
Private Join and Compute
from PIR with Default
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Abstract. The private join and compute (PJC) functionality enables
secure computation over data distributed across different databases, and
is applicable to a wide range of applications, many of which address
settings where the input databases are of significantly different sizes.
We introduce the notion of private information retrieval (PIR) with de-
fault, which enables two-party PJC functionalities in a way that hides
the size of the intersection of the two databases and incurs sublinear
communication cost in the size of the bigger database. We provide two
constructions for this functionality, one of which requires offline linear
communication, which can be amortized across queries, and one that pro-
vides sublinear cost for each query but relies on more computationally
expensive tools. We construct inner-product PJC, which has applications
to ads conversion measurement and contact tracing, relying on an exten-
sion of PIR with default. We evaluate the efficiency of our constructions,
which can enable 28 PIR with default lookups on a database of size 225

(or inner-product PJC on databases with such sizes) with the communi-
cation of 44MB, which costs less than 0.17c. for the client and 26.48c.
for the server.

1 Introduction

Private set intersection (PSI) enables two parties who have private input sets to
identify items that they have in common without learning any other information.
While PSI has proven its broad applicability, there are settings which require
more refined functionality that does not reveal the whole intersection but rather
enables restricted computation on the data in the intersection. We refer to this
functionality as private join and compute (PJC) [Goo19].

An important difference in the privacy requirements relevant for the PJC and
the PSI settings, is that while the intersection size is inherently revealed by the
PSI output, in the PJC case this is an additional privacy leakage, which should
be avoided in many scenarios. The cost of the “compute” part in a private join
and compute protocol is determined by the size of the intersection, which is often
much smaller than the size of the input sets, thus the dominant efficiency cost
is the cost of the step computing the intersection. Similarly to the PSI setting,



when the two input datasets are of the same size, the intersection computation
is necessarily linear in the input size. However, when we have asymmetric inputs
where one of the datasets is much larger than the other, the efficiency goal
is to avoid linear dependence on the size of the larger input set. This raises
the question whether it is possible, in the private join and compute setting, to
address both the privacy requirement of hiding the intersection size and at the
same time provide sublinear efficiency.

The PSI-Sum solution of Ion et al. [IKN+20], which was deployed in practice,
does not provide either of the above properties, and they will be highly beneficial
for that setting. First, that solution scales poorly for the party with the smaller
input set, which also often has much more constrained resources, but needs
to incur cost proportional to the larger set. Second, it inherently reveals the
intersection size, which can be significant leakage especially when one of the
inputs is small – their protocol mitigates the issue by allowing the party with
the small input to learn the intersection size first and decide to abort if it is
too small. Our construction addresses both of these issues. Additionally, we also
allow revealing the intersection cardinality in a differentially private manner.
Further, we extend the functionality that can be computed over the intersection,
including allowing both parties to contribute associated values. While we mainly
focus on a specific functionality (described below), we also discuss how to extend
our work to generic functionalities.

We specifically consider the problem of private join and compute (Inner Prod-
uct PJC) which allows computing an inner product between attribute values
associated with the intersection IDs in each of the two input datasets. In this
setting the two input sets are of the form (X,W ) = {(x1, w1), . . . , (xt, wt)}
and (Y, V ) = {(y1, v1), . . . , (yn, vn)} and the computation evaluated by the PJC
functionality is defined as follows: f((X,W ), (Y, V )) =

∑
i∈[t],j∈[n],xi=yj

wivj .

1.1 Our Motivation

We motivate the above functionality with two practical applications. The first
application involves privacy-preserving computation for the effectiveness of ad-
vertising campaigns, which is a generalization of the functionality supported by
Ion et al. [IKN+20]. A transaction data provider (TDP) has a database of trans-
action values tdp db which contains (id, spending). Here, the customer “id” has
seen an ad, and then makes a purchase with an amount “spending”. The Ad tech
company has a database at db which contains (id, type). Here, the customer “id”
has seen an ad with a “type” supplied by the ad tech company. The “type” can
be the time spent watching ads. Typically the number of ad impressions over a
particular time period is orders of magnitude higher (millions) than the corre-
sponding number of transactions on a fixed date (thousands), thus the sets are
highly asymmetric. The TDP may want to partition based on user attributes
such as new/returning customer, whether the customer is a loyalty card member,
or some demographic information, and may want to learn an inner-product for
each partition. The following query on the join of these two databases computes
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the sum of the transaction values of users who saw ads weighted according to
the type (or weight) supplied by the ad tech company.

SELECT sum(tdp db.spending ∗ at db.type)
FROM at db INNER JOIN tdp db

ON at db.id = tdp db.id

This problem can be seen as an instance of inner product PJC, where set
sizes are asymmetric, and hiding the exact intersection size may be especially
important, since the computation may be repeated with overlapping partitions
from the TDP.

The inner product PJC functionality could also be used to enhance the pri-
vacy guarantees of exposure notification protocols in the existing decentralized
contact tracing solutions [AGC20, CGH+20, TSS+20, DP320]. In such solutions,
user devices broadcast BLE packets that contain pseudorandom values gener-
ated from a daily secret key. Users who test positive for COVID-19 can report
their secret keys for the periods when they were infectious to a central server.
Each key is accompanied with a transmission risk score based on the diagnosis
and user symptoms. Anyone who downloads the server database can therefore
check whether the random values that her app has received were derived from
any of the reported secrets. However, this approach also allows learning informa-
tion about the values transmitted in individual BLE packets. We can view the
above problem as an instance of inner product PJC where the server database
contains the reported pseudorandom values with their risk scores, and where
the user has the pseudorandom values she has observed, and possibly with cor-
responding weights determined by the time elapsed since the exposure incident,
the exposure duration, and other parameters. The goal is for the user to obtain
the weighted sum of the transmission risks of the pseudorandom values match-
ing all her exposures. We note that this application also has a natural input size
asymmetry: the client set is much smaller than the server database.

1.2 Our Contributions

With these two applications in mind, we present two different instantiations of
our approach, tailored for two distinct settings. We assume that the participants
are semi-honest, they follow the protocol but attempt to obtain extra information
from the execution transcript. Our first construction is in the setting allowing
offline precomputation and initialization. In this setting, the server’s database
is fixed beforehand and can be computed on in an “offline” phase. The goal is
to minimize the cost of (possibly repeated) client queries in the “online” phase
when the client data becomes available. Our first construction in this setting
incurs a setup time that is linear in the size of the server’s (larger) dataset. The
subsequent client queries are highly efficient, and have computation and commu-
nication time linear in the client’s dataset and essentially independent of the size
of the server dataset. This is similar to approaches taken by [KLS+17, RA18],
which send an encoded server database to the client in the offline phase, al-
lowing highly efficient “online” intersections. Our work can be seen as extending
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the functionality achieved by these previous works by enabling computation over
the intersection but keeping the intersection itself hidden, while preserving the
desirable efficiency properties for the online phase. This construction is well-
suited to applications where many small PJC executions are run against a single
large databases. For example, in the conversion-measurement setting, the client’s
dataset may arrive in small batches, or the client may want to make multiple
overlapping queries based on different demographic slices. Previous works incur
the costs proportional to the larger database each PJC query.

The second construction is in the fully online setting (without precompu-
tation). In this case, we instantiate our construction using techniques derived
from Private Information Retrieval (PIR). The resulting construction allows the
client to incur costs that are asymptotically linear in the size of its own dataset,
and logarithmic in the server’s dataset size. In practice, this makes it so the bulk
of the costs of executing the protocol are shifted from the client to the server.
In this way, our work improves on [PSTY19] by making the costs incurred by
each party more equitable in the asymmetric input size setting, This is especially
beneficial when the client is a constrained device like a mobile phone, such as in
the contact tracing application.

Both our constructions compose with differential privacy in a straightforward
way, which allows repeated client queries on a single server database, using the
differential-privacy noise to hide correlations between the outputs of the different
queries. This allows our protocol to hide and/or apply differential privacy noise to
the intersection size as well as the function computed over the intersection. This
is an improvement over PJC [IKN+20] and related works such as [BKM+20],
which require revealing the intersection size without noise.

PJC from PIR-with-Default The main building block for one of our PJC con-
structions provides another primitive of independent interest which we call pri-
vate information retrieval (PIR) with default. This is a primitive which enables
PIR queries over a sparse database where the client has an input index and
receives either the data stored at that index, or a default value, if there is no
item with this index in the database. The server does not learn anything about
the query including whether the client received a database value or a default
value. The client does not learn any further information about the database or
the default value apart from her output. In particular, if the database values and
the default value are indistinguishable, then the client does not learn whether
the query index was present in the database. We also present a multi-query
PIR-with-Default construction.

PIR-with-Default on its own is sufficient to compute private set intersection-
sum [IKN+20]. Another application of PIR-with-Default outside the PJC setting,
is a way to distribute anonymous tokens [KLOR20] as follows: the users who
belong to the database stored by the server receive one type of an authentica-
tion token (which is used as the associated value for all database entries in the
PIR-with-Default execution), while every other user receives a second type of an
authentication token which is used for the default value. The server does not
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Construction 1
Construction 2 Circuit-based PSI [PSTY19, SGRP19] Labeled PSI [CHLR18]

Offline Online

Communication
Client -

O(t)
O(t log(n/t)) O(t+ n) O(t log(n/t)) +|GC(t)|

Server O(n)

Computation
Client - O(t log(n/t)) t log(t)

O(t log(n/t)) +|GC(t)|
Server O(n) O(n) n log(n)2

Table 1: Theoretical costs of PJC protocols. In Construction 2, the log factor comes
from the asymptotic behavior of the underlying PIR scheme, and can be replaced with
the efficiency of the specific PIR scheme. The computational complexity of [PSTY19]
is slightly improved by mega-bin hashing. Poly-ROOM [SGRP19] achieves asymptotics
similar to [PSTY19], thus, we group it in the circuit-based PSI. Label-PSI [CHLR18]
achieves similar asymptotic efficiency as Construction-2, but has worse concrete perfor-
mance (see [LPR+20]) and requires extra cost due to using a generic MPC. We denote
the extra cost as |GC(t)|.

learn which of the two groups the user belongs to, and if the two types of tokens
are indistinguishable, the client does not learn which type it received.

We also introduce a small extension of the PIR-with-Default functionality,
which we call Extended-PIR-with-Default, that enables both parties to contribute
associated values. In this case, the parties will learn shares the product of the
associated values, or the default value. If the parties sum the shares they receive
from multiple queries, they will receive shares of the inner-product over the
intersection, which then directly achieves the inner-product PJC functionality.

Table 1 shows the theoretical communication and computation complex-
ity of our protocol compared with prior works. Note that [CHLR18] is secure
against malicious adversaries, but only for the Labeled PSI functionality itself
and not for PSI with computation. Table 1 lists the cost of semi-honest Labeled
PSI [CHLR18].

Implementation Evaluation We evaluate the concrete communication, compu-
tation and monetary costs of our constructions and present them together with
comparisons to existing works in Section 7. For our first PJC construction, only
the offline communication and computation depends (linearly) on the size of
the larger dataset. The online communications and computation is determined
completely by the size of the smaller set and the cost of random memory ac-
cess (for datasets of size 28 and 225, the online computation is ∼ 2.43ms and
the communication is 7MB). Our second construction is more computationally
expensive but outperforms any existing constructions in terms of total commu-
nication when the differences of the two dataset sizes are significant, especially
when the difference of input sizes is greater than a factor of 210. In terms of
monetary cost, a PJC execution on sets of sizes 28 and 225 costs ∼ 0.17 c. for
the client and ∼ 26.48 c. for the server. Compared to the previous works, our
online constructions lead to a significant reduction in client monetary costs with
a small corresponding rise in server costs. For example, for n = 225 and t = 28,
our client cost is 36.5× lower than that of [PSTY19], while incurring a server
cost that is only 4× higher than theirs.
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1.3 Improvement on Related Work

Our work is focused on privately computing a function over the intersection of
two asymmetric-sized datasets, both in the setting with offline setup, and in the
fully-online setting. We discuss the most important related works.

The field of private set intersection protocols is very rich, starting from
the earliest PSI constructions that are based on the Diffie-Hellman assump-
tion [Mea86]. Over the last few years, there has been a long list of works on
efficient secure PSI [DCW13, CHLR18, PRTY19, PRTY20] with fast implemen-
tations, which can process millions of items in seconds. However, most of these
works only allow to output the intersection itself. In our scenario we wish to
compute some function of the intersection while hiding the individual elements
in the intersection. There is much less related work on the more general private
intersection join and compute.

In terms of works that support computing over the intersection while hiding
the values, a prominent approach is Garbled-Circuit-based PSI. [HEK12] pro-
poses an efficient sort-compare-shuffle circuit construction to implement PJC.
[PSTY19] improves circuit-PSI using several hashing techniques. The main bot-
tleneck in the existing circuit-based protocols is need for a large number of string
comparisons, and the methods used for computing over associated values. These
are done inside a generic MPC protocol, which increases the interaction round
complexity, and incurs cost due to bitwise encryption of each party’s dataset.
Moreover, while these protocols are well-suited to symmetrically-sized input sets,
they perform worse when inputs are asymmetric: both parties incur costs linear
in the larger database size. Another approach in this space, which is currently
used in practice by Google [Goo19], is the approach combining Diffie–Hellman
and homomorphic encryption techniques [IKN+20]. While this approach has
reasonable communication cost and can be extended to the PJC functionality,
it also performs poorly in the asymmetric inputs setting, since both parties in-
cur costs proportional to the other party’s dataset size. In terms of work that
leverages offline precomputation where one of the parties’ datasets is fixed be-
forehand, there are several prominent works with the application of private con-
tact discovery. Recent works [KLS+17, RA18] achieve good performance in the
offline setting with asymmetric inputs. However, these works cannot be straight-
forwardly extended to privately compute on the intersection.

The work that achieves the closest result to ours is the protocol of [CHLR18],
which uses homomorphic encryption to perform efficient PSI on sets of asymmet-
ric sizes, with communication cost logarithmically related to the larger dataset.
The authors show how to extend this construction to enable each party to re-
trieve labels associated to individual items in its input, with the property that the
client receives “valid” labels only for the items in the intersection . They further
describe how these labels can be additively masked and fed into a downstream
generic MPC computation that allows privately computing a function over these
labels (while hiding which specific labels were in common). This “PSI-with-
Computation” extension is described mostly theoretically by [CHLR18], and is
not accompanied by detailed experiments.
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We see our work as improving on the approach outlined in [CHLR18] in sev-
eral important ways. The first is that we use a highly tailored approach to test
membership and retrieve additive shares of the labels, which greatly moderates
the client cost compared to a generic approach. Secondly, the [CHLR18] protocol
effectively uses a novel batched Private Information Retrieval (PIR) protocol to
achieve efficiency in the asymmetric input size setting. We make the relationship
to PIR explicit in our construction, which allows us to leverage techniques from
the PIR literature [GR05, ACLS18, ALP+19], especially recursion and oblivious
query expansion. Thirdly, our approach can be efficiently applied in the offline
precomputation setting such that the client’s online cost is essentially indepen-
dent of the server’s database size. This can provide significant gains when many
queries will be made against the same database.

2 Technical Overview

Next we overview the main techniques in our constructions. We first describe the
construction of PIR-with-Default, which is the core of our contributions. In par-
ticular, we show two different instantiations of PIR-with-Default: one with offline
setup and one with sublinear online executions, and we describe important batch-
ing optimizations. Next, we show how to modify our constructions to achieve an
extended functionality, which we call Extended-PIR-with-Default. Finally, we will
describe how to build inner-product PJC from Extended-PIR-with-Default.

PIR-with-Default: In the PIR-with-Default functionality, we assume the server
holds the larger input set (Y, V ) = {(y1, v1), . . . , (ym, vn)} while the client holds
a single input x. We want the client to receive vj if x = yj for some j, and
a server-chosen default value d otherwise. Neither party should learn anything
extra, and in particular, the server should not learn which value was retrieved,
and the client should not learn the other items in the server’s database. The
client should also not learn whether it received the default value (assuming the
default value is chosen by the server to be indistinguishable from the wj values.).

Our approach uses Bloom filters [Blo70], a data structure that allows effi-
cient set membership tests over sparse sets. A Bloom filter (BF) is a binary
vector that encodes a set. For each item x, one can check whether x is in the
set or not by querying a constant number of locations in the BF. Specifically,
Bloom filters have as public parameters a set of hash functions H1, . . . ,Hk and
testing membership of x requires accessing only locations H1(x), . . . ,Hk(x) in
the Bloom Filter and checking that they are all 1 (or alternatively, checking
k =

∑
i∈[k] BF[Hi(x)]). In order to allow retrieving associated values, we lever-

age the closely related notion of garbled Bloom filters (GBF) [DCW13], which
allows to store not only a set but also a set of associated values. For value x
present in the database, computing

∑
i∈[k] GBF[Hi(x)] will result in the associ-

ated value. However, if x is not present in the database,
∑

i∈[k] GBF[Hi(x)] will
return a garbage value that needs to be transformed to the default value. We
use a GBF in conjunction with a BF as we discuss next.
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The first step is that the server creates a BF that contains the indices in
Y and a GBF that contains its database (Y, V ). The client and the server then
execute a query protocol where the client has as input an index x and the output
of the query protocol will be secret-shares of the membership bit for x in the
BF and secret-shares of the value retrieved from the GBF for x (which is either
a secret-share of some wj , or a secret share of some garbage value). Next the
client and the server will execute a Value-Or-Default protocol in which the two
parties input their shares of the BF and GBF query responses and additionally
the server’s default value for this execution, and the client obtains either the
value from the GBF query, if the BF query response was a share of 1, or the
default value, otherwise.

We first describe the BF query protocol with a linear offline setup phase
with a fixed server database, and client query that is available only during
the online phase. We will then describe a setup-free BF query with sublinear
cost in the larger database. These will constitute the difference between our
two different constructions of PIR-with-Default. After that, we will describe the
Value-Or-Default protocol, which will be shared by both PIR-with-Default con-
structions.

BF/GBF Queries with Linear Offline Cost. In the offline phase the server sends
an encryption of BF and GBF, where each entry is encrypted using an additively
homomorphic encryption scheme. Now for each query x, the client can compute
H1(x), . . . ,Hk(x), and can locally compute the encryption of Enc(

∑
i∈[k] BF[Hi(x)]).

The client generates a random value rC , which it keeps as its share, and sends
Enc(

∑
i∈[k] BF[Hi(x)]− rC) to the server, which the server decrypts to obtain its

share rS . The client and server then transform shares rC and rS of
∑

i∈[k] BF[Hi(x)]

into shares of the BF membership result using a single 1-out-of-(k + 1) oblivi-
ous transfer (OT) [Rab05] as follows. The client chooses a bit bC and computes
B = {b0, . . . , bk} where all bi are bC , except b(rC+k) mod (k+1) is the client’s share
which is equal to 1⊕ bC . The client and the server execute 1-out-of-(k + 1) OT
where the client is the sender with input B and the server is the receiver with
input rS . The server obtains output bS such that bC ⊕ bS = 1 if and only if
rS + rC = k.

In order to obtain shares of the GBF value, the client similarly locally com-
putes Enc(

∑
i∈[k] GBF[Hi(x)]), and generates a random value vC , and sends the

server Enc(
∑

i∈[k] BF[Hi(x)] − vC). The server decrypts this value to obtain its
share vS . After these steps, the server and client have shares of the BF member-
ship bit, and the GBF evaluation, as desired.

BF/GBF Queries with Sublinear Cost. Our second construction for the BF and
the GBF queries leverages constructions for symmetric private information re-
trieval (PIR) [GIKM00] with sublinear communication based on homomorphic
encryption (HE) [Gen09]. The general idea is that instead of transferring the
entire encrypted BF and GBF to the client during a setup phase, the client in-
stead makes PIR queries to retrieve the desired entries Hi[x] of the BF and GBF.
We make use of the fact that in many constructions of PIR, the client sends a
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homomorphic encryption of its desired index, which the server uses to oblivi-
ously compute an encryption of the query response under the same homomor-
phic encryption scheme, and the server can therefore sum several such responses
before returning them. Specifically, our client sends PIR queries for locations
H1(x), ...,Hk(x), and the server evaluates the queries to obtain Enc(BF[Hi(x)])
and Enc(GBF[Hi(x)]). The server then homomorphically sums these values, and
subtracts randomly chosen masks rS and vS to obtain Enc(

∑
i∈[k] BF[Hi(x)]−rS)

and Enc(
∑

i∈[k] GBF[Hi(x)]−vS), which it sends to the client. The client decrypts
these values to get rC and vC respectively. The client and server engage in the
1-out-of-(k+1) OT described earlier to get shares bC and bS of the BF member-
ship bit. These, together with the vC and vS values, are the desired output of
the BF/GBF Queries.

Our use of PIR is heavily amenable to different kinds of optimization, which
we explore in detail in Section 5.3 and the full version of this work [LPR+20].
Specifically, PIR constructions achieve sublinear communication either by using
packing techniques leveraging the slots in a HE ciphertext to encrypt the entire
selection vector in a single ciphertext [ACLS18, ALP+19], or using recursion
where the selection vector is written as an outer product of several vectors of
shorter length [GR05, ALP+19]. These two techniques are not compatible with
each other, i.e. packing the entire selection vector for a query in a single HE
ciphertext requires increased computation at the server and higher multiplica-
tive degree from the HE, and does not provide efficiency benefits. However, in
our setting we need to execute multiple PIR queries and we use the HE slots
to pack coordinates of the selection vectors from different queries. This HE-
slotting technique is also compatible with multi-query PIR approaches which use
Cuckoo hashing [PR01, PSSZ15] to reduce the communication cost per query.
Such hashing techniques partition both parties’ inputs in a way that guarantees
that the client queries are distributed evenly across the smaller server parti-
tions and can be executed only over the partition without revealing anything
about the query indices. We also instantiated this approach using two-choice
hashing [CRS03, PRTY19] and compare it to Cuckoo hashing for different pa-
rameters. In both of these multi-query instantiations we can pack coordinates
from queries for different partitions in the same HE ciphertext while preserving
the efficiency of the server computation.

Value-Or-Default protocol: As we discussed above, after the BF/GBF queries,
the client and server have XOR shares bC and bS of a bit (the output of the
BF query) and additive shares vC and vS of a value (the output of the GBF
query). In addition the server has as input a default value d. The goal of the
Value-Or-Default phase is to take these shares and produce output received by
the client, namely v = vC + vS if b = bC ⊕ bS = 1, and d, otherwise. We execute
this phase using only two 1-out-of-2 OT executions. The first OT enables the
server to learn q = ∆C+b·vC where∆C is a random value generated by the client.
This is achieved by executing a OT where the client is the sender with messages
m0 = ∆C+bC ·vC ,m1 = ∆C+(1−bC)·vC and the server is the receiver with bit bS .
The second OT enables the client to obtain∆C+b·vC+b·vS+(1−b)·d from which
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the client can subtract ∆C to recover v if b = 1, and d, if b = 0, as desired. In the
second OT the server is the sender with messages m0 = q+ bS · vS + (1− bS) · d
and m1 = q + (1 − bS).vS + bS .d which the client is the receiver with input bit
bC . Combining the BF/GBF queries with the Value-Or-Default phase achieves the
PIR-with-Default functionality.

Extended-PIR-with-Default from PIR-with-Default: Extended-PIR-with-Default
has the additions: firstly, the client holds a weight w in addition to x. Secondly,
the output learned by the client should be an additively masked version of the
product w ·vj−s if x = vj for some vj in the server’s database, and the additively
masked default value d − s, and the server should receive the additive mask s.
This extension acts as a bridge between PIR-with-Default and inner-product PJC
by incorporating values from both parties, and also to more easily hide from the
client whether it retrieved a “real” value or the default.

We note that the mask w can be incorporated by having the party that
creates the GBF sum homomorphically multiply the GBF sum by w before pro-
ceeding with the protocol. More specifically, in the PIR-with-Default protocol
with offline setup, once the client homomorphically computes the GBF sum, it
can homomorphically multiply the result with the scalar w before masking it.
In the protocol with sublinear costs, the client additionally sends a homomor-
phic encryption of w to the server along with its PIR queries. The server, after
computing the PIR queries and summing the results, can multiply the GBF sum
with the encryption of w before masking it.

In order to additively mask the final result, the server simply replaces the
values vS and d that it uses in the Value-Or-Default phase with the values vS − s
and d− s respectively. This makes it so the final value retrieved by the client is
either w · vj − s or d− s as desired.

Inner Product PJC from Extended-PIR-with-Default : In inner product PJC,
the server holds larger input set (Y, V ) = {(y1, v1), . . . , (ym, vn)} and the client
holds the smaller input set (X,W ) = {(x1, w1), . . . , (xt, wt)}. In our protocol,
the client and the server jointly execute t Extended-PIR-with-Default queries
from the set X where the server has default value 0 for all the queries. As
a result of this the client and the server have shares αC,i and αS,i such that
αC,i + αS,i = wi · vj for all xi ∈ Y and αC,i + αS,i = 0 for all xi /∈ Y . Therefore,
by adding their local shares

∑
i∈[t] αC,i and

∑
i∈[t] αS,i, the client and the server

obtain shares of the desired output
∑

i∈[t],j∈[n],xi=yj

wivj .

3 Preliminaries

We briefly introduce notations and cryptographic primitives in this section, and
refer to the full version of this work [LPR+20] for complete definitions. We denote
by κ and λ the computational and statistical security parameters respectively.
For n ∈ N, we write [n] = {1, . . . , n}. We define a probabilistic polynomial time
(PPT) algorithm to be a randomized algorithm that runs in polynomial time in
the length of its first parameter.
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Oblivious Transfer (OT) [Rab05]: 1-out-of-n OT is a two-party protocol, in
which a sender with n inputs (m1, . . . ,mn) interacts with a receiver who has an
input choice b ∈ [n]. The result is that the receiver learns mi without learning
anything about others mj ,∀j ∈ [n] \ {i}, while the sender learns nothing about
the receiver’s choice b.

Bloom Filter (BF) [Blo70] and Garbled Bloom Filter (GBF) [DCW13]: A BF is
an array {BF[i]}i∈[n] of bits where each keyword x is inserted to the BF by setting
BF[hi(x)] = 1 for all hi in a collection of hash functions H = {h1, . . . , hk | hi :
{0, 1}⋆ → [n]}. A GBF is an array of integers in Zℓ that implements a key-value

(x, v) store, where the value v associated with key x is v =
∑k

i=1 GBF[hi(x)].

Cuckoo Hashing [PR01] and 2-Choice Hashing [CRS03]: Basic Cuckoo hash-
ing consists of m bins B[1], . . . , B[m], a stash, and k random hash functions
h1, . . . , hk of range [m]. To insert an element x into a Cuckoo hash table, we
place it in bin hi(x), if this bin is empty for any i. Otherwise, we choose a ran-
dom i ∈ [k] and place x in bin hi(x), evict the item currently in that bin, and
recursively insert the evicted item. 2-choice hashing uses k = 2 random hash
functions h1, h2 of range [m], and each item x will be placed in whichever of
h1(x), h2(x) currently has fewest items.

Homomorphic Encryption (HE): HE is a form of encryption that allows to
perform arbitrary computation on plaintext values while manipulating only ci-
phertexts. In this work, we use the BGV [BGV14] and FV [FV12] HE schemes.

Private Information Retrieval: Private information retrieval (PIR) is a cryp-
tographic primitive that allows a client to query a database from one or multi-
ple servers without revealing any information about the query to the database
holder(s). A trivial solution suffering linear communication overhead consists
in sending the whole database to the client. While the feasibility of a protocol
with sublinear communication has been resolved for a long time [CKGS98], the
search for concretely efficient constructions for practical applications has been
an active area of research [GR05, ACLS18, ALP+19]. In this paper, we focus
on the single-server setting and will use RLWE-based homomorphic encryption
scheme as in [ACLS18, ALP+19].

4 Definitions

In this section, we provide the formal security definitions that we will use for our
protocols. All our constructions will be proven in the semi-honest setting where
the parties follow the prescribed steps in the construction.

We provide standard simulation security definitions [Gol04] for our construc-
tions that use the following notation: ViewΠ

C (1λ, [X]C , [Y ]S) is the view of party
C during the execution of protocol Π with security parameter λ between parties
C and S which have inputs X and Y respectively; SIMΠ

C (1λ, O) is a ppt simulator
algorithm, which generates the view of party C in the execution of a protocol Π
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Parameters: Server/Sender S and Client/Receiver R, agree upon
• An upper bound n on the number of key-value pairs in Server S’s input.
• A space Zℓ for the associated values and default values.
• A bound t on the number of Client C’s queries.

Inputs:
S: A set of key-value pairs P = {(y1, v1), . . . , (yn, vn)} with distinct yi, and de-

fault values D = {d1, . . . , dt}.
R: A set of t queries {xi}i∈[t].
Outputs:
S: No output.
R: A set O = {oi}i∈[t] where

oi =

{
vj , if xi = yj for some j ∈ [n]

di, otherwise

Fig. 1: The PIR-with-Default Functionality.

Parameters: Server/Sender S and Client/Receiver R, agree upon
• An upper bound n on the number of key-value pairs in Server S’s input.
• A space Zℓ for the associated values and default values.
• A bound t on the number of Client C’s queries.

Inputs:
S: A set of key-value pairs P = {(y1, v1), . . . , (yn, vn)} with distinct yi, a set of

default values D = {d1, . . . , dt}, and a set of additive masks S = {s1, ..., st}.
Each vi, di and si ∈ Zℓ.

R: A set of t pairs {(xi, wi)}i∈[t]. Each wi ∈ Zℓ.
Outputs:
S: No output.
R: A set O = {oi}i∈[t] where

oi =

{
(wi · vj)− si, if xi = yj for some j ∈ [n]

di − si, otherwise

Fig. 2: The Extended-PIR-with-Default Functionality. All arithmetic is in Zℓ.

(i.e. the messages received from the other participants) given input the security
parameter λ and the output O that C receives at the end of Π.

4.1 PIR with Default

We start by defining formally our new notion of PIR-with-Default. We first recall
the different existing variants of private information retrieval and their secu-
rity guarantees. The notion of PIR [CGKS95] enables a client to query a public
database with a private index and to obtain the corresponding entry, while the
party who holds the database learns nothing about the index during the execu-
tion of the query. Symmetric PIR [GIKM00] adds also a privacy guarantee for
the database requiring that the client learns nothing but the queried database
entry. Keyword PIR [CGN98] addressed the setting of sparse databases where
the query index is over a keyword domain, and database is index with a subset of
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the same domain. The query party in keyword PIR either obtains the requested
value if present in the database, or learns that the query is not present in the
database.

PIR-with-Default extends the notion of keyword PIR providing stronger pri-
vacy against the client hiding whether the query is present in the database. This
is achieved by modifying the functionality to return either the database entry if
the query is in the database, or a default value provided by the database holder,
otherwise. This privacy property is stronger than symmetric keyword PIR as-
suming that the database entries and the default values are indistinguishable. In
many real-world applications, the default value is a cryptographic object with
natural pseudorandomness. As stand-alone applications of PIR-with-Default, we
envision use-cases where clients retrieve cryptographic tokens from a server to
utilize elsewhere. In Section 1.2, we consider the specific case of anonymous to-
kens [KLOR20], but this could extend to retrieving coupons (with dummy codes
for non-targeted users), or a token proving allowlist-membership or blocklist-
non-membership.

The precise PIR-with-Default functionality is described in Figure 1. We note
that the presentation in Figure 1 allows the client to submit multiple queries,
where the server specifies different default values for each client query. Single-
query PIR-with-Default is equivalent to setting t = 1. Next we define the security
properties for such a protocol.

Definition 1 (Semi-Honest Security for PIR-with-Default). Let n(λ) be an upper
bound on the size of server database of (index, value) pairs P, t(λ) be a bound
on the number of queries client’s set X, and Zℓ(λ) be the domain for the database
values and default values D. Let O be a vector of length |X| that contains the
outputs of the PIR with default functionality executed with queries from X on
database P and default values D.

A PIR-with-Default protocol is (n(λ), t(λ), ℓ(λ))-secure, if there exist ppt al-
gorithms SIMC and SIMS such for any probabilistic polynomial-time adversary
A , there exists a negligible function negl(·) such that∣∣Pr[A(1λ,ViewΠ

S (1λ, [X]C , [P,D]S)) = 1]

−Pr[A(1λ,SIMS(1
λ, n, ℓ, O, [P,D]S)) = 1]

∣∣ < negl(λ)

and ∣∣∣Pr[A(1λ,ViewΠ
C (1λ, [X]C , [P,D]S)) = 1]

−Pr[A(1λ,SIMC(1
λ, [X]C , t)) = 1]

∣∣∣ < negl(λ)

The above security definition formalizes the intuition that the client does not
learn anything more than the output of its query (the actual value if the item
is present, or the default value) and the database size, and the server does not
learn anything from the executions except the number of queries.

We also define the notion that extends the computation of PIR-with-Default
as follows:
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1. Allowing the client to also specify associated values, such that the client will
learn the product of the client and server’s associated values if the client
identifier is in the server database.

2. Allowing the server to specify an additive mask, such that the client will
receive a masked associated-value or default. This enables the protocol to
have additively secret-shared outputs.

Extended-PIR-with-Default is formally described in Figure 2. The security def-
inition for this primitive is the same as PIR-with-Default except the output O is
computed with the extended functionality. While PIR-with-Default is a special
case of Extended-PIR-with-Default, where the client’s associated values are all 1,
and the server’s additive masks are all 0, we will be constructing both primi-
tives in a non-blackbox way from building block components to achieve better
efficiency. Note that one can use Extended-PIR-with-Default to output additive
shares of items in the intersection, which can serve as input to any MPC protocol
described in Section 6.2.

5 PIR with Default Construction

5.1 Construction Outline

Both of our constructions share the following three high-level steps.
The first step is a secret-shared private membership test (SS-PMT). This

enables the client and server to compute a secret-share of a membership bit, i.e.
the two parties obtain XOR shares of 1 or 0 if the client’s query is or is not in
the database.

The second step is computation of a secret-shared associated value (SS-AV).
This enables the client and server to compute an additive secret share of the
database value corresponding to the client’s query. The outputs for the client
and the server are additive shares of a value, which is the value that is in S’s
database if the query is in S’s database. If the query is not in the database,
there are no guarantees for the value underlying the secret shared output. In
particular, it may be an arbitrary function of the server’s database entries.

The third step is functionality called Value-Or-Default, which enables the
server and the client to take their outputs from the first two steps as well as the
default values on the server side, and translate them into the client’s output,
which is either the associated value or the default value depending on whether
the output of SS-PMT was shares of 0 or of 1 .

In the following sections, we will give two constructions for PIR-with-Default.
These constructions will have different implementations for SS-PMT and SS-AV,
but will have the same implementation of Value-Or-Default.

5.2 Construction 1: PIR-with-Default with Offline Setup

Our first construction for PIR-with-Default involves an expensive setup phase
that has communication linear in the server’s database. However, the remainder
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Parameters:
• Security parameter λ.
• Server S input set size n, associated value space Zℓ, number of client C queries t .
• A 1-out-of-k OT primitive.
• Bloom Filter parameters: Bloom filter size η sufficient to hold n items, a number

of hash functions k, a hash function family HF : {0, 1}⋆ → [η] .
• An additively HE scheme (HGen,HEnc,HDec) with message space Zℓ.

Input:
• Server S: A set of key-value pairs P = {(y1, v1), . . . , (yn, vn)} with dis-

tinct yi, and a set of default values D = {d1, ..., dt}, where each vi, di ∈
Zℓ. Additionally, a set of t masks {s1, ..., st} each ∈ Zℓ.

• Client C: A set of t queries {x1, ...., xt}. Additionally, a set of t associated values

{w1, ..., wt}, each ∈ Zℓ

Protocol:
1. Setup phase:

• S and C jointly select k hash functions {h1, ..., hk} at random from HF.
• S generates a HE key-pair (pk, sk)← HGen(λ) and sends pk to C.
• S inserts a set of keys {y1, . . . , yn} into a Bloom filter BF and the set of key-

value pairs P into a Garbled Bloom filter GBF using hash functions hi. S
aborts if either insertion operation fails.

• Using pk, S encrypts BF and GBF as EBF[i] = HEnc(pk,BF[i]), ∀i ∈ [η] and
EGBF[i] = HEnc(pk,GBF[i]), ∀i ∈ [η].

• S sends EBF and EGBF to C.
2. Online phase: The following steps are executed in parallel for each xj for j ∈ [t].

(a) SS-PMT computation:
• C chooses a random mask r ← Zℓ, homomorphically computes z =

Refresh(−HEnc(pk, r) +
k∑

i=1

EBF[hi(xj)]), and send the ciphertext z to S

• S decrypts the received ciphertext z using secret key sk, and obtains r′.
• Parties invoke an instance of 1-out-of-(k + 1) OT:
• S chooses a bit bS at random.
• S acts as OT’s sender with input {b0, . . . , bk} where each bi is equal

to bS , except b(k−r′) mod (k+1) which is equal to 1⊕ bS .
• C acts as OT’s receiver with choice r mod (k + 1).
• C obtains bC from the OT’s functionality.

(b) SS-AV computation:
• C chooses a random mask vC ← Zℓ, homomorphically computes z′ =

Refresh(−HEnc(pk, vC)+ wj ·
k∑

i=1

EGBF[hi(x)]), and sends the ciphertext to

S
• S decrypts the received ciphertext z′ using its secret key sk, and obtains

vS .
(c) Value-Or-Default computation:

• S and C engage in a Value-Or-Default protocol execution described in Fig-
ure 4.

• S uses inputs bS , vS −sj and dj −sj .

• C uses inputs bC and vC .
• Let oj be the output received by C from the Value-Or-Default protocol

execution
3. Output: C outputs the set O = {oj}j∈[t].

Fig. 3: Construction 1: PIR-with-Default construction with

Setup. The highlighted parts are only needed for Extended-PIR-with-Default construc-
tion.
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of the protocol is independent of the number of entries in the server’s dataset.
Therefore this protocol is well suited to scenarios where the server’s database
is fixed and the setup phase can be performed offline, and requires an efficient
online phase once the client’s input is available. Moreover, the setup phase can
be run once and reused for multiple protocol executions, and for different clients.

The construction presented in Figure 3 works as follows. The server inserts
its database into a Bloom filter BF and a Garbled Bloom filter GBF. The server
generates a public/private key pair (pk, sk) for additively homomorphic encryp-
tion, and encrypts the entries of both BF and GBF using the public key. It sends
the encrypted results to the client in the setup phase. Whenever the client wants
to run a PIR-with-Default query x, the client invokes the online phase of com-
putation with the server to compute SS-PMT, SS-AV and Value-Or-Default. We
describe each of these computations as follows:

SS-PMT Functionality We instantiate SS-PMT as follows. The client first

computes a sum of the encrypted entries b =
k∑

i=1

EBF[hi(x)] using the homomor-

phic property of the encryption scheme. It is easy to see that b is an encryption
of a value p which is smaller than k+1. Moreover, if the query x is in the server
dataset Y , p is exactly equal to k. The client now needs to turn this into secret
shares of the membership bit. A straw man solution is to homomorphically con-
vert b to an encryption of a bit (0/1) so that each party can have a secret share
of the bit indicating whether x ∈ Y . The conversion can be done by homomor-
phically evaluating the equality circuit that has multiplicative depth ⌈log(k)⌉.
However this approach is relatively inefficient.

Instead, we use a simple solution that relies on oblivious transfer. More pre-
cisely, the client randomly chooses a value r ← Zℓ, which will be its output share,
and masks b by computing c← b−Enc(pk, r). The client sends the resulting value
to the server, who decrypts it to obtain its output share r′ = Dec(sk, c) = p− r.
The parties use their output shares of p as inputs in the next OT functionality
that translates these shares into shares of a single membership bit.

The client chooses a random bit bC and acts as OT’s sender with (k + 1)
OT messages B = {b0, . . . , bk} where all bi are bC , except b(k−r′) mod (k+1) which
is equal to 1 ⊕ bC . The server acts as OT’s receiver with r mod (k + 1). The
OT functionality gives the server bS such that bC ⊕ bS = 1 if r + r′ = k (i.e.
the client’s keyword is in the server’s database), otherwise bC ⊕ bS = 0. The
described process exactly implements the SS-PMT functionality.

Instantiating 1-out-of-N OT A trivial implementation of the 1-out-of-(k + 1)
OT used above is via log(k + 1) 1-out-of-2 OT instances. Recently, several
works [KK13, KKRT16, PSZ18] have proposed efficient protocols to generalize
1-out-of-2 OT extension to 1-out-of-N OT. Each protocol has a different un-
derlying encoding function to support an upper-bound number of N messages
in OT. Kolesnikov and Kumaresan [KK13] employ 256-bit Walsh-Hadamard
error-correcting code and achieve 1-out-of-N OT on random strings, for N up
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to approximately 256. For arbitrarily large N , the best 1-out-of-N OT proto-
col [KKRT16] uses 424-448 bits codeword length, which requires 424-448 bits
of communication per OT and N hash evaluations. For smaller N , the best pro-
tocols [PSZ18, OOS17] use linear BCH code, in which codeword length depends
on N . Our instantiation for the BF parameters yields N = 25 to achieve a BF
false-positive rate of 2−λ. In this case, the required codeword length and the
best underlying encoding are 248 bits, which are chosen according to [min] to
achieve Hamming distance of two codewords at least κ security parameter.

SS-AV Functionality The SS-AV protocol uses similar but simplified ap-
proach as the one in SS-PMT. The client first computes a sum of all encrypted

EGBF[hi(x)],∀i ∈ [k], using the additive HE property z =
k∑

i=1

EBF[hi(x)]. Due to

the GBF property, z is an encryption of the associated value v if (x, v) ∈ P, and
some unrelated value otherwise. To output SS-AV, the client chooses a random
vC and sends z − Enc(pk, vC) to the server who can decrypt it and obtain vS .

The work [DCW13] observed that the GBF procedure aborts when processing
item x if and only if x is a false positive for a BF containing the previous items.
Therefore, to bound the probability by 2−λ, one can use a table with 58n entries
to store n items. In that case, the optimal number of hash functions is k = 31.

In the setting of Extended-PIR-with-Default, the client homomorphically mul-
tiplies its value wi with the sum of the encrypted GBF values before masking
and sending it to the server. Then if xi is in the server database, vS , the decryp-
tion of z, will be a share of (vj · wi) . Then the server can simply add (−si) to
vS before proceeding to the next phase: now vC and vS − si are additive shares
of (vj · wi)− si.

Finally, the server and client engage in a Value-Or-Default protocol to trans-
late the outputs of the previous two steps into the associated value or the default
value. We describe this subprotocol in the next section.

Value-Or-Default Functionality We describe our Value-Or-Default protocol
for the PIR-with-Default construction and note that the only change required
for the Extended-PIR-with-Default construction is that the server has to modify
its inputs to Value-Or-Default, but there are no changes to the Value-Or-Default
protocol itself.

After SS-AV, parties hold secret shares of the associated value v if (x, v) ∈ P.
To complete the PIR-with-Default functionality, the client has to either recon-
struct v or obtain a default value d from the server. We translate the shares into
the required output using 2 OT invocations (forward and backward) as follows.

In the “forward” OT, the client chooses a random value ∆C ← {0, 1}ℓ, and
acts as OT’s sender with OT’s messages {∆C + bC · vC , ∆C + (1− bC) · vC}, while
the server acts as OT’s receiver with a choice bit bS , and obtains q. Clearly,
q = ∆C + (bC ⊕ bS) · vC = ∆C + b · vC .
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Input:
• Server S: A bit bS and two strings vS and d each ∈ Zℓ.
• Client C: A bit bC and a string vC ∈ Zℓ .

Desired Output:
• Server S: No output.
• Client C: v = vS + vC if b = 1, or d if b = 0, where b = bS ⊕ bC

Protocol:

1. C chooses ∆C ← Zℓ at random.
2. Parties invoke an OT instance:

• C acts as OT’s sender with OT’s messages m0 = ∆C + bC · vC and m1 =
∆C + (1− bC) · vC .

• S acts as OT’s receiver with a choice bit bS , and obtains q. Note that
q = ∆C + b · vC where b = bS ⊕ bC

3. Parties invoke another OT instance:
• S acts as OT’s sender with inputs m0 = q + (bS · vS) + ((1 − bS) · d) and

m1 = q + ((1− bS) · vS) + (bS · d).
• C acts as OT’s receiver with a choice bit bC, and receives q′. Note that

q′ = q + (b · vS) + ((1− b) · d) where b = bS ⊕ bC
4. C outputs q′ − ∆C. Note that the output is exactly vS + vC if b = 1, or d if

b = 0, where b = bS ⊕ bC

Fig. 4: Our Value-Or-Default Construction. All arithmetic is implicitly in Zℓ.

In the “backward” OT, the server acts as OT’s sender with input {q + bS ·
v+(1− bS) ·d, q+(1− bS) · v+ bS ·d} while the client acts as OT’s receiver with
a choice bit bC , and receives q′. It is easy to see that q′ = q + b · vS + (1− b) · d.

Finally the client reconstructs it output o = q′ −∆C .

5.3 Construction 2: PIR-with-Default with Sublinear communication.

Our second construction aims to remove the expensive offline setup phase from
our first construction, replacing it by (standard) Private Information Retrieval
queries.

Recall that the offline Phase in Construction 1 consists of S sending encrypted
BF and GBF to the client. For each query xj C homomorphically sums the entries
corresponding to hi(xj) for each of the k hash functions hi, additively masks the
encrypted result, and sends it to the server.

In Construction 2, C will instead obliviously query the server at the locations
hi(xj), and will receive the masked sum of the corresponding values at those
locations in BF and GBF. Note that if C only needed to retrieve the entries at
locations hi(xj) (without summing or masking), then C could have used standard
(symmetric) PIR. In order to execute the query results summed and masked, we
have C instead use a modified version of PIR, which we call Sum-PIR.

Sum-PIR Functionality The Sum-PIR primitive allows a receiver C, holding
a set of indices p1, . . . , pk, to interact with a server holding a database P and
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receive
∑k

i=1 P[pi]− r, for some additive mask r held by the server. The server
should not learn the entries queried by the client.

Our construction for Sum-PIR builds on standard constructions of PIR from
additively homomorphic encryption, for example [ACLS18, ALP+19]. In the ba-
sic version of these constructions, the receiver C sends η ciphertexts c1, . . . , cη
to the server, where η = |P| is the number of items held by the server. These
ciphertexts all encrypt 0, except the ci (where i is the index C wishes to re-
trieve), which encrypts 1. The server S receives these ciphertexts and performs
a homomorphic dot-product between these ciphertexts and its database P. This
results in a ciphertext c∗ =

∑η
j=1 P[j] ·cj , which is an encryption of exactly P[i].

S then sends c∗ to the client who decrypts to receive its desired value.

We observe that if the client wishes to instead receive the sum of k entries,
then it can send k PIR queries simultaneously to the server, who executes the
computation described above, and homomorphically sums the resulting cipher-
texts before returning the result to the client. The result will then contain exactly
the sum of the k queried items. If we additionally want the result to be masked,
then the server can homomorphically add a chosen mask r to the result before
returning it to the client.

While the basic construction described has high client communication costs,
we can perform several optimizations to reduce the communication and compu-
tation costs, which we describe in Section 7. We also note that the description
above only requires additively homomorphic encryption. However, some of our
optimizations will additionally require homomorphic multiplications. Therefore,
our construction will be from RLWE-based somewhat-HE [BGV14].

We present our Sum-PIR functionality and its construction in Figure 5. The
security of our Sum-PIR construction follows in a straightforward way from the
security of its building block (e.g. PIR).

Building PIR-with-Default from Sum-PIR Our second PIR-with-Default con-
struction is presented in Figure 6 and works as follows. In the setup phase, the
server inserts its database into a Bloom filter BF and a Garbled Bloom fil-
ter GBF. The online execution starts the SS-PMT phase, which now consists
of a Sum-PIR execution. For each item xi∈[t], the client inputs a set of indices
{h1(xi), . . . , hk(xi)} while the server inputs BF and a random mask r. Similar
to Construction 1, the parties obtain secret share of the value p which is smaller
than k+1. The parties then use their obtained values as inputs to the 1-out-of-
(k + 1) OT that translates these shares into output of SS-PMT functionality.

For SS-AV computation, the parties also invoke Sum-PIR. We observe that
the client can reuse the queries from the SS-PMT phase in the SS-AV phase,
since it is querying the same indices (i.e, C does not need to send PIR.Query to
the server in Step (2,a) of Figure 5) while the server inputs GBF and a random
mask vS . Sum-PIR directly gives parties SS-AV’s outputs as desired.

In the setting of Extended-PIR-with-Default , for each j ∈ [t], the client ad-
ditionally sends encryption of wj to the server who homomorphically multiplies
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Input:
• Server S: A database D of size η and an additive mask r
• Client C: a set of indices p1, . . . , pk.

Desired Output:
• Server S: no output
• Client C: v =

∑k
i=1 D[pi]− r

Protocol:

1. C generates a public-secret key pair (pk, sk) with PIR.Gen, and sends pk to S
2. S and C invoke multi-query PIR. For each i ∈ [k],

(a) C uses PIR.Query(pk, pi) to generate a query qi and sends it to S
(b) S uses PIR.Answer(pk, qi, D) to generate the answer di.
(c) S homomorphically computes c =

∑k
i=1 di

(d) S homomorphically masks c⋆ with r as c⋆ ← c− HEnc(pk, r).
(e) S sends c⋆ to C.

3. C outputs PIR.Extract(sk, c⋆)

Fig. 5: Our Sum-PIR Construction.

it with the PIR results in Step (2,c) of Figure 5 before masking the result with
the additive mask vS in Step (2,d) of Figure 5.

Finally, the server and client engage in the Value-Or-Default protocol as before
to translate the outputs of the previous two steps into the associated value or
the default value. This protocol is the same as in Construction 1.

Hashing Based Multi-Query PIR-with-Default Construction Construc-
tion 2 based on Sum-PIR relies heavily on several PIR queries (see Step 2 of
Figure 5), with one query for each client input, which is executed against the
server’s data at the same time. However, standard PIR techniques require the
server to touch each item in its dataset for each client query, which quickly be-
comes expensive. In this section, we describe an optimization based on hashing to
bins that enables large cost savings when executing multiple parallel PIR execu-
tions. Variants of this idea have appeared in previous work: [ACLS18, ALP+19]
proposed a new PIR construction for sparse databases based on Cuckoo hashing
to amortize CPU cost when making multiple PIR queries. We also show how to
leverage a hashing technique [KMP+17, PRTY19] to speed up the computational
cost of Construction 2.

Our main idea is that the parties use hashing to partition its items into m
bins. Each bin contains a smaller fraction of inputs, which allows the parties to
evaluate PIR-with-Default or Extended-PIR-with-Default bin-by-bin. The amount
of data the server has to touch per query is now only the items that were mapped
to the same bin as the client query, which is much more efficient computationally.

Our hashing based PIR-with-Default construction is presented in the full ver-
sion of this work [LPR+20]. In this construction, parties hash their items to bins
using one of the hashing schemes described above, and execute PIR-with-Default
bin-by-bin. We note that when we use this hashing technique, we are able to
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Parameters:
• Security parameter λ.
• Server S input set size n, associated value space Zℓ, number of client C queries t .
• A 1-out-of-k OT primitive and a Sum-PIR primitive.
• Bloom Filter parameters: Bloom filter size η sufficient to hold n items, a number

of hash functions k, a hash function family HF : {0, 1}⋆ → [η] .

Input:
• Server S: A set of key-value pairs P = {(y1, v1), . . . , (yn, vn)} with dis-

tinct yi, and a set of default values D = {d1, ..., dt}, where each vi, di ∈
Zℓ. Additionally a set of t masks {s1, ..., st} each ∈ Zℓ.

• Client C: A set of t queries {x1, ...., xt}. Additionally a set of t associated values

{w1, ..., wt}, each ∈ Zℓ.

Protocol:
1. Setup phase:

• S and C jointly select k hash functions {h1, ..., hk} at random from HF.
• S inserts a set of keys {y1, . . . , yn} into a Bloom filter BF and the set of key-

value pairs P into a Garbled Bloom filter GBF using hash functions hi. S
aborts if either insertion operation fails.

2. Online phase: The following steps are executed in parallel for each xj for j ∈ [t].
(a) SS-PMT computation:

• S selects a mask r ← Zℓ.
• C and S execute a Sum-PIR query. C uses inputs h1xj , ..., hk(xj). S uses

BF and r as input.
• C receives r′ = −r +

∑k
i=1 BF[hi(xj)] as output.

• Parties invoke an instance of 1-out-of-(k + 1) OT:
• S chooses a bit bS at random.
• S acts as OT’s sender with input {b0, . . . , bk} where each bi is equal

to bS , except b(−r+k) mod (k+1) which is equal to 1⊕ bS .
• C acts as OT’s receiver with choice r′ mod (k + 1).
• C obtains bC from the OT’s functionality.

(b) SS-AV computation:

• C sends HEnc(pk, wj) to S.
• S selects a mask vS ← Zℓ.
• C and S execute a Sum-PIR query. C uses inputs h1xj , ..., hk(xj). S uses

GBF and vS as input.

• Prior to additively masking the Sum-PIR result c with vS to compute c⋆,

S homomorphically multiplies c with HEnc(pk, wj)

• S receives mask vS as output. C receives vC =
−vS+ wj ·

∑k
i=1 GBF[hi(xj)] as output.

(c) Value-Or-Default computation:
• S and C engage in a Value-Or-Default protocol execution described in Fig-

ure 4.
• S uses inputs bS , vS −sj and dj −sj .

• C uses inputs bC and vC .
• Let oj be the output received by C from the Value-Or-Default protocol

execution
3. Output: C outputs the set O = {oj}j∈[t].

Fig. 6: Construction 2: PIR-with-default construction with sublinear communication.

Portions with changes highlighted are needed for achieving Extended-PIR-with-Default
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achieve a weakened version of PIR-with-Default. Specifically, the server cannot
assign a particular default value specifically to the ith client query since it does
not know which bin this query got assigned to. Rather, the server must assign
defaults to the ith client query per-bin. That is, default values must be assigned
bin-wise. The same holds true for masks in the case of Extended-PIR-with-Default
. We observe that this does not impact any of our applications, since they have
S choose all default values (and masks) the same way (as a random share of 0),
independent of which specific client query is being responded to. Therefore these
applications lose nothing from assigning default values and masks by bin.

An additional difference is that the hashing-based modification needs both
the client and server to pad their inputs with dummy values so that each bin is of
the same size. These dummy values need to be chosen carefully so that they are
distinct for the client and server, and never occur in either party’s input set. Our
formulation [LPR+20] makes it so whenever C uses a dummy value, it always
receives the default value. S therefore has to provide additional default values to
allow for the increased number of client queries due to padding. We also note that
in the case of PIR-with-Default, the client can just discard the values received for
dummy items. However, for Extended-PIR-with-Default , the client must preserve
these values, since the server has received a mask-share for them, and may use
it in downstream computation. This implies another caveat for using hashing:
the downstream computation for Extended-PIR-with-Default must also be able
to smoothly handle additional default values corresponding to dummy client
inputs. We observe that our applications are all able to smoothly do so, since
their defaults and masks all correspond to random shares of 0, and computation
that follows can accommodate additional shares of 0 while remaining correct.

We now discuss concrete hashing schemes and parameters. If there arem bins,
each with maximum load γ items on the client’s side, then the number of default
values the server must provide ismγ. In the setting of Extended-PIR-with-Default,
the number of additive masks the server must provide is also mγ.

Concretely, the client uses Cuckoo hashing or 2-choice hashing with k hash
functions, and inserts her items into m bins. The server maps his points into
m bins using the same set of k hash functions (i.e., each of the server’s items
appears k times across all over bins). Using a standard ball-and-bin analysis
based on k,m, and the input size of client |X|, one can deduce an upper bound
β such that no server bin contains more than β items with high probability
(1− 2−λ).

In our protocol, we use Cuckoo hashing, the client can place its set into a
Cuckoo table of size m = 1.27t using k = 3 hash functions. There are only 3%
dummy items [PSTY19] required per bin on the server’s side. Therefore, the
client and server maximum bin size are γ = 1 and β = 1.03⌈3n/m⌉, respectively.

5.4 Correctness and Security Proofs

We observe that our constructions are correct by observation, except with the
negligible probability of Bloom Filter failure. In particular, our constructions fail
to be correct if the server is unable to hash its items into a BF or GBF, or if the
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Bloom filter returns a false positive on a client query. However, we note that we
can set parameters so that the probability of such failures is negligible.

The security proof of the following theorem is given in Appendix 5.4.

Theorem 1. The PIR-with-Default constructions 1 and 2 described in Figure 3
and Figure 6 securely implement the PIR-with-Default functionality defined in
Figure 1 in the semi-honest setting, given the OT, HE, and Sum-PIR function-
alities described in Section 5.3.

Because the client’s associated values wj are either masked with random or
encrypted before sending to the server, the security of our Extended-PIR-with-Default
constructions follows straightforwardly from the security of PIR-with-Default and
the encryption scheme. Thus, we omit the proof of the following theorem.

Theorem 2. The Extended-PIR-with-Default constructions 1 and 2 described in
Figure 3 and Figure 6 securely implement the Extended-PIR-with-Default func-
tionality defined in Figure 2 in the semi-honest setting, given the OT, HE, and
Sum-PIR functionalities described in Section 5.3.

6 Two Party PJC

6.1 Inner-Product Private Join and Compute

The functionality of Extended-PIR-with-Default provides directly a protocol for
inner-product private join and compute. In particular, a client with input (X,W ) =
{(x1, w1), . . . , (xt, wt)} and a server with input (Y, V ) = {(y1, v1), . . . , (yn, vn)}
execute the Extended-PIR-with-Default protocol where the server uses 0 as the
default value for all queries. The two parties receives as outputs additive shares
of wi ·vi is xi ∈ Y , or shares of 0 otherwise. Now each of the parties sums locally
all the shares they have obtained, and in doing so they obtain shares of the value∑
i∈[t],j∈[n],xi=yj

wivj , which is the desired output.

Private set intersection-SUM is a special case of inner-product PJC can also
be obtained in the same way as above except that the client uses weight equal to
1 in the execution of the Extended-PIR-with-Default protocol. For a slightly more
efficient implementation the parties can use a plain PIR-with-Default execution,
where for the i-th client query, the server additively masks all values with the
same mask si, and sets si to be the default value, and uses these values as
input to the protocol. The client then receives effectively an additive share of
the associated value or of 0, with the server’s share being −si. Parties can sum
their shares locally to get additive shares of the intersection-sum.

If the server sets vi = 1 for all i ∈ [n], this protocol computes the cardinality
of the intersection for the two input sets. Since the two parties obtain shares
of the cardinality they can further execute a two-party protocol that checks
whether the cardinality is above a threshold.
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6.2 General PJC

The Extended-PIR-with-Default functionality enables the two parties to obtain
shares of the associated values for the server’s records included in the intersec-
tion, or shares of zero for the records with identifiers in Y \X. We note we can
obtain such shares for multiple attributes values associated with record.

We can also enable the two parties to obtain shares of the client’s attribute
values (or vectors of attribute values) for the intersection records (and shares of
0 for the records in Y \X) as follows: The client executes PIR-with-Default with
an input xi to receive a share of the server’s associated attribute(s). The client
and the server execute a 1-out-of-2 OT similar to Step 2 of the Value-Or-Default
protocol, using the shares of membership bit bC and bS from the SS-PMT phase
of the preceding PIR-with-Default, where the client uses inputs m0 = ri+ bC ·wi,
m1 = ri+(1− bC) ·wi for a random mask ri, and the server uses bS as its choice
bit. The result will be an additive sharing of either wi or 0.

At this point the two parties can run any general two-party computation
protocol which takes as input the shares of the attribute values for the records
in X ∩Y and shares of 0 for records in Y \X, and evaluates a function on these
attribute values.

6.3 Supporting Differentially Private Outputs

The above approach to compute general functions on the inner-join data can also
be extended easily to support differential privacy (DP) [DMNS06] for the output
by having the two parties compute jointly DP noise that will be added to the
output. Since we are constructing semi-honest protocols each party can locally
compute noise with the magnitude required for the resulting output. This means
that the noise will be double the standard amount of noise, but this is needed in
order to prevent either of the parties from subtracting its noise contribution from
the output. The ability to add noise is important when the records in the input
data sets are records of individuals and the PJC output is aggregate statistics
over the users in the inner-join database, which should not reveal information
about individuals.

7 Implementation

In the full version of this work [LPR+20], we revisit the state of the art construc-
tions and optimizations of single-server PIR based on RLWE-based homomor-
phic encryption: SealPIR [ACLS18] and MulPIR [ALP+19]. Then, we explain
how to apply the optimizations of the latter works to the application setting of
our new PIR-with-Default construction. In particular, note that we achieve sub-
linear communication using recursion and multiplicative homomorphism, and
use oblivious expansion to compress the upload as in [ALP+19]. Finally, we ex-
plain how to embed weights in PIR queries for the Extended-PIR-with-Default
construction. The communication cost of all protocols is calculated according to
Section 7.2.

24



Parameters Construction 1 Construction 2 Circuit PSI [PSTY19] Poly-ROOM [SGRP19] PJC+RLWE [IKN+20]

Setup Online Online Online Online Online

Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time
n t (MB) (/query) (MB) (/query) (MB) (/query) (MB) (/query) (MB) (/query) (MB) (/query)

216
28 29 35ms 7 2.43ms 27 673ms 5 11.79ms 55 59ms∗ 3† 44.8ms†

212 29 2.19ms 112 1.03ms 120 34ms 30 0.93ms 863 3.5ms∗ 3† 2.97ms†

216 29 0.14ms 1794 0.72ms 801 2ms 472 0.13ms 13788 2.2ms∗ 6† 0.36ms†

220
28 465 539ms 7 2.43ms 29 11821ms 51 178ms 71 – 40† 713ms†

212 465 34ms 112 1.03ms 213 521ms 76 11.31ms 878 – 40† 44.7ms†

216 465 2.11ms 1794 0.72ms 1821 34ms 522 0.78ms 13837 – 44† 2.97ms†

225
28 14885 17252ms 7 2.43ms 44 370s 1582 5668ms 591 – 1272† 22838ms†

212 14885 1078ms 112 1.03ms 379 15.8s 1607 354ms 1401 – 1272† 1427ms†

216 14885 67ms 1794 0.72ms 3704 1.1s 2180 22.22ms 14391 – 1276† 89ms†

Machine: single core of Intel(R) Xeon(R) CPU E5-2696 v3 @ 2.30GHz. For all constructions and n = 225, times have been estimated from
microbenchmarks of the core operations, and fixed cost for a random access was assumed.
∗ The times for Poly-ROOM are taken from [SGRP19, Fig. 17], initially provided for a database n = 50, 000 and a number of queries
t = 5, 000 and 50, 000. Unknown machine.
† Although PJC+RLWE does not achieve the PIR-with-Default functionality, we report it for comparison purpose. Timings are estimated
from microbenchmarks of NIST-P256, and RLWE-encryption with degree 2048 and 62 bit modulus.

Table 2: Communication and computation costs of PIR-with-Default with elements of
32 bits. Running time is amortized over the number of client queries.

7.1 Communication and Computation

Asymptotically, Construction 2 (Figure 6) achieves sublinear communication per
client query with respect to the server database size. In our benchmarking, we
will make use of the hashing-based multi-query PIR-with-Default Construction
described in 5.3 to reduce server costs. For both our constructions (and related
work), we report the communication cost of t queries against a database of key-
value pairs of size n with 32-bit values, for 28 ≤ t ≤ 216 and 216 ≤ n ≤ 225, and
the computational cost amortized over the number of queries t, in Table 2.

For Construction 1 (Figure 3), we report the cost of encrypting a Bloom
Filter and Garbled Bloom Filter of dimension 58n with an homomorphic en-
cryption scheme. We use the Shell homomorphic encryption library [she20] with
HE parameters d = 1024, log2(q) = 15 for the encryption of the Bloom filter,
and d = 2048, log2(q) = 46 for the encryption of the Garbled Bloom filter,
both ensuring more than 128 bits of security [APS15] and allowing k = 31 ho-
momorphic additions. Each coefficient of the polynomials embeds a cell of the
(Garbled) Bloom Filter, and rotations are performed by multiplications with xi.
As expected, the setup communication grows linearly with n and becomes larger
than 15GB when n > 225. On the computation side, it is important to note that,
assuming fixed cost for a random access, the online time only depends on t (and
not on n).

For Construction 2 (Figure 6), we try different combinations of the opti-
mizations and for each input size, we report the cost for the combination with
smallest communication cost. In particular, we use Cuckoo hashing with three
hash functions, as described in Section 5.3, and loop over 5 recursions levels (1
to 5 homomorphic multiplications). Concretely, for n = 220 and t = 28 = 256,
we obtain 326 buckets for the Cuckoo hashing, each of size 576, 461. We perform
k = 31 queries over each bucket, and use 4 homomorphic multiplications for
recursion. The total number of elements transmitted is therefore approximately
5 · B1/5 · 31 · 326 = 717, 305, which fits in 88 ciphertexts using oblivious ex-
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(a) t = 28 (b) t = 212

Fig. 7: Communication cost of t PIR-with-Default queries, for increasing database sizes
n and fixed number t.

(a) n = 220 (b) n = 225

Fig. 8: Communication cost of t PIR-with-Default queries, for increasing number t and
fixed database sizes n.

pansion [ACLS18, ALP+19]. The HE parameters are d = 8192, log2(q) = 255,
and each ciphertext is about 250kB. The key information is about 6MB, and
the upload ciphertexts account for about 29MB of communication. Finally, the
amortized time per query is 11.8s.

As illustrated in Figure 7, for a fixed number t of elements, Construction
2 has the smallest communication footprint as the database size n increases.
For database of moderate sizes n ≤ 225 and very few elements t, our solutions
use less communication than alternatives. We note that Construction 2 becomes
more communication efficient relative to other solutions as the gap between n
and t grows larger, with the advantage appearing when the server size is a factor
of 210 larger than the client dataset. Finally, we note that the computation cost
is relatively higher for Construction 2 than related works, but the bulk of the
cost is incurred by the server instead of shared between client and server.

7.2 Comparison to Previous Work

We compare the resulting communication of our protocols to those of the best
Circuit PSI protocol [PSTY19] and ROOM [SGRP19]. The run-time comparison
of the protocols is illustrated in Table 2.
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We first compute the communication complexity of [PSTY19]. The commu-
nication is composed of (a) the OPRF evaluations for each of the m bins which
has an amortized communication of at most 450 bits; (b) the communication
of 1.03kn coefficients of size τ + ℓ bits each where τ is approximately equal
to λ + log(knt) − log(m); (c) the weighted sum garbled circuit which contains
m comparison of two τ -bit elements, m multiplications of two ℓ-bit associated
values, and m − 1 additions of two ℓ-bit associated values. Using circuit com-
piler [MGC+16], the weighted sum garbled circuit has m(τ + ℓ− 1) + 993mℓ+
(m− 1)(ℓ− 1) AND gates in total. Note that each AND requires 256 bits. The
communication cost of garbled circuit also requires m(τ + ℓ) OT instances, each
requiring 256 bits of communication.

In ROOM [SGRP19], the communication is composed of (a) the communi-
cation of n coefficients of size 128 bits each; (b) m garbled AES executions, each
requiring 6400 AND gates; (c) and the same weighted sum garbled circuit as
that of [PSTY19], which has t(τ + ℓ− 1)+ 993tℓ+(t− 1)(ℓ− 1) AND gates and
m(τ + ℓ) OT instances.

For PJC [IKN+20], we use the NIST-P256 elliptic curve, which requires 32B
to represent an element. We also use RLWE-based encryption for the associated
values, with degree d = 2048 and log2(q) = 62-bit modulus. We use their packing
technique to pack 2048 associated values into a single RLWE ciphertext, together
with homomorphic rotation and addition.

Note that the labeled PSI protocol proposed in [CHLR18] can be extended to
perform PJC. However, the extended protocol either reveals the intersection size,
or incurs extra cost due to using a generic MPC. [CHLR18] only provide exper-
imental numbers for their implementation of a similar functionality of keyword
PIR (e.g. retrieve the associated value of an intersection item) for the server’s
dataset of size n = 220 records and the 256 queries. Their protocol takes 340ms
and 20.9ms per query in the offline and online phases, respectively. To extend
their functionality to PIR-with-Default, the sender needs to mask labeled (asso-
ciated) message with random value using HE, and send it to the receiver. When
the receiver decrypts the ciphertext, parties hold a secret share of a correct as-
sociated value, or of a random value. These shares are forwarded to a secondary
MPC protocol to perform the functionality of PIR-with-Default. Indeed, the last
extended step is similar to the garbled circuit phase of [PSTY19], which takes
about 40% of [PSTY19]’s total cost. Therefore, we estimate that [CHLR18] re-
quires an extra 71.2ms in the online phase to implement a PIR-with-Default query.
In contrast, Construction 1 only takes 2.43ms online time to perform an instance
of PIR-with-Default, a 37× improvement. However, Construction 1 is 1.5× slower
than [CHLR18] in the offline phase. In terms of communication/storage cost,
[CHLR18] requires at least 66.56MB transmitted without storage from the of-
fline phase while ours needs only 7MB transmitted but 465MB storage from the
offline phase. We present the performance comparison of ours and [CHLR18] for
n = 220 and t = 28 in the full version of this work [LPR+20].
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7.3 Monetary Costs

We estimate the monetary costs of our protocol compared to other works [IKN+20,
PSTY19] using the same cost model. The cost is charged by Google Platform
for pre-emptible virtual machines (including CPU and RAM). More details
of the estimation of the monetary costs are shown in the full version of this
work [LPR+20].

We observe that Construction 2 enables much lower client monetary costs
compared to other protocols. However, due to the expensive server computa-
tion, we notice that the server monetary cost is higher than that of alternative
protocols. However, the relative changes in cost make the comparison attractive.
For example for n = 225 and t = 28, our client cost is 36.5× lower than that
of [PSTY19], while incurring a server cost that is only 4× higher than theirs.
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