
Giving an Adversary Guarantees (Or: How to
Model Designated Verifier Signatures in a

Composable Framework)

Ueli Maurer1, Christopher Portmann2?, and Guilherme Rito1

1 Department of Computer Science, ETH Zürich, Switzerland
{maurer,gteixeir}@inf.ethz.ch

2 Concordium, Zürich, Switzerland
cp@concordium.com

Abstract. When defining a security notion, one typically specifies what
dishonest parties cannot achieve. For example, communication is confi-
dential if a third party cannot learn anything about the messages being
transmitted, and it is authentic if a third party cannot impersonate the
real (honest) sender. For certain applications, however, security crucially
relies on giving dishonest parties certain capabilities. As an example, in
Designated Verifier Signature (DVS) schemes, one captures that only the
designated verifier can be convinced of the authenticity of a message by
guaranteeing that any dishonest party can forge signatures which look
indistinguishable (to a third party) from original ones created by the
sender.
However, composable frameworks cannot typically model such guarantees
as they are only designed to bound what a dishonest party can do.
In this paper we show how to model such guarantees—that dishonest
parties must have some capability—in the Constructive Cryptography
framework (Maurer and Renner, ICS 2011). More concretely, we give
the first composable security definitions for Multi-Designated Verifier
Signature (MDVS) schemes—a generalization of DVS schemes.
The ideal world is defined as the intersection of two worlds. The first
captures authenticity in the usual way. The second provides the guarantee
that a dishonest party can forge signatures. By taking the intersection
we have an ideal world with the desired properties.
We also compare our composable definitions to existing security notions
for MDVS schemes from the literature. We find that only recently, 23 years
after the introduction of MDVS schemes, sufficiently strong security no-
tions were introduced capturing the security of MDVS schemes (Damg̊ard
et al., TCC 2020). As we prove, however, these notions are still strictly
stronger than necessary.

? Work done while author was at ETH Zürich, Switzerland.

https://orcid.org/0000-0002-0080-8670

1 Introduction

1.1 Composable security

In a nutshell, composable security frameworks define security by designing an
ideal world and proving that the real world is indistinguishable [2, 5, 8, 12, 20, 22,
23,26]. Typically, one first designs an ideal functionality, which corresponds to
the functionality one wishes to achieve. For example, if one wants confidential
communication from Alice to Bob, then the ideal functionality allows Alice
to input messages, Bob to read messages, and guarantees that Eve can only
learn the length of the messages input by Alice. Eve could additionally be given
extra capabilities that do not violate confidentiality, e.g. inputting messages. A
simulator is then connected to this ideal functionality, covering the idealized
inputs and outputs available to dishonest parties and providing “real” inputs
and outputs to the environment (that should be indistinguishable from those of
the real world). Let S denote an ideal functionality, and simS the ideal world
consisting of S with some simulator sim attached. Since any (efficient) simulator
sim ∈ Ω is acceptable, one can alternatively view the ideal world as the set of all
possible acceptable ideal worlds:

S = {simS}sim∈Ω . (1.1)

A security proof then shows that the real world R (also modeled as a set) is a
subset of the ideal world S. Since sim covers the dishonest parties’ interfaces of
S, it can only further limit the capabilities of dishonest parties. For example, an
ideal functionality for confidentiality might allow a third party to change Alice’s
message, but if this is not possible in the real world, the simulator can disallow
the environment to use that capability. This structure of the ideal world makes it
impossible for traditional composable frameworks to provide guarantees about a
dishonest party’s capabilities, because these might be blocked by the simulator.

Some prior works using the Constructive Cryptography (CC) framework
[14, 23] have noted that the ideal world does not have to be structured as in
Eq. (1.1). In particular, the simulator does not have to necessarily cover all
dishonest parties’ interfaces (or might not be present at all). This relaxed view
of the ideal world allows one to define composable security notions capturing
the security of schemes whose security could not be modeled by traditional
composable frameworks. In this work we crucially exploit this to give the first
composable security notions for Multi-Designated Verifier Signature schemes. We
refer the interested reader to [3] to see how to model Digital Signature Schemes
(DSS) in CC, and to [14] for an extended introduction to CC, in which some of
the novel techniques used here were first applied.

1.2 MDVS schemes

Designated Verifier Signature (DVS) schemes are a variant of DSS that allow a
signer to sign messages towards a specific receiver, chosen (or designated) by the

2

signer [9, 11, 13, 16–19, 27–30, 32]. The goal of these schemes is to establish an
authentic communication channel, say from a sender Alice to a receiver Bob, where
the authenticity property is exclusive to the receiver Bob designated by Alice, i.e.
Bob and only Bob can tell whether Alice actually sent some message authentically.
In Multi-Designated Verifier Signature (MDVS) schemes [9,11,13,16,32], multiple
receivers may be designated verifiers for the same message, e.g. Alice signs
a message so that both Bob and Charlie can verify that Alice generated the
signature, but a third party Eve would not be convinced that Alice signed it.
This should hold even if a verifier is dishonest, say Bob, and provides his secret
keys to Eve. MDVS schemes achieve this by guaranteeing that Bob could forge
signatures that would look indistinguishable to Eve from Alice’s signatures—but
Charlie could distinguish the two using his secret key, thus authenticity with
respect to the designated verifiers is not violated.

MDVS schemes have numerous applications: from secure messaging (and
in particular secure group messaging for the multi-verifier case) [11], to online
auctions wherein all bidders place their binding-bids in a non-interactive way,
and the highest bidder wins. In the case of online auctions a bidder Bob would
then sign its bid to both the auctioneer Charlie and his bank Blockobank, and
if Bob wins Charlie would then sign a document stating Bob is the winner of
the auction; the winner could also be kept anonymous by having Charlie signing
such document only with respect to Bob, its bank Blockobank and any other
official entity needed to confirm Bob’s ownership of the auctioned item.

While composable security notions for DSS are well understood [1, 3, 5, 6],
the literature on (M)DVS schemes provides only a series of different game-based
security definitions—which we discuss in detail in Sect. 5—capturing a variety
of properties that an MDVS scheme could possess. By defining the ideal world
for an MDVS scheme in this work, we can compare the resulting composable
definition to the game-based ones and determine which security properties are
needed. It turns out that crucial properties for the security of MDVS schemes
like consistency—all (honest) designated verifiers will either accept or reject the
same signature—and security against any subset of dishonest verifiers were only
introduced very recently [11].

1.3 Contributions

Providing guarantees to Dishonest Parties. To capture that a dishonest party
is guaranteed to have some capability, we introduce a new type of ideal world
specification, which we sketch in this section. The first step consists in defining a
set of ideal functionalities (called resources or resource specification in CC [22,23])
that have the required property. For example, in the case of MDVS schemes,
we want a dishonest receiver to be able to generate a valid signature. This
corresponds to a channel in which both Alice (the honest sender) and Bob (the
dishonest receiver) may insert messages. Thus anyone reading from that channel

would not know if the message is from Alice or Bob. Let X̂ denote such a set.
The ideal worlds we are interested in are those in which a dishonest receiver

3

could achieve this property if they run an (explicit) forging algorithm π. Thus,
the ideal world of interest is defined as

X =
{

X : πX ∈ X̂
}
, (1.2)

where πX denotes a resource X with the algorithm π being run at the dishonest
receivers’ interface of X.

Similar techniques could be used to model ideal worlds for ring signatures [4,27]
or coercibility [22,31].

Composable Security Notions for MDVS Schemes. We then use the technique
described above to define composable security for MDVS schemes. For example,
if one considers a fixed honest sender and a fixed set of designated verifiers
(some of which may be dishonest), then an MDVS scheme is expected to achieve
authenticity with respect to the honest verifiers, but this authenticity should be
exclusive to them, meaning that any dishonest player should be able to generate
a signature that would fool a third party Eve. Authenticity is captured in the
usual way (see, e.g. [3]), as in Eq. (1.1), i.e. we define an authentic channel A
from Alice to the honest verifiers, and the ideal world is given by a set

A = {simA}sim∈Ω . (1.3)

The exclusiveness of the authenticity is defined with a (set of) ideal world(s)
as in Eq. (1.2). Both properties are then achieved by taking the intersection of
the two, namely by proving that for the real world R we have

R ⊆ A ∩X .

Comparison With Existing Notions for MDVS. Now that the composable security
notion is defined, we compare it to the game-based definitions from the literature.
It turns out that only the most recent definitions from [11] are sufficient to
achieve composable security.

More precisely, we prove reductions and a separation between our composable
security definition and the games of [11]. Our statements imply the following:

– any MDVS scheme which is Correct, Consistent, Unforgeable and Off-The-
Record (according to [11]) can be used to construct the ideal world for
MDVS;

– there is an MDVS scheme which satisfies the composable definition, but
which is not Off-The-Record (as defined in [11]).

1.4 Structure of this paper

In Sect. 2 we start by introducing the concepts from CC [14,20,22,23] that are
needed to understand the framework. We also define repositories which are the
resources we use in this work for communication between parties jointly running
a protocol (see also [3]). In Sect. 3 we consider a setting in which the sender and

4

designated receivers are fixed and publicly known. This allows us to define the
ideal worlds and the corresponding composable security definition in a simpler
setting. Also for simplicity, we only require that dishonest delegated verifiers
have the ability to forge signatures, not third parties. We then prove that the
security games from [11] are sufficient to imply composable security. In Sect. 4
we model the more general setting where the sender and designated receivers
can be arbitrarily chosen. As before, we model composable security and prove
that the security games from [11] are sufficient to achieve composable security in
this setting as well. But we also prove a seperation between the Off-The-Record
game from [11] and the composable security defintion, showing that this game
is stronger than necessary. Note that in this section any dishonest party should
be able to forge signatures, not only the dishonest designated verifiers. Finally,
in Sect. 5 we discuss the literature related to MDVS schemes and some of the
issues in previous security definitions.

2 Constructive Cryptography

The Constructive Cryptography (CC) framework [20,22] views cryptography as a
resource theory: protocols construct new resources from existing (assumed) ones.
For example, a CCA-secure encryption scheme constructs a confidential channel
given a public key infrastructure and an insecure channel on which the ciphertext
is sent [10]. The notion of resource construction is inherently composable: if a
protocol π1 constructs R from S and π2 constructs T from S, then running
both protocols will construct T given that one initially has access to R.3

In this section we first review the building blocks of CC in Sect. 2.1. We explain
how security is defined in Sect. 2.2. Then in Sect. 2.3 we model a specific type
of resources, namely repositories, which is an abstract model of communication.
Throughout the rest of the paper, for any set of parties S, we denote by SH the
partition of S containing all honest parties, and SH the partition containing all
dishonest parties, such that S = SH] SH . The set of all parties is denoted P.

2.1 Resource Specifications, Converters, and Distinguishers

Resource. A resource is an interactive system shared by all parties, e.g. a channel
or a key resource—and is akin to an ideal functionality in UC [5]. Each party can
provide inputs and receive outputs from the resource. We use the term interface
to denote specific subsets of the inputs and outputs, in particular, all the inputs
and outputs available to a specific party are assigned to that party’s interface. For
example, an insecure channel INS allows all parties to input messages at their
interface and read the contents of the channel. A confidential channel resource
CONF shared between a sender Alice, a receiver Bob and an eavesdropper Eve
allows Alice to input messages at her interface; it allows Eve to insert her own
messages and it allows her to duplicate Alice’s messages, but not to read them4;

3 For a formal statement of the composition theorem used here we refer to [14,23].
4 More precisely, the CONF channel only allows Eve to read the length of messages.

5

and it allows Bob to receive at his interface any of the messages inserted by Alice
or Eve. As another example, an authenticated channel from Bob to Alice (AUT)
allows Bob to send messages through the channel and allows Alice and Eve to
read messages from the channel.

Formally, a resource is a random system [24, 25], i.e. it is uniquely defined by
a sequence of conditional probability distributions. For simplicity, however, we
usually describe resources by pseudo-code.

If multiple resources {Ri}ni=1 are simultaneously accessible, we write R =
[R1, . . . ,Rn], or alternatively R = [Ri]i∈{1,...,n}, for the new resource obtained
by the parallel composition of all Ri, i.e. R is a resource that provides each party
with access to the (sub)resources Ri.

Converter. A converter is an interactive system executed either locally by a
single party or cooperatively by multiple parties. Its inputs and outputs are
partitioned into an inside interface and an outside interface. The inside interface
connects to (those parties’ interfaces of) the available resources, resulting in a
new resource. For instance, connecting a converter α to Alice’s interface A of
a resource R results in a new resource, which we denote by αAR. The outside
interface of the converter α is now the new A-interface of αAR. Thus, a converter
may be seen as a map between resources. Note that converters applied at different
interfaces commute, i.e. βBαAR = αAβBR.

A protocol is given by a tuple of converters π = (πPi
)Pi∈PH , one for each

(honest) party Pi ∈ PH . Simulators are also given by converters. For any set S
will often write πSR for (πPi)Pi∈SR. We also often drop the interface superscript
and write just πR when it is clear from the context to which interfaces π connects.

For example, suppose Alice and Bob share an insecure channel INS and a
single use authenticated channel from Bob to Alice AUT and suppose that Alice
runs a converter enc and Bob runs a converter dec, and that these converters
behave as follows: First, converter dec generates a public-secret key-pair (pk,sk)
for Bob and sends pk over the single-use authenticated channel AUT to Alice.
Each time a message m is input at the outside interface of enc, the converter uses
Bob’s public key pk—which it received from AUT—to compute a ciphertext
c = Encpk(m); it then sends this ciphertext over the insecure channel to Bob
(via the inside interface of enc connected to INS). Each time Bob’s decryption
converter dec receives a ciphertext c from the INS channel, it uses Bob’s secret
key sk to decrypt c, obtaining a message m = Decsk(c), and if m is a valid
plaintext, the converter then outputs m to Bob (via the outside interface of the
converter). The real world of such a system is given by

decBencA[AUT, INS]. (2.1)

Specification. Often one is not interested in a unique resource, but in a set
of resources with common properties. For example, the confidential channel
described above allows Eve to insert messages of her own. Yet, if she did not have
this ability, the resulting channel would still be a confidential one. We call such a

6

set a resource specification (or simply also a resource), and denote it with a bold
calligraphic letter, e.g. a specification of confidential channels could be defined as

T = {simECONF}sim∈Ω (2.2)

where Ω is a set of converters (the simulators) that are applied at Eve’s interface.5

Parallel composition of specifications R and S, and composition of a converter
α and a specification R follow by applying the operations elementwise to the
resources R ∈R and S ∈ S.

Distinguisher. To measure the distance between two resources we use the
standard notion of a distinguisher, an interactive system D which interacts with
a resource at all its interfaces, and outputs a bit 0 or 1. The distinguishing
advantage for distinguisher D is defined as

∆D(R,S) := Pr [DS = 1]− Pr [DR = 1]

where DR and DS are the random variables over the output of D when it
interacts with R and S, respectively.

Relaxation. Typically one proves that the ability to distinguish between two
resources is bounded by some function of the distinguisher, e.g. for any D,

|∆D(R,S)| ≤ ε(D)

where ε(D) might be the probability that D can win a game or solve some finite
instance of a problem believed to be hard.6

This distance measure then naturally defines another type of specification,
namely an ε-ball: for a resource specification R, the ε-ball around R is given by

Rε :=
⋃

R∈R
{S : ∀D, |∆D(R,S)| ≤ ε(D)}. (2.3)

If one chooses a function ε(D) which is small for a certain class of distinguishers
D—e.g. ε(D) is small for all D that cannot be used to solve (a finite instance of)
a problem believed to be hard, as described in Footnote 6—but potentially large
for other D, then we have a specification of resources that are indistinguishable
(to the distinguishers in the chosen class) from (one of) those in R.

5 The definition of the set Ω may depend on the context, e.g. whether one is interested in
bounded run time, bounded memory, and whether one is making finite or asymptotic
statements.

6 Formally, one first finds an (efficient) reduction χ which constructs a solver S =
χ(D) from any distinguisher D. Then one bounds the distance |∆D(R,S)| with
a function of the probability that χ(D) succeeds is solving some problem, i.e.,
ε(D) := f(Pr[χ(D) succeeds]) for an f that does not significantly alter the probability
of success. Thus for any D that cannot be used to solve the problem, |∆D(R,S)|
must be small.

7

Remark 1 (Finite vs. Asymptotic security statements). In this paper, rather than
making asymptotic security statements (where one considers the limit k →∞
for security parameter k) we make a security statement for each possible k ∈ N.
Specifications, resources, converters and distinguishers are then defined for a fixed
security parameter k. If needed, one can obtain the corresponding asymptotic
statements by defining sequences of resources, converters and distinguishers and
then making a statement about the limit behavior of these sequences when
k →∞.

2.2 Composable Security

We now have all the elements needed to define a cryptographic construction.

Definition 1 (Cryptographic Construction [14,23]). Let R and S be two
resource specifications, and π be a protocol for R. We say that π constructs S
from R if

πR ⊆ S. (2.4)

For example, in the case of constructing the confidential channel described
above, the real world is the singleton set with the element given in Eq. (2.1), and
the ideal world is given by an ε-ball around the set of confidential channels given
in Eq. (2.2), i.e. to prove security one would need to show that

decBencA{[AUT, INS]} ⊆ ({simECONF}sim∈Ω)ε. (2.5)

Equation (2.5) is equivalent to the more traditional notation of requiring the
existence of a simulator sim such that for all D,

|∆D(decBencA[AUT, INS], simECONF)| ≤ ε(D).

But the formulation in Definition 1 is more general and allows other types of ideal
worlds to be defined than the specification obtained by appending a simulator at
Eve’s interface of the ideal resource and taking an ε-ball.

Remark 2 (Asymptotic Construction). As pointed out in Remark 1, specifications,
resources, converters and distinguishers are defined for a fixed security parameter
k. The specifications and converters in Definition 1 are then to be interpreted
as being defined for a concrete security parameter k, and Eq. (2.4) is to be
understood as a statement about a fixed k, i.e.

πkRk ⊆ Sk. (2.6)

For simplicity we omit the security parameter whenever it is clear from the context,
and thus will simply write as in Eq. (2.4). If one wishes to make an asymptotic
security statement then one defines efficient families {πk}k∈N, {Rk}k∈N, {Sk}k∈N
and shows that Eq. (2.6) holds asymptotically in k, meaning that there is a
family −→ε := {εk}k∈N of ε-balls such that πkRk ⊆ (Sk)εk , and for any efficient

family of distinguishers
−→
D := {Dk}k∈N, the function −→ε (

−→
D) : N→ R defined as

−→ε (
−→
D)(k) := εk(Dk) is negligible.

8

Remark 3 (Modeling different sets of (dis)honest parties). When one is interested
in making security statements for different sets of (dis)honest parties it is not
sufficient to make a single statement as in Definition 1. Instead, one makes a
statement for each relevant set of (dis)honest parties. For example, let π be
the protocol defining a converter πi for each party Pi ∈ P. For every relevant

subset of honest parties PH ⊆ P, letting RP
H

and SP
H

denote, respectively,
the available resources’ specifications—the real world—and the desired resources’
specifications—the ideal world—one needs to prove that

πP
H

RP
H

⊆ SP
H

,

where πP
HRP

H

denotes the attachment of each converter πi—run by honest

party Pi ∈ PH as ascribed by the protocol π—to RP
H

. In this paper, although
we will make statements of this format, i.e. modeling different sets of (dis)honest
parties, we will drop the superscript PH from the notation of the converters and
specifications, whenever clear from the context.

2.3 Access Restricted Repositories

We formalize communication between different parties as having access to a
repository resource. More specifically, a repository consists of a set of registers
and a single buffer containing register identifiers; a register is a pair reg = (id,m),
which includes the register’s identifier id (uniquely identifying the register among
all repositories), and a message m ∈M (where M is the message space of the
repository7). Access rights to a repository are divided in three classes: write access
allows a party to add messages to a repository, read access allows a party to read
all the messages in a repository, and copy access allows a party to make duplicates
of messages already existing in the repository (without necessarily being able
to read the messages).8 Let P be the set of all parties, and let W ⊆ P, R ⊆ P
and C ⊆ P denote the parties with write, read and copy access to a repository
rep, respectively. We will write CrepWR whenever it is needed to make the access
permissions explicit. Though we may drop them and only write rep whenever
clear from the context. For example, in the three party setting with sender
Alice, receiver Bob and dishonest Eve, i.e. P = {A,B,E}, the insecure channel
mentioned in Sect. 2.1—which allows all parties to read and write—is given by

INSPP ;9 an authentic channel from Alice to Bob is given by {E}AUT
{A}
{B,E}; for

fixed-length message spaces, the confidential channel mentioned in Sect. 2.1 is

7 In analogy to Remark 1 we consider that a repository defined for security parameter k
has message spaceMk; for a family of repositories one then considers a corresponding

family of message spaces
−→
M := {Mk}k∈N. Since most statements are made for a

fixed parameter k, we usually omit k from the notation, writing M instead.
8 Copy access is used to capture the capability that dishonest parties have for copying

or resending (modifications of) whatever they see; modeling this capability is crucial
for some of the security proofs.

9 Since all parties can read and write, copying capabilities are redundant.

9

given by {E}CONF
{A,E}
{B} . The exact semantics of such an (atomic) repository

are defined in Algorithm 1.

Algorithm 1 Repository CrepWR for the set of parties P.

Initialization
Buffer ← ∅

(P ∈ W)-Write(m ∈ M)
id ← NewRegister(m)
Buffer ← id
P -Output(id)

(P ∈ R ∪ C)-ReadBuffer
P -Output(Buffer)

(P ∈ R)-ReadRegister(id)
P -Output(GetMessage(id))

(P ∈ C)-CopyRegister(id)
m← GetMessage(id)
id′ ← NewRegister(m)
Buffer ← id′

P -Output(id′)

Parties will typically have access to many repositories simultaneously, e.g. an
authentic repository from Alice to Bob and one from Alice to Charlie. One could
model this as providing all these (atomic) repositories in parallel to the players,
i.e.

[C1rep1
W1

R1
, . . . , Cnrepn

Wn

Rn
]. (2.7)

However, this would mean that to check for incoming messages, a party would
need to check every possible atomic repository repi, which could be inefficient if
the number of atomic repositories is very high. Instead, we define a new resource
REP which is identical to a parallel composition of the atomic repositories,
except that it allows parties to efficiently check for incoming messages (rather
than requiring parties to poll each atomic repository repi they have access to).
Abusing notation, we denote such a resource as in Eq. (2.7), namely

REP = [C1rep1
W1

R1
, . . . , Cnrepn

Wn

Rn
]. (2.8)

The new resource REP allows every party with read or copy access to issue a
single ReadBuffer operation that returns a list of pairs, each pair containing
a register’s identifier and a label identifying the atomic repository in which
the register was written. In addition, it provides single ReadRegister and
CopyRegister operations which return the contents of the register with the
given id and copy the register with the given id, respectively. Write operations
for REP additionally have to specify the atomic repository for which the operation
is meant. The exact semantics of REP are defined in Algorithm 2.

3 Modeling MDVS with Fixed Sender and Receivers

One can find multiple definitions of Multi-Designated Verifier Signature (MDVS)
schemes in the literature [9, 11, 16, 32]. In this paper, we define an MDVS Π
as a 5-tuple Π = (Setup,GS ,GV ,Sign,Vfy) of Probabilistic Polynomial Time

10

Algorithm 2 Repository REP = [C1rep1
W1

R1
, . . . , Cnrepn

Wn

Rn
] for a set of parties

P.

Initialization
for each repi ∈ REP do

repi-Initialization

(P ∈ P)-Write(repi, m ∈ M)
Require: (P ∈ Wi)

id ← repi-Write(m)
P -Output(id)

(P ∈ P)-ReadBuffer
outputList ← ∅
for each repi ∈ REP do

if P ∈ Ri ∪ Ci then
for each id ∈ repi-ReadBuffer

do
outputList ← (id, repi)

P -Output(outputList)

(P ∈ P)-ReadRegister(id)
Require: P ∈ Ri for id ∈ repi-ReadBuffer

m← repi-ReadRegister(id)
P -Output(m)

(P ∈ P)-CopyRegister(id)
Require: P ∈ Ci for id ∈ repi-ReadBuffer

id′ ← repi-CopyRegister(id)
P -Output(id′)

algorithms (PPTs), following [17]. Setup takes the security parameter as input,
and produces public parameters (pp) and a master secret key (msk),

(pp, msk)← Setup(1k).

These are then used by GS and GV to generate pairs of public and secret keys
for the signers and verifiers, respectively,

(spk1, ssk1)← GS(pp, msk), . . . (spkm, sskm)← GS(pp, msk),

(vpk1, vsk1)← GV (pp, msk), . . . (vpkn, vskn)← GV (pp, msk).

Finally, the signing algorithm Sign requires the signer’s secret key and the public
keys of all the verifiers, and the verifying algorithm Vfy requires the signer’s
public key, the secret key of whoever is verifying and the public keys of all verifiers.
For example suppose that party A is signing a message m for a set of verifiers V
and that B ∈ V verifies the signature, then

σ ← Sign(pp, sskA, {vpki}i∈V ,m)

b← Vfy(pp, spkA, vskB , {vpk}i∈V ,m, σ),

where b = 1 if the verification succeeds and b = 0 otherwise.

In this section we consider a fixed sender A, a fixed set of receivers R =
{B1, . . . , Bn} and one eavesdropper E that is neither sender nor receiver, and
is always dishonest. The set of parties is then given by P = {A,B1, . . . , Bn, E}.
Furthermore, we assume that sender A always designates R as the set of des-
ignated receivers for the messages it sends. This means in particular that if all
receivers are honest then E always learns when A sends a message (as no other
party can send messages).

11

3.1 Real-World

To communicate, each party in P has access to an insecure repository INS :=
INSk (for a fixed security parameter k) to which everyone can read from and
write to (recall Sect. 2.3). In addition, parties also have access to a Key Generation
Authority (KGA), which generates and stores the parties’ key pairs.10 For a fixed
security parameter k, the KGA := KGAk resource runs the Setup algorithm
giving it the (implicit) parameter k, and then generates and stores all key pairs for
the sender A and each receiver in R, using GS and GV , respectively. Every honest
party can then query their own public-secret key pair, the public parameters and
everyone’s public key at their own interface. Dishonest parties can additionally
query the public-secret key pairs of any other dishonest party. The semantics of
the KGA resource is defined in Algorithm 3.11

Algorithm 3 Key Generation Authority resource KGA for MDVS scheme
Π = (Setup,GS ,GV ,Sign,Vfy) with a set of senders S (= SH] SH) and set of

receivers R (= RH]RH). In the following, k is the implicitly defined security

parameter (i.e. KGA := KGAk), and PH the set of all dishonest parties.

Initialization
Sign-Keys ← ∅
Vfy-Keys ← ∅
(pp, msk)← Π.Setup(1k)
for each Ai ∈ S do

(spki, sski)← Π.GS(pp, msk)
Sign-Keys ← (Ai, (spki, sski))

for each Bj ∈ R do
(vpkj , vskj)← Π.GV (pp, msk)

Vfy-Keys ← (Bj , (vpkj , vskj))

(P ∈ P)-PublicParameters
P -Output(pp)

(Ai ∈ SH)-SignerKeyPair
(spki, sski)← Sign-Keys(Ai)
Ai-Output(spki, sski)

(P ∈ PH)-SignerKeyPair(Ai ∈ SH)
(spki, sski)← Sign-Keys(Ai)
P -Output(spki, sski)

(P ∈ P)-SignerPublicKey(Ai ∈ S)
(spki, sski)← Sign-Keys(Ai)
P -Output(spki)

(Bj ∈ R)-VerifierKeyPair
(vpkj , vskj)← Vfy-Keys(Bj)

Bj-Output(vpkj , vskj)

(P ∈ PH)-VerifierKeyPair(Bj ∈ RH)
(vpkj , vskj)← Vfy-Keys(Bj)

P -Output(vpkj , vskj)

(P ∈ P)-VerifierPublicKey(Bj ∈ R)
(vpkj , vskj)← Vfy-Keys(Bj)

P -Output(vpkj)

The sender A runs a converter Snd (locally) and each receiver Bj ∈ R runs a
converter Rcv (also locally). This means sender A can send messages by simply
running its converter Snd, and each receiver can receive messages by simply
running its converter Rcv.

10 The purpose of having an explicit KGA resource is guaranteeing that receivers
know their secret keys, which is crucial for being able to achieve the exclusiveness of
authenticity guarantee of MDVS schemes [13,29].

11 Algorithm 3 defines the behavior of KGA in the case of multiple senders, which will
only be used in Sect. 4.

12

The Snd converter connects to INS and KGA at its inner interface, and has
an outer interface that is identical to the interface of a repository for a party who is
a writer, i.e. it provides a procedure Write which takes as input a label 〈Ai → V〉
defining the sender Ai and set of receivers V and a message m ∈M to be signed.
Snd then gets the necessary keys and public parameters from KGA, signs the
input message m using the algorithm Sign, which outputs some signature σ ∈ S,
and then writes (m,σ, (Ai,V)) into the insecure repository INS. For simplicity,
since in this section the label is always 〈A→ R〉 it is simply omitted. In addition,
rather than making the Snd converter always write (m,σ, (A,R)) tuples into
INS, we omit (A,R) and simply write (m,σ) pairs instead. The exact (simplified)
semantics for converter Snd is given in Algorithm 4.

Algorithm 4 Snd converter for A ∈ SH .

(A ∈ SH)-Write(m ∈ M)
pp← A-PublicParameters
(spk, ssk)← A-SignerKeyPair
for each Bl ∈ R do
{vpkl} ← A-VerifierPublicKey(Bl)

σ ← Π.Sign(pp, ssk, {vpkl}Bl∈R,m)

id ← A-Write(m,σ)
return id

Similarly to Snd, the Rcv converter connects to KGA and INS at its inner
interfaces and provides the same outer interface as a repository for a party with
read access, i.e. it gives access to two read operations, namely ReadBuffer
and ReadRegister. The behavior of Rcv for each such read operation is speci-
fied by means of a procedure with the same name (i.e. a ReadBuffer and a
ReadRegister procedure). The ReadBuffer procedure first reads all tuples
(m,σ, (Ai,V)) written into INS—by issuing a ReadBuffer operation to INS
followed by a series of ReadRegister operations, one for each id returned by the
first operation—and for each tuple satisfying Ai = A and V = R, the converter
verifies whether σ is a valid signature on m with respect to sender A and set of
receivers R. To this end, the Rcv converter first fetches all the public parameters
and keys needed from KGA, and then checks if σ is a valid signature on m with
respect to the public keys of the sender A and of each receiver in R using the
Vfy algorithm defined by the underlying MDVS scheme Π. The converter then
outputs a list of pairs—one for each register stored in INS containing a valid
message-signature pair according to Vfy and with respect to A and R—where
each pair contains a register’s id and a label 〈A→ R〉. Since in this section the
label is always the same, we simply omit it. The ReadRegister procedure of
the Rcv converter receives as input the id of the register to be read; if the register
contains a valid tuple (in the same sense as above) the procedure then outputs
the message contained in the register. The exact (simplified) semantics for the
Rcv converter is given in Algorithm 5.

13

Algorithm 5 Rcv converter for Bj ∈ RH .

(Bj ∈ RH)-ReadBuffer
return Bj-GetValidIds

(Bj ∈ RH)-ReadRegister(id)
if id ∈ Bj-GetValidIds then

(m,σ)← Bj-ReadRegister(id)
return m

(Bj ∈ RH)-GetValidIds . Local procedure. Operation not available at outside interface.
pp← Bj-PublicParameters
(vpkj , vskj)← Bj-VerifierKeyPair

spk← Bj-SignerPublicKey(A)
for each Bl ∈ R do
{vpkl} ← Bj-VerifierPublicKey(Bl)

validIds← ∅
for each id ∈ Bj-ReadBuffer do

(m,σ)← Bj-ReadRegister(id)
if Π.Vfy(pp, spk, vskj , {vpkl}Bl∈R,m, σ) then

validIds← id
return validIds

In the case where the sender and all receivers are honest—i.e. PH = {A}∪RH
with RH = R—the real world specification is given by

SndARcvR
H

{[KGA, INS]}, (3.1)

where RcvR
H

= RcvB1 · · ·RcvBn denotes all receiver converters run at the inter-
faces of Bj ∈ RH . This is illustrated in Fig. 1. As explained in Remark 3 in
Sect. 2.2, if a party P is dishonest, then we simply remove their converter from
Eq. (3.1) to get the corresponding real world.

3.2 Ideal-Worlds

Whether the sender is honest or dishonest completely changes the guarantees
one wishes to give, and thus completely changes the ideal world. So we divide
this in two subsections, the first models a dishonest sender and the second an
honest sender. Recall that the third-party E is always dishonest.

Dishonest Sender. In case of a dishonest sender the only property the con-
struction must capture is consistency, namely that all honest receivers in RH
get the same messages (for any RH 6= ∅). This means that even if all dishonest

parties collude, including the sender A, the dishonest receivers RH and the
third-party E, they are unable to generate confusion within the honest senders
as to whether some message is authentic or not: either every receiver Bj ∈ RH
accepts a message as authentic or none does. A repository to which all honest
receivers have read access captures this guarantee. Since dishonest parties may
share secret keys with each other, any of them may have either read or write
access. The repository we want to construct is then

〈A→ R〉R
H∪{A,E}
R∪{A,E} ,

14

A

B1

B2

B3

E

KGA

INS

Rcv

Rcv

Snd

Fig. 1. Illustration of the real world system specified by Eq. (3.1) for the case where
R = {B1, B2, B3}, with RH = {B1, B2}.

where we have used 〈A→ R〉 as label to denote the repository. By considering a
set of converters Ω12 that could be run jointly at the dishonest parties’ interfaces,
one can then define the ideal world specification CFix

Ω capturing consistency as

CFix
Ω :=

{
simR

H∪{A,E}
[
〈A→ R〉R

H∪{A,E}
R∪{A,E}

]}
sim∈Ω

. (3.2)

Finally, we also want the ideal world to contain systems that are indistinguishable
from the perfect ones defined above, so we put an ε-ball around the ideal
resource.13 The ideal world is then (

CFix
Ω

)ε
.

Honest Sender. In the case of an honest sender, there are two properties that
we expect from an MDVS scheme. The first is that the (honest) designated
receivers can verify the authenticity of the message as coming from the actual
sender A. The second is that this authenticity is exclusive to the designated
receivers,14 i.e. a third party E cannot be convinced that any message was sent

12 We do not define Ω at this point, since in a finite setting there is no “good” and
“bad” system (efficient or inefficient, negligible or non-negligible). Instead, in the
theorem statement for a security proof we explicitly give the set Ω which is used, as
the meaningfulness of the theorem will depend on the choice of this set.

13 Like for Ω (see Footnote 12) we do not define acceptable ε here, but in a theorem
statement for a security proof we explicitly give the one used.

14 A third important property is correctness, but in our setting dishonest parties cannot
delete the messages of honest parties, so correctness follows from authenticity and
does not need to be considered separately.

15

by A, even if dishonest receivers leak all their secret keys to E.15 To this end,
MDVS schemes need to be such that every possible set of dishonest receivers
can (cooperatively) come up with forged signatures that are indistinguishable
from the real ones generated by A to the third-party E (who has access to the
dishonest receivers’ secret keys). Note, on the other hand, that honest designated
receivers are not “fooled” by signatures forged by dishonest (designated) receivers;
authenticity guarantees that honest designated receivers can verify whether it
was really A signing a message or otherwise.

Authenticity is straightforward to capture: it essentially corresponds to a
repository where only the sender can write, but everyone else can read. The only
twist is that dishonest parties might be able to duplicate messages written by
the sender A [3].16 So the repository we wish to be constructed is given by

RH∪{E}〈A→ R〉{A}R∪{E}.

As for consistency, by considering a set of converters Ω that could be run jointly at
the dishonest parties’ interfaces, one can then define the ideal world specification
AFix
Ω capturing authenticity as

AFix
Ω :=

{
simR

H∪{E}
[
RH∪{E}〈A→ R〉{A}R∪{E}

]}
sim∈Ω

. (3.3)

Here too, we extend the ideal world to also contain systems that are indistin-
guishable from those in Eq. (3.3) by adding a ε-ball around the specification.
The final ideal specification is thus(

AFix
Ω

)ε
.

Fig. 2 illustrates the ideal world systems from the AFix
Ω specification.

Finally, the notion of exclusiveness of authenticity is captured in a world
where there exists an (explicit) behavior π for the dishonest receivers that allows
them to generate signatures that look just like fresh signatures to any third party
E. This means that running π would result in a repository in which both the
honest sender A and all the dishonest receivers in RH can write and E can read,
namely17

〈A→ R〉{A}∪R
H

{E} . (3.4)

As usual, we extend the specification by attaching a converter sim at the dishonest
parties’ interfaces. However, sim is not allowed to block or cover the write ability

15 If all receivers are honest only A can send messages, and so in this case E just knows
that A must be the one sending messages.

16 They can do this either by creating a copy of a valid message-signature pair or by
sending the same message but with a different signature.

17 As one might note, the repository in Eq. (3.4) does not allow the honest designated
receivers RH to read. The reason for this is that the security statement does not
concern them, so we remove them from the security statement. In fact, due to
authenticity the honest designated receivers could distinguish signatures written by
Alice or forged by the dishonest receivers.

16

A

B1

B2

B3

E

RH∪{E}〈A→R〉{A}R∪{E}

simR
H∪{E}

Fig. 2. Illustration of an ideal world system from the AFix
Ω specification (Eq. (3.3)) for

the case where R = {B1, B2, B3}, with RH = {B1, B2}.

at the interfaces of the parties in RH , because we wish to guarantee that a
dishonest receiver can write to the repository.18 The specification providing the
guarantee that E cannot distinguish real signatures (created by A) from fake
ones (forged by the dishonest designated receivers) is given by

X̂
Fix

Ω :=
{
sim{E}

[
〈A→ R〉{A}∪R

H

{E}

]}
sim∈Ω

. (3.5)

Fig. 3 illustrates an ideal world system from X̂
Fix

Ω . As stated above, there must

exist a converter π that the dishonest receivers RH can run jointly to achieve a
resource in the specification from Eq. (3.5). Since dishonest receivers could have
run (and can run) π, a third party E cannot tell if the message was sent by them
or by the honest sender A even when given access to the keys of all dishonest
receivers (notice that E, being one of the dishonest parties, can query the KGA
to obtain the secret keys of any dishonest receiver). Putting things together, the
ideal world is defined as

XFix
Ω,π :=

{
V : πR

H⊥R
H

V ∈ X̂
Fix

Ω

}
, (3.6)

where ⊥RH

blocks the interfaces of all honest receivers RH .19 Fig. 4 illustrates

a possible real world system in the XFix
Ω,π specification with a converter ⊥RH

18 Traditional composable security frameworks require the simulator to cover all dis-
honest interfaces making it impossible to model Eq. (3.5).

19 Note that the ideal specification in Eq. (3.6) does not follow the ideal-functionality-
simulator paradigm, making it impossible to (directly) model the same thing in
traditional composable frameworks.

17

A

B1

B2

B3

E

〈A→R〉{A}∪R
H

{E}

sim{E}

Fig. 3. Illustration of an ideal world system from the X̂
Fix

Ω specification (Eq. (3.5)) for
the case where R = {B1, B2, B3}, with RH = {B1}.

blocking the interface of the (only) honest receiver B1, and protocol πR
H

attached
to the interfaces of the dishonest receivers (i.e. B2 and B3). Again, we put an
ε-ball around Eq. (3.6), and define the ideal specification for the exclusiveness of
authenticity to be

(XFix
Ω,π)ε.

Putting things together, the ideal world specification for the case of an honest
sender is then given by

S =
(
AFix
Ω

)ε
∩
(
XFix
Ω′,π

)ε′
. (3.7)

3.3 Reduction to Game-Based Security

We now compare our composable notions against the existing game-based security
notions from the literature. The definitions of these game-based security notions
can be found in the full version of this paper, together with full proofs of all the
theorems below [21].

The first theorem shows that in the case of a dishonest sender, the advantage
in distinguishing the real and ideal systems is upper bounded by the advantage
in winning the consistency game.

Theorem 1. When the sender A is dishonest, i.e. PH = RH , we find an explicit
reduction system C and an explicit simulator sim such that for any Ω ⊇ {sim}:

R ⊆ (CFix
Ω)AdvCons(·C) (3.8)

where for any distinguisher D, AdvCons(DC) is the advantage of D′ = DC (the
distinguisher resulting from composing D and C) in winning the Consistency
game (see [21, Def. 3]).

18

A

B1

B2

B3

E

KGA

INS

⊥R
H

πR
H

Snd

Fig. 4. Illustration of a possible real world system in the XFix
Ω,π specification (Eq. (3.6))

for the case where R = {B1, B2, B3}, with RH = {B1}. Converter ⊥R
H

blocks B1’s

interface; signature forgery protocol πR
H

is attached to the interfaces of B2 and B3.

A proof of Theorem 1 is provided in the full version [21].
The second theorem shows that in the case of an honest sender, the advantage

in distinguishing the real world from the ideal world for authenticity is upper
bounded by the advantage in winning the unforgeability game and the correctness
game.

Theorem 2. When the sender is honest, i.e. for PH = {A} ∪ RH , we find
explicit reduction systems C′ and C and an explicit simulator sim such that for
any Ω ⊇ {sim}:

R ⊆ (AFix
Ω)AdvUnforg(·C) +AdvCorr (·C′) (3.9)

where for any distinguisher D, AdvUnforg(DC) is the advantage of D′ = DC (the
distinguisher resulting from composing D and C) in winning the Unforgeability
game (see [21, Def. 4]), and AdvCorr(DC′) is the advantage of D′′ = DC′ in
winning the Correctness game (see [21, Def. 2])

A proof of Theorem 2 is provided in the full version [21].
In the third theorem we show that in the case of an honest sender, the advan-

tage in distinguishing the real world from the ideal world for the exclusiveness of
authenticity is bounded by the advantage in winning the Off-The-Record game.

Theorem 3. When the sender is honest, i.e. for PH = {A} ∪ RH , and for any
signature forgery algorithm Forge suitable for the Off-The-Record security notion
(see [21, Def. 5]), we find an explicit reduction system C and an explicit simulator
sim such that for any Ω ⊇ {sim}:

R ⊆ (XFix
Ω,πForge)AdvOTR-Forge(·C), (3.10)

19

where πForge is the converter running the Forge algorithm (see Algorithm 6), and
for any distinguisher D, AdvOTR-Forge(DC) is the advantage of D′ = DC (the
distinguisher resulting from composing D and C) in winning the Off-The-Record
game with respect to the signature forgery algorithm Forge (see [21, Def. 5]).

Algorithm 6 Converter πForge for set of (dishonest) parties RH ; πForge uses
algorithm Forge to forge signatures, and is connected to a KGA and an insecure
repository INS.

(Bj ∈ RH)-Write(m ∈ M)
pp← Bj-PublicParameters
spk← Bj-SignerPublicKey(A)

for each Bc ∈ RH do
{(vpkc, vskc)} ← Bj-VerifierKeyPair(Bc)

for each Bl ∈ R do
{vpkl} ← Bj-VerifierPublicKey(Bl)

σ ← Forge(pp, spk, {vpkl}Bl∈R, {vskc}
Bc∈RH , m)

Bj-Output(Bj-Write(m,σ))

A proof of Theorem 3 is provided in the full version [21].

4 Modeling MDVS for Arbitrary Parties

In this section we model the security of MDVS schemes in the presence of
multiple possible senders and multiple sets of receivers, which corresponds to a
generalization of the models given in Sect. 3. Throughout this section, we denote
by S the set of senders, and by SH and SH the partitions of S corresponding
to honest and dishonest senders. As before, R, RH and RH correspond to the
set of all receivers, honest and dishonest receivers, respectively. Furthermore, we
assume that RH , RH , SH and SH are all non-empty sets.

4.1 Real-World

The real world specification for this security model is similar to the one given
in Sect. 3.1 for the fixed sender and fixed set of receivers case. However, in
Sect. 3 we made a few simplifications in the description of converters Snd and
Rcv namely, the fixed sender and a fixed set of receiver are hard-coded in the
converters. In this section, the converters SndArb and RcvArb (see Algorithm 7
and Algorithm 8, respectively) allow the sender to specify the set of receivers for
each message they send, and the RcvArb converters explicitly output the sender
and the set of designated receivers. Moreover, the SndArb converter now attaches
to each message-signature pair also the sender and set of receivers meant for
that message-signature pair; the RcvArb converter then relies on this information
to validate the authenticity of messages meant for the corresponding receiver.
Apart from this, the real-world specification is as before: the SndArb and RcvArb

20

converters connect to the KGA and to an insecure repository INS, and behave
otherwise similarly to the Snd and Rcv converters. Since we assumed that SH
and RH are non-empty sets, the real-world specification is then defined by

SndArbS
H

RcvArbR
H

{[KGA, INS]}, (4.1)

as illustrated in Fig. 5.

Algorithm 7 SndArb converter for Ai ∈ SH .

(Ai ∈ SH)-Write(〈Ai → V〉, m ∈ M)
pp← Ai-PublicParameters
(spk, ssk)← Ai-SignerKeyPair
for each Bl ∈ V do
{vpkl} ← Ai-VerifierPublicKey(Bl)

σ ← Π.Sign(pp, ssk, {vpkl}Bl∈V ,m)

id ← Ai-Write(m,σ, (Ai,V))
return id

Algorithm 8 RcvArb converter for Bj ∈ RH .

(Bj ∈ RH)-ReadBuffer
return Bj-GetValidIds

(Bj ∈ RH)-ReadRegister(id)
if (id, 〈Ai → V〉) ∈ Bj-GetValidIds then

(m,σ, (Ai,V))← Bj-ReadRegister(id)
return m

(Bj ∈ RH)-GetValidIds . Local procedure. Operation not available at outside interface.
pp← Bj-PublicParameters
(vpkj , vskj)← Bj-VerifierKeyPair

validIds← ∅
for each (id, INS) ∈ Bj-ReadBuffer do

(m,σ, (Ai,V))← Bj-ReadRegister(id)
if Bj ∈ V then

spki ← Bj-SignerPublicKey(Ai)
for each Bl ∈ V do
{vpkl} ← Bj-VerifierPublicKey(Bl)

if Π.Vfy(pp, spki, vskj , {vpkl}Bl∈V ,m, σ) then

validIds← (id, 〈Ai → V〉)
return validIds

4.2 Ideal-Worlds

As aforementioned in Sect. 3.2, the guarantees given by the ideal world when
a sender is honest are completely different from the ones when it is dishonest.
However, since now we have both honest and dishonest senders at the same time,
the ideal-world specification modeling the security of MDVS schemes consists of
the intersection of only two (relaxed) specifications, one capturing the consistency

21

A1

A2

A3

B1

B2

B3

E

KGA

INS

RcvArb

RcvArb

SndArb

SndArb

Fig. 5. Illustration of the real world system specified by Eq. (4.1) for the case where
S = {A1, A2, A3} and R = {B1, B2, B3}, with SH = {A1, A2} and RH = {B1, B2}.

and authenticity together (CA)
Arb
Ω ,20 and one capturing the exclusiveness of

authenticity XArb
Ω′,π. The ideal world is then

S =
(
(CA)

Arb
Ω

)ε
∩
(
XArb
Ω′,π

)ε′
. (4.2)

One key difference between the model we now introduce and the one from
Sect. 3 is that we may have dishonest parties (other than Eve) that are neither
sender nor designated receivers in this section, and we require exclusiveness of
authenticity to hold with respect to them as well. So it is not sufficient that (any
non-empty subset of) dishonest verifiers who have a secret verification key can
forge signatures, parties with no secret verification key should also be able to
forge.21

Consistency and Authenticity. As just mentioned, (CA)
Arb
Ω models consis-

tency and authenticity. More concretely, for dishonest senders Ai ∈ SH , (CA)
Arb
Ω

includes the repository [
〈Ai → V〉P

H

V∪PH

]
Ai∈SH ,V⊆R

,

20 As noted in Sect. 3, in our setting correctness follows from authenticity, so it does
not need to be considered separately.

21 This could have been modeled in Sect. 3 by adding a second Eve, but we omitted it
for simplicity.

22

A1

A2

A3

B1

B2

B3

E


[
〈Ai → V〉P

H

V∪PH

]
Ai∈SH ,V⊆R[

PH 〈Ai → V〉{Ai}
V∪PH

]
Ai∈SH ,V⊆R



simP
H

Fig. 6. Illustration of the ideal world system specified by Eq. (4.3) for the case where
S = {A1, A2, A3}, R = {B1, B2, B3}, with SH = {A1, A2} and RH = {B1, B2}.

which captures consistency, since all honest receivers have access to the same
messages. And for honest senders Ai ∈ SH , (CA)

Arb
Ω includes the repository[

PH 〈Ai → V〉{Ai}
V∪PH

]
Ai∈SH ,V⊆R

,

which captures authenticity, since only Ai can write. As before, a simulator sim
is added at the interfaces of the dishonest parties, hence

(CA)
Arb
Ω :=

 simP
H


[
〈Ai → V〉P

H

V∪PH

]
Ai∈SH ,V⊆R[

PH 〈Ai → V〉{Ai}
V∪PH

]
Ai∈SH ,V⊆R




sim∈Ω

. (4.3)

Fig. 6 illustrates the ideal world systems from the (CA)
Arb
Ω specification.

Exclusiveness of Authenticity. To model exclusiveness of authenticity, for
honest senders Ai ∈ SH , we define a resource containing a repository where Ai
and all dishonest parties (except Eve) can write and Eve can read, i.e.[

〈Ai → V〉{Ai}∪SH∪RH

{E}

]
Ai∈SH ,V⊆R

.

This means that Eve does not know if the messages she sees are from Alice or
another dishonest party—even those that are not designated verifiers can input
messages.

In the arbitrary party setting, we also need to deal with the case of dishonest
senders. Since we cannot exclude that by submitting forged signatures and seeing

23

whether they are accepted, dishonest parties might learn something about the
honest receivers’ secret keys, we also include repositories where a dishonest party
(Eve) can write and honest verifiers read,22 namely[

〈Ai → V〉{E}VH

]
Ai∈SH ,V⊆R

.

Like in the previous section, we want to guarantee that the ability of dishonest
parties to write in the repositories for honest senders is preserved, so the simulator
only covers Eve’s interface.23 We thus get a resource specification,

X̂
Arb

Ω :=

 sim{E}


[
〈Ai → V〉{E}VH

]
Ai∈SH ,V⊆R[

〈Ai → V〉{Ai}∪SH∪RH

{E}

]
Ai∈SH ,V⊆R


 . (4.4)

As previously, our ideal world consists of all resources that when the interfaces
of the honest designated verifiers on repositories with honest senders are covered
and when the dishonest parties (excluding Eve) collude to run a forging protocol

π result in a resource contained in X̂
Arb

Ω , i.e. the ideal-world specification XArb
Ω,π

is defined as

XArb
Ω,π :=

{
V : πS

H∪RH
(⊥Arb)R

H

V ∈ X̂
Arb

Ω

}
, (4.5)

where ⊥Arb is the converter specified in Algorithm 9 which does not allow the
receiver to verify the authenticity of messages input into any repository 〈Ai → V〉
with an honest sender (i.e. for which Ai ∈ SH).24

4.3 Reduction to Game-Based Security

We now compare our composable notions for arbitrary parties to the existing
game-based security notions from the literature. Again, the definitions of these
game-based security notions can be found in the full version of this paper, together
with full proofs of all the theorems [21].

The first theorem in this section shows that that advantage in distinguishing
the real world from the ideal world for authenticity and consistency is upper
bounded by the advantage in winning the consistency, unforgeability and correct-
ness games.

22 Messages signed by a party with no knowledge of the signer’s secret key will likely
be recognized as forgeries, so we only need to consider the case where the sender is
dishonest and the keys are shared. Furthermore, the distinguisher could in principle use
any party’s interface to submit these messages, but since it simplifies the presentation
to only have the simulator at Eve’s interface we only include Eve in the parties with
write abilities.

23 Traditional composable security frameworks require the simulator to cover all dis-
honest interfaces making it impossible to model Eq. (4.4).

24 Note that the ideal specification in Eq. (4.5) does not follow the ideal-functionality-
simulator paradigm, making it impossible to (directly) model the same thing in
traditional composable frameworks.

24

Algorithm 9 ⊥Arb converter for Bj ∈ RH .

(Bj ∈ RH)-ReadBuffer
return Bj-GetValidIds

(Bj ∈ RH)-ReadRegister(id)
if (id, 〈Ai → V〉) ∈ Bj-GetValidIds then

m← Bj-ReadRegister(id)
return m

(Bj ∈ RH)-GetValidIds . Local procedure. Operation not available at outside interface.
validIds← ∅
for each (id, 〈Ai → V〉) ∈ Bj-ReadBuffer do

if Ai ∈ SH then
validIds← (id, 〈Ai → V〉)

return validIds

Theorem 4. Consider a setting where RH , RH , SH and SH are all non-empty.
We find an explicit reduction system C′, an explicit simulator sim and explicit
reduction systems C, CCons and CUnforg such that, for any Ω ⊇ {sim}

R ⊆
(
(CA)

Arb
Ω

)AdvCons(·CCCons)+AdvUnforg(·CCUnforg)+AdvCorr (·C′)

, (4.6)

where for any distinguisher D, AdvCons(DCCCons), AdvUnforg(DCCUnforg), and

AdvCorr(DC′) are, respectively, the advantages of D′ = DCCCons (the distin-
guisher resulting from composing D, C and CCons) in winning the Consistency
game (see [21, Def. 3]), of D′′ = DCCUnforg in winning the Unforgeability
game (see [21, Def. 4]) and of D′′′ = DC′ in winning the Correctness game
(see [21, Def. 2])

A proof of Theorem 4 is provided in the full version [21].
In the second theorem we show that the advantage in distinguishing the real

world from the ideal world for the exclusiveness of authenticity is bounded by
the advantage in winning the Off-The-Record and Consistency games.

Theorem 5. Consider a setting where RH , RH , SH and SH are all non-empty.
For any signature forgery algorithm Forge suitable for the Off-The-Record security
notion we find explicit reduction systems C and C′, and an explicit simulator
sim, such that for any Ω ⊇ {sim}:

R ⊆ (XArb
Ω,πForge)AdvOTR-Forge(·C)+AdvCons(·C′), (4.7)

where πForge is the converter running the Forge algorithm (see Algorithm 10),
and for any for any distinguisher D, AdvOTR-Forge(DC) and AdvCons(DC′)
are, respectively, the advantage of D′ = DC (the distinguisher resulting from
composing D and C) in winning the Off-The-Record game with respect to forgery
algorithm Forge (see [21, Def. 5]), and the advantage of D′′ = DC′ in winning
the Consistency game (see [21, Def. 3]).

A proof of Theorem 5 is provided in the full version [21].

25

Algorithm 10 πForge converter for set of (dishonest) parties SH ∪RH .

(P ∈ SH ∪RH)-Write(〈Ai → V〉, m ∈ M)
pp← P -PublicParameters
spki ← P -SignerPublicKey(Ai)

for each Bj ∈ VH do
{(vpkj , vskj)} ← P -VerifierKeyPair(Bj)

for each Bl ∈ V do
{vpkl} ← P -VerifierPublicKey(Bl)

σ ← Forge(pp, spki, {vpkl}Bl∈V , {vskc}
Bc∈VH ,m)

P -Output(P -Write(m,σ, (Ai,V)))

Asymptotic Composable Security of MDVS Analogously to Remark 2,

for a security notion X, AdvX(
−→
A) : N → R denotes a function defined as

AdvX(
−→
A)(k) := AdvX(Ak). We say that a scheme satisfies X asymptotically

if AdvX(
−→
A) is negligible on the security parameter k.

In the following, let Π = (Setup,GS ,GV ,Sign,Vfy) be an MDVS scheme.
The following corollaries, Corollary 1 and Corollary 2, follow from Theorem 4 and
Theorem 5, respectively. These results state that any MDVS scheme Π that is
asymptotically secure—according to asymptotic versions of [21, Def. 2], [21, Def.
3], [21, Def. 4], and [21, Def. 5]— and which is used as specified in Sect. 4.1
asymptotically constructs, from a real world specification R, the ideal world
specification defined in Equation 4.2 (see Remark 2). Note that, since we are
making asymptotic construction statements, Ω and Ω′ are both classes of efficient
simulators (say non-uniform probabilistic polynomial time), and for any efficient

family of distinguishers
−→
D, −→ε and −→ε ′ are both negligible functions (on the

security parameter).

Corollary 1. Consider a setting where RH , RH , SH and SH are all non-empty.
If Π is asymptotically Correct (see [21, Def. 2]), Consistent (see [21, Def. 3])

and Unforgeable (see [21, Def. 4]), then R asymptotically constructs (CA)
Arb

.

Corollary 2. Consider a setting where RH , RH , SH and SH are all non-
empty. If Π is asymptotically Off-The-Record (see [21, Def. 5]) and Consistent
(see [21, Def. 3]), then R asymptotically constructs XArb

πForge , where πForge is
the converter defined in Algorithm 10, running an algorithm Forge with respect
to which Π is asymptotically Off-The-Record (i.e. no non-uniform probabilistic

polynomial time adversary
−→
A can win the Off-The-Record game of Π with respect

to algorithm Forge with non-negligible advantage).

4.4 Separation from Existing Game-Based Security Notions

The game-based security notion from [11] capturing the Off-The-Record security
property of MDVS schemes (see [21, Def. 5]) is unnecessarily strong as for some
MDVS schemes it allows the adversary to verify the validity of the challenge
signatures, and thus allows it to trivially win the game. As hinted by our

26

composable security notions, the main goal of the Off-The-Record security notion
is capturing that a third party cannot tell whether a given signature is a valid
one generated by the signer, or a forged one generated by dishonest receivers.
The ability of a third party to generate signature replays—which might only be
valid if the original signatures were already valid—does not violate any of the
security properties that MDVS schemes intend to guarantee, and as such should
not help in winning the corresponding security game. However, it does help in
winning the Off-The-Record game from [11], meaning that this notion (i.e. the
one from [11]) is unnecessarily strong.

Theorem 6. Let P = {A1, A2, A3, B1, B2, B3, E}. Consider any MDVS scheme
Π, and let εΠ-4 and εΠ-5 denote the ε-balls (see Eq. (2.3)) given by, respectively,

Theorem 4 and Theorem 5 for settings where RH , RH , SH and SH are all
non-empty sets. Then there is a modified MDVS scheme Π ′ that is also secure
as in each of these two theorems and for essentially the same ε-balls as Π, but
such that for any suitable algorithm Forge for the Off-The-Record security notion
(see [21, Def. 5]) there is an explicit and efficient adversary A such that

AdvΠ
′-OTR-Forge(A) ≥ 1− δcorr − δauth,

where AdvΠ
′-OTR-Forge(A) denotes the advantage of A in winning the Off-The-

Record game for Π ′ with respect to the signature forgery algorithm Forge(see [21,
Def. 5]), δcorr is the probability that a single honestly generated signature does
not verify correctly and δauth is the probability that a single forged signature is
considered valid by the signature verification algorithm.

A proof of Theorem 6 is provided in the full version [21].

5 Further Related Work

In [13], Jakobsson, Sako, and Impagliazzo introduce DVS and MDVS schemes
and give two property-based security notions for the single designated verifier
case. Their weaker notion is intended to capture essentially the same as our
weaker exclusiveness of authenticity notion—if all receivers are honest, Eve learns
that Alice is the one sending messages—whereas their stronger notion is intended
to capture our stronger notion—even if all receivers are honest, Eve cannot tell
if Alice sent any message. Unfortunately, the signature unforgeability notion
considered—equivalent to Existential Unforgeability under No-Message Attacks
(EUF-NMA)—is known to be too weak to allow for authentic communication.25

Furthermore, the security notion capturing the exclusiveness of authenticity
which is implicitly considered for the case of multiple receivers is also too weak,
and in particular is not sufficient to achieve neither of our composable notions.
This is so since simulating signatures requires secret information from every

25 Existential Unforgeability under Chosen Message Attacks (EUF-CMA)—a security
notion known to be strictly stronger than EUF-NMA—is necessary for authentic
communication, see [3, 7].

27

designated verifier, and thus if at least one of the verifiers is honest, doing so is
not feasible.

In [29], Steinfeld, Bull, Wang and Pieprzyk introduce Universal Designated
Verifier Signatures, wherein a signer can generate publicly verifiable signatures
which can then be transformed into designated verifier ones (possibly by a
distinct party not possessing the secret signing key). Although the security
notions capturing the exclusiveness of authenticity property introduced in that
paper are weak—in that they only meet the weaker notion we introduce in this
paper—the proposed schemes meet our stronger notion for this property (for the
single receiver case). On the other hand, the unforgeability notion considered in
the paper is too weak: it does not suffice to achieve even our weaker composable
security notion. Unfortunately, numerous subsequent works have considered the
same unforgeability notion [16–19,30,32].

In [15], Krawczyk and Rabin introduce Chameleon signature schemes, which
work by first using a chameleon hash function to hash a message and then using
a normal signature scheme to sign the resulting hash. Chameleon hash functions
are public key schemes which are collision-resistant for anyone not possessing
the secret key, but which allow for efficient collision finding given the secret
key. The intended use of these schemes is to provide the same guarantees as
DVS schemes: a designated receiver first generates its chameleon hash function,
and sends the corresponding public key to the signer; the signer then sends
a signature on the message under the hash function provided by the receiver,
which it can verify. Since the receiver knows the secret key of the chameleon
hash function it sent to the signer, no one other than the receiver gets convinced
that the signer signed any particular message. However, these schemes do not
allow to achieve the exclusiveness of authenticity that our stronger composable
notion captures: anyone with the public keys of the signer and of the chameleon
hash function can verify whether a certain signature is a valid one (for some
message), which implies that no third-party can feasibly forge signatures that are
indistinguishable from real ones (or otherwise the signature scheme used by the
signer is not unforgeable). Moreover, they also do not achieve our weaker notion,
as dishonest receivers can only forge signatures once the signer signed a message.

In [27], Rivest, Shamir and Tauman mention that two party ring signatures
are DVS schemes. Indeed, one can obtain a DVS scheme meeting our weaker
composable notion for the case of a single receiver B by taking a ring signature
scheme and using it to produce signatures for a ring composed by the signer A
and by the intended (designated) receiver of that message, B.26 But notice that,
similarly to the case of Chameleon signature schemes, public keys are enough
to verify signatures, implying that the DVS schemes yielded by ring signatures
can really only achieve our weaker security notion—where if both A and B are
honest, E learns A is the signer. Furthermore, since any ring member can locally
sign messages that are valid with respect to the entire ring, which is incompatible

26 As one might note, the resulting DVS scheme can only meet our weaker composable
notion if the underlying ring signature scheme meets the stronger Anonymity against
Attribution Attacks [4, Def. 4].

28

with the stronger authenticity requirement of MDVS schemes, ring signatures
may only be used as DVS schemes for the case of a single receiver. Unfortunately,
this went unnoticed in various prior works [9, 16, 18], which gave constructions of
MDVS schemes based on ring signature schemes.

One could think that perhaps, to achieve our stronger notion for exclusiveness
of authenticity—where a third party is not convinced that the signer signed some
message even when all the designated receivers (and the signer) are honest—
it suffices to guarantee that the validity of a signature can only be efficiently
determined with the secret key given as input [28]. However, this is not the case.
Consider for example, the case where the sender and the designated receivers
share the signing key dsk of some (traditional) Digital Signature Scheme (DSS)
(with the corresponding verification key dvk being publicly known), and where
the MDVS signature σm for each message m also includes a signature σm

′ under
dsk on m. Then, while to verify the validity of an MDVS signature σm one
may need the secret verification key for the MDVS scheme, by verifying the
corresponding σm

′ using dvk signature a third party already gets convinced, in
the case where the sender and all the designated receivers are honest, that the
really signer signed m. This same reasoning also explains why, in general, MAC
schemes cannot be used per se as DVS schemes (in the stronger sense, captured
by our stronger composable notion) for the two party case: it may not be feasible
to simulate MAC schemes which look just like real ones.

References

1. Backes, M., Hofheinz, D.: How to break and repair a universally composable
signature functionality. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225,
pp. 61–72. Springer, Heidelberg (Sep 2004)

2. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Cryptology ePrint Archive, Report 2004/082 (2004),
https://eprint.iacr.org/2004/082

3. Badertscher, C., Maurer, U., Tackmann, B.: On composable security for digital
signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769,
pp. 494–523. Springer, Heidelberg (Mar 2018). https://doi.org/10.1007/978-3-319-
76578-5˙17

4. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions,
and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.)
TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (Mar 2006).
https://doi.org/10.1007/11681878˙4

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

6. Canetti, R.: Universally composable signatures, certification and au-
thentication. Cryptology ePrint Archive, Report 2003/239 (2003),
https://eprint.iacr.org/2003/239

7. Canetti, R.: Universally composable signature, certification, and au-
thentication. In: 17th IEEE Computer Security Foundations Workshop,
(CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA. p. 219.

29

https://eprint.iacr.org/2004/082
https://doi.org/10.1007/978-3-319-76578-5_17
https://doi.org/10.1007/978-3-319-76578-5_17
https://doi.org/10.1007/11681878_4
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2003/239

IEEE Computer Society (2004). https://doi.org/10.1109/CSFW.2004.24,
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.24

8. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with
global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer,
Heidelberg (Feb 2007). https://doi.org/10.1007/978-3-540-70936-7˙4

9. Chow, S.S.M.: Multi-designated verifiers signatures revisited. Int. J. Netw. Secur.
7(3), 348–357 (2008), http://ijns.jalaxy.com.tw/contents/ijns-v7-n3/ijns-2008-v7-
n3-p348-357.pdf

10. Coretti, S., Maurer, U., Tackmann, B.: Constructing confidential channels from
authenticated channels - public-key encryption revisited. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 134–153. Springer, Heidelberg
(Dec 2013). https://doi.org/10.1007/978-3-642-42033-7˙8

11. Damg̊ard, I., Haagh, H., Mercer, R., Nitulescu, A., Orlandi, C., Yakoubov, S.:
Stronger security and constructions of multi-designated verifier signatures. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 229–260. Springer,
Heidelberg (Nov 2020). https://doi.org/10.1007/978-3-030-64378-2˙9

12. Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. Journal
of Cryptology 28(3), 423–508 (Jul 2015). https://doi.org/10.1007/s00145-013-9160-
y

13. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (May 1996). https://doi.org/10.1007/3-540-68339-9˙13

14. Jost, D., Maurer, U.: Overcoming impossibility results in composable secu-
rity using interval-wise guarantees. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 33–62. Springer, Heidelberg (Aug
2020). https://doi.org/10.1007/978-3-030-56784-2˙2

15. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet
Society (Feb 2000)

16. Laguillaumie, F., Vergnaud, D.: Multi-designated verifiers signatures. In: López, J.,
Qing, S., Okamoto, E. (eds.) ICICS 04. LNCS, vol. 3269, pp. 495–507. Springer,
Heidelberg (Oct 2004)

17. Laguillaumie, F., Vergnaud, D.: Designated verifier signatures: Anonymity and
efficient construction from any bilinear map. In: Blundo, C., Cimato, S. (eds.)
SCN 04. LNCS, vol. 3352, pp. 105–119. Springer, Heidelberg (Sep 2005).
https://doi.org/10.1007/978-3-540-30598-9˙8

18. Li, Y., Susilo, W., Mu, Y., Pei, D.: Designated verifier signature: Definition, frame-
work and new constructions. In: Indulska, J., Ma, J., Yang, L.T., Ungerer, T., Cao,
J. (eds.) Ubiquitous Intelligence and Computing, 4th International Conference, UIC
2007, Hong Kong, China, July 11-13, 2007, Proceedings. Lecture Notes in Computer
Science, vol. 4611, pp. 1191–1200. Springer (2007). https://doi.org/10.1007/978-3-
540-73549-6 116, https://doi.org/10.1007/978-3-540-73549-6 116

19. Lipmaa, H., Wang, G., Bao, F.: Designated verifier signature schemes: Attacks, new
security notions and a new construction. In: Caires, L., Italiano, G.F., Monteiro,
L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 459–471.
Springer, Heidelberg (Jul 2005). https://doi.org/10.1007/11523468˙38

20. Maurer, U.: Constructive cryptography—a new paradigm for security definitions
and proofs. In: Proceedings of Theory of Security and Applications, TOSCA
2011. Lecture Notes in Computer Science, vol. 6993, pp. 33–56. Springer (2012).
https://doi.org/10.1007/978-3-642-27375-9˙3

30

https://doi.org/10.1109/CSFW.2004.24
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.24
https://doi.org/10.1007/978-3-540-70936-7_4
http://ijns.jalaxy.com.tw/contents/ijns-v7-n3/ijns-2008-v7-n3-p348-357.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v7-n3/ijns-2008-v7-n3-p348-357.pdf
https://doi.org/10.1007/978-3-642-42033-7_8
https://doi.org/10.1007/978-3-030-64378-2_9
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/978-3-030-56784-2_2
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/11523468_38
https://doi.org/10.1007/978-3-642-27375-9_3

21. Maurer, U., Portmann, C., Rito, G.: Giving an adversary guarantees (or: How to
model designated verifier signatures in a composable framework). Cryptology ePrint
Archive, Report 2021/1185 (2021), https://eprint.iacr.org/2021/1185

22. Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B. (ed.) ICS 2011. pp.
1–21. Tsinghua University Press (Jan 2011)

23. Maurer, U., Renner, R.: From indifferentiability to constructive cryptography (and
back). In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B, Part I. LNCS, vol. 9985, pp.
3–24. Springer, Heidelberg (Oct / Nov 2016). https://doi.org/10.1007/978-3-662-
53641-4˙1

24. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (Apr / May
2002). https://doi.org/10.1007/3-540-46035-7˙8

25. Maurer, U.M., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidel-
berg (Aug 2007). https://doi.org/10.1007/978-3-540-74143-5˙8

26. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and
its application to secure message transmission. In: 2001 IEEE Symposium on
Security and Privacy. pp. 184–200. IEEE Computer Society Press (May 2001).
https://doi.org/10.1109/SECPRI.2001.924298

27. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (Dec 2001).
https://doi.org/10.1007/3-540-45682-1˙32

28. Saeednia, S., Kremer, S., Markowitch, O.: An efficient strong designated verifier
signature scheme. In: Lim, J.I., Lee, D.H. (eds.) ICISC 03. LNCS, vol. 2971, pp.
40–54. Springer, Heidelberg (Nov 2004)

29. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier sig-
natures. In: Laih, C.S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (Nov / Dec 2003). https://doi.org/10.1007/978-3-540-40061-
5˙33

30. Steinfeld, R., Wang, H., Pieprzyk, J.: Efficient extension of standard Schnorr/RSA
signatures into universal designated-verifier signatures. In: Bao, F., Deng, R., Zhou,
J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 86–100. Springer, Heidelberg (Mar 2004).
https://doi.org/10.1007/978-3-540-24632-9˙7

31. Unruh, D., Müller-Quade, J.: Universally composable incoercibility. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 411–428. Springer, Heidelberg (Aug
2010). https://doi.org/10.1007/978-3-642-14623-7˙22

32. Zhang, Y., Au, M.H., Yang, G., Susilo, W.: (strong) multi-designated verifiers
signatures secure against rogue key attack. In: Xu, L., Bertino, E., Mu, Y. (eds.)
Network and System Security - 6th International Conference, NSS 2012, Wuyishan,
Fujian, China, November 21-23, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7645, pp. 334–347. Springer (2012). https://doi.org/10.1007/978-3-
642-34601-9 25, https://doi.org/10.1007/978-3-642-34601-9 25

31

https://eprint.iacr.org/2021/1185
https://doi.org/10.1007/978-3-662-53641-4_1
https://doi.org/10.1007/978-3-662-53641-4_1
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/978-3-540-74143-5_8
https://doi.org/10.1109/SECPRI.2001.924298
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1007/978-3-540-24632-9_7
https://doi.org/10.1007/978-3-642-14623-7_22
https://doi.org/10.1007/978-3-642-34601-9_25
https://doi.org/10.1007/978-3-642-34601-9_25
https://doi.org/10.1007/978-3-642-34601-9_25

	Giving an Adversary Guarantees (Or: How to Model Designated Verifier Signatures in a Composable Framework)

