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Abstract. The 25 year-old NTRU problem is an important computa-
tional assumption in public-key cryptography. However, from a reduc-
tion perspective, its relative hardness compared to other problems on
Euclidean lattices is not well-understood. Its decision version reduces to
the search Ring-LWE problem, but this only provides a hardness upper
bound.
We provide two answers to the long-standing open problem of providing
reduction-based evidence of the hardness of the NTRU problem. First, we
reduce the worst-case approximate Shortest Vector Problem over ideal
lattices to an average-case search variant of the NTRU problem. Second,
we reduce another average-case search variant of the NTRU problem to
the decision NTRU problem.

1 Introduction

In the NTRU encryption scheme [HPS98], the public key is an element h of
a polynomial ring Rq that can be chosen as Zqrxs{Φ for some degree d monic
irreducible polynomial Φ and some integer q ě 2. This public key h is far from
uniform in Rq, as it can be written as h “ f{g mod q where the secret key
polynomials f, g P R “ Zrxs{Φ have coefficients with small magnitudes com-
pared to

?
q. In most concrete instantiations, such as the original scheme and

the NTRU and NTRU Prime Round-3 candidates to the NIST post-quantum
cryptography standardization project [CDH`20, BBC`20], the coefficients of f
and g even belong to t´1, 0, 1u and q grows as a small degree polynomial in d.
As a result, the set of such h’s is very sparse in Rq. The tasks of distinguish-
ing h from uniform and recovering a sufficiently short pair pf, gq from h are
respectively known as the decision and search variants of the NTRU problem.

The search NTRU problem can be solved with lattice reduction algorithms
(such as [Sch87]), but to succeed for the most usual setting of q ď polypdq,
they require a computational effort growing as exppOpdqq. In [KF15], Kirch-
ner and Fouque described a heuristic algorithm with slightly subexponential
cost exppOpd{ log log dqq for the usual setting of q ď polypdq and }f}8, }g}8 ď
Op1q. If the magnitude bound grows as Ωp

?
dq, then the cost of this algo-

rithm is exppOpdqq. In the completely different regime of very large q (but
with }f} and }g} growing at a much smaller pace), recent works [ABD16,CJL16,
KF17] have shown that the NTRU problem is significantly easier than previ-
ously thought. For example, one can recover appropriately distributed f, g with
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}f}, }g} ď polypdq from h in quantum polynomial time when q ě expp rΩp
?
dqq.

Prior to those works, it was believed that q ě expp rΩpdqq was necessary for poly-
nomial cost. This range of modulus q is far from the one used for the NTRU
encryption scheme. However, NTRU instances with a large modulus q can occur
in more advanced cryptographic constructions such as [LTV12] and [GGH13].

On the lower-bound front, it was shown in [SS11] for Φ a power-of-2 cy-
clotomic and extended in [WW18] to all cyclotomics that if f, g are Gaussian
over R (restricted to elements that are invertible modulo q) with standard de-
viation that is a little larger than

?
q, then the distribution of h “ f{g mod q is

within 2´Ωpdq statistical distance from the uniform distribution over invertible
elements of Rq. This variant of decision NTRU is therefore vacuously hard. This
parameter regime is relevant to the NTRU signature algorithm [HHP`03,SS13].
It also allows to obtain an NTRU-like public-key encryption scheme, but less
efficient than with smaller secret key polynomials f, g.

Despite 25 years of study, little is known about the relationships between
the NTRU problem variants and between them and other well-studied problems
over Euclidean lattices. To our knowledge, the only exceptions are the direct
reduction from decision NTRU to search NTRU and a reduction from deci-
sion NTRU to the search version of the Ring-LWE problem [SSTX09, LPR10],
sketched in [Pei16, Se. 4.4.4]. Note that this only provides an upper bound to
the hardness of the NTRU problem. Given this state of affairs, Peikert asked the
following question in [Pei16, Se. 7.1]:

Is there a worst-case hardness reduction, or a search-to-decision reduction,
for an NTRU-like problem?

Contributions. We provide positive answers to both components of the above
question.

First, we give a reduction from the approximate Shortest Vector Problem re-
stricted to ideal lattices (ideal-SVP) to a worst-case variant of the search NTRU
problem. Combining the latter with the recent worst-case to average-case re-
duction for ideal-SVP from [dBDPW20] leads to a reduction from worst-case
ideal-SVP to an average-case version of the search NTRU problem. The in-
stance distribution is inherited from the distribution over ideal lattices consid-
ered in [dBDPW20]. We also show that this distribution over NTRU instances h
can be efficiently sampled from, together with a corresponding trapdoor pf, gq,
if one has access to a quantum computer or if the modulus q is sufficiently large:
this property allows to sample an NTRU encryption public key along with a
corresponding secret key.

Second, we exhibit a reduction from another (average-case) variant of the
search NTRU problem (see below) to the decision NTRU problem. The reduc-
tion works for a wide set of distributions for the search NTRU instances, and
the decision NTRU instance distribution is directly derived from the considered
search NTRU distribution. A sufficient condition on the search NTRU distribu-
tion is that it produces with overwhelming probability an h with trapdoor pf, gq
such that f and g have balanced coefficients (in canonical embedding) and f
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or g is coprime to q. This covers in particular the standard ternary distribution
for f and g (i.e., f, g Ð Upt´1, 0, 1udq) provided we reject pf, gq when they are
not balanced enough or not coprime to q (heuristically, this should happen with
probability ď 1{2). On the other hand, the choice of the decision NTRU dis-
tribution is much less flexible: even if we start with a ternary distribution for
the search NTRU instances, it is very unlikely that the decision NTRU distri-
bution we obtain is ternary. Similarly to the first reduction, we show that if the
samples h from the search NTRU distribution can be efficiently sampled along
with a corresponding trapdoor pf, gq, then so can the samples from the resulting
decision NTRU instance.

Technical overview. For the sake of simplicity, in the forthcoming discussion,
we restrict ourselves to power-of-2 cyclotomic defining polynomials, i.e., Φ “

xd ` 1 for d a power of 2. In this case, the ring R “ Zrxs{pxd ` 1q matches the
ring of integers of the degree-d cyclotomic number field. Moreover, the coefficient
embedding (which is the one usually considered in the NTRU literature) and the
canonical embedding (used in this article) define the same geometry, up to scaling
and rotation. (In the core of the paper, the results are presented for arbitrary
number fields.)

To state the above contributions formally, we consider several variants of
the NTRU problem. We say that h P Rq “ Zqrxs{pxd ` 1q is an NTRU in-
stance with gap γ if there exists pf, gq P R2ztp0, 0qu such that g ¨ h “ f mod q
and }f}, }g} ď

?
q{γ. Note that writing g ¨ h “ f mod q rather than the more

standard h “ f{g mod q allows one to consider g’s that are not invertible mod-
ulo q and suffices for cryptographic applications. The norm }f} is the Euclidean
norm of the vector made of the coefficients of f , and the comparison to

?
q

is justified by the fact that for a uniformly chosen h, one expects the smallest
such pair pf, gq to have Euclidean norm around

?
q, up to a small polynomial

in d (in the core of the paper, we consider the Euclidean norm induced by
the canonical embedding, which leads to a slightly different definition, differing
by another

?
d factor). In the literature, the bound on }f}, }g} is often abso-

lute rather than relative to
?
q: our definition variant stresses the distance to

the uniform h regime. For a distribution D over NTRU instances with gap γ,
the decision problem pD, γ, qq-dNTRU consists in distinguishing between D and
the uniform distribution over Rq. On the search NTRU side, the situation is
more complex. We consider two variants of search NTRU, both of which with a
worst-case and an average-case version. For γ ě γ1, the worst-case vector NTRU
problem wcNTRUvec consists, given as input an NTRU instance h with gap γ,
in recovering pf, gq ‰ p0, 0q such that g ¨ h “ f mod q and }f}, }g} ď

?
q{γ1.

Note that if h P Rq has a trapdoor pf, gq, then pt ¨ f, t ¨ gq is another NTRU
trapdoor of a possibly larger Euclidean norm, for any non-zero t P R. The
wcNTRUvec definition allows solutions whose norms are within an approxima-
tion factor γ{γ1 from the norms of the promise. Even though there may be plenty
of solutions of the form pt ¨ f, t ¨ gq for t P R, the pair ratio hR “ ptfq{ptgq “ f{g
over K :“ Qrxs{pxd ` 1q is an invariant. This motivates the definition of the
worst-case module NTRU problem wcNTRUmod, which consists in recovering hR
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from h. This is equivalent to recovering the rank-1 submodule pf, gqT ¨KXMh of
the rank-2 R-module Mh “ tpf

1, g1qT P R2 : g1 ¨ h “ f 1 mod qu, hence justifying
the name. The average-case counterparts to wcNTRUvec and wcNTRUmod are
defined analogously.

We now sketch the reduction from ideal-SVP to wcNTRUvec. Let us consider
the worst-case variants, and the restriction of ideal-SVP to principal ideals with a
known generator: we are given as input a generator z of a principal ideal I “ xzy
of R, and want to use a wcNTRUvec oracle to find a short non-zero vector
in I. Any element g P I is of the form g “ z ¨ r for some r P R. Consider a
short non-zero g P I. Multiplying it by q{z, we obtain that g ¨ pq{zq “ 0 mod q.
This already looks like an NTRU equation with a candidate q{z for h. But
note that q{z is in K “ Qrxs{pxd ` 1q and has no a priori reason to belong
to R “ Zrxs{pxd ` 1q, whereas the element h of an NTRU instance must belong
to R. To handle this difficulty, we can round q{z to R (coefficient-wise). This
leads to g ¨ tq{zs “ ´g ¨ tq{zu mod q, where both g and f :“ ´g ¨ tq{zu are
small elements of R. We obtain the existence of a small pair pf, gq P R2ztp0, 0qu
such that g ¨ tq{zs “ f mod q. We can then provide the element h :“ tq{zs to
the wcNTRUvec oracle. The latter returns a pair pf 1, g1q P R2ztp0, 0qu such that
g1 ¨ tq{zs “ f 1 mod q, and it can be proved that for any such sufficiently short
pair, we have that g1 is a short non-zero element of I. To handle possibly non-
principal ideals (and also principal ideals with unknown generator), we rely on
the 2-element representation of ideals.

If we forget polynomial factors and rely on a wcNTRUvec oracle with param-
eters q, γ and γ1, the above allows to find γsvp approximations to a shortest non-
zero vector of an arbitrary ideal of volumeď N forN1{d «

?
q{γ and γsvp « γ{γ1.

Note that the reduction is worst-case to worst-case and handles bounded-volume
ideals. To handle both limitations, we rely on the recent worst-case to average-
case reduction for ideal-SVP from de Boer et al [dBDPW20]. By using the reduc-
tion with ideals from the average-case distribution from [dBDPW20], we obtain a
reduction from worst-case ideal-SVP to average-case NTRUvec. Further, the ide-
als from the average-case distribution from [dBDPW20] have volumes bounded
as exppOpd2qq. This leads to q of the order of exppOpdqq, which is significantly
larger than in many applications. We refine the analysis of [dBDPW20] to show
that by allowing the worst-case to average-case ideal-SVP reduction to run in
time higher than polynomial in d, the average-case ideals from [dBDPW20] can
be chosen with smaller volumes. The resulting NTRU modulus q is still slightly
larger than polynomial, but it can be chosen as small as dωp1q if one considers
sub-exponential time reductions.

We now provide an overview of our second main result, which is a reduc-
tion from average-case NTRUmod to dNTRU. This one is applicable for q larger
than some moderate polypdq. At the core of the reduction is an NTRU reran-
domization process. Assume we are given some h P Rq for which there exists
a short pair pf, gq ‰ p0, 0q with g ¨ h “ f mod q. Now, for any x1, x2 P R, we
have g ¨px1h`x2q “ x1f`x2g mod q, which may be rewritten as g ¨h1 “ f 1 mod q
with h1 “ x1h` x2 and f 1 “ x1f ` x2g. Further, if x1 and x2 are short, then so
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is f 1. This hence gives a way to produce arbitrarily many NTRU samples with a
common denominator g, from a single one. Our aim is to query the dNTRU or-
acle on many such samples, and gather relevant information to solve NTRUmod.
Concretely, we define the dNTRU distribution and show how to tweak the reran-
domization process to be able to use the Oracle Hidden Center Problem (OHCP)
framework from [PRS17]. At a high level, in the OHCP framework, one is given
access to a decision oracle whose acceptance probabilities on a family of distribu-
tions pDzqzPC is a function of the distance |z´c| to a hidden center c P C. Under
some conditions on the oracle behaviour, there exists an efficient algorithm that
recovers an arbitrarily accurate approximation rc to c, by querying the OHCP
oracle on samples from Dz for well-chosen values of z. Prior to this work, the
OHCP framework has been used to provide a reduction from ideal-SVP to the
decision version of Ring-LWE [PRS17], and a search to decision reduction for
Ring-LWE [RSW18].

Let us now look more closely at the rerandomization of f . It was shown
in [LSS14] that by sampling x1 and x2 from spherical Gaussians over R with
standard deviation sufficiently above maxp}f}, }g}q, the distribution of x1f`x2g
is Gaussian over the ideal xfy`xgy with a covariance matrix that is a function of f
and g. This spherical Gaussian rerandomization defines our dNTRU distribution.
We extend the proof of [LSS14] to show that if instead we sample x1 and x2 from
correlated non-spherical Gaussians over R, then the distribution of x1f ` x2g is
Gaussian over xfy ` xgy with a covariance matrix that can be made to depend
solely on |fpζq´z ¨gpζq| for ζ an arbitrary complex root of Φ “ xd`1, and z P C
arbitrary. The center of the OHCP instance is c “ fpζq{gpζq “ hRpζq (recall
that hR “ f{g belongs to K “ Qrxs{pxd ` 1q). Using the dNTRU oracle within
the OHCP framework hence allows us to recover an approximation to hRpζq. In
the applications from [PRS17,RSW18] of the OHCP framework, one recovers a
vector c of OHCP centers from an approximation rc by observing that c belongs
to a lattice: the exact center c can hence be obtained by simply rounding a
sufficiently precise approximation rc. In our case, we cannot proceed similarly,
as hR has rational coordinates. We instead show that the LLL algorithm [LLL82]
can be used in a manner similar to [KLL84] to recover hR “ f{g P K from
a sufficiently precise approximation to hRpζq, given an a priori upper bound
to maxp}f}, }g}q.

Discussion. The two reductions put forward in this work provide some evidence
towards supporting the conjectured hardness of the search vectorial NTRU prob-
lem and the decision NTRU problem. They may give the impression that the
hardness of the NTRU problems lies somewhere between the hardness of the
ideal-SVP and that of Ring-LWE. This is however neglecting the fact that there
are several NTRU problem variants, and it is unclear whether they are compu-
tationally equivalent. In particular, the reductions are incompatible, in that the
first one reduces to NTRUvec and the second one from NTRUmod. NTRUmod

reduces to NTRUvec, but it is a reduction from NTRUvec to NTRUmod that we
would need to obtain a chain of reductions from ideal-SVP to Ring-LWE via
the computationally equivalent NTRU problems. Note that if we assume that
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ideal-SVP is easy, then these problems are computationally equivalent (see Sub-
section 3.4), but the reduction from ideal-SVP to NTRUvec becomes vacuous. In
fact, it seems that NTRUvec and NTRUmod could even be of different natures:
when attempting to solve NTRUvec using an NTRUmod oracle, it is unclear how
to make the approximation factor γ{γ1 appear, as NTRUmod is only parametrized
by the promise gap γ. Better understanding the differences between the NTRU
variants seems important to better capture the NTRU hardness. In this direc-
tion, note that the known attacks specific to NTRU [ABD16,CJL16,KF17] are
mostly relevant for NTRUmod: they can also be used to solve NTRUvec, but the
quality of the solution obtained for NTRUvec is the same as the one we would
obtain by running the attack to solve NTRUmod, and then running an ideal-SVP
solver on the dense rank-1 sub-module to obtain a somehow short vector.

Despite the apparent uncomposability of our two reductions, it would be in-
teresting to have NTRU instance distributions that are compatible with both
of them. The second reduction is very permissive with respect to the NTRUmod

instance distribution, but the latter still has to satisfy some properties (see Defi-
nition 5.1). In particular, the canonical embedding of f and g should be bounded
from below and above, and the ideal xfy ` xgy should be coprime with xqy. We
note that in the reduction from ideal-SVP to wcNTRUvec, the element g is an
element of the ideal-SVP instance ideal, which could be chosen Gaussian. Using
standard properties of lattice Gaussians, it is not unlikely that one can prove the
desired property on its canonical embedding. There seems to be less flexibility
in the choice of f “ ´g ¨ tq{zu. However, one could replace the deterministic
rounding by a Gaussian rounding, to then use a similar approach as the one
for g. Concerning the co-primality with xgy, one could hope to use an inclusion-
exclusion argument for Gaussian sums like the one in [SS11].

Concerning the hardness of the NTRU problems relatively to ideal-SVP
and Ring-LWE, note that the state of the art suggests that ideal-SVP might
be strictly easier than Ring-LWE, as ideal-SVP is known to reduce to Ring-
LWE [SSTX09, LPR10, PRS17] but no reduction from Ring-LWE to ideal-SVP
is known. In fact, Ring-LWE seems less related to ideal-SVP than to finding two
short linearly independent vectors in rank-2 modules over R (SIVP): for an ap-
propriate parametrisation, Ring-LWE reduces to the latter problem [LS15, Se. 5]
and, although for some other parametrisation, the latter problem reduces to
Ring-LWE (by combining [LS15, Se. 4] and [AD17]). From a lattice perspec-
tive, NTRU is a generalization of the unique Shortest Vector Problem to rank-2
modules. At this stage, it is unclear whether its complexity matches the one of
ideal-SVP (i.e., SVP for rank-1 modules) or the one of SIVP restricted to rank-2
modules. It could also be strictly in between.

2 Preliminaries

The notations log and ln respectively denote the logarithms in bases 2 and e.
For n an integer, we let rns denote the set t1, 2, . . . , nu. Vectors and matrices are
denoted with bold lower-case and upper-case letters, respectively. The statistical
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distance between two distributions D1 and D2 with compatible countable sup-
ports is defined as distpD1, D2q “

1
2

ř

x |D1pxq ´D2pxq|. We write D1 «ε D2 if
distpD1, D2q ď ε for some ε ą 0. If X is a finite set, then we let UpXq denote
the uniform distribution over X. If b1, . . . ,bn P Rm are linearly independent
vectors, then the notation prb1, . . . , rbnq refers to their Gram-Schmidt orthogo-
nalization. The notation ~¨~ refers to the matrix norm induced by the Euclidean

norm. Finally, we define rOpdtq as Opdt polyplog dqq for any t ě 0 including t “ 0.

2.1 Euclidean lattices

A lattice L Ă Rm is a set of the form L “ B ¨ Zmˆn for some full column-
rank matrix B P Rmˆn (for some m ě n ě 1). The columns of B are said to
form a basis of L. For i P rns, the ith lattice minimum is defined as λipLq “
minpr : dimL X Bprq ě iq, where Bprq denotes the closed ball of Rm of ra-
dius r. The determinant detpLq is defined as

a

detpBTBq, which is independent
of the particular choice of basis B of L. Minkowski’s (second) theorem states
that

ś

iPrns λipLq ď
?
n
n
¨ detpLq.

In this article, we will be interested in the ideal Hermite Shortest vector
problem. We first recall below the definition of the Hermite Shortest Vector
Problem (HSVP) for arbitrary lattices, and we will instantiate it for ideal lattices
in Section 2.4.

Definition 2.1 (γ-HSVP). Let γ ě 1. Given as input a lattice L Ă Qn (rep-
resented by an arbitrary Z-basis), the γ-HSVP problem asks to find a vector
w P Lzt0u such that }w} ď γ ¨

?
n ¨ detpLq1{n.

By Minkowski’s theorem, this problem is well-defined for any γ ě 1.

2.2 Discrete Gaussian distributions

Let S P GLnpRq be an invertible matrix. The Gaussian density function with
parameter S is defined over Rn by

ρSpxq “ e´π}S
´1x}2 .

When the matrix S is diagonal with diagonal coefficients all equal to some σ ą 0,
we also use the notation ρσ “ ρS. Let L Ă Rn be a full rank lattice, and c P Rn.
The discrete Gaussian distribution DL,S,c over L with center c and parameter S
is the distribution for which the probability of any v P L is ρSpv´ cq{ρSpL´ cq,
where ρSpT q “

ř

tPT ρSptq for any countable T Ă Rn. Again, we will use the
notation DL,σ,c when S “ diagpσq for some σ ą 0. When c “ 0, we omit the
subscript c.

If L Ă Rn is a lattice, its smoothing parameter ηεpLq is defined as the small-
est σ ą 0 such that ρ1{σpL

‹zt0uq ď ε, where L‹ “ tc P spanpLq : @b P L :
xb‹,by P Zu is the dual of L. For any n-dimensional lattice L and ε ą 0, we have
the following upper bound on the smoothing parameter (see [MR07, Le. 3.3]):

ηεpLq ď

c

lnp2np1` 1{εqq

π
¨ λnpLq. (2.1)
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The following Lemma (adapted from [GPV08, Th. 4.1]) shows that one can
efficiently sample (bounded) elements from a distribution that is statistically
close to a discrete Gaussian distribution. A proof can be found in the full version.

Lemma 2.2. There exists a ppt algorithm that takes as input a basis B “

pb1, . . . ,bnq of an n-dimensional lattice L, a parameter σ ě
?
n ¨ maxi }bi}

and a center c P SpanpLq and outputs a sample from a distribution rDB,σ,c such
that

‚ DL,σ,c «2´Ωpnq
rDB,σ,c;

‚ for all v Ð rDB,σ,c, it holds that }v ´ c} ď
?
n ¨ σ and v ‰ 0.

The following lemma bounds the statistical distance between two discrete
Gaussian distributions over the same lattice L, depending on the distance be-
tween their centers and their parameter matrices. Similar results were already
present in previous works, such as in [Reg09, Claim 2.2] for 1-dimensional con-
tinuous Gaussian distributions, and in the proof of [dBDPW20, Th. 4.4] for the
case of ideal lattices with specific parameters and centers. Since the following
precise statement seems new, we provide a proof in the full version for the sake
of completeness.

Lemma 2.3. Let L Ă Rn be a full rank lattice, S1,S2 P GLnpRq be two invert-
ible matrices and c1, c2 P Rn be two vectors. If η1{2pS

´1
1 Lq, η1{2pS

´1
2 Lq ď 1{2,

then it holds that

dist
`

DL,S1,c1
, DL,S2,c2

˘

ď 4
?
n ¨

´

b

�

�S´1
2 S1 ´ In

�

�`

b

}S´1
2 pc1 ´ c2q}

¯

.

The next lemma states that a lattice Gaussian distribution with sufficiently
large standard deviation is almost uniform when reduced modulo a sublattice.

Lemma 2.4 ( [GPV08, Cor. 2.8]). Let L1 Ď L2 be two lattices of rank n. If
1 ě ηεpL1q for some ε ă 1{2, then pDL2,1 mod L1q «2ε UpL2 mod L1q.

2.3 Number fields

Let K be a number field of degree d ě 2 and KR “ K bQ R. We let R denote
its ring of integers. We identify any element of K with its canonical embed-
ding vector σ : x ÞÑ pσ1pxq, . . . , σdpxqq

T P Cd. This leads to an identification
of KR with ty P Cd : @i P rrRs, yi P R and @i P rrCs, yrR`2pi`1q “ yrR`2i`1u,
where rR and rC respectively denote the number of real and complex embed-
dings. Via this identification, the set KR is a real vector subspace of dimension d
embedded in Cd. In the following, for any element x P R,K or KR, we will
let }x} (resp. }x}8) denote the Hermitian norm (resp. infinity norm) of the vec-
tor σpxq P Cd. The set σpRq is a lattice, and the absolute field discriminant ∆K

is defined as ∆K “ |detpσpRqq2|.1 We have ∆K ě pπ{4q
d ¨pdd{d!q2, which implies

that we have d “ Oplog∆Kq, for ∆K growing to infinity.

1 Note that in order to avoid having absolute values everywhere in the rest of the
article, we define ∆K as the absolute value of the discriminant of K.
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The (absolute value of the) algebraic norm of x P KR is defined as N pxq “
ś

i |σipxq|. Any non-zero element r P R has algebraic norm ě 1, which implies
in particular that }r}8 ě 1.

In this work, we assume that we know a monic polynomial Φ P ZrXs defin-
ing K and a Z-basis pr1, . . . , rdq of R, where the ri’s are represented by poly-
nomials modulo Φ (of degree ă d) with rational coefficients. Let DΦ ą 0 be
the smallest integer such that DΦ ¨ ri has integral coefficients for all i (i.e., DΦ

is the common denominator to all the ri polynomials), then the bit-size of DΦ

is polynomial in d and }Φ}, where }Φ} is the Euclidean norm of the vector of
coefficients of Φ (see for instance [Sut16, Se. 12.4]).

We will assume that this basis has been LLL-reduced [LLL82]. We define
δK “ maxi }ri}8. Since }r}8 ě 1 for all r P Rzt0u, we know that δK ě 1. Using
Minkowski’s second theorem and the LLL-reducedness of pr1, . . . , rdq, we have

that δK ď ∆
Op1q
K . In the case of cyclotomic number fields, taking the power basis

gives δK “ 1. For an element x “
ř

i xiri P KR, define txs “
ř

itxisri. We will
also use the notation txu “ x´ txs. It holds that }txu}8 ď d{2 ¨ δK , and hence
that }txu} ď d3{2 ¨ δK .

For a rational x “ x1{x2 with x1, x2 P Z and gcdpx1, x2q “ 1, we define
sizepxq “ 1 ` log |x1| ` log |x2|. For an element x “

ř

i xiri P K, we define
sizepxq “

ř

i sizepxiq. The following lemma shows that if we have a sufficiently
precise approximation to an embedding of x P K, then one can recover x exactly.
This seems folklore, but as we were unable to find a proof, we provide one in the
full version. The result and the proof strategy are mentioned in [Coh00, Se. 6.2.4]
in the context of quadratic fields and in Roblot’s PhD thesis [Rob97] (just after
Lemma 2.14). But both references are very brief on the topic. We note that a
detailed study was done on a p-adic counterpart in [Bel04a].

Lemma 2.5. Let k ď d arbitrary. There exists an algorithm that, given ry such
that |ry ´ σkpxq| ď 2´p for some x P K and some p ě polypd, log δK , log }Φ},
sizepxqq, recovers x as a rational linear combination of the basis pr1, . . . , rdq
of R in ppt with respect to p.

2.4 Ideals and Modules

Ideals. An integral ideal I is a subset of R that is stable by addition and by
multiplication with any element of R. A fractional ideal is a subset of K of the
form x ¨ I for some x P K and some integral ideal I Ď R. We write xzy the
principal (fractional) ideal generated by z P K. Using the canonical embedding,
any non-zero fractional ideal of K is identified to a d-dimensional lattice, called
ideal lattice. The algebraic norm of an integral ideal I Ď R is defined by N pIq “
|R{I|. We extend the notation to a fractional ideal xI with x P K and I an
integral ideal, by setting N pxIq “ N pxq ¨N pIq. For a non-zero fractional ideal
I “ I1{2 with I1, I2 Ď R and gcdpI1, I2q “ R, we define the quantity sizepIq :“
logpN pI1qq ` logpN pI2qq.
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Two-element representation of an ideal. Any fractional ideal I can be generated
by only two elements, i.e., there exist x, y P K such that I “ xxy ` xyy (see,
e.g., [Coh95, Prop. 4.7.7]). In fact, for any x P Izt0u, there exists y P I such that
I “ xxy ` xyy. The lemma below states that computing such a y, given as input
pI, xq, can be done in probabilistic polynomial time.

Lemma 2.6 (Adapted from [Bel04b, Alg. 6.15] and [FS10, Th. 3]).
There exists a probabilistic algorithm taking a fractional ideal I Ă K and a
non-zero x P I as inputs, computing y P I such that I “ xxy ` xyy, and whose
run-time is polynomial in sizepxq, sizepIq and logp∆Kq.

Proof. Wlog, we can restrict the study to non-zero integral ideals. The algorithm
is the same as the one given in [FS10, Fig. 1], except that in Step 1, the element x1
is chosen to be x, rather than the first vector of a reduced basis. The correctness
proof is unchanged. The upper bounds on the bit-sizes of the elements appearing
during the algorithm execution do change, but one can check that all these bit-
sizes stay polynomial in sizepxq, as well as the other quantities related to I
and K that were already present in [FS10] (which are all polynomial in sizepIq
and log∆K). So overall, the run-time remains polynomial in sizepxq, sizepIq
and log∆K . [\

Algorithmic problems over ideal lattices. The ideal-HSVP (or id-HSVP for short)
problem is the HSVP problem restricted to lattices that are (fractional) ideal
lattices. Using the fact that for an ideal lattice I Ă K we have detpIq “

a

|∆K | ¨

N pIq, the problem admits the following equivalent formulation.

Definition 2.7 (γ-id-HSVP). Let γ ě 1. Given as input a non-zero fractional
ideal I Ă K (represented by an arbitrary Z-basis), the γ-id-HSVP problem asks

to find an element w P Izt0u such that }w} ď γ ¨
?
d ¨∆

1{p2dq
K ¨N pIq1{d.

Observe that γ-id-HSVP is equivalent to γ1-SVP in ideal lattices, up to poly-

nomial losses ď
?
d ¨ ∆

1{p2dq
K in the approximation factors γ and γ1, thanks to

the inequalities

N pIq1{d ď λ1pIq ď
?
d ¨∆

1{p2dq
K ¨N pIq1{d,

which hold for any non-zero fractional ideal I. The approximation factor loss is

polynomial when ∆
1{p2dq
K ď polypdq.

If γ “ expp rOpdαqq for α P r0, 1s, then Id-HSVP can be solved using lattice

reduction algorithms [Sch87], in time expp rOpd1´αqq. In [CDW21], Cramer, Ducas
and Wesolowski obtained a heuristic quantum polynomial-time algorithm for γ “
expp rOpd1{2qq for cyclotomic fields. In [PHS19], Pellet-Mary, Hanrot and Stehlé

gave a quantum heuristic algorithm for γ “ expp rOpplog∆Kq
α`1q{dq running

in time expp rOpplog∆Kq
1´2αqq for any field K, where α P r0, 1{2s is arbitrary.

They also propose a classical variant of their algorithm, achieving the same
approximation factor γ in time expp rOpplog∆Kq

maxp2{3,1´2αqqq for any field K;

and in time expp rOpdmaxp1{2,1´2αqqq for cyclotomic fields. Both the classical and
the quantum algorithms require an advice depending only on the field K, whose
bit-length is bounded as expp rOpplog∆Kq

1´2αqq.
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Smoothing ideals. The following lemma from [PRS17] provides a sufficient con-
dition for a diagonal matrix S to be above the smoothing parameter of an ideal
lattice.

Lemma 2.8 ( [PRS17, Le. 6.9]). Let I Ă K be a fractional ideal and S P Rdˆd
be a diagonal matrix with positive diagonal coefficients. Assume that

c :“ p
ź

i

Siiq
1{d ¨ pN pIq∆Kq

´1{d ě 1,

then 1 ě ηεpS
´1Iq, where ε “ expp´c2dq.

Modules. For ` ě k ě 1, a rank-k module M Ă K`
R is a set of the form M “

b1I1`. . .`bkIk for some non-zero ideals pIiqi and some KR-linearly independent
vectors pbiqi (i.e., if

ř

i yibi “ 0, then all yi’s must be 0). The tuple ppIi,biqqi is
called a pseudo-basis of M . If M admits a pseudo-basis for which all the Ii’s are
equal to R, then M is called free. We define detpMq as the determinant of M
when identified with a kd-dimensional lattice via the canonical embedding σ.
For any pseudo-basis ppIi,biqqi of M , we have

detpMq2 “ ∆k
K ¨N

´

detKRpB
T
Bq

ź

i

I2i

¯

, (2.2)

where detKR is the determinant of a square matrix over KR.

2.5 Oracle Hidden Center Problem

In the search to decision reduction from Section 5, we will make use of the OHCP
technique from [PRS17]. The proof of Proposition 2.10 is provided in the full
version.

Definition 2.9 (Oracle Hidden Center Problem [PRS17, Def. 4.3]). Let
ε, δ P p0, 1q and β ě 1. An OHCP instance consists in a scale parameter D ą 0
and a randomized oracle O : Rk ˆ Rě0 Ñ t0, 1u such that, for all z P Rk with
}z´ z˚} ď βD and t P Rě0, it holds that PrpOpz, tq “ 1q “ ppt` log }z´ z˚}q,
where z˚ P Rk is an unknown center satisfying δD ď }z˚} ď D and pp¨q is
an unknown function. The goal of the OHCP is to recover z̃ P Rk such that
}z̃´ z˚} ď εD.

Proposition 2.10 (Adapted from [PRS17, Prop. 4.4]). There exists an
algorithm that takes as input a parameter κ ě 20 logpk ` 1q, the scaling pa-
rameter D and the oracle O of a pexpp´κq, expp´κq, 1`1{κq-OHCP instance in
dimension k, and solves it with probability ě 1´expp´κq, in time polypκ, kq, pro-
vided the oracle O satisfies the extra following conditions. For some p8 P r0, 1s
and t˚ ě 0 we have

1. pps˚q ´ p8 ě 1{κ;
2. |pptq ´ p8| ď 2 expp´t{κq for any t ě 0;
3. for any t1, t2 ě 0, it holds that |ppt1q ´ ppt2q| ď κ

a

|t1 ´ t2|;

where pptq “ PrpOp0, tq “ 1q.
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3 Different variants of the NTRU problem

In this section, we define the three variants of the NTRU problem that we will
consider in this work.

3.1 NTRU instances

We first define NTRU instances, which will be the inputs to the NTRU problem
variants. We also consider the less standard case of tuple NTRU instances, which
has also been considered in cryptographic constructions (see, e.g., the variant of
the candidate cryptographic multilinear map from [GGH13] proposed in [LSS14,
Se. 6]). All definitions of this section readily extend to the tuple setting, in a
manner that is consistent with the second part of Definition 3.1.

Definition 3.1 (pγ, qq-NTRU instance). Let q ě 2 an integer and γ ą 0 a
real number. A pγ, qq-NTRU instance is an element h P Rq such that there
exists pf, gq P R2ztp0, 0qu with g ¨ h “ f mod q and }f}, }g} ď

?
q{γ. The pair

pf, gq is called a trapdoor of the NTRU instance h.
For t ě 1 and γ and q as above, a pγ, q, tq-tuple-NTRU instance is a tuple

phiqiďt P Rq such that there exists ppfiqiďt, gq P R
t`1ztp0, . . . , 0qu with g ¨ hi “

fi mod q and maxi }fi}, }g} ď
?
q{γ.

For a uniform h in Rq, we will see below that the expected norm of a smallest
trapdoor pf, gq is of the order of

?
q (up to factors depending on the field). Hence,

the quantity γ of an NTRU instance measures the gap between the size of a short
trapdoor of h and the size of a smallest trapdoor of h we would have expected
if h was uniform modulo q. Note also that any pγ, qq-NTRU instance is also a
pγ1, qq-NTRU instance for any γ1 ď γ (the quantity γ is only a lower bound on
the promised gap).

We now consider distributions over NTRU instances. To be useful for con-
structing cryptosystems, these distributions must be efficiently samplable and we
also need to be able to sample, together with the NTRU instance h, a trapdoor
pf, gq for h. This motivates the following definition.

Definition 3.2 (pD, γ, qq-NTRU setup). Let q ě 2, γ ą 0 and D a distribution
over pγ, qq-NTRU instances. A pD, γ, qq-NTRU setup is a ppt algorithm (with
respect to log q and log∆K) sampling triples ph, f, gq P Rq ˆR

2 such that

‚ the marginal distribution of h is D,
‚ pf, gq ‰ p0, 0q and }f}, }g} ď

?
q{γ,

‚ g ¨ h “ f mod q.

It was shown in [SS11] that for power-of-2 cyclotomic fields, there exists a
pD, γ, qq-NTRU setup with D «2´Ωpdq UpR

ˆ
q q for any prime q ě 5 and some γ “

1{polypdq. This was extended to any cyclotomic field in [WW18]. In such cases,
the decision NTRU problem introduced below is information-theoretically hard,
if we replace UpRqq by UpRˆq q. In this work, we rather focus on the case of γ ě 1.
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3.2 Decision NTRU problem

We can now define the decision variant of the NTRU problem.

Definition 3.3 (pD, γ, qq-dNTRU). Let q ě 2, γ ě 1 and D a distribution
over pγ, qq-NTRU instances. The pD, γ, qq decisional NTRU problem (pD, γ, qq-
dNTRU for short) asks to distinguish between samples from D and from UpRqq.
The advantage of an algorithm A against the pD, γ, qq-dNTRU problem is defined
as

AdvpAq :“
ˇ

ˇ

ˇ
Pr
hÐD

`

Aphq “ 1
˘

´ Pr
uÐUpRqq

`

Apuq “ 1
˘

ˇ

ˇ

ˇ
,

where the probabilities are also over the internal randomness of A.

A reduction from dNTRU to sRLWE is sketched in [Pei16, Se. 4.4.4].

3.3 Search NTRU problems

We consider two different search variants for the NTRU problem. The first one
consists in finding a trapdoor pf, gq for an NTRU instance h such that }f}
and }g} are as small as possible, whereas the second variant only asks to recover
any multiple pxf, xgq (with x P K) of a small trapdoor pf, gq. We explain below
why both variants may be of interest. Further, for both variants, the definition
comes with worst-case and average-case flavours.

Definition 3.4 (pD, γ, γ1, qq-NTRUvec and pγ, γ1, qq-wcNTRUvec). Let q ě 2,
γ ě γ1 ą 0 and D a distribution over pγ, qq-NTRU instances. The pD, γ, γ1, qq
average-case search NTRU vector problem (pD, γ, γ1, qq-NTRUvec for short) asks,
given as input some h sampled from D, to compute a pair pf, gq P R2ztp0, 0qu
such that g ¨h “ f mod q and }f}, }g} ď

?
q{γ1. The advantage of an algorithm A

against the pD, γ, γ1, qq-NTRUvec problem is defined as

AdvpAq “ Pr
hÐD

¨

˝Aphq “ pf, gq with

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

g ¨ h “ f mod q
pf, gq ‰ p0, 0q
}f}, }g} ď

?
q{γ1

˛

‚,

where the probability is also over the internal randomness of A.
The pγ, γ1, qq worst-case search NTRU vector problem (pγ, γ1, qq-wcNTRUvec

for short) asks, given as input a pγ, qq-NTRU instance h, to compute a pair
pf, gq P R2ztp0, 0qu such that g ¨ h “ f mod q and }f}, }g} ď

?
q{γ1.

Before describing the second search variant of the NTRU problem, we prove
the following lemma, which states that all short trapdoors pf, gq of an NTRU
instance h are K-multiples of one another.

Lemma 3.5. Let q ě 2, γ ą
?

2 and h be a pγ, qq-NTRU instance. Then,
for all trapdoors pf, gq, pf 1, g1q P R2ztp0, 0qu with }f}, }g}, }f 1}, }g1} ď

?
q{γ and

g ¨h “ f mod q, g1 ¨h “ f 1 mod q, it holds that pf, gq “ x ¨pf 1, g1q for some x P K.
Equivalently, there exists a unique field element hK P K such that, for all

trapdoors pf, gq P R2ztp0, 0qu with }f}, }g} ď
?
q{γ and g ¨ h “ f mod q, it holds

that f{g “ hK (where the division is performed in K and not modulo q).
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Proof. Let pf, gq and pf 1, g1q be as in the lemma statement. Then

g1 ¨ f “ g1 ¨ pg ¨ hq “ g ¨ pg1 ¨ hq “ g ¨ f 1 mod q.

This implies that g1f ´ gf 1 P qR. Moreover, we know that }g1f ´ gf 1} ď }g1} ¨
}f}`}g} ¨}f 1} ď 2q{γ2 ă q by assumption on γ. Since any non-zero element of R
has euclidean norm at least 1, we conclude that all non-zero elements of qR have
norm at least q, and so g1f´gf 1 “ 0 in K as desired. The equivalent formulation
follows immediately by taking hK “ f{g for any short trapdoor pf, gq. Note that
g must be invertible in K because otherwise g “ 0, which implies that f P qR
and so f cannot satisfy }f} ď

?
q{γ. [\

We now describe our second search variant of the NTRU problem. Since
we have seen in Lemma 3.5 that recovering a K-multiple of a short trapdoor
is equivalent to recovering the (unique) element hK , we will use this second
approach in the description of the problem.

Definition 3.6 (pD, γ, qq-NTRUmod and pγ, qq-wcNTRUmod). Let q ě 2, γ ą?
2 and D a distribution over pγ, qq-NTRU instances. The pD, γ, qq search NTRU

module problem (pD, γ, qq-NTRUmod for short) asks, given as input an NTRU
instance h sampled from D, to recover the unique field element hK P K associated
to h (as defined in Lemma 3.5). The advantage of an algorithm A against the
pD, γ, qq-NTRUmod problem is defined as

AdvpAq “ Pr
hÐD

´

Aphq “ hK

¯

,

where the probability is also over the internal randomness of A.
The pγ, qq worst-case search NTRU module problem (pγ, qq-wcNTRUmod for

short) asks, given as input a pγ, qq-NTRU instance h, to recover the unique field
element hK P K associated to h.

We note that NTRUmod is definitionally convenient in that the quantity hK
that we are looking for is unique. In NTRUvec, on the contrary, the short trapdoor
pf, gq that we are looking for is far from being unique: it can always be multiplied
by small elements of R to obtain other trapdoors.

Given a pγ, qq-NTRU instance h, one can construct the following free rank-2
module Mh:

Mh :“

ˆ

1 0
h q

˙

¨R2 “
 

pg, fqT P R2 | g ¨ h “ f mod q
(

.

This module is called the NTRU-module associated to h. As a lattice, it has
determinant detMh “ ∆K ¨ q

d and dimension 2d. If it were a generic lattice
with such determinant and dimension, we would heuristically expect that its

minimum is Θp
?
d ¨ ∆

1{p2dq
K ¨

?
qq. However, since h is a pγ, qq-NTRU instance

with γ ą
?

2, we know that there exists an unexpectedly short vector pg, fqT in
the module Mh. This short vector is not unique, any small multiple prg, rfqT
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with r P R small is also a short vector of Mh. However, Lemma 3.5 implies
that the module spanned by all these short vectors has rank 1 and is unique.
Moreover, since this module contains unexpectedly short vectors, it will have an
unexpectedly small volume. Summing up, the rank-2 module Mh has multiple
unexpectedly short vectors and a unique unexpectedly short rank-1 sub-module.
NTRUvec asks to find any of the unexpectedly short non-zero vectors of Mh,
whereas NTRUmod asks to recover the unique short rank-1 sub-module (hence
the names “NTRU vector” and “NTRU module”).

3.4 Elementary relations between the different NTRU problems

NTRUmod and NTRUvec respectively reduce to their worst-case counterparts.
The proof of the following lemma is similarly direct.

Lemma 3.7. Let q ě 2, γ ě γ1 ą
?

2. Then there exists a ppt reduction from
pγ, qq-wcNTRUmod to pγ, γ1, qq-wcNTRUvec. In the average-case setup, the re-
duction preserves the distribution of instances.

If one assumes that ideal-HSVP is easy, then the latter admits a converse
result. The proof of the following lemma is available in the full version.

Lemma 3.8. Let q ě 2, γ ě γ1 ą
?

2 and ε ą 0. Then there exists a ppt re-
duction from pγ, γvec, qq-wcNTRUvec to pγ, qq-wcNTRUmod and γhsvp-id-HSVP,
where

γvec “
1

p1` εq
?

2∆
1{p2dq
K

¨
γ

γhsvp
.

In the average-case setup, the NTRUmod and NTRUvec instance distributions are
identical.

To reduce dNTRU to NTRUmod, it suffices to show that for a uniform h, we
do not expect an unexpectedly short non-zero vector (or short rank-1 submodule)
in Mh. The proof of the following lemma is available in the full version.

Lemma 3.9. Let q ě 2 be a prime that does not divide ∆K , γ ą 16 ¨
?
d ¨

∆
1{p2dq
K and D a distribution over pγ, qq-NTRU instances. Then there exists a ppt

reduction from pD, γ, qq-dNTRU to pD, γ, qq-NTRUmod. Further, the reduction
makes a single call to the NTRUmod oracle, and if the advantage of the NTRUmod

solver is ε, then the advantage of the resulting dNTRU solver is ě ε´ 2´d.

The objective of the next two sections is to (partly) complete the picture by
giving two more sophisticated reductions: a reduction from id-HSVP to NTRUvec

and a reduction from NTRUmod to dNTRU.
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4 Reduction from ideal-HSVP to NTRUvec

This section is devoted to reducing worst-case id-HSVP to average-case NTRUvec.
For this purpose, we first exhibit a Karp reduction from worst-case id-HSVP to
wcNTRUvec. This reduction is then enhanced by using the worst-case to average-
case reduction for id-HSVP from [dBDPW20], resulting in a reduction from
worst-case id-HSVP to average-case NTRUvec, where the NTRUvec average-case
distribution is defined as the distribution obtained by applying the worst-case
to worst-case reduction to the distribution on ideals from [dBDPW20]. In the
process, we improve the reduction of [dBDPW20] to better suit our needs. We
extend it to regimes in which it is not polynomial-time anymore, but allows to
reach smaller values for the NTRU modulus q, and we show that it allows to
sample from the average-case id-HSVP distribution along with a short non-zero
element of the ideal (provided q is sufficiently large, or we have access to a quan-
tum computer). The latter is important to allow to sample from the average-case
distribution over NTRU instances, along with a trapdoor.

4.1 Transforming an ideal lattice into an NTRU module

In this section, we show how to efficiently ‘embed’ an ideal lattice into an NTRU
module such that any sufficiently short vector of the NTRU module provides a
short vector of the embedded ideal lattice. We first give an efficient reduction
from ideal-HSVP to worst-case vectorial NTRU.

Theorem 4.1. Let q ě 2 and γ ě γ1 ą 0 with γ ¨ γ1 ¨
?
d ą 1. Let γhsvp “

4dδK ¨ γ{γ
1. There is a ppt (Karp) reduction from γhsvp-id-HSVP to pγ, γ1, qq-

wcNTRUvec for ideals I Ď R satisfying N pIq P rN{2d, N s, with

N “

—

—

—

–

˜ ?
q

γ ¨ d1.5 ¨ δK ¨∆
1
2d

K

¸d
ffi

ffi

ffi

fl .

Note that the reduction is restricted to integral ideals of bounded norms.
The lower bound is not restrictive: given a non-zero integral ideal I such that
N pIq ď N , we can scale it to the non-zero integral ideal I 1 “ tpN{N pIqq1{du ¨

I, which satisfies N pI 1q P rN{2d, N s and for which a γhsvp-id-HSVP solution
directly leads to a γhsvp-id-HSVP solution for I. Concerning the upper bound
restriction, the id-HSVP worst-case to average-case reduction from [dBDPW20]
(as refined in Subsection 4.2) shows that we can wlog focus on integral ideals I

of norms N « 2d
1`α

for some α P p0, 1s. This impacts the choice of the NTRU
modulus q.

Let us now focus on the problem parameters. If we put aside factors that
depend only on the number field, we can set N1{d «

?
q{γ, and we then obtain

that γhsvp « γ{γ1. This means that the approximation factor (which is γ{γ1 in
the NTRU case) stays roughly the same, and that the root determinant of the
NTRU module is γ times larger than the one of the ideal lattice.
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Algorithm 4.1 Transforming an ideal lattice into an NTRU instance

Input: A Z-basis of a non-zero ideal I Ď R and a modulus q.
Output: An NTRU instance h.
1: Compute z P K such that I “ RX xzy (see Lemma 4.2).
2: Let h “ tq{zs mod q P Rq.
3: return h

The transformation that embeds an ideal lattice into an NTRU module is
described in Algorithm 4.1. In Lemma 4.3, we show some properties of Algo-
rithm 4.1, which will be used to prove Theorem 4.1.

Lemma 4.2. There exists a ppt algorithm (in sizepIq and log∆K) which, given
a non-zero integral ideal I as input, computes z P K such that I “ RX xzy.

Proof. If I “ 0, then the algorithm returns z “ 0. If I “ R, it returns z “ 1. We
now assume that I is neither 0 nor R. Since I Ď R, it holds that 1 P I´1. Let
y P I´1 be the output of the algorithm of Lemma 2.6, given pI´1, 1q as input:
we have I´1 “ x1y ` xyy. Note that I ‰ R implies that y ‰ 0. We then define
z “ 1{y, which fulfills our needs as J1 X J2 “ pJ

´1
1 ` J´1

2 q´1 for any non-zero
fractional ideals J1 and J2. [\

When using Lemma 4.2 in Algorithm 4.1, the element z is necessarily non-
zero, as I is non-zero. The analysis of Algorithm 4.1 follows the intuition pro-
vided by the case of principal ideals (with a known generator) described in the
introduction.

Lemma 4.3. Let q ě 2 and I Ď R a non-zero integral ideal. On input pI, qq,
Algorithm 4.1 outputs h P Rq such that

‚ there exists a pair pf, gq P R2ztp0, 0qu with g ¨ h “ f mod q and }f}, }g} ď

d1.5 ¨ δK ¨∆
1{p2dq
K ¨N pIq1{d;

‚ for any pair pf 1, g1q P R2ztp0, 0qu with g1 ¨ h “ f 1 mod q and }f 1}8, }g
1}8 ă

q{pd ¨ δK ¨∆
1{p2dq
K ¨N pIq1{dq, we have g1 P Izt0u.

Moreover, Algorithm 4.1 runs in time polynomial in sizepIq, log q and log∆K .

Proof. The run-time of the algorithm follows from Lemma 4.2. For the proofs of
the two main statements, we consider g P Izt0u with minimal infinity norm. By

Minkowski’s bound, we have that }g}8 ď ∆
1{p2dq
K ¨N pIq1{d.

We now prove the existence of f such that pf, gq is a short trapdoor for h.
By multiplying g with h, we obtain

g ¨ h “ g ¨ tq{zs “ g ¨ q{z ` f,

with f :“ ´g ¨ tq{zu. Since g P I and z´1 P I´1 (because I Ď xzy), we have
that g ¨ q{z P qR. This implies that f P R and gh “ f mod q, as desired. Let us
now compute an upper bound on the norm of f (we already know that }g} ď
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?
d ¨∆

1{p2dq
K ¨N pIq1{d). We know from the preliminaries that }tq{zu}8 ď d{2 ¨δK ,

from which we obtain:

}f} ď }g} ¨ pd ¨ δKq ď d3{2 ¨ δK ¨∆
1
2d

K ¨N pIq 1
d .

Let us now prove the second property of the lemma. Let pg1, f 1q P R2ztp0, 0qu
be such that g1 ¨ h “ f 1 mod q and

}f 1}8, }g
1}8 ă

q

d ¨ δK ¨∆
1
2d

K ¨N pIq 1
d

.

We first show that g1 ‰ 0. Assume by contradiction that g1 “ 0. Then
f 1 “ 0 mod q, i.e., f 1 P qR. But any non-zero element of qR has infinity norm ě q
(using the fact that any non-zero element of R has infinity norm ě 1). Since we
know that }f 1}8 ă q, we conclude that f 1 “ 0, which contradicts the assumption
that pf 1, g1q ‰ p0, 0q.

We now show that g1 P I. Recall that z is such that I “ R X xzy. Since we
already know that g1 P R, it suffices to prove that g1 P xzy, i.e., that g1{z P R.
By definition of h, we have:

g1 ¨ q{z “ g1 ¨ h` g1 ¨ tq{zu “ f 1 ` g1 ¨ tq{zu ` q ¨ r,

for some r P R. Multiplying this equation by g{q (recall that g is a shortest
non-zero vector of I for the infinity norm), we obtain

g1 ¨ g{z “ pf 1 ` g1 ¨ tq{zuq ¨ g{q ` g ¨ r.

We have seen that g{z P R, so that both terms g1 ¨ g{z and g ¨ r are in R. We
hence have that the term pf 1 ` g1 ¨ tq{zuq ¨ g{q must also belong to R. Further,
we know that

}pf 1 ` g1 ¨ tq{zuq ¨ g{q}8 ď p}f
1}8 ` }g

1}8 ¨ }tq{zu}8q ¨ }g}8{q

ď maxp}f 1}8, }g
1}8q ¨ p1` d{2 ¨ δKq ¨∆

1
2d

K ¨N pIq 1
d {q.

By assumption, the above is ă 1. Since no non-zero element of R has infinity
norm ă 1, we conclude that f 1 ` g1 ¨ tq{zu “ 0. This implies that g1 ¨ q{z “ q ¨ r.
Dividing this equality by q, we obtain that g1{z P R, as desired. [\

We are now ready to prove Theorem 4.1.

Proof (Theorem 4.1). The reduction consists in calling Algorithm 4.1 on I and q
to obtain some h P Rq, then calling the wcNTRUvec oracle on h and returning
the oracle output.

Let I Ď R be a γhsvp-id-HSVP instance satisfying N pIq P rN{2d, N s, with
N as in the theorem statement. The first statement of Lemma 4.3 ensures that
the element h computed by the reduction is a valid pγ, γ1, qq-wcNTRUvec in-
stance. The wcNTRUvec oracle hence outputs a pair pf 1, g1q P R2ztp0, 0qu such
that g1 ¨ h “ f 1 mod q and }f 1}, }g1} ď

?
q{γ1. By the parameter conditions,
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the assumption of the second statement of Lemma 4.3 holds. We hence have
that g1 P Izt0u. Further, by definition of N , the lower bound on N pIq and
definition of γhsvp, we have

}g1} ď

?
q

γ1
ď

21{d ¨N
1
d ¨ γ ¨ d1.5 ¨ δK ¨∆

1
2d

K

γ1
ď γhsvp ¨

?
d ¨∆

1
2d

K ¨N pIq 1
d .

Note that we used the inequality txu ě x{2, which holds for any x ě 1. [\

4.2 From worst-case id-HSVP to average-case id-HSVP

In [dBDPW20], the authors gave a worst-case to average-case reduction for id-
HSVP, for a certain average-case distribution of ideals. We adapt [dBDPW20,
Th. 4.5] to Theorem 4.4 below, so that it better fits with our application. We
explain in the full version how to adapt the proof.

Theorem 4.4 (Adapted from [dBDPW20, Th. 4.5], ERH). Let K a num-

ber field of degree d and N ě p12d1.5 log d ¨ δK ¨∆
1{p2dq
K qd an integer. Let γ ą 0.

There exist γ1 “ γ ¨ Opd1.5∆
1{d
K q, a distribution Did-HSVP

N over non-zero integral
ideals of K of norm ď N and a reduction:

‚ from worst-case γ1-id-HSVP for all fractional ideals of K,
‚ to average-case γ-id-HSVP for integral ideals distributed from Did-HSVP

N .

The reduction decreases the success probability by at most 2´Ωpdq, makes a sin-
gle call to the average-case γ-id-HSVP oracle, and runs in time T id-HSVP

β `

polyplogN, sizepIq, log∆Kq where

‚ I is the input (worst-case) ideal;
‚ T id-HSVP

β is the time needed to solve id-HSVP with approximation factor 2d{β

and

β “

S

d

log
`

N1{d{p6d1.5 log d ¨ δK ¨∆
1{p2dq
K q

˘

W

.

Moreover, there exist N0 “ polyp∆
1{d
K , δK , dq

d and a ppt algorithm A (with
respect to logN and log∆K) such that, for all N ě N0, algorithm A samples
pairs pJ,wq such that:

‚ the ideal J is a non-zero integral ideal of norm ď N ;
‚ the distribution rDid-HSVP

N of J satisfies rDid-HSVP

N «2´Ωpdq Did-HSVP

N ;

‚ the element w P Jzt0u satisfies }w} ď polypd, δK , ∆
1{d
K , 2

?
log∆K`d log dq ¨

N pJq1{d.

If we have access to a factoring oracle or if N ě N 10 “ N0 ¨ 2
Opd

?
log∆K`d log dq,

then we can reduce the size of w down to }w} ď polypd, δK , ∆
1{d
K q ¨N pJq1{d.
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Note that even though the reduction relies on a worst-case id-HSVP solver,
the latter is with an approximation factor 2d{β which is typically much larger
than γ1. This implies that T id-HSVP

β is expected to be much smaller than the

time needed to solve γ1-id-HSVP. Assume that ∆
1{p2dq
K and δK are both polypdq

and that we use the lattice reduction algorithm from [Sch87] with block size β to
solve 2d{β-id-HSVP. It runs in time T id-HSVP

β “ 2Opβq (up to a polyplogN, log∆Kq

factor). Then, it can be seen that the reduction is polynomial-time when N “

2Ωpd
2
q; it becomes more expensive when N is below this bound; and it ends up

being 2Opdq when N « polypdqd. The run-time of the reduction can be improved
using id-HSVP algorithms such as those mentioned in Subsection 2.3. In all cases,
we note that one can sample ideals J from Did-HSVP

N , together with a short vector
of J in quantum polynomial time even for small N , and in classical polynomial

time for larger N ’s (of the order of 2Opd
1.5?log dq if ∆

1{p2dq
K and δK are both

polypdq).

All the ingredients for the proof of Theorem 4.4 are present in [dBDPW20],

however the latter only considered the case of N ě p2d ¨6d1.5 log d ¨∆
1{p2dq
K ¨δKq

d,
since this is the range of parameters for which the reduction runs in polynomial
time. The generalization to smaller N and larger run-time is relatively immediate
and is provided in the full version. A further difference with [dBDPW20] is
that the distribution Did-HSVP

N in [dBDPW20] is over the inverses of integral
ideals (see [dBDPW20, Le. 4.1]) whereas here it is more convenient to have a
distribution over integral ideals. Finally, we also explain in the full version how
to sample ideals from Did-HSVP

N with a somehow short vector.

4.3 An average-case distribution of NTRU instances

In this subsection, we define a distribution DNTRU
q,γ over pγ, qq-NTRU instances.

This distribution is defined as the one being produced by Algorithm 4.2. In fact,
Algorithm 4.2 actually provides a prγ, qq-NTRU setup for some rγ ě γ, i.e., the
instance h can be sampled along with a trapdoor pf, gq that may be a little larger
than a shortest one.

Algorithm 4.2 Sampling h from DNTRU
q,γ together with a trapdoor

Input: An integer q ě 2 and a real γ ě 1
Output: A triple ph, f, gq P Rq ˆR

2.

1: Let N “

[

ˆ

?
q

γ¨d1.5¨δK ¨∆
1{p2dq
K

˙d
_

.

2: Sample I from rDid-HSVP
N with v P Izt0u such that }v} ď polypd, δK ,∆

1{d
K q ¨N pIq1{d

(see Theorem 4.4).
3: Let I 1 “ tpN{N pIqq1{du ¨ I and v1 “ tpN{N pIqq1{du ¨ v.
4: Run Algorithm 4.1 on I 1; let h P Rq be the output and z as in Algorithm 4.1.
5: Compute g “ v1 and f “ ´g ¨ tq{zu.
6: return ph, f, gq.
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Lemma 4.5. There exist Γ “ polypd, δK , ∆
1{d
K q and Γ 1 “ Γ ¨ 2Op

?
log∆K`d log dq

such that if
?
q{γ ě Γ (resp.

?
q{γ ě Γ 1), then Algorithm 4.2 runs in quantum

(resp. classical) polynomial time (with respect to log q and log∆K).

Proof. Let Γ “ 2d1.5 ¨ δK ¨∆
1{p2dq
K ¨N

1{d
0 (resp. Γ 1 “ 2d1.5 ¨ δK ¨∆

1{p2dq
K ¨ pN 10q

1{d),
where N0 (resp. N 10) is as in the second part of Theorem 4.4. Note that we have

Γ “ polypd, δK , ∆
1{d
K q (resp. Γ 1 “ Γ ¨ 2Op

?
log∆K`d log dq) as desired. Moreover,

by definition of N and using the fact that
?
q{γ ě Γ (resp.

?
q{γ ě Γ 1), we have

N ě N0 (resp. N ě N 10). Hence, by Theorem 4.4, one can sample pI, vq in Step 2
in quantum (resp. classical) time polyplogN, log∆Kq “ polyplog∆K , log qq.

By Theorem 4.4, we also know that the ideal I is non-zero and satisfies
N pIq ď N , hence tpN{N pIqq1{du ‰ 0. Therefore, the ideal I 1 computed at Step 3
is also non-zero, and v1 is a non-zero element of I 1. Thanks to Lemma 4.3, we
know that Algorithm 4.1 can be run on I 1 in time polypsizepI 1q, log q, log∆Kq.
Since I 1 is integral and N pI 1q ď N ď qd, we conclude that sizepI 1q ď polyplog q,
log∆Kq. Finally, computing f using the formula ´g ¨ tq{zu can also be done in
time polyplog q, log∆Kq, since the rounding operation in R is efficient. [\

Now that it is established that Algorithm 4.2 terminates, we can formally
define DNTRU

γ,q as the distribution produced by the algorithm.

Definition 4.6 (Distribution DNTRU
q,γ ). Let q, γ as in Algorithm 4.2. The dis-

tribution DNTRU
γ,q over Rq is defined as the distribution of the element h produced

by Algorithm 4.2 on input pq, γq.

Lemma 4.7. The support of the distribution DNTRU
q,γ is contained in the set of

pγ, qq-NTRU instances.

Proof. Let h be computed by Algorithm 4.2 on input pq, γq. By the first property
of Lemma 4.3, there exists a trapdoor pf‹, g‹q ‰ p0, 0q for h, with }f‹}, }g‹} ď

d1.5 ¨ δK ¨∆
1{p2dq
K ¨N pI 1q1{d. We have N pI 1q “ tpN{N pIqq1{dud ¨N pIq ď N . Using

the definition of N , we conclude that }f‹}, }g‹} ď
?
q{γ. [\

Algorithm 4.2 gives a way to sample from DNTRU
q,γ together with a trapdoor.

Lemma 4.8. Let q, γ as in Algorithm 4.2 and Γ (resp. Γ 1) as in Lemma 4.5.

If
?
q{γ ě Γ (resp.

?
q{γ ě Γ 1), then there exist rγ “ γ{polypd, δK , ∆

1{d
K q such

that Algorithm 4.2 is a pDNTRU
q,γ , rγ, qq-NTRU quantum (resp. classical) setup.

Proof. We have already seen in Lemma 4.5 that Algorithm 4.2 is quantum (resp.
classical) ppt. We have seen in Lemma 4.7 that D is a distribution over pγ, qq-
NTRU instances. It is hence a distribution over prγ, qq-NTRU instances, as rγ ď γ.
We now show that the sampled pair pf, gq ‰ p0, 0q satisfies g ¨ h “ f mod q and

}f}, }g} ď
?
q{γ ¨ polypd, δK , ∆

1{d
K q.

We have already seen that g “ v1 is non-zero. Moreover, by definitions of
f “ ´g ¨ tq{zu and h “ tq{zs, is holds that f “ g ¨ h mod q (see the proof of
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Lemma 4.3). Further, we have (successively using Theorem 4.4, the definition
of I 1 and the definition of N):

}g} “ }v1} ď polypd, δK , ∆
1{d
K q ¨N pI 1q1{d ď polypd, δK , ∆

1{d
K q ¨N1{d

ď polypd, δK , ∆
1{d
K q ¨

?
q

γ
.

Moreover, by definition of f , we know that }f} ď }g} ¨ pd ¨ δKq. Hence, there

exists some rγ “ γ{polypd, δK , ∆
1{d
K q such that }f}, }g} ď

?
q{rγ, as desired. [\

4.4 From average-case id-HSVP to average-case NTRU

By combining the results from Subsections 4.1 and 4.3, we obtain that, for well-
chosen parameters, average-case id-HSVP for distribution Did-HSVP

N reduces to
average-case NTRUvec for distribution DNTRU

q,γ . The proof of Theorem 4.9 is avail-
able in the full version. This theorem can in turn be combined with Theorem 4.4
to obtain a reduction from worst-case id-HSVP to average-case NTRUvec.

Theorem 4.9. Let q ě 2, γ ě 1 and γ1 ą 0 such that γ ¨ γ1 ¨
?
d ą 1 and

?
q{γ ě 13 ¨ d3 log d ¨ δ2K ¨∆

1{d
K . Define:

N “

—

—

—

–

˜ ?
q

γ ¨ d1.5 ¨ δK ¨∆
1{p2dq
K

¸d
ffi

ffi

ffi

fl and γhsvp “
γ

γ1
¨ 4dδK .

There is a ppt reduction (with respect to log∆K and log q) from average-case

γhsvp-id-HSVP for ideals sampled from rDid-HSVP

N to pDNTRU
q,γ , γ, γ1, qq-NTRUvec.

The reduction makes a single call to the NTRUvec oracle and preserves the suc-
cess probability.

5 A search to decision reduction for NTRU

In this section, we provide a reduction from average-case search-NTRUmod with
distribution Ds to average-case dec-NTRU with distribution Dd. The distribu-
tion Ds can be chosen from a large class of distributions (it only has to be
bounded and to have an invertible denominator, as per Definition 5.1 below)
and the distribution Dd is a function of Ds. Moreover, we show that if the dis-
tribution Ds enjoys an NTRU setup, then so does Dd.

5.1 Choice of the distributions

We start by describing a property of distributions that we will need for our search
to decision reduction. We also describe the distribution Dd as a function of Ds,
and explain how one can sample h with a trapdoor pf, gq from Dd, provided
there is an efficient algorithm doing it for Ds.
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Definition 5.1 (Well-behaved elements and distributions). Let q ě 2 be
an integer and B ą 1 be a real number. An element h P Rq is said to be B-well-
behaved if there exists f, g P R such that gh “ f mod q; xfy`xgy`xqy “ R; and
for all 1 ď i ď d we have 1{B ď |σipfq|, |σipgq| ď B.

A distribution D over Rq is said to be pB, εq-well-behaved for some ε ě 0 if
the probability that hÐ D is B-well-behaved is ě 1´ ε.

Observe that any pB, 0q-well-behaved distribution over Rq is a distribution

over pγ, qq-NTRU instances, where γ “
?
q{pB

?
dq. Observe also that the con-

dition xfy ` xgy ` xqy “ R is equivalent to asking that g is invertible modulo q.
Indeed, since gh “ f mod q, then any prime factor dividing both xgy and xqy
would also be a prime factor of xfy, contradicting the coprimality condition. Let
us now define a randomized mapping φB over Rq.

Definition 5.2 (Function φB). Let q ě 2 and B ą 1. We define the random-
ized mapping φB over Rq as follows

φB : Rq Ñ Rq

h ÞÑ xh` y mod q where x, y Ð DR,2BdδK .

We extend φB to distributions over Rq: for a distribution D, we let φBpDq be the
distribution over Rq obtained by sampling hÐ D and then outputting φBphq.

Finally, we show that if D enjoys an NTRU setup, then so does φBpDq.

Lemma 5.3. Let B ě 1, q ě 2, γ ą 0 and D a distribution over pγ, qq-NTRU
instances. If there exists a pD, γ, qq-NTRU setup, then there exists a pD1, γ1, qq-
NTRU setup where D1 is a distribution over Rq such that D1 «2´Ωpdq φBpDq
and γ1 “ γ{p4Bd1.5δKq.

Proof. Let A be a ppt algorithm (with respect to log q and log∆K) sampling
triples ph, f, gq P Rq ˆR

2 such that the marginal distribution of h is D, pf, gq ‰
p0, 0q, }f}, }g} ď

?
q{γ and g ¨ h “ f mod q.

We consider the following algorithm B:

‚ run A; let ph, f, gq be the output;
‚ use the algorithm from Lemma 2.2 with parameters σ “ 2BdδK and c “ 0

to sample x and y (using the basis pr1, . . . , rdq of R);
‚ return ph1, f 1, g1q “ pxh` y, xf ` yg, gq.

Note that B is ppt and that pf 1, g1q is non-zero and satisfies g1 ¨h1 “ f 1 mod q.
By Lemma 2.2, we also have

}f 1} ď 2Bd1.5δK ¨ p}f} ` }g}q ď 4Bd1.5δK ¨

?
q

γ
.

Finally, as the residual distribution of h is D, Lemma 2.2 also implies that the
residual distribution of h1 is within statistical distance 2´Ωpdq from φBpDq. [\

We can now state the main result of this section: a reduction from NTRUmod

to dNTRU, for well-chosen distributions. This theorem follows from Lemmas 2.5,
5.6 and 5.7, which are stated and proved in the following subsections. The proof
of Theorem 5.4 is provided in the full version.
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Theorem 5.4. Let q ě 2, B P p1, qs, ε ě 0 and Ds be a pB, εq-well-behaved
distribution over Rq. Assume that log q, log∆K , log }Φ} ď 2opdq (recall that Φ

is a defining polynomial of K). Define γ1 :“
?
q

4B2d2δK
and assume that γ ě 1.

Let A be an algorithm solving pφBpDsq, γ1, qq-dNTRU with advantage AdvpAq ě
2´opdq. Then, there exists an algorithm B solving pDs, γ, qq-NTRUmod with γ “
?
q{pB

?
dq and advantage AdvpBq ě pAdvpAq´ 2εq{4. Algorithm B is ppt (with

respect to log q, log∆K , log }Φ} and AdvpAq´1) and makes (possibly that many)
oracle queries to A.

Observe that up to polynomial factors depending on the number field K, we
have γ «

?
q{B and γ1 «

?
q{B2. Said differently, the Euclidean norm of the

short trapdoor is squared when we go from Ds (which has short trapdoors of size
roughly B) to φBpDsq (which has short trapdoors of size roughly B2). Hence,
one should consider B ď q1{4 for the dNTRU instances to have short trapdoors
of norm ě

?
q.

5.2 Creating new NTRU instances

In this section, we give a lemma which will allow us to rerandomize an NTRU
instance h so that the distribution of the new NTRU instance depends on
c1σ1pfq ` c2σ1pgq for some parameters c1 and c2 that we can customize. This
lemma will be used to prove Lemma 5.7, in the next subsection.

Lemma 5.5. Let pf, gq P R2ztp0, 0qu and I “ xfy ` xgy. Let c1, c2 P σ1pKRq
(which is either R or C), s0 ą 0 and s ě

?
dδK ¨ p}f} ` }g}q.

Given t P σ1pKRq, we define ψptq P KR as pt, 0, . . . , 0qT P KR if σ1 is a real
embedding and as pt{

?
2, t{

?
2, 0, . . . , 0qT P KR if σ1 is a complex embedding with

σ2 “ σ1.2

Let D be the output distribution of the following algorithm:

‚ sample c0 Ð Dσ1pKRq,s0,0;
‚ sample xÐ DR,s,ψpc0¨c1q and y Ð DR,s,ψpc0¨c2q;
‚ return x ¨ f ` y ¨ g P I.

Then it holds that D «2´Ωpdq DI,S,0, where S is a diagonal matrix with

S11 “

b

s20 ¨ |c1σ1pfq ` c2σ1pgq|
2 ` s2 ¨ p|σ1pfq|2 ` |σ1pgq|2q

S22 “

"

S11 if σ1 is a complex embedding

s ¨
a

|σ2pfq|2 ` |σ2pgq|2 if σ1 is a real embedding

Sii “ s ¨
a

|σipfq|2 ` |σipgq|2 for i ě 3.

The above can be obtained by combining the convolution result of [Pei10,
Th. 3.1] and the discrete Gaussian leftover hash lemma from [LSS14, Th. 5.1].
Unfortunately, the statements of [Pei10, Th. 3.1] and [LSS14, Th. 5.1] do not

2 The scaling by a factor 1{
?

2 in the complex case ensures that the norm of ψptq is
still equal to |t|, which allows simpler expressions.
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exactly match what we need (in particular, non-zero centers are not considered
in [LSS14, Th. 5.1] and the convolution result of [Pei10, Th. 3.1] does not con-
sider c0 being sampled from a smaller space and extended with zeros). In the
full version, we prove some slight variants of these results, in order to prove
Lemma 5.5.

Observe that by taking s “ 2BdδK and c1 “ c2 “ 0, then the distribution
of x ¨ f ` y ¨ g is exactly the distribution of the numerator of φBphq, over the
randomness of φB (i.e., when h, f and g are fixed). Note that for Lemma 5.5
to be applicable, we need s “ 2BdδK ě

?
dδK ¨ p}f} ` }g}q, which holds true if

}f}8, }g}8 ď B. This is the source of the ‘standard deviation squaring’ in The-
orem 5.4. Finally, note that by using the lemma multiple times with the same h,
we obtain tuple NTRU instances (as defined in Definition 3.1), implying that
the dNTRU and NTRUvec problem variants reduce to their tuple counterparts
(under proper parametrization).

5.3 Using the OHCP framework

We now prove two lemmas for the core of the proof of Theorem 5.4. Lemma 5.6
essentially states that when sampling h from Ds, then one should get a “good” h
with non-negligible probability. Lemma 5.7 then shows that when h is “good”, it
is possible to recover a very accurate approximation of σ1phKq using the dNTRU
oracle. Combining these two lemmas with Lemma 2.5 (which states that one
can recover an element x P K exactly from a sufficiently good approximation
of σ1pxq) then yields Theorem 5.4 (whose proof is provided in the full version).

Lemma 5.6. Let q ě 2, B P p1, qs, ε ě 0 and Ds be a pB, εq-well-behaved
distribution over Rq. Let A be an algorithm solving pφBpDsq, γ, qq-dNTRU for
some γ ě 1. Then, there exists a set H Ă Rq such that every h in H is B-well-
behaved; PrhÐDsph P Hq ě AdvpAq{2´ ε; and for all h P H

ˇ

ˇ

ˇ
Pr

`

ApφBphqq “ 1
˘

´ Pr
`

Apuq “ 1
˘

ˇ

ˇ

ˇ
ě AdvpAq{2,

where the probabilities are taken over the internal randomness of A, the ran-
domness of φB and the random choice of u Ð UpRqq (but not over the choice
of h).

Proof. There exists H0 Ă Rq of weight ě AdvpAq{2 under Ds such that for
all h P H0, the advantage of A on φBphq is at least AdvpAq{2. We define H as
the subset of the h’s in H0 that are B-well-behaved. The result follows from the
definition of pB, εq-well-behavedness and the union bound. [\

Lemma 5.7. Let q ě 2, B P p1, qs, ε ě 0 and Ds be a pB, εq-well-behaved distri-
bution over Rq. Let Dd “ φBpDsq. Let A and H as in Lemma 5.6. Assume that
AdvpAq´1, log q, log∆K ď 2opdq. Then, there exists a probabilistic algorithm B
that, given an integer ` ď 2opdq and any h P H, recovers σ1phKq with ` bits
of absolute precision3 with probability ě 1 ´ 2´Ωpdq (where hK is defined as in

3 The term “absolute precision” refers here to |x̃´x| ď 2´`, as opposed to the “relative
precision” which would be |x̃´x|

|x|
ď 2´`.
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Lemma 3.5). Moreover, algorithm B runs in time polynomial in `,AdvpAq´1, log q
and log∆K and makes (possibly that many) oracle queries to A.

Proof. In order to prove the lemma, we will express our problem as an instance
of the Oracle Hidden Center Problem (see Definition 2.9) and then use Propo-
sition 2.10 to conclude.

Let h P H be fixed once and for all, and given to B. Let us also fix some
(unknown) pf, gq P R2 such that g ¨ h “ f mod q; g is invertible modulo q; and
|σipfq|, |σipgq| P r1{B,Bs for all embeddings σi (we know that such f and g exist
since h is B-well-behaved by definition of H). We write I “ xfy ` xgy, which is
also fixed once and for all (and is coprime to xqy).

Let k “ 1 if σ1 is a real embedding and k “ 2 if σ1 is a complex embedding.
In the following, we will identify Rk with σ1pKRq. Note that in both cases, the
Euclidean norm of a vector in Rk corresponds to the absolute value of the element
seen in R or C.

In order to fit the OHCP framework, we need to describe a randomized
oracle O that takes as input a pair pz, tq P Rk ˆ Rě0 and outputs 0 or 1 such
that PrOpOpz, tq “ 1q “ P pt` ln |z ´ σ1phKq|q, for some (unknown) function P
(that may depend on h). In other words, we want that the acceptance probability
of the oracle O only depends on t` ln |z ´ σ1phKq| (when t and z vary).

We start by considering an oracle Oideal that we do not know how to im-
plement efficiently, but which is more convenient for the analysis. We will later
replace it by an oracle Oapprox that can be implemented efficiently and whose
behavior is very close to the one of Oideal. Oracle Oideal is as follows. On input
pz, tq P Rk ˆRě0, it first samples f 1 Ð DI,S, where S is a diagonal matrix with

S11 “

b

exppt´ dq2|σ1pfq ´ zσ1pgq|2 ` 4B2d2δ2Kp|σ1pfq|
2 ` |σ1pgq|2q

S22 “

"

S11 if σ1 is a complex embedding

2BdδK
a

p|σ2pfq|2 ` |σ2pgq|2q if σ1 is a real embedding

Sii “ 2BdδK
a

p|σipfq|2 ` |σipgq|2q if i ě 3.

The astute reader will observe that sampling such an f 1 may be difficult: this is
why we will later introduce Oapprox. Oracle Oideal then defines h1 “ f 1{g mod q
(recall that g is invertible modulo q) and returns Aph1q.

Note that z and t only appear in S11 (and S22 “ S11 if σ1 is a complex
embedding). Since |σ1pfq ´ zσ1pgq|{|σ1pgq| “ |σ1phKq ´ z|, we obtain that the
success probability of the oracle depends only on t` ln |z´σ1phKq| when t and z
vary, as required (recall that h, f and g are fixed once and for all).

In Claim 5.8 below, we show that the oracle Oideal satisfies all the desired
conditions to be an OHCP oracle and the conditions of Proposition 2.10. This
will imply that one can efficiently recover an approximation of σ1phKq by using
the oracle Oideal as a black box.

Claim 5.8. There exist a parameter κ0 “ polypAdvpAq´1, log q, log∆Kq and

an algorithm B1 that takes as input any parameter κ ě κ0 and outputs Čσ1phKq P
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σ1pKRq such that | Čσ1phKq ´ σ1phKq| ď B2 ¨ expp´κq with probability ě 1 ´
expp´κq. Algorithm B1 runs in time polypκq and makes (possibly that many)
oracle queries to the OHCP oracle Oideal described above.

The difficulty with algorithm B1 from Claim 5.8 is that it makes oracle calls
to Oideal, which we do not know how to run in polynomial time given only access
to h and A (in order to run Oideal efficiently, we would probably need to know
f and g). To handle this difficulty, we describe another oracle Oapprox, whose
behavior is very close to the one of Oideal, but which can be run efficiently.

On input pz, tq P RkˆRě0, the randomized oracle Oapprox proceeds as follows.
It first samples c0 in Rk from the continuous Gaussian distributionDRk,exppt´dq,0;
it then defines c1 “ ψpc0q P KR and c2 “ ψp´c0 ¨ zq P KR (where ψ is as defined

in Lemma 5.5); the oracle then samples xÐ rDR,2Bd¨δK ,c1 and y Ð rDR,2Bd¨δK ,c2

(see Lemma 2.2); finally, the oracle runs A on input ĥ “ x ¨ h ` y mod q, and

outputs Apĥq.
Oracle Oapprox can indeed be run in polynomial time from h. Let us now write

f̂ “ x ¨ f ` y ¨ g, so that ĥ “ f̂{g mod q. Observe that PrpOapproxpz, tq “ 1q “

PrpApĥq “ 1q, and PrpOidealpz, tq “ 1q “ PrpAph1q “ 1q, where ĥ and h1 are two

random variables. So |PrpOapproxpz, tq “ 1q ´ PrpOidealpz, tq “ 1q| ď distpĥ, h1q.

Since g is fixed, we have distpĥ, h1q “ distpf̂ , f 1q, and we obtain that

|PrpOapproxpz, tq “ 1q ´ PrpOidealpz, tq “ 1q| ď distpf̂ , f 1q ď 2´Ωpdq.

The last inequality comes from Lemma 5.5 and Lemma 2.2.
To conclude, algorithm B is obtained by taking algorithm B1 of Claim 5.8,

but replacing its oracle calls to Oideal by oracle calls to Oapprox, and taking κ “
maxpκ0, d, `` 2 lnpBqq. By assumption on log q,AdvpAq, ` and log∆K , we know
that κ ď 2opdq (recall that B ď q), so that algorithm B makes at most 2opdq

oracle calls to Oapprox. Hence, we obtain that

|PrpB succeedsq ´ PrpB1 succeedsq| ď 2opdq ¨ 2´Ωpdq “ 2´Ωpdq.

This completes the proof of Lemma 5.7. [\

Proof (Claim 5.8). First, we need to check that the oracle Oideal is a valid OHCP
oracle. Let us write z˚ “ σ1phKq. Since σ1phKq “ σ1pfq{σ1pgq, we know by
choice of f and g that }z˚} P r1{B2, B2s. Hence, the oracle Oideal and scale
parameter D “ B2 form a valid instance of the pε, δ, βq-OHCP problem (cf
Definition 2.9), for any ε P p0, 1q, any δ P p0, 1{B4s and any β ě 1.

We will show below that for all κ ě κ0 with

κ0 :“ max
`

4 AdvpAq´1, 8dp1` lnpq∆
1{d
K qq, 4 lnpBq

˘

,

the OHCP oracle satisfies the conditions of Proposition 2.10, with

p8 “ Pr
uÐUpRqq

pApuq “ 1q and s˚ “ 0.

More formally, letting pptq denote PrpOidealp0, tq “ 1q as in Proposition 2.10, we
prove that
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1. pps˚q ´ p8 ě 1{κ;
2. |pptq ´ p8| ď 2 expp´t{κq for any t ě 0;
3. for any t1, t2 ě 0, it holds that |ppt1q ´ ppt2q| ď κ

a

|t1 ´ t2|.

Using Proposition 2.10, we the conclude that there exists an algorithm B1
solving the pexpp´κq, expp´κq, 1`1{κq-OHCP problem in time polypκq by mak-
ing oracle calls to Oideal. Thanks to the condition κ ě 4 lnpBq, it holds that
expp´κq ď 1{B4 is a valid choice of δ. Moreover, using the fact that B ď q, we
see that κ0 “ polypAdvpAq´1, log q, log∆Kq, which proves Claim 5.8. We now
proceed to prove the three properties above.

Property 1. We want to show that pps˚q is very close to PrpApφBphqq “ 1q,
which will allow us to conclude with Lemma 5.6. Observe that by definition
of the OHCP oracle Oideal, we know that pps˚q “ PrpAph1q “ 1q, where h1 “
f 1{g mod q. So in order to bound the difference between Pr

`

ApφBphq “ 1
˘

and pps˚q, it suffices to bound the statistical distance between the two random
variables φBphq and h1, which is equivalent to bounding distpg ¨ φBphq, f

1q (i.e.,
it suffices to consider the numerator since the denominator is g in both cases).

Using Lemma 5.5 with c1 “ c2 “ 0 and s “ 2BdδK , we know that the distri-
bution of g ¨φBphq is within 2´Ωpdq statistical distance from DI,S2,0, where S2 is

a diagonal matrix with i-th diagonal entry equal to 2BdδK ¨
a

|σipfq|2 ` |σipgq|2.
Moreover, by definition of Oideal, the distribution of f 1 is DI,S1,0, where S1 is
identical to S2, except for first diagonal coefficient (or first two diagonal coeffi-
cients if σ1 is complex), which is equal to

a

p2BdδKq2p|σ1pfq|2 ` |σ1pgq|2q ` expp´2dq ¨ |σ1pfq|2.

We now apply Lemma 2.3 to show that these two Gaussian distributions are
statistically close. We first check that η1{2pS

´1
i Iq ď 1{2, for i P t1, 2u. We know

from Equation (2.1) that

η1{2pS
´1
i Iq ď

c

lnp2dp1` 2qq

π
¨ λdpS

´1
i Iq

ď
?
d ¨ λdpS

´1
i Iq

Recall that I “ xfy`xgy, so that f P I. Hence, we know that the S´1
i ¨f ¨rj ’s are

linearly independent vectors of S´1
i ¨ I (recall that the rj ’s form a basis of R).

For every j, it holds that }S´1
i ¨ f ¨ rj} ď δK ¨ }S

´1
i ¨ f} ď δK ¨

?
d{p2BdδKq (since

every diagonal coefficient of Si is no smaller than the corresponding coefficient
of f multiplied by 2BdδK). Hence, we conclude that λdpS

´1
i Iq ď 1{p2

?
dq and

that η1{2pS
´1
i Iq ď 1{2, as desired. We can apply Lemma 2.3 and we obtain that

distpDI,S1,0, DI,S2,0q ď 4
?
d ¨

b

�

�S´1
2 S1 ´ Id

�

�.

The matrix S´1
2 S1´ Id is zero, except for the top-left coefficient (or for the first

two top-left coefficients if σ1 is a complex embedding), which is equal to
?

1` η´
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1 where η “ expp´2dq ¨ |σ1pfq|
2{pp2BdδKq

2 ¨ p|σ1pfq|
2 ` |σ1pgq|

2qq. Since η ď
expp´2dq, we conclude that |

?
1` η ´ 1| ď expp´2dq, and so

�

�S´1
2 S1 ´ Id

�

� ď

expp´2dq (or ď 2 expp´2dq in case we had two non-zero coefficients). We finally
obtain that DI,S1,0 «2´Ωpdq DI,S2,0, which in turn shows that

|pps˚q ´ Pr
`

ApφBphq “ 1
˘

| ď 2´Ωpdq.

Finally, since h P H, we know from Lemma 5.6 that |PrpApφBphq “ 1q ´ p8| ě
AdvpAq{2. Wlog, we can assume that PrpApφBphq “ 1q ´ p8 ě 0 (otherwise we
can simply consider A1 “ 1´A), from which we obtain that

pps˚q ´ p8 ě AdvpAq{2´ 2´Ωpdq ě AdvpAq{4,

where the last inequality holds asymptotically when d tends to infinity, since we
assumed that 1{AdvpAq ď 2opdq. By choice of κ, this implies that pps˚q ´ p8 ě
1{κ.

Property 2. To prove this second property, we want to show that when t is
sufficiently large, then the distribution of f 1 mod q (where f 1 is implicitly com-
puted by the oracle Oideal as defined above) is statistically close to uniform
in R mod qR. Recall that the support of f 1 is I, which may be a strict subset
of R. However, we know that I “ xfy ` xgy is coprime to xqy. So if rf P I is

uniform in I{pqIq, then rf ` qR is a uniform class of R{pqRq. Hence, it suffices
to show that f 1 is statistically close to uniform in I{pqIq.

Recall that f 1 is sampled from the distribution DI,S, where S is a diago-
nal matrix with positive diagonal coefficients, with S11 ě exppt ´ dq ¨ |σ1pfq|
(we consider z “ 0 here) and Sii ě |σipfq| for i ě 2. Taking the product,
we conclude that

ś

i Sii ě exppt ´ dq ¨ N pfq. Let us call c the quantity c “
pexppt´dqN pfq{pN pqIq¨∆Kqq

1{d. Using Lemma 2.8, we know that when t is suffi-
ciently large so that c ě 1, then it holds that 1 ě ηεpS

´1¨pqIqq for ε “ expp´c2dq.
Moreover, applying Lemma 2.4 to L1 “ S´1 ¨ pqIq and L2 “ S´1 ¨ I, we see that

dist
´

DS´1¨I,1 mod S´1 ¨ pqIq, UpS´1 ¨ I mod S´1 ¨ pqIqq
¯

ď 2 expp´c2dq.

Multiplying the outputs of these two distributions by S, we finally obtain

dist
´

DI,S mod qI, UpI mod qIq
¯

ď 2 expp´c2dq.

Using the fact that c2 ě c (as c ě 1), that exppxq ě x for all x P R, and that
N pIq ď N pfq, we obtain the upper bound

2 expp´c2dq ď 2 expp´cdq ď 2 exp
`

´ ept´d´lnpqd∆Kqq{d ¨ d
˘

ď 2 exp
`

´ pt´ dp1` lnpq∆
1{d
K qq

˘

.

If t ě 2dp1` lnpq∆
1{d
K qq, then pt´dp1` lnpq∆

1{d
K qq ě t{2 and c ě 1, which implies

that
|pptq ´ p8| ď 2 expp´t{2q ď 2 expp´t{κq.

For smaller t, note that t ď κ{2. In this case, the upper bound 2 expp´t{κq is at
least 1, and so the property is also satisfied.
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Property 3. Let us fix some t1 ě t2 ě 0. We want to show that |ppt1q ´ ppt2q| ď
κ ¨

a

|t1 ´ t2|. Observe first that since p takes values in r0, 1s and κ ě 1, then
the condition is always satisfied when |t1 ´ t2| ě 1. We will hence assume wlog
that 0 ď t1 ´ t2 ď 1.

We know from the definition of Oideal that |ppt1q´ppt2q| ď distpDI,S1
, DI,S2

q,
where S1 and S2 are diagonal and equal, except for their for top-left coefficient
(or two top-left coefficients if σ1 is a complex embedding):

pS1q11 “
a

c` pexppt1 ´ dq|σ1pfq|q2 and pS2q11 “
a

c` pexppt2 ´ dq|σ1pfq|q2,

for some c ě 0. As when proving Property 1, one can check that η1{2pS
´1
1 Iq,

η1{2pS
´1
2 Iq ď 1{2. Therefore, we can apply Lemma 2.3 to obtain that

dist
`

DI,S1
, DI,S2

˘

ď 4
?
d ¨

b

�

�S´1
2 S1 ´ Id

�

�.

Once again, the matrix S´1
2 S1 ´ Id is zero, except for its top-left coefficient

(or two top-left coefficients) which is equal to
d

c` pexppt1 ´ dq|σ1pfq|q2

c` pexppt2 ´ dq|σ1pfq|q2
´1 ď

d

pexppt1 ´ dq|σ1pfq|q2

pexppt2 ´ dq|σ1pfq|q2
´1 “ exppt1´ t2q´1.

The first inequality comes from the fact that t1 ě t2 (and c and pexppt2 ´
dq|σ1pfq|q

2 are non-negative). Finally, since 0 ď t1 ´ t2 ď 1, we conclude
that exppt1 ´ t2q ´ 1 ď 2|t1 ´ t2|. This in turns implies that |ppt1q ´ ppt2q| ď
8
?
d
a

|t1 ´ t2| ď κ
a

|t1 ´ t2|, as desired. [\
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des nombres de Bordeaux, 16, 2004.

CDH`20. C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, T. Saito, J. M.
Schank, P. Schwabe, W. Whyte, K. Xagawa, T. Yamakawa, and Z. Zhang.
NTRU round-3 candidate to the NIST post-quantum cryptography stan-
dardisation project, 2020. Available at https://ntru.org/.

CDW21. R. Cramer, L. Ducas, and B. Wesolowski. Mildly short vectors in cyclo-
tomic ideal lattices in quantum polynomial time. J. ACM, 68(2), 2021.

CJL16. J. H. Cheon, J. Jeong, and C. Lee. An algorithm for NTRU problems and
cryptanalysis of the GGH multilinear map without an encoding of zero.
LMS J Comput Math, 19(A), 2016.

Coh95. H. Cohen. A Course in Computational Algebraic Number Theory.
Springer, 1995.

Coh00. H. Cohen. Advanced topics in computational number theory. Springer,
2000.

dBDPW20. K. de Boer, L. Ducas, A. Pellet-Mary, and B. Wesolowski. Random self-
reducibility of Ideal-SVP via Arakelov random walks. In CRYPTO, 2020.
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