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Abstract. In this work, we study the Time-Lock Encryption (TLE)
cryptographic primitive. The concept of TLE involves a party initiating
the encryption of a message that one can only decrypt after a certain
amount of time has elapsed. Following the Universal Composability (UC)
paradigm introduced by Canetti [IEEE FOCS 2001], we formally abstract
the concept of TLE into an ideal functionality. In addition, we provide a
standalone definition for secure TLE schemes in a game-based style and
we devise a hybrid protocol that relies on such a secure TLE scheme.
We show that if the underlying TLE scheme satisfies the standalone
game-based security definition, then our hybrid protocol UC realises the
TLE functionality in the random oracle model. Finally, we present Astro-
labous, a TLE construction that satisfies our security definition, leading
to the first UC realization of the TLE functionality.
Interestingly, it is hard to prove UC secure any of the TLE construc-
tion proposed in the literature. The reason behind this difficulty relates
to the UC framework itself. Intuitively, to capture semantic security, no
information should be leaked regarding the plaintext in the ideal world,
thus the ciphertext should not contain any information relating to the
message. On the other hand, all ciphertexts will eventually open, result-
ing in a trivial distinction of the real from the ideal world in the stan-
dard model. We overcome this limitation by extending any secure TLE
construction adopting the techniques of Nielsen [CRYPTO 2002] in the
random oracle model. Specifically, the description of the extended TLE
algorithms includes calls to the random oracle, allowing our simulator
to equivocate. This extension can be applied to any TLE algorithm that
satisfies our standalone game-based security definition, and in particular
to Astrolabous.
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1 Introduction

The concept of encryption involves a party, the encryptor, who encrypts a mes-
sage, and a designated party, the decryptor, who can retrieve that message. The
decryptor can retrieve the message because she holds a piece of secret informa-
tion which is called the secret key. There are two well known and studied types
of encryption schemes in the literature, namely symmetric encryption [37] and
public key encryption [19].



Another special type of encryption is called time-lock encryption (TLE). The
concept of TLE involves a party that initiates the encryption of a message that
can be decrypted only after a certain amount of time has elapsed.

There are two main approaches to how TLE can be defined. In the first
approach [14,41], a party, called the manager, releases the decryption keys at
specific times in the future.

In the second approach [47,40,39] a computational puzzle, which is a math-
ematical problem, needs be solved so that the message can be revealed. We
distinguish relativistic time constructions [47,40] designed so that a puzzle can
be solved only after a certain amount of computations have been performed; and
absolute time constructions [39] designed so that the solution of the puzzle can
be delegated to external entities which try to solve the puzzle independently of
the TLE protocol (e.g. Bitcoin miners in [39]), giving an essence of absolute
time. In either case, the message can be decrypted only after a puzzle has been
solved or its solution has been published. The solution of the puzzle is used as
the secret key in the decryption algorithm so that the message can be revealed.

In contrast to “standard” encryption, TLE differs in one but major point.
The message can be retrieved without the encryptor having to reveal any secret
information; the decrypting parties can actually construct the secret informa-
tion themselves after some time. In standard encryption this is computationally
infeasible.

The number of applications TLE finds its own space are mostly related to a
security requirement called fairness [30]. Informally, the fairness condition states
that the initial decisions of a party are not affected by the way the protocol ex-
ecution progresses. There are many cryptographic protocols where fairness is
violated and TLE can find an application. For example, in e-voting and specifi-
cally in self-tallying election protocols (STE) [36,1], due to access to intermediate
results some parties might change their mind and vote something different from
their initial choice to favour another candidate (e.g., the winning one). Another
example where fairness is important is in coin flipping protocols [16], where the
party that initiates the coin flip decides to abort right after the other party
reveals her coin, without revealing her share to the other party. Moreover, in
secret sharing protocols [45], the party that reveals her share last holds a con-
siderable advantage over the other parties. Similar is the case of Distributed Key
Generation protocols (DKG) [25]. By utilizing TLE, we can tackle all of the
aforementioned limitations.

Unfortunately, all of the mentioned limitations cannot be solved with stan-
dard encryption or a commitment scheme. For example, the self-tallying proto-
cols in [44,36,48,31] do not satisfy the fairness condition as already mentioned
by the authors. The limitation lies fundamentally in the way encryption works.
Specifically, if we use encryption only the holder of the secret key can retrieve
the hidden message. So either that key is a priori known, where fairness is vio-
lated trivially as every party can decrypt the message, or not known, where the
protocol cannot terminate as the message cannot be retrieved. Similar is the case
if we use a commitment scheme. TLE comes to fill the gap and keep the best
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of both of situations mentioned, which means, semantic security [27,37] until
some time, and then the possibility of decryption without any a priori secret
information neither further interaction with the encryptor.

The state-of-the-art of composable security framework in the literature is
provided by the Universal Composability framework (UC) [12] introduced by
Canetti, where security can be maintained even if many instances of the studied
protocol are executed concurrently or the protocol is composed as a subroutine
of a bigger protocol. Although there are formal treatments of TLE in the liter-
ature [39], these mainly provide standalone models of security while our work
aims to provide a composable treatment of the TLE primitive. The only other
such attempt to our knowledge is a recently published paper [5] that we discuss
in details in Section 2.1.

In this work, we abstract the notion of TLE into an ideal functionality
F leak,delay

TLE , that captures the concept of TLE naturally. Moreover, we introduce
a security definition exploring the one-wayness of TLE algorithms. We show
that the one-way property of a TLE scheme is enough so that we have a UC
realization of F leak,delay

TLE after extending the TLE algorithm in the random oracle
model. Although UC is the state-of-the- for arguing about security, sometimes
standalone definitions are more usable and intuitive. Furthermore, many UC
functionalities can only be realized in idealized models such as the RO model,
suggesting that UC definitions may be “too strong” (e.g., unachievable). For
this reason, we further provide a new TLE game based definition in IND-CPA
security style. Last, we provide a novel TLE construction, named Astrolabous,
and show that it satisfies both of our security definitions.

Contributions. Our contributions can be summarised as follows:

1. We present a UC definition of secure TLE via an ideal functionality F leak,delay
TLE

that captures naturally the concept of TLE as it provides the necessary secu-
rity guarantees a TLE scheme should provide. Specifically, it captures seman-
tic security as the encryption of a message is not correlated with the message
itself. Instead, it is correlated only with the length of the message similarly
to the standard encryption functionality in [12]. In addition, it captures cor-

rectness [27,37], i.e., if F leak,delay
TLE finds two different messages with the same

ciphertext in its record, then it aborts. Finally, we note that in the literature,
there are TLE constructions [39] where the adversary holds an advantage in
comparison with the other parties and which might allow him to decrypt a
message earlier than the intended time. To cater for such constructions, we
parameterise F leak,delay

TLE with a leakage function leak which specifies the ex-
act advantage (in decryption time) of the adversary compared to the honest
parties. Ideally, the leak function offers no advantage to the adversary. It is
worth mentioning that TLE constructions in which the adversary holds an
advantage in comparison with the honest parties in the decryption time, are
still useful to study in the UC framework because the computational burden
for solving the puzzle can be transferred to external entities of the protocol
(e.g., Bitcoin miners), making the decryption more client friendly [39].
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2. We define a hybrid TLE protocol and a standalone basic security definition
in a game-based fashion. We show that if the pair of TLE algorithms that
our protocol uses satisfies our basic security definition then we have a UC
realization of F leak,delay

TLE .
Our TLE protocol does not use the vanilla version of a TLE algorithm (e.g.
a TLE algorithm as defined in [39]). Instead, it relies on an extended one
based on techniques introduced in [43,11] in the random oracle model. Our
extension was necessary for the proof of UC realization. Specifically, in both
real and ideal world, all the messages eventually can be decrypted by any
party. To avoid trivial distinctions1, the simulator must be able to equivocate
so that the ciphertext opens to the correct message. As a result, the simulator
programs the random oracle so that the ciphertext opens to the target mes-
sage, something that is not feasible with the vanilla version of a TLE scheme
without the equivocation feature which our extension provides.
In our hybrid protocol, we defined both a functionality wrapper Wq and an
evaluation functionality Feval, to model the computation that is necessary for
solving the time-lock puzzle. In our case, this computation is a random oracle
query, thus Feval is the random oracle. Like in [3], the main function of a
functionality wrapper is to restrict the access to Feval and thus to model the
limited computational resources a party has at her disposal in each round. In
our case, the limited amount of computation a party has in order to solve the
time-lock puzzle through queries to Feval.
Our basic security definition of TLE schemes consists of two properties, named
Correctness and qSecurity. The Correctness property states that the de-
cryption of an encrypted message m leads to the message m again with high
probability, similar to the definition of correctness in the standard encryp-
tion’s case. We define the qSecurity property in a game-based style, between
a challenger and an adversary where the latter tries to guess the challenged
message with less than the required oracle queries. A TLE scheme satisfies
the qSecurity property if the above happens with negligible probability, cap-
turing the fact that a message can only be decrypted when “the time comes”.

3. We provide a novel construction, named Astrolabous, and we show that it
satisfies our basic security definition, thus it supports the UC realisation of
F leak,delay

TLE (in the random oracle model). Astrolabous combines ideas from
both the constructions in [47] and in [40]. Nevertheless, we did not use either
of them for the following reasons. A critical drawback of [40] is that parts of
the plaintext are revealed through the process of solving the time-lock puzzle,
which is based on a hash evaluation, as the message is hidden in the puzzle
itself. On the other hand, the construction in [47] encrypts a message with
a symmetric encryption scheme [37] and then hides the encryption key into
the time-lock puzzle which is based on repeated squaring. The first problem
with the latter construction was that the procedure for solving the puzzle is

1 Recall that in the ideal world, to capture semantic security, ciphertexts do not con-
tain any information about the actual message except its length
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deterministic (repeated squaring) and thus a party can bypass the function-
ality wrapper and solve any time-lock puzzle in a single round, in contrast
with the construction in [40] where the procedure for solving the puzzle is
randomized (hash evaluation which is modeled as random oracle). The sec-
ond problem with the construction in [47] was that even if a party provides
the solution of the puzzle but the puzzle issuer does not provide the trapdoor
information that is used by the time the time-lock puzzle was created (in this
case, the factorization of a composite number N) then, in order to verify the
validity of the provided solution, all the verifying parties must resolve the
time-lock puzzle. Thus, the optimal complexity scenario is hard to achieve. In
contrast, the time-lock puzzle in [40] is easily verifiable without the need of
any trapdoor information from the puzzle issuer.
These were our motivations for defining Astrolabous that tackles all of the
above-mentioned limitations. Specifically, Astrolabous uses a symmetric key
encryption scheme to hide the message like in [47] and then “hides” the sym-
metric key in a time-lock puzzle similar to the one in [40].

4. We introduce an additional stronger game-based definition, named IND-CPA-
TLE, to capture semantic security of TLE schemes in the spirit of IND-
CPA security. Our stronger definition may serve as a standard for analysing
TLE schemes in the standalone setting. To demonstrate the usefulness of
our stronger definition and constructions, we prove that Astrolabous and an
enhanced version of the construction in [40] achieve IND-CPA-TLE security.

2 Related work

TLE is a cryptographic primitive that allows a ciphertext to be decrypted only
after a specific time period has elapsed. One way of achieving this is by “hiding”
the decryption key in a puzzle [47] that can be solved after a set period of time.
The reward for solving the puzzle is the decryption key. So the main purpose of
the puzzle is to delay the party in opening the message before a specific amount
of computation has been performed. In some proposals, decryption can further
be performed without requiring knowledge of any secret information [39,47].

Previously proposed constructions are based either on witness encryption [24]
or symmetric encryption [37]. The authors of these works provide game-based
definitions to argue about the security of their constructions. Unfortunately,
game-based definitions do not capture the variety of adversarial behavior the
UC framework [12] does. For example, in the ideal world the capabilities of the
adversary are defined explicitly. So, proving that our real protocol and the ideal
one are indistinguishable (UC realization) from the environment’s perspective, is
like proving that whatever the adversary can do against the real protocol it can
also do it in the ideal world. In contrast, in a game-based approach, we try to
capture the capabilities of an adversary via an experiment without being certain
if the experiment captures all the adversarial behaviours possible in the real
protocol. Moreover, the task of transferring these definitions to the UC setting
is quite challenging due to some incompatibilities between the two settings. More
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details can be found in Supporting Material B.1 of the extended version of this
paper [2].

A particular TLE construction proposed in [47] is based on a block cipher,
e.g., Advanced Encryption System (AES) [17], and repeated squaring. Specifi-
cally, first, a party encrypts a message m by using AES and a secret key sampled
from a key space uniformly at random. Then the party chooses the time that
finding the key should require and creates a “puzzle”. The ciphertext is the en-
crypted message with AES under the solution to the puzzle that serves as the
key. No formal proof of the security of this scheme is however provided in [47].
One drawback of this construction is that, to solve the puzzle, a party must be
engaged in mathematical computations. The only way that these computations
could be avoided for the puzzles to be solved is the issuer of the puzzle to an-
nounce the solution along with the trapdoor information (optimal case scenario),
which is the factorization of a composite number N . Without the provision of
the trapdoor information, even if a party announces the solution of the puzzle,
the only way for verifying the solution is to solve the puzzle again.

A similar TLE construction is that in [40]. Here, the time-lock puzzle is based
on hash evaluations. Specifically, the solver of the puzzle is engaged in serial
hash evaluations until solving the puzzle. Unlike [47], if some party presents the
solution of the puzzle any other party can verify it efficiently by doing all the
hash evaluations in parallel. A drawback of this construction is that parts of the
plaintext are revealed before the full solution of the puzzle. There are also TLE
proposals [14,41,15] that instead of relying on computational puzzles, assume
a Trusted Third Party (TTP) responsible for announcing the decryption keys.
Most of these constructions are based on Public Key Infrastructure (PKI). An
obvious drawback then is the fact that we ground a big part of the security of
the scheme in the TTP, which in turn leads to weaker threat models.

There are other time-lock puzzle constructions [10,7] but none of them pro-
vide composable security guarantees. A generalization of time-lock puzzles are
Verifiable Delayed Functions (VDF) [9,46,50] with the only addition that they
require the solution of the puzzle to be publicly verifiable without having to
solve the puzzle, something that is desirable but not obligatory with time-lock
puzzles. Again, the constructions in [9,46,50] are not analyzed in the UC frame-
work and thus security cannot be guaranteed either when composed as part of
bigger protocols or in parallel execution (e.g. in on-line network conditions).

2.1 Comparison with [5] and [4]

A concurrent and independent work closely related to ours was very recently pub-
lished at EUROCRYPT 2021 [5], with a subsequent work seemingly in prepara-
tion [4]. In particular, [5] proposes a composable treatment in the UC framework
of time-lock puzzles whose security is captured by the ideal functionality Ftlp. It
further proves how the scheme proposed by Rivest et al. in [47] can be used to
UC realise Ftlp in both the random oracle and generic group models. Their reali-
sation, as ours, relies on techniques for equivocation borrowed from [43] and [11].
They further show that no time-lock puzzle is UC realizable outside the random
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oracle model. Finally, they show that time-lock puzzles can be used to ensure
fairness in coin flipping protocols.

The time-lock scheme proposed in [5] is not verifiable. This is addressed in
the subsequent pre-print [4] where they adapt the scheme to include the trapdoor
information along the message to be time-lock encrypted, rendering it verifiable.

There are some key differences between these two works and ours, rendering
the proposed treatments of time-lock primitives orthogonal. The premises and
assumptions are intrinsically different and capture different concepts and security
notions. We discuss these differences here and argue why our formal treatment
of time-lock encryption, and our proposed TLE scheme, namely Astrolabous,
are preferable in some respects and more suited to many scenarios.

Apprehending time with computational puzzles In [5] and [4], a resolutely
different approach to ours is taken, when it comes to real time. In particular,
they introduce the global Gticker functionality to capture delays without referring
to a global “wall clock”, and thus without referring to real time.

We, on the other hand, insist on the importance of closely relating compu-
tational time and real time, and propose an alternative treatment in the global
clock model (Gclock). Our approach is directly motivated by the seminal pa-
per [47], in which R. L. Rivest, A. Shamir, and D. Wagner introduce the very
concept of time-release cryptography to capture encryption schemes that ensure
encrypted messages cannot be decrypted until a set amount of time has elapsed.
The goal being to, as they put it, “send information into the future [...] by
making CPU time and real time agree as closely as possible”.

This is key to explaining why and how time-release cryptography is used in an
increasing number of distributed applications, and in particular schemes hinged
on computational puzzles, i.e. puzzles that can only be solved if certain compu-
tations are performed continuously for at least a set amount of time. Indeed, the
cryptographic protocols underlying these applications often rely on temporally
disjoint phases. Time-release cryptographic primitives, as primitives apprehend-
ing real time through computations, allow thus these temporally disjoint stages
of the protocol to be enforced yet in an asynchronous manner.

This is reflected in our protocol realising the proposed ideal TLE functional-
ity F leak,delay

TLE . Parties only read the time from the global clock Gclock to compute
the amount of time the ciphertext needs to be protected for, and infer the corre-
sponding puzzle difficulty. Decryption however requires continuous computations
being performed until the set opening time is reached, and no read command
being ever issued to Gclock. This protocol clearly demonstrates how time-lock
puzzles apprehend real time through computations.

In contrast, the protocol πtlp realising the ideal time lock-puzzle functionality
Ftlp proposed in [5] does not instruct parties to continuously work towards solving
received puzzles (the scheduling of each step for solving a puzzle is left to the
environment). So the treatment proposed in [5] and [4] leaves it to the protocol
using πtlp or Ftlp as a subroutine to correctly takes care of appropriately enforcing
relative delays between key events.
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Ideal functionality and realisation F leak,delay
TLE is more general than Ftlp. Ftlp

only captures constructions that rely on computational-puzzles for “hiding” a
message and not the general concept of TLE. Specifically, the puzzle solution
is provided not after some time has elapsed but after some computations have
been performed (similar to Proof of Work (PoW)). In contrast, our time-lock

encryption functionality F leak,delay
TLE does not. This is why our protocol instructs

parties to continuously work towards solving received puzzles. For that reason
the works in [5,4] fail to capture the connection between absolute time (Gclock
model) and puzzle solving, something naturally expected when studying time-
lock primitives. As such our functionality can cater for TLE schemes that do
not rely on time-lock puzzles at all, such as the centralized solutions proposed
in [14,41] where a TTP releases the solution in specific time-slots.

Moreover, some constructions such as [39] allow the adversary an unavoid-
able advantage in solving TLE puzzles (e.g., the adversary synchronizes faster
than the honest parties in the Bitcoin network [23,3]). Ftlp does not capture

such constructions. Our F leak,delay
TLE functionality is parameterized with a leakage

function, which specifies exactly the advantage of the adversary in each case.
Turning now to the realisations of UC secure time-lock primitives, the realisa-

tion of Ftlp proposed in [5] relies on stronger assumptions as it relies both on the
random oracle model and the generic group model. In contrast, our realisation
of F leak,delay

TLE only relies on the random oracle model.

On public verifiability While the time-lock encryption scheme proposed in [4]
is publicly verifiable in the sense that given a puzzle, the verifying party does not
need to solve the puzzle for themselves to verify that an announced solution for
that puzzle is valid. This is not enough in some scenarios. For instance, consider
the scenario with a dedicated server to be the puzzle solver and all other parties
to be “lite” verifiers. This is very realistic given the computational requirements
for solving puzzles. For efficiency, one would let a server solve the puzzles and
only check that the solutions it provided are valid ones. Now in such a scenario
parties i) would not trust the server, ii) would not trust the issuer of the puzzle
either, but iii) are also not willing to solve the puzzle themselves.

Now, in [4] public verifiability is achieved because the issuer of the puzzle con-
catenates the message and the trapdoor information, which is the factorization
of N . Given the trapdoor, one can efficiently verify that the announced solution
to the puzzle is valid. However, the trapdoor announced (dishonest server) or
the trapdoor included (dishonestly generated ciphertext) might not be valid for
the puzzle. The only way to identify the dishonest party is to solve the puzzle
for oneself and check it against the solution to the puzzle announced by the
server. If they match, then the ciphertext was dishonestly generated, otherwise
the server is dishonest.

This is reflected in the public verifiability notion that Ftlp captures that is
one sided: if an announced solution to a puzzle is valid, then the verification is
successful. But if the verification fails, then some party has deviated from the
protocol but it could either be the server or the issuer of the ciphertext.
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In contrast, the solution of our puzzle is publicly verifiable as it does not rely
on any trapdoor information from the puzzle issuer being included in the cipher-
text for fast verification. So dishonestly generated ciphertexts are not meaningful
anymore, and only dishonest servers need to be considered. Now if the server
announces an invalid solution to a given puzzle, it gets detected.

Standalone security Along with the composable definition of secure time
lock encryption schemes provided by our ideal functionality F leak,delay

TLE , we further
provide two game-based definitions of security. A weaker one, capturing one-way
hardness of a TLE scheme; and a stronger one that captures semantic security
of a TLE scheme, in the spirit of IND-CPA security. We show that a TLE
scheme that satisfies the weaker definition suffices for UC realising the F leak,delay

TLE

functionality through our protocol πTLE. The stronger game-based definition
serves as a standard for the security analysis of TLE schemes in the stand-
alone setting. To demonstrate the usefulness of our stronger definition, we show
that Astrolabous and an enhanced version of Mahmoody et al ’s construction [40]
satisfy the said security standard. This result further validates our UC treatment
and in particular our ideal functionality of time-lock encryption schemes.

2.2 Asymptotic vs concrete definitions

Time-lock puzzles have also previously been studied in the game-based frame-
work [20,33,8]. These prior works provide standalone definitions of security of
time-lock puzzles in a concrete setting. Specifically, they consider adversaries
that are allowed to perform a fixed number of computational steps with each
step being arbitrarily parallelizable. In this way, they capture both the privacy
guarantees a time-lock puzzle should satisfy (no information leaked before a cer-
tain number of computations have been performed) and the resilience against
parallel computation (the problem should not be parallelizable). They further
introduce definitions that capture another important security property, namely
non-malleability. Similar to public-key encryption, non-malleability for time-lock
puzzles states that the adversary given a time-lock puzzle should not be able to
generate another one in which the underlying solution is related without solving
it first. While, our UC definition captures non-malleability, both our game-based
definitions do not. This was out of the scope of this study and we leave it for
future work.

In contrast, our approach in both game-based definitions we have introduced
is an asymptotic one, similarly to the definitions of Proof of Work primitives
provided in [22,23]. This was necessary to bridge UC security which is in the
asymptotic setting, with the game-based approach [11]. This was not something
necessary for prior standalone game-based definitions as these do not argue about
security in a composable framework like UC.
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3 Preliminaries

We use λ as the security parameter. We write negl(λ) to denote that a function
is negligible in λ. When referring to a polynomial function we use the term p or
px where x is an integer.

3.1 Universal Composability

The Universal Composability (UC) paradigm introduced by Canetti in [12] is the
state-of-the-art cryptographic model for arguing about the security of protocols
when run under concurrent sessions. More details about the UC framework can
be found in Supporting Material A of the extended version of this paper.
Setup functionalities. In the UC literature, hybrid functionalities do not only
play the role of abstracting some UC-secure real-world subroutine (e.g. a se-
cure channel), but also formalize possible setup assumptions that are required
to prove security when this is not done (and in many cases even impossible to
achieve) in the “standard model”. For example, this type of setup functionalities
may capture the concept of a trusted source of randomness, a clock, or a Public
Key Infrastructure (PKI ). Moreover, these setup functionalities can be global,
i.e. they act as shared states across multiple protocol instances and they can be
accessed by other functionalities and even the environment that is external to the
current session (recall that standard ideal functionalities do not directly interact
with the environment). The extension of the UC framework in the presence of
global setups has been introduced by Canetti et al. in [13]. In Supporting Mate-
rial A.1 of the extended version of this paper. we present the setup functionalities
that we consider across this work. Namely, the Global clock (GC) Gclock [34,3],
the Random Oracle (RO) FRO [43] and the Broadcast (BC) FBC [35,32] func-
tionalities.

4 Definition of F leak,delay
TLE

We provide our UC treatment of TLE in the Gclock model by defining the func-
tionality FTLE, following the approach of [12]. The functionality is described in
Figure 1, and at a high level operates as follows. The functionality is parame-
terized by a delay variable delay. This variable shows the time that a ciphertext
needs to be created. There are settings where the ciphertetext generation needs
some time, in some cases this time is very small or zero (delay = 0) or no-
ticeable (delay = 1). The simulator S initially provides FTLE with the set of
corrupted parties. Each time an encryption query issued by an honest party is
handed to FTLE, the functionality forwards the request to S without any infor-
mation about the actual message except the size of the message and the party’s
identity. The simulator returns the token back to FTLE which replies with the
message Encrypting to the dummy party. This illustrates both the fact that
the ciphertext does not contain any information about the message and that
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encryption might require some time to be completed. The environment can ac-
cess the ciphertexts that this party has generated so far by issuing the command
Retrieve, where FTLE returns all the ciphertexts that are created by that party
back to it. It is worth mentioning, that the time labelling that is used in the
encryption command refers to an absolute time rather than relative. On the
other hand, the construction that we propose for realising FTLE is relativistic.
That is why, as we see in detail in Section 5, the algorithm accepts the differ-
ence between the current time Cl and the time labelling τ as an input. In this
way, the algorithm computes the difficulty for the puzzle such that the message
can be decrypted when time τ has been reached. In addition, FTLE handles the
decryption queries in the usual way, unless it finds two messages recorded along
the same ciphertext, in which case it outputs ⊥. This enforces that the encryp-
tion/decryption algorithms used by S should satisfy Correctness. In addition, if
FTLE finds the requested ciphertext in its database, the recorded time is smaller
than the current one (which means that the ciphertext can be decrypted), but
the party that requested the decryption of that ciphertext provided an invalid
time labelling (labelling smaller than the one recorded in FTLE’s database), it
returns the message Invalid Time to that party. In the case where the encryp-
tion/decryption queries are issued by corrupted parties, FTLE responds according
to the instructions of S. When a party receives a decryption request from Z,
except from the ciphertext c, it receives as input a time labelling τ . Ideally, τ is
the time when c can be decrypted. Of course, the labelling τ can also be different
to the decryption time of c. Nevertheless, this does not affect the soundness of
FTLE. Without the labelling, FTLE or the engaging party in the real protocol
would have to find the decryption time of c which is registered either in the
functionality’s database (ideal case) or in the party’s list of received ciphertexts
(real case) and then compare it with the current time Cl.

When a party P advances Gclock, the simulator S is informed. Then, S can
generate ciphertexts for each tag2 received from FTLE from P and send them
to FTLE issuing the Update command. Later, FTLE will return these to P .
This illustrates the fact that after some time ciphertexts are created. In TLE
constructions where the encryption and decryption time is equal, S will force
a delay on the ciphertext generation equal to the number of rounds that the
ciphertext needs to be decrypted. Thus, the way we model FTLE allows us to
capture a broader spectrum of TLE constructions (not necessarily efficient) in
the context of the Global Clock (GC) model.

Naturally, after some time, ciphertexts are eventually opened and every party,
including S, can retrieve the underlying plaintext. For that task, we include the
command Leakage. In the vanilla case, S can retrieve all the messages that
can be opened by the current time Cl. However, there are cases where S can
retrieve messages before their time comes. This advantage of S can be specified

2 The simulator gives back the ciphertext as this is the case in most encryption func-
tionalities [11,12]. Now, because we allow the simulator to delay the delivery of
messages, the simulator needs a handle for updating the functionality’s database.
Here the tag comes into play and works as a receipt for that call.
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by the function leak. This function accepts as input an integer (e.g., the current
time Cl) and outputs a progressive integer (e.g., the time that the adversary can
decrypt ciphertexts, which is the same or greater than Cl). For more details see
Supporting Material C.1 of the extended version of this paper.

The time-lock encryption functionality F leak,delay
TLE .

It initializes the list of recorded messages/ciphertexts Lrec as empty and defines the
tag space TAG.

� Upon receiving (sid,Corrupt,Pcorr) from S, it records the corrupted set Pcorr.

� Upon receiving (sid,Enc,m, τ) from P 6∈ Pcorr, it reads the time Cl and does:

1. If τ < 0, it returns (sid,Enc,m, τ,⊥) to P .

2. It picks tag
$← TAG and it inserts the tuple (m,Null, τ, tag,Cl, P )→ Lrec.

3. It sends (sid,Enc, τ, tag,Cl, 0|m|, P ) to S. Upon receiving the token back from
S it returns (sid,Encrypting) to P .

� Upon receiving (sid,Update, {(cj , tagj)}
p(λ)
j=1 ) from S, for all cj 6= Null it updates

each tuple (mj ,Null, τj , tagj ,Clj , P ) to (mj , cj , τj , tagj ,Clj , P )

� Upon receiving (sid,Retrieve) from P , it reads the time Cl from Gclock and it
returns (sid,Encrypted, {(m, c 6= Null, τ)}∀(m,c,τ,·,Cl′,P )∈Lrec:Cl−Cl′≥delay) to P .

� Upon receiving (sid,Dec, c, τ) from P 6∈ Pcorr:

1. If τ < 0, it returns (sid,Dec, c, τ,⊥) to P . Else, it reads the time Cl from Gclock
and:
(a) If Cl < τ , it sends (sid,Dec, c, τ,More Time) to P .
(b) If Cl ≥ τ , then

– If there are two tuples (m1, c, τ1, ·, ·, ·), (m2, c, τ2, ·, ·, ·) in Lrec such
that m1 6= m2 and c 6= Null where τ ≥ max{τ1, τ2}, it returns to P
(sid,Dec, c, τ,⊥).

– If no tuple (·, c, ·, ·, ·, ·) is recorded in Lrec, it sends (sid,Dec, c, τ) to S
and returns to P whatever it receives from S.

– If there is a unique tuple (m, c, τdec, ·, ·, ·) in Lrec, then if τ ≥ τdec, it
returns (sid, Dec, c, τ , m) to P . Else, if Cl < τdec, it returns (sid, Dec,
c, τ , More Time) to P . Else, if Cl ≥ τdec > τ , it returns (sid, Dec, c, τ ,
Invalid Time) to P .

� Upon receiving (sid,Leakage) from S, it reads the time Cl from Gclock and
returns (sid,Leakage, {(m, c, τ)}∀(m,c,τ≤leak(Cl),·,·,·)∈Lrec) to S.

� Whatever message it receives from P ∈ Pcorr, it forwards it to S and vice versa.

Fig. 1. Functionality F leak,delay
TLE parameterized by λ, a leakage function leak, a delay

variable delay ,interacting with simulator S, parties in P, and global clock Gclock.
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5 Realization of F leak,delay
TLE via time-lock puzzles

In this section, we present the realization of FTLE via a protocol that uses a pair
of encryption/decryption algorithms that satisfy a specific security notion that
we formally define in Definition 1. We prove that our construction which is based
on [40] and [47] is secure with respect to the required security notion.

The general idea of a time-lock puzzle scheme is that the parties have re-
stricted access to a specific computation in any given period of time for solving
a puzzle. In [47]’s case that computation is repeated squaring, and in [40] the
computation is sequential hash evaluations. Of course, the underlying assump-
tion here is that there is no “better” way to solve that puzzle except for sequen-
tially applying the specific computation. Some of the most prominent proposed
time-lock constructions are based on such assumption [47,39,3,40].

In the UC framework, to construct a time-lock protocol we need to abstract
such computations through an oracle FOeval

. The reasoning behind this modelling
is simple. In the UC framework, all the parties are allowed to run polynomial
time with respect to the protocol’s parameter. As a result, it is impossible to
impose on a party the restriction that in a specific period of time they can
only execute a constant number of computations. This is why we abstract such
computations as a functionality/oracle and wrap the oracle with a functionality
wrapper that restricts the access to the oracle. The approach is similar to the
one proposed in [3], for modelling Proof of Work in the Bitcoin protocol.

In the following paragraphs, we present the evaluation oracle FOeval
, the func-

tionality wrapper Wq(FOeval
) and the protocol ΠTLE. We provide a security def-

inition that captures both correctness and one-wayness of TLE constructions.
The latter is illustrated via an experiment in a game-based style described in
Figure 5. We prove that ΠTLE UC realises FTLE given that the underlying TLE
construction satisfies our security definition. Having at hand a UC realisation
and given that our ideal functionality FTLE captures accurately the concept of
what we expect from a TLE scheme, this validates the definition of security of
TLE algorithms.

In the following section, we propose a new TLE construction and prove it
satisfies our security definition, completing our construction argument. Finally,
we provide a stand-alone security definition in the same spirit as IND-CPA
security, named IND-CPA-TLE, which is captured via an experiment. We prove
that Astrolabous satisfies this as well.

Our security definition that captures the one-wayness of a TLE construction
was enough for having a UC realization. Although one-wayness as a property
is very weak when arguing about the security of an encryption scheme, in our
case was enough as we do not use the actual construction but we extend it in
the random oracle model. On the other hand, such definition in the stand alone
model is weak. That was the reason of why we introduced IND-CPA-TLE.

The evaluation functionality FOeval
The evaluation functionality captures

the computation that is needed for a time-lock puzzle to be solved by the desig-
nated parties. An explanatory example can be found bellow.
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Initially, the functionality FOeval
, as described in Figure 2, creates the list

Leval for keeping a record of the queries received so far. Then, upon receiving a
query from a party in P, FOeval

checks if this query has been issued before. If this
is the case, it returns the recorded pair. If not, then for the query x it samples
the value y from the distribution Dx and returns to that party the pair (x, y).

The distribution Dx in cases such as in [39,3,40] is a random value over a
specific domain. Thus, FOeval

is the random oracle in these cases. More precisely,
Dx = U{0, 2n − 1} where U is the uniform distribution and [0, 2n − 1] is its
domain, in our example the domain of the random oracle. In that case, the
parametrization of D with x is unnecessary. On the other hand, if we study
other time-lock puzzles such as the one in [47], where the computation to solve
a puzzle is the repeated squaring, the parametrization of D with x becomes
necessary. More intuition for D can be found in Supporting Material C.2 of the
extended version of this paper.

Example 1. Adapting the relative time-lock puzzle of [40] to our modelling ap-
proach, the evaluation functionality is instantiated by the random oracle. Let us
consider that the solution of the puzzle is the value r. The creator of the puzzle
P chooses the desired difficulty of the puzzle, τ . Then, P splits the puzzle r into
qτ equal pieces r0, . . . , rqτ such that r = r0|| . . . ||rqτ . Here, q is the maximum
number of evaluation queries that the party can make to the oracle in one round.
Remember that the essence of round can be defined with respect to the func-
tionality Gclock. Next, P makes one call to the random oracle functionality with
the values (r0, . . . , rqτ−1) and receives back (yr0 , . . . , yrqτ−1

). Note that this call
is counted as one. Finally, P creates the puzzle (r0, yr0 ⊕ r1, . . . , yrqτ−1 ⊕ rqτ ) for
the secret r. Now, if some party P ∗ wants to solve the puzzle, it needs to send the
query r0 to the random oracle functionality. Upon receiving the value yr0 back
from the random oracle functionality, P ∗ computes r1 = yr0 ⊕ (yr0 ⊕ r1). Next,
it repeats the procedure with the value r1. Note that, the maximum number
of evaluation queries to the functionality oracle in one round is q and thus the
puzzle to be solved needs τ rounds. It is worth mentioning that for capturing the
limited access to the functionality in the UC framework, a functionality wrapper
needs to be defined as it is described in a dedicated Paragraph below.

The evaluation functionality FOeval(D,P).

Initializes an empty evaluation query list Leval.

� Upon receiving (sid,Evaluate, x) from a party P ∈ P, it does:

1. It checks if (x, y) ∈ Leval for some y. If no such entry exists, it samples y
from the distribution Dx and inserts the pair (x, y) to Leval. Then, it returns
(sid,Evaluated, x, y) to P . Else, it returns the recorded pair.

Fig. 2. Functionality FOeval parameterized by λ, a family of distributions D = {Dx|x ∈
X} and a set of parties P.
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Functionality wrapper Wq(FOeval ,Gclock,P).

� Upon receiving (sid,Corrupt,Pcorr) from S, it records the corrupted set Pcorr.

� Upon receiving (sid,Evaluate, (x1, . . . , xj)) from P ∈ P \Pcorr it reads the time
Cl from Gclock and does:

1. If there is not a list LP it creates one, initially as empty. Then it does:
(a) For every k in {1, . . . , j}, it forwards the message (sid,Evaluate, xk) to
FOeval .

(b) When it receives back all oracle queries, it inserts the tuple-(Cl, 1) ∈ LP .
(c) It returns (sid,Evaluate, ((x1, y1), . . . , (xj , yj))) to P .

2. Else if there is a tuple-(Cl, jc) ∈ LP with jc < q, then it changes the tuple to
(Cl, jc + 1), and repeats the above steps 1a,1c.

3. Else if there is a tuple-(Cl∗, jc) ∈ LP such that Cl∗ < Cl, it updates the tuple
as (Cl, 1), and repeats the above steps 1a,1b,1c.

� Upon receiving (sid,Evaluate, (x1, . . . , xj)) from P ∈ Pcorr it reads the time Cl
from Gclock and repeats steps 1,3 except that it maintains the same list, named Lcorr,
for all the corrupted parties.

Fig. 3. The Functionality wrapperWq(FOeval) parameterized by λ, a number of queries
q, functionality FOeval , Gclock and parties in P.

The functionality wrapper Wq(FOeval
) Our wrapper is defined along the lines

of [3]. The functionality wrapper is an ideal functionality parameterized by an-
other ideal functionality, mediating the access to the latter functionality only
possible through the wrapper. Moreover, the wrapper restricts the access to the
parameter functionality allowing parties to access it only a certain number of
times per round. Here, the notion of round is defined with respect to the Gclock
functionality defined in Figure ??. In a nutshell, the wrapper models in the UC
setting the limited resources a party has at their disposal for solving the under-
lying puzzle. Because in UC every party is a PPT ITM, the same holds for the
adversary. So, the adversary can interact with any functionality polynomially
many times in each round. There are several protocols that hinge their security
on the limited computational capabilities of the participants [23,3]. Next, follows
the description of Wq(FOeval

). The description of Wq(FOeval
) and insightful com-

ments behind its design can be found in Supporting Material C.4 of the extended
version of this paper. In the rest of this work we use the abbreviationWq(FOeval

)
instead of Wq(FOeval

,Gclock,P) when it is obvious from the context.

The protocol ΠTLE We are now ready to present the protocol ΠTLE which is
proved in later Sections that it UC realises the FTLE functionality. The protocol
consists of the functionality wrapper Wq(FOeval

) as described in Figure 3, the
global clock Gclock, the random oracle FRO, the broadcast functionality FBC and
a set of parties P (the descriptions can be found in Supporting Material A.1 of
the extended version of this paper).
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Example 2. Recall Example 1 and assume the time-lock puzzle c = (r0, y0 ⊕
r1, . . . , yrqτdec−1

⊕ rqτdec). If the function wit con is given less than qτdec oracle
responses (e.g. (y0, . . . , yqτdec−3)) for the puzzle c, it returns ⊥ else it returns
wdec = (r0, y0, . . . , yrqτdec−1 , c). Note that here, the ciphertext and the puzzle
coincide as there is no actual encryption of a message. Thus, fpuzzle is simply the
identity function.

Necessity of extending the TLE algorithms: In order to realise FTLE with some
TLE construction we need to extend a given TLE algorithm in the random
oracle model (FRO). Recall that in FTLE all the ciphertexts eventually open.
To capture semantic security, the ciphertext contains no information about the
actual message, in contrast to the real protocol that contains the encryption of
the actual message. So, for the simulator to simulate this difference when the
messages are opened, S must be able to equivocate the opening of the ciphertext,
else the environment Z can trivially distinguish the real from the ideal execution
of the protocol. When we say that S equivocates the opening of the ciphertext,
it means that S can open a ciphertext to whatever plaintext message needs to
be opened. Equivocation has also been used for other cryptographic primitives,
such as bit commitments, where the simulator can equivocate because it knows
the trapdoor information related to the common reference string (CRS) [38].
This is actually fundamental, unless we restrict the environment’s running time.
But then we lose the composition theorem.

Our extension, that can be applied to any TLE construction, offers the feature
of equivocation but at the expense of assuming the random oracle model. More
information and insightful comments can be found in Supporting Material C.5
of the extended version of this paper.

Description of protocol ΠTLE: Each party P maintains the list of recorded mes-
sages/ciphertexts LPrec, in which the requested messages for encryption by Z are
stored along with the ciphertext of that message (initially stored as Null), a
random identifier of the message tag, the time τ that the message should open,
the time Cl that it is recorded for the first time and a flag which shows if that
message has been broadcast or not to the other parties. When a party receives
the broadcast ciphertext, she extracts the underlying puzzle with the function
fpuzzle from that ciphertext and stores it along with its difficulty τdec, the set of
oracle queries/responses issued to the oracle FOeval

so that puzzle to be solved
with the help of the preparation function state, the time Cl that this tuple was
last time updated, a counter j that shows how many queries are issued for that
puzzle this turn and a counter jt that shows the total number of queries issued
for that puzzle.

If party accepts encryption requests by Z, she returns the message Encryp-
ting, delaying the encryption for one round. When a party either receives a
clock advancement command or decryption, she performs the procedure Puz-
zleEncryption, in which the party issues all her q oracle queries both for solving
and encrypting the pending messages for that round. More details on the descrip-
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Table 1. Functions and list each party holds in ΠTLE.

Functions/Lists Description

P,N,Q,R,C,M,W

The space of time-lock puzzles, integers, oracle queries
and responses to/from FOeval , ciphertexts, plaintexts
and witnesses.

eFOeval
: M× N×Q/R→ C

The encryption algorithm takes as input the plaintext,
the puzzle difficulty and the pair of oracle queries/re-
sponses so that the puzzle can be created.

dFOeval
: C×W→M

The decryption algorithm takes as input the ciphert-
ext and the secret key.

fstate : P× N×Q/R→ Q

It prepares the next oracle query to FOeval . Specifically,
it accepts a puzzle, the number of queries that need
to be prepared and all the previous queries and resp-
onses from the oracle.

fpuzzle : C→ P It extracts the time-puzzle from a ciphertext.

puz cr : M× N→ Q

The puzzle creation function takes as input the plain-
text and the desired difficulty and creates the oracle
queries so that a puzzle for that plaintext of that
difficulty can be created.

wit con : Q/R× N×P→W
The witness construction function that returns the
solution of the puzzle or the witness if that is possible.

LPrec The list of the generated ciphertexts.

LPpuzzle

The list of the recorded oracle queries for puzzle
solving.

(z, τ, {(statezk, yk)}jtk=0, jc, jt)

The tuple contains a puzzle z, the difficulty of the
puzzle τ , the pairs of oracle queries/responses to solve
puzzle z, the current number jc of oracle queries in
that round and the total number of oracle queries jt.

tion of ΠTLE can be found in Supporting Material C.6 of the extended version
of this paper.
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ΠTLE(Wq(FOeval), eFOeval
, dFOeval

, fstate,wit con, fpuzzle, puz cr,Gclock,FRO,FBC,P).

Each party maintains the list of recorded messages/ciphertexts LPrec and the list of
the recorded oracle queries for puzzle solving LPpuzzle, initially as empty, a tag space
TAG and the algorithms (eFOeval

, dFOeval
) . Moreover, she follows the procedure

described below:

Puzzle:

1. Preparing queries for puzzle creation: She collects all tuples

{(mj ,Null, τj , tagj ,Clj , 0) ∈ LPrec}
p1(λ)
j=1 for Clj = Cl. She picks {rj1

$←
{0, 1}p

∗(λ)}p1(λ)j=1 . For each j she computes puz cr(rj1, τj− (Cl+1))→ {xk}p2(λ)k=1 .

2. Puzzle solving: For (jl = 0, jl < q, jl++) she collects all {stateznjt }
p3(λ)
n=1 , such

that (zn, τdec, {(stateznk , yk)}jtk=0,Cl, 0, jt) ∈ L
P
puzzle (see command 5 for initial-

ization).
(a) Parallelize puzzle creation queries and puzzle solve: If jl = 0, she

sends (sid,Evaluate, {stateznjt }
p3(λ)
n=1 ∪{xk}

p2(λ)
k=1 ) toWq(FOeval) and receives

back (sid,Evaluate, {(stateznjt , y
∗
jt)}

p3(λ)
n=1 ∪{(xk, yk)}p2(λ)k=1 ). Else she sends

(sid,Evaluate, {stateznjt }
p3(λ)
n=1 ) to Wq(FOeval).

(b) Parallelize puzzle creation queries and puzzle solve: If jl = 0, she

sends (sid,Evaluate, {stateznjt }
p3(λ)
n=1 ∪{xk}

p2(λ)
k=1 ) toWq(FOeval) and receives

back (sid,Evaluate, {(stateznjt , y
∗
jt)}

p3(λ)
n=1 ∪{(xk, yk)}p2(λ)k=1 ). Else she sends

(sid,Evaluate, {stateznjt }
p3(λ)
n=1 ) to Wq(FOeval).

(c) Update the record: In each case, she updates each tuple as
(zn, τdec, {(stateznk , yk)}jt+1

k=0 ,Cl, jl + +, jt + +) where stateznjt+1 =

fstate(zn, jt, {(stateznk , yk)}jtk=0), yjt+1 = Null and yjt ← y∗jt . In case that
jl = q, she changes the Cl in the tuple to Cl + 1 and jl = 0.

Encryption:

1. Time-lock encryption: She computes {cj1 ← eFOeval
(rj1, {(xk, yk)}p2(λ)k=1 , τj−(Cl+

1))}p1(λ)j=1 .

2. Extended encryption: For each rj1, she sends (sid,Query, rj1) to FRO. Upon re-
ceiving (sid,Random Oracle, rj1, h

j) from FRO, P sends (sid,Query, rj1||mj)
to FRO. Upon receiving (sid,Random Oracle, rj1||mj , c

j
3) from FRO, she com-

putes cj ← (cj1, h⊕m, c
j
3) and updates the tuple (mj , cj , τj , tagj ,Clj , 0)→ LPrec.

� Upon receiving (sid,Enc,m, τ) from Z, P reads the time Cl from Gclock and if
τ < 0 she returns (sid,Enc,m, τ,⊥) to Z. Else, it does:

1. She picks tag
$← TAG and she inserts the tuple (m,Null, τ, tag,Cl, 0)→ LPrec.

2. She returns (sid,Encrypting) to Z.

� Upon receiving (sid,Advance Clock) from Z, P reads the time
Cl from Gclock. She executes both Puzzle and Encryption procedure.
Then, she sends (sid,Broadcast, {(cj , τj)}p1(λ)j=1 ) to FBC. Upon receiv-

ing (sid,Broadcasted, {(cj , τj)}p1(λ)j=1 ) from FBC, for each j she updates
each tuple (mj ,Null, τj , tagj ,Clj , 0) to (mj , cj , τj , tagj ,Clj , 1) and sends
(sid,Advance Clock) to Gclock.
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� Upon receiving (sid,Retrieve) from Z, P reads the time Cl from Gclock and
returns (sid,Encrypted, {(mj , cj , τj) : (mj , cj , τj , ·,Clj , 1) ∈ LPrec : Cl − Clj ≥ 1})
to Z.

� Upon receiving (sid,Broadcast, {(cj , τj)}p1(λ)j=1 ) from FBC where cj = (cj1, c
j
2, c

j
3),

P reads the time Cl from Gclock and does for every j:

1. She computes state
fpuzzle(c

j
1)

0 ← fstate(fpuzzle(c
j
1), 0,Null).

2. She creates the tuple-(fpuzzle(c
j
1), τdec, {(state

fpuzzle(c
j
1)

0 ,Null)},Cl, 0, 0) and stores
it in LPpuzzle.

� Upon receiving (sid,Dec, c := (c1, c2, c3), τdec) from Z, P reads the time Cl from
Gclock. Then she does:

1. If τdec < 0, she returns (sid,Dec, c, τdec,⊥) to Z.
2. If Cl < τdec, she returns (sid,Dec, c, τdec,More Time).

3. She searches for a tuple (fpuzzle(c1), τ, {(statefpuzzle(c1)k , yk)}jtk=0,Cl, q, jt) in LPpuzzle.
If τdec < τ ≤ Cl then she returns (sid,Dec, c, τdec, Invalid time) to Z.

4. She computes wτdec ← wit con({(statefpuzzle(c1)k , yk)}jtk=0, τdec, fpuzzle(c1)).
5. She runs x ← dFOeval

(c1, wτdec) and she sends (sid,Query, x) to
FRO. Upon receiving (sid,Random Oracle, x, h) from FRO, she computes
m ← h ⊕ c2. She sends (sid,Query, x||m) to FRO. Upon receiving
(sid,Random Oracle, x||m, c∗3) from FRO: If c3 6= c∗3, she returns to Z
(sid,Dec, c, τdec,⊥). Else, she returns to Z (sid,Dec, c, τdec,m).

6. If such tuple does not exist then she returns (sid,Dec, c, τdec,⊥) to Z.

Fig. 4. The Protocol ΠTLE in the presence of a functionality wrapperWq, an evaluation
functionality FOeval , a random oracle FRO, a broadcast functionality FBC, a global clock
Gclock, where eFOeval

, dFOeval
, fstate, wit con and fpuzzle are hard-coded in each party in P.

5.1 Security definitions of (computational-puzzle-based) time-lock
encryption

In this Subsection we turn to standalone security and focus only on TLE schemes
based on computational puzzles. We identify minimal standalone requirements
sufficient for a computational-puzzles-based construction to provide a UC real-
ization of our FTLE functionality. We specify these minimal requirements, namely
Correctness and qSecurity, in the game-base style. In Section 6, we define IND-
CPA security for (computational-puzzle-based) TLE schemes.

Intuitively, the Correctness property states that the decryption of the ci-
phertext with underlying plaintext m results in the message m itself with high
probability provided that the underlying time-lock puzzle has been solved. The
qSecurity property is described in a game-based style via the experiment in Fig-
ure 5 and states that an adversary can win the experiment only with a very small
probability. Specifically, the experiment captures the one-way security of a TLE
scheme as in the concept of one-way functions security [28,27]. Although indis-
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tinguishability, like in IND-CPA security [27,37], is stronger than the hardness
to reverse a function, for our purpose of achieving UC realization (Theorem 1)
it is enough. This is possible because we extend our TLE construction into a
bigger one in the random oracle model and we rely on the hardness of inverting
the underlying TLE construction. Because of that, in Subsection 6.3, we provide
an indistinguishability game-based definition, similar to IND-CPA but in the
context of TLE so that we can argue about the security of a TLE construction
even in the standalone model.

In Figure 5, we present the experiment EXPTLE in the presence of a chal-
lenger Ch and an adversary B. More details on the description of EXPTLE can
be found in Supporting Material C.7 of the extended version of this paper.

The experiment EXPTLE(B,Oeval, eOeval , dOeval , fstate, fpuzzle, q)

Initialization Phase.

� Ch is initialized with eOeval , dOeval and sends them to B. In addition it creates a
local time counter Clexp.

Learning Phase.

� When B issues the query (Evaluate, x) to Oeval through the Ch, he gets back
(Evaluate, x, y).

� B can request the encryption of a message m ∈Mλ with time label τdec by send-
ing (Enc,m, τdec) to Ch.

� When Ch receives a (Enc,m, τdec) request from B, it runs the algorithm
eOeval(m, τdec)→ c and returns c to B.

� Ch increases Clexp by 1 for every q queries B issues to Oeval.

� B can request the decryption of a ciphertext c by sending (Dec, c, wτ ) to Ch.
Then, Ch just runs the algorithm dOeval(c, wτ ) → y ∈ {m,⊥} and returns to B
(Dec, c, wτ , y).

Challenge Phase.

� B can request for a single time a challenge from Ch by sending (Challenge, τ).

Then, Ch picks a value r
$←Mλ and sends (Challenge, τ, cr ← eOeval(r, τ −Clexp))

to B. Then, B is free to repeat the Learning Phase.

� B sends as the answer of the challenge the message (Challenge, τ, cr, r
∗) to Ch.

� If (r∗ = r)∧ (τ > Clexp) (i.e. B manages to decrypt cr before the decryption time
comes) then EXPTLE outputs 1. Else, EXPTLE outputs 0.

Fig. 5. Experiment EXPTLE for a number of queries q, function fstate, message do-
main Mλ, algorithms eOeval , dOeval in the presence of an adversary B, oracle Oeval and a
challenger Ch all parameterized by 1λ.
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Definition 1. A one-way secure time-lock encryption scheme with respect to an
evaluation oracle Oeval, a relation ROeval

, a state function fstate, puzzle function
fpuzzle and a witness construction function wit con for message space M and a
security parameter λ is a pair of PPT algorithms (eOeval

, dOeval
) such that:

– eOeval
(m, τdec): The encryption algorithm takes as input message a m ∈ M,

an integer τdec ∈ N and outputs a ciphertext c.
– dOeval

(c, wτdec): The decryption algorithm takes as input wτdec ∈ {0, 1}∗ and a
ciphertext c, and outputs a message m ∈M or ⊥.

The pair (eOeval
, dOeval

) satisfies the following properties:

1. Correctness: For every λ, τdec ∈ N,m ∈M and wτdec , it holds that

Pr

[
m′ ← dOeval

(eOeval
(m, τdec), wτdec)

ROeval
(wτdec , (fpuzzle(c), τdec))

: m′ = m

]
> 1− negl(λ)

where wτdec can be constructed from the received responses of Oeval and func-
tion wit con as it is described in both Table 1 and Figure 4.

2. qSecurity: For every PPT adversary B with access to oracle Oeval, the prob-
ability to win the experiment EXPTLE and thus output 1 in Figure 5 is
negl(λ).

5.2 Proof of UC realizing F leak,delay
TLE

In this Subsection we show that if the TLE scheme used in protocol ΠTLE in
Figure 4 is a secure time-lock encryption scheme according to Definition 1 then
the protocol ΠTLE UC realizes FTLE. We provide the proof of the theorem below
in Supporting Material C.8 of the extended version of this paper.

Theorem 1. Let (eOeval
, dOeval

) be a pair of encryption/decryption algorithms
that satisfies Definition 1. Then, the protocol ΠTLE in Figure 4 UC-realizes func-
tionality F leak,delay

TLE in the (Wq(F∗RO),Gclock,FRO,FBC)-hybrid model with leakage
function leak(x) = x+1, delay = 1, where FRO and F∗RO are two distinct random
oracles.

On the importance of instantiating FOeval
with F∗RO: In our proof, we instantiate

the functionality FOeval
with F∗RO, so that Z cannot bypass the interaction with

the functionality wrapper and thus breach the security argument of our proof.
For more information and insightful comments see Supporting Material C.9 of
the extended version of this paper.

Efficiency cost for UC security: As we have seen, to provide UC security we
need to extend a secure TLE construction (according to Definition 1) in the RO
model. Specifically, in step 2 of the Encryption procedure of Figure 4, the party
makes two extra calls to the FRO functionality. In reality, this means two extra
hash function evaluations, which is very efficient [26]. Thus, the performance is
not affected by providing UC security.

21



Relation between absolute and relativistic time: Our FTLE captures naturally the
concept of TLE in absolute time (messages are encrypted at time t0 so that
they open at time tm). On the other hand, the construction that UC realizes our
functionality is a relativistic one in the sense that a message is protected for a
period of time (tm − t0).

6 Astrolabous: A UC-secure TLE construction

We present and prove that our relative TLE construction is a secure time-lock
encryption scheme according to Definition 1. Our scheme combines the construc-
tion of [40] and [47].

First, we present our TLE construction, namely Astrolabous, and the proof of
security, i.e. Astrolabous satisfies Definition 1. Finally, for the sake of complete-
ness, we present the equivocable Astrolabous algorithm, which is the algorithm
that is used in the hybrid protocol in Figure 4.

We did not adopt any of the TLE constructions provided in [47] and [40]
because they can not provide us with the necessary security properties we are
seeking in our theoretical framework so that we can UC realise FTLE. More
details and insightful comments can be found in Supporting Material C.9 of the
extended version of this paper.

Description of the Astrolabous scheme Initially, we provide the necessary
glossary in Table 2. We name our construction Astrolabous from the ancient
Greek clock device Astrolabe, which was used by the astronomers of that era to
perform different types of calculations including the measurement of the altitude
above the horizon of a celestial body, identification of stars and the determination
of the local time.

We refer to the encryption/decryption algorithms of the Astrolabous scheme
in Subsection 6.1 as AST.enc,AST.dec where AST is the abbreviation of Astrola−
bous. In Subsection 6.2, we refer to the equivocable encryption/decryption al-
gorithms as EAST.enc,EAST.dec where the letter E indicates the extended algo-
rithms of the Astrolabous scheme.

Table 2. The glossary of Astrolabous scheme.

Notation Description

E = (enc, dec) A symmetric key encryption scheme.

H,G Two hash functions (modelled as random oracles.)

b
$← D b is sampled uniformly at random from D.

X.enc,X.dec
Encryption and decryption algorithm respectively
of scheme X.

⊕ The XOR bit operation, e.g. 0⊕ 1 = 1, 1⊕ 1 = 0.

x||y The concatenation of two bit strings x and y.
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6.1 AST scheme description (AST.encE,H,AST.decE,H)

AST.encE,H(m, τdec): The algorithm accepts as input the message m and the
time-lock’s puzzle difficulty τdec

3 and does:

– Picks kE
$← KE, where KE is the key space of the symmetric encryption

scheme E and the size of the key is equal to the domain of the hash function
H equal to p1(λ). Then compute cm,kE ← enc(m, kE).

– It picks r0||r1|| . . . ||rqτdec−1
$← {0, 1}p2(λ) and computes ckE,τdec ← (r0, r1 ⊕

H(r0), r2 ⊕H(r1), . . . , kE ⊕H(rqτdec−1)4.
– It outputs c = (τdec, cm,kE , ckE,τdec) as the ciphertext.

AST.decE,H(c, wτdec): The algorithm accepts as input the ciphertext c of the form
(τdec, cm,kE , ckE,τdec) and the witness wτdec = (r0,H(r0),H(r1), . . . ,H(rqτdec−1), c)
that can be computed by issuing qτdec random oracle queries. Specifically, to
solve the puzzle the first oracle query is r0 and the response H(r0). Then, the
decryptor computes the value r1 from ckE by using the XOR operation such as
r1 ← ckE,τdec [1]⊕H(r0). Similarly, it computes the pair of values (r2,H(r2)), . . . ,
(rqτdec−1,H(rqτdec−1)). Then it does:

– It computes kE = H(rqτdec−1) ⊕ ckE,τdec [qτdec], where ckE,τdec [j] indicates the
jth element in vector ckE,τdec .

– It computes and outputs m← dec(cm,kE , kE).

In Table 3, we summarize the oracle, algorithms, functions and relation that
define a TLE scheme as in Definition 1. We instantiate these to specify our TLE
construction.

We instantiate the items from Table 3 based on our construction as shown
below.

1. The oracle Oeval is the random oracle RO.
2. The encryption and decryption algorithms (eOeval

, dOeval
) are described as

AST.encE,H,AST.decE,H. Our algorithm is relative, meaning that we define
the difficulty of the time-lock puzzle rather than the specific time that the
message will eventually open. For our algorithms to be compatible with the
UC setting, for a given time τdec we must define the difficulty of the puzzle.
In that case, given the current time is Cl, the puzzle complexity is τdec − Cl.
The time τdec gives us the essence of absolute time that a ciphertext should
be opened. On the other hand, both constructions in [40,47] function in rel-
ative time. To compute relative time, both values Cl and τdec are provided
to eFOeval

.

3 Note that this time difficulty is relative, that means that it specifies the duration
for solving the puzzle rather than the specific date at which the puzzle should be
solved.

4 To do this efficiently all the hash queries can be performed simultaneously
as kE and r0||r1|| . . . ||rqτdec−1 are known. In the UC setting, the party sends
(sid,Evaluate, τdec) to Wq and receives back (sid,Evaluate, τdec, {(rj , yj)}qτdec−1

j=0 ).
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Table 3. Oracle, algorithms, functions and relation that define a TLE construction.

TLE items Description

Oeval

The oracle to which the parties issue queries for
solving/creating time-lock puzzles.

(eOeval , dOeval)
The pair of encryption/decryption algorithms with
respect to the oracle Oeval.

fstate

The state function that prepares the next oracle query
to Oeval.

fpuzzle

The puzzle function that extracts the time-lock puzzle
from a given ciphertext.

wit con
The witness construction function that returns the
solution of the puzzle or the witness if that is possible.

ROeval

The relation that specifies when a witness w is a solution
to a puzzle c with difficulty τ .

3. The state function fstate for a ciphertext c = (τdec, cm,kE , ckE,τdec) as described
previously, is defined as:

fstate(c, 0,Null) = ckE,τdec [0] (1)

and ∀j ∈ {1, . . . , q(τdec − Cl)− 1} it holds that:

fstate(c, j, y = H(rj−1)) = y ⊕ ckE,τdec [j] (2)

4. The puzzle function fpuzzle for a ciphertext c = (τdec, cm,kE , ckE,τdec) is defined
as:

fpuzzle(c) = ckE,τdec (3)

5. The witness construction function wit con accepts the input described in
Figure 4 and outputs the witness described in the same figure. More details
can be found in Supporting Material C.6 of the extended version of this
paper.

6. A pair (wτdec = (r0,H(r0),H(r1), . . . ,H(rq(τdec−Cl)−1)), (fpuzzle(c), τ)) is in
RFOeval

, where wτdec and c as appeared in the description of AST.decE,H, if
|wτdec | = |fpuzzle(c)| and w[j] = ckE,τdec [j]⊕H(w[j − 1]) for all j ∈ [0, q(τdec −
Cl)− 2], where w[−1] = 1.

The following theorem states that our TLE construction satisfies Definition 1.
The proof is provided in Supporting Material D.1 of the extended version of this
paper.

Theorem 2. Let AST.encE,H,AST.decE,H be the pair of encryption/decryption
algorithms just described. If the underlying symmetric encryption scheme E satis-
fies IND− CPA security and correctness, then the pair (AST.encE,H,AST.decE,H)
is a secure TLE scheme according to Definition 1 in the random oracle model.
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Verifiability and efficiency of Astrolabous: Astrolabous is efficiently verifiable.
Solvers can present all the hash evaluations and, similar to puzzle creation, the
verifier can in parallel evaluate them and recreate the puzzle. If both puzzles
match it accepts the solution. So for a puzzle set for computation time τ , i.e.
requiring qτ sequential hash evaluations to be solved, the verification can be
parallelized, i.e. qτ parallel hash evaluations.

6.2 Equivocable Astrolabous scheme description
(EAST.encE,H,G,EAST.decE,H,G)

For our purposes, it is not enough to directly adopt a TLE construction such as
Astrolabous and make security claims in the UC framework because we cannot
equivocate, which is essential. For that reason, in our hybrid protocol in Figure 4
we extend the input TLE construction in order for our security claims to be
compatible with the UC framework and in particular with the UC treatment
of time. Specifically, in Figure 4, in procedure Puzzle, the party prepares the
time-lock puzzles for encrypting a random string in step 1 of the Encryption
procedure. Then, in step 2 the party makes two calls to the random oracle and
extends the previously resulting ciphertext by two arguments for equivocation
and non-malleability as explained above. This procedure is initiated by the party
every time she advances the clock. So the execution of the Extended Astrolabous,
as it appeared in Figure 4 in both procedures, needs to be interleaved with the
interaction of parties with the global clock. Because of this interaction, extended
Astrolabous cannot be given black-box (e.g. as protocol input), it rather needs
to be described as part of the ΠTLE protocol itself. However, outside of the UC
framework, parties will actually use the extended algorithms as they do not
actually interact with any global clock. This is merely the result of the way
time is treated in the UC Gclock model. So morally, the Equivocable Astrolabous
TLE scheme satisfies the UC security notion captured by our FTLE. The full
specification of the corresponding extended algorithms is given in the Supporting
Material D.2 of the extended version of this paper.

6.3 IND-CPA-TLE security

Game-based definitions are often natural and easy to use. Unfortunately, the
experiment EXPTLE presented in Figure: 5 is not enough to argue about the
security of a TLE scheme on its own, and is only useful in the context of the
Theorem: 1. The reason is that EXPTLE argues about only the onewayness of
a TLE scheme, leaving aside any semantic security. On the other hand, it is
enough for the proof of Theorem: 1 as we use an extension of the TLE scheme
in the random oracle model and not the scheme as it is.

Below, we present the analogous experiment of the IND-CPA security notion
in the time-lock setting. In a nutshell, this experiment is the same as the one in
Figure: 5 except that the adversary in the Challenge command specifies two
messages (m0,m1) as in the classical IND-CPA game. Again, in order to win
the game, the adversary B must guess correctly which of the two messages is
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encrypted by the challenger Ch without engaging with the oracle more than the
desired amount of times. In case he wins, that would mean that he managed to
“break” the TLE scheme in the sense that he decrypted the message before its
decryption time.

The experiment EXPIND−CPA−TLE(B,Oeval, eOeval , dOeval , fstate, fpuzzle, q)

Initialization Phase.

� Ch is initialized with eOeval , dOeval and sends them to B. In addition, it creates a
local time counter Clexp.

Learning Phase.

� When B issues the query (Evaluate, x) to Oeval through the Ch, he gets back
(Evaluate, x, y).

� B can request the encryption of a message m ∈Mλ with time label τdec by send-
ing (Enc,m, τdec) to Ch.

� When Ch receives a (Enc,m, τdec) request from B, it runs the algorithm
eOeval(m, τdec)→ c and returns c to B.

� Ch increases Clexp by 1 every time B queries Oeval q times.

� B can request the decryption of a ciphertext c by sending (Dec, c, w) to Ch.
Then, Ch just runs the algorithm dOeval(c, w) → y ∈ {m,⊥} and returns to B
(Dec, c, w, y).

Challenge Phase.

� B can request for a single time a challenge from Ch by sending

(Challenge, (m0,m1), τ). Then, Ch picks a value b
$← {0, 1} and sends

(Challenge, τ, c← eOeval(mb, τ −Clexp)) to B. Then, B is free to repeat the Learn-
ing Phase.

� B sends as the answer of the challenge the message (Challenge, τ, c,mb∗) to Ch.

� If (mb∗ = mb) ∧ (τ > Clexp) (i.e. B manages to decrypt cr before the decryption
time comes) then EXPTLE outputs 1. Else, EXPTLE outputs 0.

Fig. 6. Experiment EXPIND−CPA−TLE for a number of queries q, function fstate, message
domain Mλ, algorithms eOeval , dOeval in the presence of an adversary B, oracle Oeval and
a challenger Ch all parameterized by 1λ.

Definition 2. A pair of TLE algorithms (eOeval
, dOeval

) as described in Defini-
tion 1 is IND-CPA-TLE, if for every PPT adversary B the probability to win
the experiment described in Figure 5 is 1/2 + negl(λ).

Mahmoody et al. construction is not IND-CPA-TLE: Recall the construction
in [40] for encrypting a message m or a secret in general. It can be easily seen
that it does not satisfy Definition 2, as the secret is spread across the puzzle, and
thus part of it is leaked as the puzzle is solved (see Supporting Material D.3 of
the extended version of this paper). In contrast, next we show both Astrolabous
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and an enhanced version of the construction in [40], we called it MMV 2.0 from
the first letter of each author, are IND-CPA-TLE.

MMV 2.0: As we explained above, the construction in [40] does not satisfy
IND-CPA-TLE security because it spreads the message all over the puzzle. A
natural question is if it satisfies our game based definition when the message is
not spread across all over the puzzle, but instead, it is XORed in the last hash
evaluation. Specifically, eMM0.1(m, τ)→ (r0, r1⊕H(r0), . . . ,m⊕H(rτq−1), where
r = r0|| . . . ||rτq−1 is a random string. In that case, as we see next, the MMV 2.0
satisfies IND-CPA-TLE. The proof can be found in Supporting Material D.4 of
the extended version of this paper.

Theorem 3. The construction MMV 2.0 as described above is IND-CPA-TLE
secure in the random oracle model.

Next we show that Astrolabous is also IND-CPA-TLE secure. The reasoning
again is exactly the same as the one in theorem 2 except that the IND-CPA
adversary sends the messagesm0,m1 received from the IND-CPA-TLE adversary
to the challenger instead of choosing his own. The rest are exactly the same and
thus we omit the proof.

Theorem 4. Astrolabous, i.e. the pair (AST.encE,H,AST.decE,H), is IND-CPA-
TLE secure given that the underlying symmetric encryption scheme E satisfies
IND− CPA security.

Even if both Astrolabous and MMV 2.0 are IND-CPA-TLE secure, Astrolabous
has a potential advantage in terms of efficiency. Namely, Astrolabous hides the
key of the symmetric cryptosystem that it uses into the puzzle, instead of the
message itself as in MMV 2.0. As a result, many messages can be encrypted under
the same key and be opened at the same time solving just one puzzle. In contrast,
with MMV 2.0, for every message, a new puzzle must be generated, making the
encryption more time-consuming. For example, for a puzzle with difficulty that
should last 24-hours, an 8-core CPU can generate it in 3 hours (24/8). The
total time for encrypting two messages with MMV 2.0 with the above difficulty
is 3 hours for the first message and 2.625 hours (24-1.5/8) for the second, in
total 5.625 hours. With Astrolabous one puzzle can be used for both messages,
making the total encryption time just 3 hours. The gap becomes even bigger if
we consider several encryptions instead of just two. In both examples with did
not consider the time to perform AES, as in practice is very efficient.

Asymmetry of puzzle generation and puzzle solving time with As-
trolabous: A natural question is if the puzzle generation time is significantly
smaller than the time that is required for solving the puzzle. The answer is
positive. Specifically, there are hash functions that are not meant to have an
efficient evaluation, such as Argon2 [6]. Equipped with such function we can
create puzzles that are small (in terms of space) and fast, but at the same time
difficult enough. For example, Argon2 can be parameterized in such a way that a
single hash evaluation can take roughly 60 seconds [49], meaning that an 8-core
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processor can generate a puzzle that meant to be solved in 4 hours (equably
14.400 seconds or 14.400/60 = 240 hash evaluations) in just 30 minutes (puzzle
generation is parallelizable so an 8-core processor can do 8 hash evaluation si-
multaneously which each one of them takes 60 seconds. So 240 hash evaluations
can be done in 30 minutes.). As the number of CPU cores increases the puzzle
generation can become even smaller but at the same time, the time for solving
the puzzle remains unchanged (no parallelization for puzzle solving).
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37. Czes law Kościelny, Miros law Kurkowski, and Marian Srebrny. Foundations of Sym-
metric Cryptography. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

38. Yehuda Lindell. Highly-efficient universally-composable commitments based on
the DDH assumption. In EUROCRYPT 2011, 2011.

39. Jia Liu, Tibor Jager, Saqib A. Kakvi, and Bogdan Warinschi. How to build time-
lock encryption. Designs, Codes and Cryptography, 2018.

40. Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Time-lock puzzles in
the random oracle model. In Phillip Rogaway, editor, Advances in Cryptology
– CRYPTO 2011. Springer Berlin Heidelberg, 2011.

41. Timothy C. May. Timed-release crypto, 1993.
42. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,

http://bitcoin.org/bitcoin.pdf, 2008.
43. Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic

proofs: The non-committing encryption case. In CRYPTO, 2002.
44. Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.

In Security Protocols, 1998.
45. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable

secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO
’91, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

46. Krzysztof Pietrzak. Simple Verifiable Delay Functions. In Avrim Blum, editor, 10th
Innovations in Theoretical Computer Science Conference (ITCS 2019), volume 124
of Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018.

47. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, 1996.

48. Alan Szepieniec and Bart Preneel. New techniques for electronic voting. USENIX
Association, 2015.

49. Aaron Toponce. Further investigation into scrypt and argon2 password hashing,
2016.

50. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019. Springer
International Publishing, 2019.

30


	Astrolabous: A Universally Composable Time-Lock Encryption Scheme

