ≤ k ≤ t+ 1). This game is defined similar to Game 0, except now
the challenger simulates the first k (out of t + 1) garbled RAM programs and
the SKE ciphertexts encrypting the labels for first k−1 levels are also simulated
(i.e., half of them contain the simulated wire label keys, while other half encrypt
all zeros). Note that while setting up the garbled programs to be simulated,
the challenger needs to sample the IBE ciphertexts appropriately where the IBE
ciphertexts for the first k−1 simulated garbled programs encrypt only half of the
corresponding SKE keys and the IBE ciphertexts for the k-th simulated program
encrypts all the keys honestly. Below we describe it in detail highlighting the
differences.
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– Challenge Phase: The adversary submits two challenge messages (m0,m1)
and the challenge attribute and time bound (w, 1t) to the challenger. It must
be the case that the machine T for which the adversary was given a secret
key skT during the key query phase does not accept the word w within t
steps.
Let {(qin

j , b
in
j , q

out
j , bout

j , dirj)}j∈[t] be the sequence of the first t transitions

made by machine T on input w. Let x1 = 0n+2, and for all other j let xj be
the (n+2)-bit representation of (qout

j−1, b
out
j−1, b

dir
j−1). LetD ∈ {0, 1}t+1+dlog(t+1)e

match w in the first |w| bits, and be 0 elsewhere. Let {accessj}j∈[t+1] be the
memory access patterns of the t+ 1 step programs Pj run on D in sequence
with inputs xj . Note that the hard-coded inputs do not affect the memory
access pattern, so for all j ∈ [t + 1], accessj can be computed as a function
of the machine T , the challenge attribute w, and the time bound t.
The challenger samples a bit β ← {0, 1}, and computes the challenge cipher-
text as follows.

1. The challenger sets a database D ∈ {0, 1}t+1+dlog(t+1)e. It sets the first
|w| bits of D to match w, and sets the remaining dlog(t+ 1)e bits to 0.
More formally,

D := w||0t+1+dlog(t+1)e−|w|

where || denotes concatenation. It next garbles the database (D̃, kD)←
GData(1λ, D).

2. For each (i, b, j) ∈ [n + 2] × {0, 1} × [t + 1], the challenger samples

randomness r
(j)
i,b and SKE secret keys K

(j)
i,b as r

(j)
i,b ← {0, 1}λ,K(j)

i,b ←
SKE.Setup(1λ).11

3. Let P be the RAM program as described in Fig. 1. For each j ∈ [k +

1, t + 1], the challenger sets Pj as Pj := P [pp, {K(j)
i,b }i,b,mβ , j; {r(j)i,b }i,b].

It computes 2k(n+ 2) IBE ciphertexts as:

(i, b) ∈ [n+ 2]× {0, 1}, ct
(k)
i,b ← IBE.Enc(pp,K

(k)
i,b , (q

in
k , b

in
k , i, b)),

(i, j) ∈ [n+ 2]× [k − 1], ct
(j)
i,xj [i]

← IBE.Enc(pp,K
(j)
i,xj [i]

, (qin
j , b

in
j , i, xj [i])),

(i, j) ∈ [n+ 2]× [k − 1], ct
(j)
i,1−xj [i]

← IBE.Enc(pp,0, (qin
j , b

in
j , i, 1− xj [i]))

4. Let ` be the number of steps P takes to run on a database of length
|D|. For each j ∈ [k + 1, t + 1], the challenger garbles the program Pj ,
computing

(P̃j , {labin,j
i,b }i,b)← GProg(1λ, kD, t+1+dlog(t+1)e, Pj , 1n+2, (1+(j−1)·`, j·`)).

For j ∈ [k], the challenger computes a simulated program

(P̃j , {labin,j
i }i∈[n+2])← Sim(1λ, kD, |P |, ({ct(j)i,b }(i,b)∈[n+2]×{0,1},⊥), D, {access′j}j′∈[t+1])

11We point out that the challenger does not need use all the sampled random coins
and secret keys anymore. However, for ease of exposition we still sample all of them
as before.
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5. Next, it computes the ciphertexts c̃t
(j)
i,b as follows:

(i, b, j) ∈ [n+ 2]× {0, 1} × [k, t], c̃t
(j)
i,b ← SKE.Enc(K

(j)
i,b , lab

in,j+1
i,b ),

(i, j) ∈ [n+ 2]× [k − 1], c̃t
(j)
i,xj+1[i] ← SKE.Enc(K

(j)
i,xj+1[i]

, labin,j+1
i ),

(i, j) ∈ [n+ 2]× [k − 1], c̃t
(j)
i,1−xj+1[i] ← SKE.Enc(K

(j)
i,1−xj+1[i]

,0)

6. Let {labin,1
i }i be the set of input labels computed when simulating pro-

gram P1. The challenger outputs the ciphertext

ct∗ = (w, t, D̃, {labin,1
i }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]).

Game k.2 (1 ≤ k ≤ t + 1). This game is defined identically to Game k.1, ex-
cept now IBE ciphertexts hardwired in the k-th simulated garbled program also
encrypt only half of the corresponding SKE keys (as for first k − 1 simulated
programs). Below we simply describe the change in game description when com-
pared with previous game.

– Challenge Phase: The adversary submits two challenge messages (m0,m1)
and the challenge attribute and time bound (w, 1t) to the challenger. It must
be the case that the machine T for which the adversary was given a secret
key skT during the key query phase does not accept the word w within t
steps. The challenger samples a bit β ← {0, 1}, and computes the challenge
ciphertext as in Game k.1, except the following:

3. Let P be the RAM program as described in Fig. 1. For each j ∈ [k +

1, t + 1], the challenger sets Pj as Pj := P [pp, {K(j)
i,b }i,b,mβ , j; {r(j)i,b }i,b].

It computes 2k(n+ 2) IBE ciphertexts as:

(i, j) ∈ [n+ 2]× [k], ct
(j)
i,xj [i]

← IBE.Enc(pp,K
(j)
i,xj [i]

, (qin
j , b

in
j , i, xj [i])),

(i, j) ∈ [n+ 2]× [k], ct
(j)
i,1−xj [i]

← IBE.Enc(pp,0, (qin
j , b

in
j , i, 1− xj [i]))

Game k.3 (1 ≤ k ≤ t+ 1). This game is defined identically to Game k.2, except
now the SKE ciphertexts encrypting the garbled program labels for the (k+ 1)-
th garbled program encrypt only half of the label keys (i.e., only the label keys
corresponding to the k-th state transition). Below we simply describe the change
in game description when compared with previous game.

– Challenge Phase: The adversary submits two challenge messages (m0,m1)
and the challenge attribute and time bound (w, 1t) to the challenger. It must
be the case that the machine T for which the adversary was given a secret
key skT during the key query phase does not accept the word w within t
steps. The challenger samples a bit β ← {0, 1}, and computes the challenge
ciphertext as in Game k.2, except the following:
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5. Next, it computes the ciphertexts c̃t
(j)
i,b as follows:

(i, b, j) ∈ [n+ 2]× {0, 1} × [k + 1, t], c̃t
(j)
i,b ← SKE.Enc(K

(j)
i,b , lab

in,j+1
i,b ),

(i, j) ∈ [n+ 2]× [k], c̃t
(j)
i,xj+1[i] ← SKE.Enc(K

(j)
i,xj+1[i]

, labin,j+1
i ),

(i, j) ∈ [n+ 2]× [k], c̃t
(j)
i,1−xj+1[i] ← SKE.Enc(K

(j)
i,1−xj+1[i]

,0)

Analysis of game indistinguishability. We complete the proof by showing that
adjacent hybrid games are indistinguishable. For any adversary A and game
Game s, we denote by AdvAs (λ), the probability that A wins in Game s. For
ease of exposition, in the sequel we use Game 0.3 to denote Game 0.

Lemma 4.2. If IBE is a secure IBE scheme, then for any PPT adversary A
and k ∈ [t+ 1], we have that AdvAk.1(λ)−AdvAk.2(λ) ≤ negl(λ) for some negligible
function negl(·).

Proof. Suppose for contradiction thatA is a PPT adversary for which AdvAk.1(λ)−
AdvAk.2(λ) = ε, where ε is non-negligible. We give a reduction B which uses A to
break the security of IBE. In particular, our reduction B will break the multi-
challenge security of IBE.

The reduction algorithm B plays a game with an IBE challenger. The reduc-
tion B samples a bit β ← {0, 1}. The challenger chooses (pp,msk)← IBE.Setup(1λ)
and sends pp to B who forwards it to A. Next, A submits a key query for ma-
chine T to the reduction B. Let IDT denote the set of identities corresponding
to machine T as per Eq. (1). B then makes a key query for every identity in IDT
to the challenger, and let S denote set containing all the secret keys sent by the
challenger to B. The reduction B then set skT = S, and it sends skT to A. Now,
A submits two challenge messages (m0,m1) and the challenge attribute and time
bound (w, 1t) to B. The reduction B now computes the challenge ciphertext ct∗

as in Game k.1, except for how it computes the IBE ciphertexts which constitute
the output of the k-th simulated program in step 3 of the challenge phase.

Let xk be the n+2 bit representation of (qout
k−1, b

out
k−1, b

dir
k−1), and let {K(k)

i,b }(i,b)
be the set of SKE secret keys chosen in step 2. First, for each i ∈ [n+ 2], B com-

putes ct
(k)
i,xk[i]

← IBE.Enc(pp,K
(k)
i,xk[i]

, (qin
k , b

in
k , i, xk[i])). Next, it sends {(K(k)

i,1−xk[i]
,0, (qin

k , b
in
k , i, 1−

xk[i]))}i∈[n+2] as its challenge vector of message-identity tuples. (Recall that we
are considering the multi-challenge version of IBE security.) Let {ct∗i }i denote the

set of challenge ciphertexts received by B. It then sets the ciphertexts ct
(k)
i,1−xk[i]

as ct
(k)
i,1−xk[i]

= ct∗i for i ∈ [n+ 2]. The remaining portion of the challenge cipher-

text is computed as in Game k.1.
Finally, after sending the challenge ciphertext to A, the adversary outputs

a bit γ. If γ = β, then B guesses 0 to the challenger signalling that ciphertexts
{ct∗i }i encrypt the PRF keys. Otherwise, B guesses 1 to the challenger signalling
they encrypt all zeros. Observe that the reduction B perfectly simulates the
view of Game k.1 and k.2 to A, respectively, depending upon the challenger’s
bit. Note that B is an admissible adversary as per the multi-challenge IBE game,

25



since the adversary A makes only a single key query for machine T such that T
does not accept w after t steps, and the IBE keys queried by B are completely
disjoint with the set of challenge identities. Thus, the lemma follows.

Lemma 4.3. If SKE is a secure secret key encryption scheme, then for any PPT
adversary A and k ∈ [t + 1], we have that AdvAk.2(λ) − AdvAk.3(λ) ≤ negl(λ) for
some negligible function negl(·).

Proof. We prove this lemma by sketching a sequence of n+3 intermediate hybrid
games Game k.2.h, for each h ∈ [0, . . . , n+ 2]. Game k.2.h is defined similar to
Game k.2, except for how the challenge ciphertext is computed. In particular in
Game k.2.h, we change how the challenger proceeds in step 5 of computing the

challenge ciphertext. Concretely, it computes the ciphertexts c̃t
(j)
i,b as follows:

(i, b, j) ∈ [n+ 2]× {0, 1} × [k + 1, t]
∪ [h+ 1, n+ 2]× {0, 1} × {k} , c̃t

(j)
i,b ← SKE.Enc(K

(j)
i,b , lab

in,j+1
i,b ),

(i, j) ∈ [n+ 2]× [k − 1]
∪ [h]× {k} ,

c̃t
(j)
i,xj+1[i] ← SKE.Enc(K

(j)
i,xj+1[i]

, labin,j+1
i ),

c̃t
(j)
i,1−xj+1[i] ← SKE.Enc(K

(j)
i,1−xj+1[i]

,0)

In short, for each i ≤ h, if b 6= xk+1[i], the encryption of label labin,k+1
i,b is replaced

with an encryption of 0. All other steps are identical to Game k.2. It is immediate
that Game k.2.0 is identical to Game k.2 and that Game k.2.(n+ 2) is identical
to Game k.3. We claim that if SKE is a secure secret key encryption scheme, that
for any A and h ∈ [n+ 2] that AdvAk.2.h(λ)−AdvAk.2.(h−1)(λ) ≤ negl′(λ) for some

negligible function negl′(λ). The lemma follows immediately from this claim.
Suppose for contradiction that A is a PPT adversary for which AdvAk.2.h(λ)−

AdvAk.2.(h−1)(λ) = ε, where ε is non-negligible. We give a reduction B which uses
A to break the security of SKE. The reduction B samples a bit β ← {0, 1}.
It then chooses (pp,msk) ← IBE.Setup(1λ), and forwards pp to the adversary
A. The challenger chooses K ← SKE.Setup(1λ). Next, A submits a key query
for machine T to the reduction B. The reduction B computes skT as in Game
k.2.(h−1) (equivalently k.2), and sends skT to A. Now, A submits two challenge
messages (m0,m1) and the challenge attribute and time bound (w, 1t) to B.
The reduction B now computes the challenge ciphertext ct∗ as in Game k.2.h,

except it computes the ciphertext c̃t
(k)
h,1−xk+1[h]

by quering the SKE challenger
on appropriate challenge messages.

Here xk denotes the n + 2 bit representation of (qout
k−1, b

out
k−1, b

dir
k−1). First, B

sample all the SKE secret keys except the key K
(k)
h,1−xk+1[h]

which is implicitly

set to the challenger’s secret key. The reduction B sends the challenge messages
m0 = labin,k+1

h,1−xk+1[h]
and m1 = 0, and let ct′ denote the challenger’s response.

B now sets c̃t
(k)
h,1−xk+1[h]

= ct′, while for all other (j, i, b) 6= (k, h, 1 − xk+1[h]),

it computes c̃t
(j)
i,b as in Game k.2.h. The remaining portion of the challenge

ciphertext is computed as in Game k.2.h.
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Finally, after computing the challenge ciphertext ct∗, B sends it to A. The
adversary A now sends B its guess β′′. If β′′ = β, B guesses 0 to the challenger.
Otherwise, B guesses 1 to the challenger. Observe that when β′ = 0, the reduction
B perfectly simulates the view of Game k.2.(h − 1) to A. On the other hand,
when β′ = 1, the reduction B perfectly simulates the view of Game k.2.h to A.
It immediately follows that B has advantage ε against the SKE challenger, which
contradicts the security of SKE. This establishes the claim and thus the lemma.

Finally, after sending the challenge ciphertext to A, the adversary outputs a
bit γ. If γ = β, then B guesses 0 to the challenger signalling that ciphertext ct′

was an encryption of the garbled label. Otherwise, B guesses 1 to the challenger
signalling its encrypts all zeros. Observe that the reduction B perfectly simulates
the view of Game k.2.(h− 1) and k.2.h to A, respectively, depending upon the
challenger’s bit. Note that B is an admissible adversary as per the SKE game,

since the adversaryA does not need the SKE secret key K
(k)
h,1−xk+1[h]

for preparing

the challenge ciphertext as the garbled program which would have contained the
key is already being simulated. Thus, the lemma follows.

Lemma 4.4. If GRAM satisfies Iterated Simulation Security, then for any PPT
adversary A and 0 ≤ k ≤ t, we have that AdvAk.3(λ)− AdvAk+1.1(λ) ≤ negl(λ) for
some negligible function negl(·).

Proof. Suppose for contradiction thatA is a PPT adversary for which AdvAk.3(λ)−
AdvAk+1.1(λ) = ε, where ε is non-negligible. We give a reduction B which uses A
to break the Iterated Simulation Security property of GRAM.

The reduction algorithm B plays a game with a GRAM challenger. The re-
duction B samples a bit β ← {0, 1}. The reduction B then chooses (pp,msk)←
IBE.Setup(1λ), and sends pp to A. Next, A submits a key query for machine T
to the reduction B. The reduction B computes skT as it is computed in Game
k.3. Then, B sends skT to A. Now, A submits two challenge messages (m0,m1)
and the challenge attribute and time bound (w, 1t) to B. The reduction B now
computes the challenge ciphertext ct∗ as in Game k.3, except it simulates the
(k + 1)-th garbled program instead of computing honestly.

The reduction B sets up the database D as in Game k.3. Let x1 = 0n+2,
and for all other j let xj be the n+ 2 bit representation of (qout

j−1, b
out
j−1, b

dir
j−1). It

samples the random coins r
(j)
i,b and SKE secret keys K

(j)
i,b as in step 2. For each

j ∈ [t+ 1], the reduction B sets program Pj as

Pj := P [pp, {K(j)
i,b }(i,b),mβ , j; {r(j)i,b }(i,b)].

The reduction sends (k + 1, D, {(Pj , xj , n+ 2, (1 + (j − 1) · `, j · `))}j) to the chal-

lenger. The challenger, garbles the database D to compute D̃, and then honestly
garbles the programs Pj for j ∈ [k+2, t+1], while Pk+1 is either garbled honestly

or simulated, and remaining programs P̃j , for j ∈ [k], are simulated. Finally, the

challenger sends (D̃, {P̃j , {labin,j
i }i}j∈[k+1], {P̃j , {labin,j

i,b }i,b}j∈[k+2,t+1]) to B.
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From this point, the reduction simply computes the challenge ciphertext as
in Game k.3 but using the garbled database, programs, and input labels as pro-
vided by the challenger. Finally, after sending the challenge ciphertext to A,
the adversary outputs a bit γ. If γ = β, then B guesses 0 to the challenger sig-

nalling that P̃k+1 was honestly garbled. Otherwise, B guesses 1 to the challenger
signalling it was simulated. Note that since the reduction B does not need the
garbled labels for (k + 1)-th garbled program while preparing the challenge ci-
phertext thus it can perfectly simulate the view of Game k.3 and k + 1.1 to A,
respectively, depending upon the challenger’s bit. Thus, the lemma follows.

Lemma 4.5. For any adversary, A we have that AdvAt+1.1(λ) = 0.

Proof. This lemma is immediate, as in Game t + 1.1, the challenge ciphertext
consists only of simulated programs all of which are completely independent of
the challenge message mβ .

By combining the above lemmas, the theorem follows.
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