
Transciphering Framework for Approximate
Homomorphic Encryption

Jihoon Cho1, Jincheol Ha2, Seongkwang Kim2, Byeonghak Lee2, Joohee Lee1,
Jooyoung Lee2?, Dukjae Moon1, and Hyojin Yoon1

1 Samsung SDS, Seoul, Korea,
{jihoon1.cho,joohee1.lee,dukjae.moon,hj1230.yoon}@samsung.com

2 KAIST, Daejeon, Korea,
{smilecjf,ksg0923,lbh0307,hicalf}@kaist.ac.kr

Abstract. Homomorphic encryption (HE) is a promising cryptographic
primitive that enables computation over encrypted data, with a variety
of applications including medical, genomic, and financial tasks. In Asi-
acrypt 2017, Cheon et al. proposed the CKKS scheme to efficiently sup-
port approximate computation over encrypted data of real numbers. HE
schemes including CKKS, nevertheless, still suffer from slow encryption
speed and large ciphertext expansion compared to symmetric cryptogra-
phy.

In this paper, we propose a novel hybrid framework, dubbed RtF
(Real-to-Finite-field) framework, that supports CKKS. The main idea be-
hind this construction is to combine the CKKS and the FV homomorphic
encryption schemes, and use a stream cipher using modular arithmetic in
between. As a result, real numbers can be encrypted without significant
ciphertext expansion or computational overload on the client side.

As an instantiation of the stream cipher in our framework, we pro-
pose a new HE-friendly cipher, dubbed HERA, and extensively analyze
its security and efficiency. The main feature of HERA is that it uses a
simple randomized key schedule. Compared to recent HE-friendly ciphers
such as FLIP and Rasta using randomized linear layers, HERA requires a
smaller number of random bits. For this reason, HERA significantly out-
performs existing HE-friendly ciphers on both the client and the server
sides.

With the RtF transciphering framework combined with HERA at the
128-bit security level, we achieve small ciphertext expansion ratio with
a range of 1.23 to 1.54, which is at least 23 times smaller than using
(symmetric) CKKS-only, assuming the same precision bits and the same
level of ciphertexts at the end of the framework. We also achieve 1.6
µs and 21.7 MB/s for latency and throughput on the client side, which
are 9085 times and 17.8 times faster than the CKKS-only environment,
respectively.
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1 Introduction

Cryptography has been extensively used to protect data when it is stored (data-
at-rest) or when it is being transmitted (data-in-transit). We also see increasing
needs that data should be protected while it is being used, since it is often pro-
cessed within untrusted environments. For example, organizations might want
to migrate their computing environment from on-premise to public cloud, and
to collaborate with their data without necessarily trusting each other. If data is
protected by an encryption scheme which is homomorphic, then the cloud would
be able to perform meaningful computations on the encrypted data, supporting
a wide range of applications such as machine learning over a large amount of
data preserving its privacy.

Homomorphic Encryption (for Approximate Computation). An en-
cryption scheme that enables addition and multiplication over encrypted data
without decryption key is called a homomorphic encryption (HE) scheme. Since
the emergence of Gentry’s blueprint [27], there has been a large amount of re-
search in this area [10, 25, 18, 29]. Various applications of HE to medical, ge-
nomic, and financial tasks have also been proposed [15, 17, 37, 45].

However, real-world data typically contain some errors from their true values
since they are represented by real numbers rather than bits or integers. Even in
the case that input data are represented by exact numbers without approxima-
tion, one might have to approximate intermediate values during data processing
for efficiency. Therefore, it would be practically relevant to support approximate
computation over encrypted data. To the best of our knowledge, the CKKS en-
cryption scheme [16] is the only one that provides the desirable feature using
an efficient encoder for real numbers. Due to this feature, CKKS achieves good
performance in various applications, for example, to securely evaluate machine
learning algorithms on a real dataset [9, 46].

Unfortunately, HE schemes including CKKS commonly have two technical
problems: slow encryption speed and large ciphertext expansion; the encryp-
tion/decryption time and the evaluation time of HE schemes are relatively slow
compared to conventional encryption schemes. In particular, ciphertext expan-
sion seems to be an intrinsic problem of homomorphic encryption due to the
noise used in the encryption algorithm. Although the ciphertext expansion has
been significantly reduced down to the order of hundreds in terms of the ra-
tio of a ciphertext size to its plaintext size since the invention of the batching
technique [28], it does not seem to be acceptable from a practical view point.
Furthermore, this ratio becomes even worse when it comes to encryption of a
short message; encryption of a single bit might result in a ciphertext of a few
megabytes.

Transciphering Framework for Exact Computation. To address the is-
sue of the ciphertext expansion and the client-side computational overload, a hy-
brid framework, also called a transciphering framework, has been proposed [45] (see
Figure 1). In the client-sever model, a client encrypts a message m using a sym-
metric cipher E with a secret key k; this secret key is also encrypted using an HE
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Fig. 1: The (basic) transciphering framework. Homomorphic operations are per-
formed in the boxes with thick lines.

algorithm EncHE. The resulting ciphertexts c = Ek(m) and EncHE(k) are stored
in the server.

When the server wants to compute EncHE(m) (for computation over en-
crypted data), it first computes EncHE(c) for the corresponding ciphertext c.
Then the server homomorphically evaluates E−1 over EncHE(c) and EncHE(k),
securely obtaining EncHE(m).

Given a symmetric cipher with low multiplicative depth and complexity, this
framework has the following advantages on the client side.

– A client does not need to encrypt all its data using an HE algorithm (except
the symmetric key). All the data can be encrypted using only a symmetric
cipher, significantly saving computational resources in terms of time and
memory.

– Symmetric encryption does not result in ciphertext expansion, so the com-
munication overload between the client and the server will be significantly
low compared to using any homomorphic encryption scheme alone.

All these merits come at the cost of computational overload on the server side.
That said, this trade-off would be worth considering in practice since servers are
typically more powerful than clients.

HE-friendly Ciphers. Symmetric ciphers are built on top of linear and non-
linear layers, and in a conventional environment, there has been no need to take
different design principles for the two types of layers with respect to their imple-
mentation cost. However, when a symmetric cipher is combined with BGV/FV-
style HE schemes in a transciphering framework, homomorphic addition becomes
way cheaper than homomorphic multiplication in terms of computation time and
noise growth. With this observation, efficiency of an HE-friendly cipher is eval-
uated by its multiplicative complexity and depth. In an arithmetic circuit, its
multiplicative complexity is represented by the number of multiplications (ANDs
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in the binary case). Multiplicative depth is the depth of the tree that represents
the arithmetic circuit, closely related to the noise growth in the HE-ciphertexts.
These two metrics have brought a new direction in the design of symmetric
ciphers: to use simple nonlinear layers at the cost of highly randomized linear
layers as adopted in the design of FLIP [44] and Rasta [21].

1.1 Our Contribution

The main contribution of this paper is two-fold. First, we propose a new tran-
sciphering framework for the CKKS scheme that supports approximate compu-
tation over encrypted data. Second, we propose a new stream cipher, dubbed
HERA (HE-friendly cipher with a RAndomized key schedule), to be built in our
framework. Using our new transciphering framework combined with HERA, real
numbers can be encrypted without significant ciphertext expansion or compu-
tational overload on the client side.

RtF Transciphering Framework. The transciphering framework in Figure
1 does not directly apply to the CKKS scheme. The main reason is that it is
infeasible to design an HE-friendly (deterministic) symmetric cipher E operating
on real (or complex) numbers; if an HE-friendly symmetric cipher E over the real
field exists, then E is given as a real polynomial map, and any ciphertext will
be represented by a polynomial in the corresponding plaintext and the secret
key over R. Then, for given plaintext-ciphertext pairs (mi, ci), an adversary will
be able to establish a system of polynomial equations in the unknown key k.
The sum of ‖Ek(mi) − ci‖22 over the plaintext-ciphertext pairs also becomes a
real polynomial, where the actual key is the zero of this function. Since this
polynomial is differentiable, its (approximate) zeros will be efficiently found by
using iterative algorithms such as the gradient descent algorithm. By taking
multiple plaintext-ciphertext pairs, the probability of finding any false key will
be negligible.

In order to overcome this problem, we combine CKKS with FV which is
a homomorphic encryption scheme using modular arithmetic [25], obtaining a
novel hybrid framework, dubbed the RtF (Real-to-Finite-field) transciphering
framework. This framework inherits a wide range of usability from the previous
transciphering framework, such as efficient short message encryption or flexible
repacking of data on the server side. Additionally, our framework does not require
to use the complex domain for message spaces (as in the CKKS scheme), or any
expertise of the CKKS parameter setting on the client side.

In brief, the RtF framework works as follows. First, the client scales up and
rounds off real messages into Zt. Then it encrypts the messages using a stream
cipher E over Zt. This “E-ciphertext” will be sent to the server with an FV-
encrypted secret key of E, and stored there.

Whenever a “CKKS-ciphertext” is needed for any message m, the server
encrypts the E-ciphertext of m in coefficients, using the FV scheme. With the
resulting FV-ciphertext, say C, and the FV-encrypted key, the server homomor-
phically evaluates the stream cipher E and moves the resulting keystreams from
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slots to coefficients using SlotToCoeffFV. By subtracting this ciphertext from C,
the server obtains the FV-ciphertext of m in coefficients, not in slots. Finally,
in order to translate this FV-ciphertext into the corresponding CKKS-ciphertext
of m in slots, the server CKKS-bootstraps it. Since the message m should be
moved from the coefficients to the slots, the last step of the bootstrapping,
SlotToCoeffCKKS, can be omitted. As a result, the server will be able to approx-
imately evaluate any circuit on the CKKS-ciphertexts. Details of the framework
are given in Section 3.

Low-depth Stream Ciphers Using Modular Arithmetic. In the RtF
transciphering framework, a stream cipher using modular arithmetic is required
as a building block. There are only a few ciphers using modular arithmetic [2, 4,
5, 30], and even such algorithms are not suitable for our transciphering frame-
work due to their high multiplicative depths. In order to make our transciphering
framework efficiently work, we propose a new HE-friendly cipher HERA, operat-
ing on a modular space with low multiplicative depth.

Recent constructions for HE-friendly ciphers such as FLIP and Rasta use
randomized linear layers in order to reduce the multiplicative depth without
security degradation. However, this type of ciphers spend too many random
bits to generate random matrices, slowing down the overall speed on both the
client and the server sides. Instead of generating random matrices, we propose
to randomize the key schedule algorithm by combining the secret key with a
(public) random value for every round.

Implementation. We implement the RtF transciphering framework with the
stream cipher HERA in public repository3. In Section 5.2, we present the bench-
mark of the client-side encryption in C++ and the server-side transciphering
using the Lattigo library. We also compare our framework to PEGASUS [40]
and CKKS only. In the full version of this paper [19], we compare HERA to
existing HE-friendly ciphers using the HElib library.

In summary, we achieve small ciphertext expansion ratio with a range of 1.23
to 1.54 on the client side, which is 23 times smaller than the (symmetric) CKKS-
only environment assuming similar precision and the same level of ciphertexts at
the end of the framework. When it comes to latency and throughput, we achieve
1.6 µs and 21.7 MB/s on the client side, which is 9085 times and 17.8 times
faster than the CKKS-only environment respectively. We refer to Section 5.2 for
more details.

1.2 Related Work

Homomorphic Evaluation of Symmetric Ciphers. Since the transcipher-
ing framework has been introduced [45], early works have been focused on ho-
momorphic evaluation of popular symmetric ciphers (e.g., AES [28], SIMON [39],
and PRINCE [23]). Such ciphers have been designed without any consideration on
their arithmetic complexity, so the performance of their homomorphic evaluation

3 https://github.com/KAIST-CryptLab/RtF-Transciphering
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was not satisfactory. In this line of research, LowMC [3] is the first construction
that aims to minimize the depth and the number of AND gates. However, it
turned out that LowMC is vulnerable to algebraic attacks [20, 22, 47], so it has
been revised later.4

Canteaut et al. [11] claimed that stream ciphers would be advantageous in
terms of online complexity compared to block ciphers, and proposed a new
stream cipher Kreyvium. However, its practical relevance is limited since the mul-
tiplicative depth (with respect to the secret key) keeps growing as keystreams
are generated. The FLIP stream cipher [44] is based on a novel design strategy
that its permutation layer is randomly generated for every encryption without
increasing the algebraic degree in its secret key. Furthermore, it has been re-
ported that FiLIP [43], a generalized instantiation of FLIP, can be efficiently
evaluated with the TFHE scheme [34]. Rasta [21] is a stream cipher aiming at
higher throughput at the cost of high latency using random linear layers, which
are generated by an extendable output function. Dasta [33], a variant of Rasta
using affine layers with lower entropy, boosts up the client-side computation. As
another variant of Rasta, Masta [31] operates on a modular domain, improving
upon Rasta in terms of the throughput of homomorphic evaluation.

Compression of HE Ciphertexts. In order to reduce the memory over-
head when encrypting short messages, Chen et al. [12] also proposed an efficient
LWEs-to-RLWE conversion method which enables transciphering to the CKKS
ciphertexts: small messages can be encrypted by LWE-based symmetric encryp-
tion with a smaller ciphertext size (compared to RLWE-based encryption), and
a collection of LWE ciphertexts can be repacked to an RLWE ciphertext to per-
form a homomorphic evaluation. Lu et al. [40] proposed a faster LWEs-to-RLWE
conversion algorithm in a hybrid construction of FHEW and CKKS, dubbed
PEGASUS, where the conversion is not limited to a small number of slots.

Chen et al. [13] proposed a hybrid HE scheme using the CKKS encoding
algorithm and a variant of FV. This hybrid scheme makes the ciphertext size a
few times smaller compared to using CKKS only, in particular, when the number
of slots is small. However, the ciphertexts from this hybrid scheme are of size
larger than tens of kilobytes, which limits its practical relevance.

2 Preliminaries

Notations. Throughout the paper, bold lowercase letters (resp. bold uppercase
letters) denote vectors (resp. matrices). For a real number r, bre denotes the
nearest integer to r, rounding upwards in case of a tie. For an integer q, we
identify Zq with Z ∩ (−q/2, q/2], and for any real number z, [z]q denotes the
mod q reduction of z into (−q/2, q/2]. The notation b·e and [·]q are extended
to vectors (resp. polynomials) to denote their component-wise (resp. coefficient-
wise) reduction. For a complex vector x, its `p-norm is denoted by ‖x‖p. When

4 https://github.com/LowMC/lowmc/blob/master/determine_rounds.py
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we say `p-norm of a polynomial, it means that the `p-norm of the coefficient
vector of the polynomial.

Usual dot products of vectors are denoted by 〈·, ·〉. Throughout the paper,
ζ and ξ denote a 2N -th primitive root of unity over the complex field C, and
the finite field Zt, respectively, for fixed parameters N and t. We denote the
multiplicative group of Zt by Z×t . The set of strings of arbitrary length over a
set S is denoted by S∗. For two vectors (strings) a and b, their concatenation
is denoted by a‖b. For a set S, we will write a ← S to denote that a is chosen
from S uniformly at random. For a probability distribution D, a← D will denote
that a is sampled according to the distribution D. Unless stated otherwise, all
logarithms are to the base 2.

2.1 Homomorphic Encryption

As the building blocks of our transciphering framework, we will briefly review
the FV and CKKS homomorphic encryption schemes of which security is based
on the hardness of Ring Learning With Errors (RLWE) problem [48, 41]. For
more details, we refer to [25, 16].

It is remarkable that FV and CKKS use the same ciphertext space; for a
positive integer q, an integer M which is a power of two, and N = M/2, both
schemes use

Rq = Zq[X]/(ΦM (X))

as their ciphertext spaces, where ΦM (X) = XN + 1. They also use similar al-
gorithms for key generation, encryption, decryption, and homomorphic addition
and multiplication. However, the FV scheme supports exact computation mod-
ulo t (which satisfies t ≡ 1 (mod M) throughout this paper), while the CKKS
scheme supports approximate computation over the real numbers by taking dif-
ferent strategies to efficiently encode messages.

Encoders and Decoders. The main difference between FV and CKKS comes
from their methods to encode messages lying in distinct spaces. The encoder
EcdFV

` : Z`t → Rt of the FV scheme is the inverse of the decoder DcdFV
` defined

by, for p(X) =
∑`−1
k=0 akX

kN/` ∈ Rt,

DcdFV
` (p(X)) = (p(α0), · · · , p(α`−1)) ∈ Z`t,

where αi = ξ5
i·N/` (mod t) for 0 ≤ i ≤ `/2 − 1 and αi = ξ−5

i−`/2·N/` (mod t)
for `/2 ≤ i ≤ `− 1.5

Let ∆CKKS be a positive real number (called a scaling factor in [16]). The
CKKS encoder EcdCKKS

`/2 : C`/2 → R is the (approximate) inverse of the decoder

DcdCKKS
`/2 : R → C`/2, where for p(X) =

∑`−1
k=0 akX

kN/` ∈ R,

DcdCKKS
`/2 (p(X)) = ∆−1CKKS · (p(β0), p(β1), · · · , p(β`/2−1)) ∈ C`/2,

5 A primitive root of unity ξ exists if the characteristic t of the message space is an
odd prime such that t ≡ 1 (mod M).
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where βj = ζ5
j ·N/` ∈ C for 0 ≤ j ≤ `/2− 1.

Algorithms. FV and CKKS share a common key generation algorithm. The
descriptions of those two schemes have also been merged, so that one can easily
compare the differences between FV and CKKS.

– Key generation: given a security parameter λ > 0, fix integers N , P , and
q0, . . . , qL such that qi divides qi+1 for 0 ≤ i ≤ L−1, and distributions Dkey,
Derr and Denc over R in a way that the resulting scheme is secure against
any adversary with computational resource of O(2λ).

1. Sample a← RqL , s← Dkey, and e← Derr.
2. The secret key is defined as sk = (1, s) ∈ R2, and the corresponding

public key is defined as pk = (b, a) ∈ R2
qL , where b = [−a · s+ e]qL .

3. Sample a′ ← RP ·qL and e′ ← Derr.
4. The evaluation key is defined as evk = (b′, a′) ∈ R2

P ·qL , where b′ =

[−a′ · s+ e′ + Ps′]P ·qL for s′ = [s2]qL .

– Encryption: given a public key pk ∈ R2
qL and a plaintext m ∈ R,

1. Sample r ← Denc and e0, e1 ← Derr.
2. Compute Enc(pk, 0) = [r · pk + (e0, e1)]qL .

• For FV, EncFV(pk,m) = [Enc(pk, 0) + (∆FV · [m]t, 0)]qL , where ∆FV =
bqL/te.

• For CKKS, EncCKKS(pk,m) = [Enc(pk, 0) + (m, 0)]qL .

– Decryption: given a secret key sk ∈ R2 and a ciphertext ct ∈ R2
ql

,

DecFV(sk, ct) =

⌊
t

ql
[〈sk, ct〉]ql

⌉
;

DecCKKS(sk, ct) = [〈sk, ct〉]ql .

– Addition: given ciphertexts ct1 and ct2 in R2
ql

, their sum is defined as

ctadd = [ct1 + ct2]ql .

– Multiplication: given ciphertexts ct1 = (b1, a1) and ct2 = (b2, a2) in R2
ql

and
an evaluation key evk, their product is defined as

ctmult =
[
(d0, d1) +

⌊
P−1 · d2 · evk

⌉]
ql
,

where (d0, d1, d2) is defined by [(b1b2, a1b2 + a2b1, a1a2)]ql when using CKKS

and
[⌊

t
ql

(b1b2, a1b2 + a2b1, a1a2)
⌉]
ql

when using FV.

– Rescaling (Modulus switching): given a ciphertext ct ∈ R2
ql

and l′ < l, its
rescaled ciphertext is defined as

Rescalel→l′(ct) =

[⌊
ql′

ql
· ct
⌉]

ql′

.
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2.2 Some Notable Homomorphic Operations

Bootstrapping for CKKS. The bootstrapping procedure for CKKS has been
actively studied recently [32, 8, 38, 14]. Let ct be a CKKS-ciphertext of m(Y ) ∈
Z[Y ]/(Y ` + 1) with respect to the secret key sk and the ciphertext modulus q,
where Y = XN/`, namely, m(Y ) = [〈ct, sk〉]q. In this case, m(Y ) has `/2 slots.
The CKKS bootstrapping aims to find a larger modulus Q > q and a ciphertext
ct′ such that m(Y ) = [〈ct′, sk〉]Q. It consists of five steps: ModRaise, SubSum,

CoeffToSlotCKKS, EvalMod, and SlotToCoeffCKKS.

– ModRaise: If we set t(X) = 〈ct, sk〉 ∈ R, then t(X) = q · I(X) + m(Y ) for
some I(X) ∈ R. ModRaise raises the ciphertext modulus to Q � q so that
ct is regarded as an encryption of t(X) with respect to modulus Q.

– SubSum: If N 6= `, then SubSum maps I(X) to a polynomial in Y , that is,
q · I(X) +m(Y ) to (N/`) · (q · Ĩ(Y ) +m(Y )).

– CoeffToSlotCKKS: Since the message q · I(X) + m(Y ) is in the coefficient
domain, it requires homomorphic evaluation of the encoding algorithm to
enable slot-wise modulo q operation. CoeffToSlotCKKS performs homomorphic
evaluation of the inverse Discrete Fourier Transform (DFT) to obtain the
ciphertext(s) of EcdCKKS(q · I(X) +m(Y )).

– EvalMod: To approximate the modulo q operation, EvalMod homomorphi-

cally evaluates a polynomial approximation of f(t) = q
2π sin

(
2πt
q

)
. In recent

works [8, 32], Chebyshev polynomial approximations are used.

– SlotToCoeffCKKS: It performs homomorphic evaluation of DFT to output a
ciphertext of m(Y ) back in its coefficient domain.

Operations in FV. In the FV scheme, there are two operations between slots
and coefficients.

– CoeffToSlotFV: It is a homomorphic evaluation of FV-encoding function. It
semantically puts the coefficients of a plaintext polynomial into the vector
of slots. It is done by multiplying the inverse Number Theoretic Transform
(NTT) matrix.

– SlotToCoeffFV: It is a homomorphic evaluation of FV-decoding function. It
semantically puts the slot vector of a message into the coefficients of the
plaintext polynomial. It is also done by multiplying the NTT matrix.

3 RtF Transciphering Framework

In this section, we describe how the RtF transciphering framework works, and
analyze the message precision of the framework.

9



Ek

t

ncctr

mctr bScale(·)e cctr

EncFV

EcdFV

Concat

k

ScaleFV
ctr = 0, . . . , B − 1

EvalFV(E, ·)

SlotToCoeffFV

{ncctr}ctr
ctr = 0, . . . , B − 1

HalfBoot

CKKS-encrypted message

Client Server

Offline

Online

Fig. 2: The RtF transciphering framework. Homomorphic encryption and evalu-
ation is performed in the boxes with thick lines. Operations in the boxes with
rounded corners do not use any secret information. The vertical dashed line
distinguishes the client-side and the server-side computation, while the horizon-
tal dashed line distinguishes the offline and the online computation. The client
sends ciphertexts block by block, while the server gathers B ciphertext blocks
and recovers the CKKS-encrypted message of the ciphertexts.
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3.1 Overview of the Framework

Our RtF transciphering framework aims to replace the (basic) transciphering
framework in Figure 1 to support CKKS, when equipped with any suitable stream
cipher. The overall design is depicted in Figure 2. At a high level, we propose
to use a stream cipher operating on Znt to encrypt real number messages on the
client side and to convert the ciphertexts into the corresponding CKKS cipher-
texts on the server side. In this regard, it is required to employ an additional
HE scheme which provides homomorphic evaluation of keystreams of the stream
cipher over the modulo t spaces efficiently, and we use FV for this purpose.

The main idea of the RtF framework is to inject real messages into the co-
efficients of plaintext polynomials of FV and to delegate encoding/decoding to
the server via SlotToCoeff and CoeffToSlot for FV and CKKS which is described
more precisely as follows.

First, a message of real numbers mctr ∈ Rn is scaled into Znt by multiplying by
a constant and rounding, and encrypted to cctr on the client side. After gathering
symmetric ciphertexts cctr’s from the client, the server generates a polynomial
C ∈ Rt whose coefficients are components of cctr’s. Then the polynomial is scaled
up into the FV ciphertext space by multiplying ∆FV, say C = (∆FV · C, 0).6 On
the other hand, when the server evaluates the symmetric cipher, a bunch of the
keystream is FV-encrypted in slots. In order to match the domain of computation,
the server evaluates

SlotToCoeffFV : EncFV(EcdFV(z0, . . . , zN−1)) 7→ EncFV(z0 + · · ·+ zN−1X
N−1)

after evaluation of the cipher, where (z0, . . . , zN−1) is the concatenated keystream.
Then, homomorphically computing

(∆FV · C, 0)− EncFV(z0 + · · ·+ zN−1X
N−1),

we have EncFV(m0 + · · · + mN−1X
N−1), where (m0, . . . ,mN−1) is the concate-

nated message. The next step is to convert the type of encryption to CKKS and
then to put the messages into slots, which can be done by HalfBoot.

In the bootstrapping procedure, there are five steps as follows:

ModRaise→ SubSum→ CoeffToSlotCKKS → EvalMod→ SlotToCoeffCKKS.

HalfBoot basically follows the procedure of CKKS bootstrapping, except the final
SlotToCoeffCKKS step. Since the input ciphertext of HalfBoot contains the original
message (m0, . . . ,mN−1) in coefficients rather than slots, it does not require to
move data in slots back to coefficients after EvalMod. Furthermore, with an
appropriate rescaling, HalfBoot gives an effect of full bootstrapping to enable
further approximate computations on the output CKKS ciphertexts.

6 We note that cctr’s are in coefficients, not in slots.
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3.2 Specification

For a fixed security parameter λ, all the other parameters for the FV and the
CKKS schemes will be set accordingly, including the degree of the polynomial
modulus N , the ciphertext moduli {qi}Li=0 (used for both FV and CKKS), and
the FV plaintext modulus t. With these parameters fixed, we will describe how
the framework works, distinguishing four parts; initialization, client-side compu-
tation, and offline/online server-side computation (see Figure 2). The client-side
and server-side computations are described in Algorithm 1 and Algorithm 2,
respectively.

Algorithm 1: Client-side symmetric key encryption of the RtF tran-
sciphering framework

Input:
– Nonce ncctr ∈ {0, 1}λ
– Symmetric key k ∈ Znt
– Tuple of messages mctr ∈ Rn
– Scaling factor δ

Output:

– Symmetric ciphertext cctr ∈ Znt

1 zctr ← E(kctr, ncctr)
2 m̃ctr ← bδ ·mctre
3 cctr ← [m̃ctr + zctr]t
4 return cctr

Initialization. We use FV and CKKS with the same cyclotomic polynomial
of degree N , and the same public-private key pair (pk, sk). The public key pk
is shared by the server and the client. Let ` be the number of used slots per
FV-ciphertext to encrypt k ∈ Znt which satisfies n | ` and ` |N . To enable SIMD
evaluation for keystreams, we consider the following matrix of B duplications of
k.

Concat(k) := (k‖k‖ · · · ‖k)︸ ︷︷ ︸
B-times

∈ Zn×Bt .

The client can pack the coefficients of matrix Concat(k) column-wisely into one
glued column vector in ZnBt or row-by-row manner, which are called column-wise
and row-wise packing, respectively. The number of keystreams calculated in a
single ciphertext (resp. n ciphertexts) is B = `/n for column-wise packing (resp.
B = ` for row-wise packing). We refer to the full version [19] for more details.

To summarize, the client computes

K := EncFV(pk,EcdFV(Concat(k))),
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Algorithm 2: Server-side homomorphic evaluation of decryption of the
RtF transciphering framework

Input:
– Set of nonces nc0, . . . , ncB−1 ∈ {0, 1}λ

– Homomorphically encrypted keys K = EncFV
(

EcdFV(Concat(k))
)

– Tuple of symmetric ciphertexts c = (c0, . . . , cB−1) ∈ (Znt )B

Output:

– CKKS-encrypted message M

1 V ← EvalFV(E,K, {ncctr}ctr)
2 Z ← SlotToCoeffFV(V)
3 C ← VecToPoly(c)
4 C ← (∆FV · C, 0)
5 X ← [C − Z]q
6 X ← Rescale→0(X ) // Rescale to the lowest level

7 M← HalfBoot(X )
8 return M

and sends K to the server. We note that this initialization phase can be done
only once at the beginning of the RtF framework. The client also generates a
random value nc ∈ {0, 1}λ and sends it to the server.

Client-side Computation. Given a nonce nc ∈ {0, 1}λ, a secret key k ∈ Znt
of E, an n-tuple of real messages m = (m0, . . . ,mn−1) ∈ Rn, and a scaling factor
δ > 0, the client executes the following encryption algorithm as described in
Algorithm 1.

The client computes keystream z = Ek(nc) ∈ Znt . Then, the client scales the
message m by multiplying δ to every component of m. Rounding it off gives a
vector m̃ ∈ Zn. If t and δ are appropriately chosen, the norm ‖m̃‖∞ can be
upper bounded by t/2. Finally, the client computes

c := [m̃ + z]t ,

and sends it to the server.

Offline Server-side Computation. Given a tuple of nonces (nc0, . . . , ncB−1)
and the FV-encrypted key K, the server is able to construct a circuit for the
homomorphic evaluation of E, denoted by EvalFV(E, {ncctr}ctr, ·). The circuit
constructed for column-wise (resp. row-wise) packing method returns 1 cipher-
text (resp. n ciphertexts) which packs `/n keystreams (resp. ` keystreams).
With the FV-encrypted key K, the server homomorphically computes V :=
EvalFV(E, {ncctr}ctr,K). For ease of notation, we explain the remaining parts with
column-wise packing method. Denoting the concatenation of `/n keystreams by
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(z0, . . . , z`−1) ∈ Z`t, the resulting FV-ciphertext V can be represented as

EncFV
(

EcdFV
` (z0, . . . , z`−1)

)
.

Finally, the server computes

Z := SlotToCoeffFV(V) = EncFV

(
`−1∑
k=0

zkX
k·N/`

)
.

Online Server-side Computation. Given a tuple of symmetric ciphertexts
c = (c0, . . . , c`/n−1) ∈ (Znt )`/n, the server scales up c into FV-ciphertext space
to enable FV evaluation, namely

C := VecToPoly(c),

C := (∆FV · C, 0),

where VecToPoly is defined by

VecToPoly : R` −→ R[X]/(Φ2N (X))

(m0, . . . ,m`−1) 7→
`−1∑
k=0

mkX
k·N/`.

Then, server computes X := [C − Z]q, where q is the ciphertext modulus of Z,
and rescales it to the lowest level of CKKS.

Now, the only remaining procedure is HalfBoot, which combines ModRaise,
SubSum, CoeffToSlotCKKS, and EvalMod sequentially. Denoting the scaled mes-
sage by (m̃0, . . . , m̃`/n−1) := (m̃0, . . . , m̃`−1) ∈ Z`, the resulting ciphertext can
be represented as

X := EncCKKS

(
`−1∑
k=0

m̃kX
k·N/`

)
.

Then, after ModRaise, we have

X ′ := EncCKKS

(
`−1∑
k=0

m̃kX
k·N/` + q0 · I(X)

)
for some polynomial I(X) = r0 + · · ·+ rN−1X

N−1 ∈ R. By evaluating SubSum,
the polynomial I(X) becomes sparsely packed

Ĩ(X) =
N

`

`−1∑
k=0

rk·N/`X
k·N/`

and the message is scaled byN/`, say m̃k ← (N/`)·m̃k. Evaluating CoeffToSlotCKKS

gives two ciphertexts as follows.

Y0 = EncCKKS
(

EcdCKKS
`/2 (m̃0 + q0r̃0, . . . , m̃`/2−1 + q0r̃`/2−1)

)
Y1 = EncCKKS

(
EcdCKKS

`/2 (m̃`/2 + q0r̃`/2, . . . , m̃`−1 + q0r̃`−1)
)
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where r̃k = (N/`) · rk·N/` for k = 0, 1, . . . , ` − 1. If ` 6= N , then those two
ciphertexts can be packed in a ciphertext. As EvalMod evaluates the modulo-q0
operation approximately, EvalMod operation results in what we want.

3.3 Message Precision

As the CKKS scheme adds some noise for every arithmetic operation, it is im-
portant to analyze how close the output M of Algorithm 2 is to the original
message. In this section, we bound the error occurred in the RtF framework.
First, we bound the error in the middle state X in Algorithm 2.

Let m ∈ R` be an (`/n)-concatenation of the client’s message as an input to
Algorithm 1 such that m̃ = bδ ·me and ‖m̃‖∞ ≤ bt/2c, and let X be the state in
line 5 of Algorithm 2 before rescaling to zero level and HalfBoot in Algorithm 2.
If eeval ∈ R is an error from homomorphic evaluation of E with FV such that
‖eeval‖∞ < ∆FV/2 (i.e., the ciphertext is correctly FV-decryptable), then we have∥∥∥∥∥VecToPoly(m)− DecCKKS(X )

δ∆FV

∥∥∥∥∥
∞

≤ 1

2δ
+
‖eeval‖∞
∆FVδ

≤ 1

2δ
+

1

2δ
=

1

δ

since ‖m − m̃/δ‖∞ ≤ 1
2δ and [m̃]t = m̃. We remark that eeval depends on the

construction of E, which will be bounded appropriately for our new stream cipher
and proposed parameters for HE.

The change of the message precision in HalfBoot varies according to which
specific algorithm is used. We basically follow the work of Bossuat et al. [8] of
CKKS bootstrapping, and we describe the message precision using those results.

In the bootstrapping procedure, the most significant step is to approximate
modular reduction, which corresponds to EvalMod. As modular reduction itself
is not well-matched with polynomial approximation, the sine function is com-
monly used as a stepping-stone to evaluate modular reduction in bootstrapping
algorithms. As a result, there are two kinds of error to be considered in EvalMod:
one from distance between modular reduction and sine function, and the other
from polynomial approximation of the sine function.

The first one, from distance between modular reduction and the sine func-
tion, is mainly determined by the ratio of the bootstrapping scaling factor ∆′

to the modulus q0. Bootstrapping algorithms use scaling factor ∆′ larger than
default scaling factor ∆CKKS used for basic arithmetic, since approximating mod-
ular reduction induces much larger error. In this case, the distance between the
modular reduction and the sine function is bounded by Taylor’s theorem as
follows.∣∣∣∣ q0∆′

[
∆′

q0
x

]
1

− q0
2π∆′

sin

(
2π∆′x

q0

)∣∣∣∣ ≤ q0
2π∆′

· 1

3!

(
2π∆′

q0

)3

=
2π2

3

(
∆′

q0

)2

(1)

provided that |x| ≤ 1.
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The other error from polynomial approximation of the sine function is de-
termined by the polynomial interpolation algorithms. In this step, Bossuat et
al. [8] adopt a specialized Chebyshev interpolation proposed by Han and Ki [32]
for sparse keys, and combine it with their optimization method, which is called
errorless polynomial evaluation. The error bound is calculated based on the dis-
tribution of Chebyshev nodes which is empirically achieved, and we recommend
to see [32] for further discussion. Similarly to (1), this error bound also decreases
when ∆′/q0 gets smaller. Thus, we present an experimental result of correlation
between ∆′/q0 and the message precision in Table 1.

∆′/q0 2−6 2−7 2−8 2−9 2−10 2−11 2−12

− log ε 11.29 13.29 15.30 17.29 19.28 21.24 22.73

Table 1: This table presents experimental error of HalfBoot for various ∆′/q0.
The value ε is the mean error occurred by HalfBoot. The experiment is done by
using parameter Par-128 in Table 4 except ∆′/q0.

In our transciphering framework, the value ∆′/q0 is approximately δ/t. The
plaintext modulus t should be larger than the number of precision bits, which
is the reason for ciphertext expansion in our framework. This expansion can be
reduced when arcsin is evaluated after the sine function.

After HalfBoot, we obtain a refreshed CKKS ciphertext of pre-determined
scale ∆CKKS as a result of RtF framework. Although we can freely choose the
final scale ∆CKKS, the message precision of the RtF framework cannot exceed log δ
bits. Hence it is enough to choose ∆CKKS � δN to ensure maximum precision
log δ against scaling error.

4 A New Stream Cipher over Zt

The RtF transciphering framework requires a stream cipher with a variable plain-
text modulus. In this section, we propose a new stream cipher HERA using mod-
ular arithmetic, and analyze its security.

4.1 Specification

A stream cipher HERA for λ-bit security takes as input a symmetric key k ∈ Z16
t ,

a nonce nc ∈ {0, 1}λ, and returns a keystream knc ∈ Z16
t , where the nonce is fed

to the underlying extendable output function (XOF) that outputs an element in
(Z16
t )∗. In a nutshell, HERA is defined as follows.

HERA[k, nc] = Fin[k, nc, r] ◦ RF[k, nc, r − 1] ◦ · · · ◦ RF[k, nc, 1] ◦ ARK[k, nc, 0]

where the i-th round function RF[k, nc, i] is defined as

RF[k, nc, i] = ARK[k, nc, i] ◦ Cube ◦MixRows ◦MixColumns
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and the final round function Fin is defined as

Fin[k, nc, r] =

ARK[k, nc, r] ◦MixRows ◦MixColumns ◦ Cube ◦MixRows ◦MixColumns

for i = 1, 2, . . . , r − 1 (see Figure 3).

XOFnc

MC MR

X3

X3

... t

k

Fig. 3: The round function of HERA. Operations in the box with dotted (resp.
thick) lines are public (resp. secret). “MC” and “MR” represent MixColumns and
MixRows, respectively.

Key Schedule. The round key schedule can be simply seen as component-
wise product between a random value and the master key k, where the uni-
formly random value in Z×t is obtained from a certain extendable output func-
tion XOF with an input nc. Given a sequence of the outputs from XOF, say
rc = (rc0, . . . , rcr) ∈ (Z16

t )r+1, ARK is defined as follows.

ARK[k, nc, i](x) = x + k • rci

for i = 0, . . . , r, and x ∈ Z16
t , where • (resp. +) denotes component-wise multi-

plication (resp. addition) modulo t. The extendable output function XOF might
be instantiated with a sponge-type hash function SHAKE256 [24].

Linear Layers. Each linear layer is the composition of MixColumns and MixRows.
Similarly to AES, MixColumns multiplies a certain 4× 4-matrix to each column
of the state, where the state of HERA is also viewed as a 4×4-matrix over Zt (see
Figure 4). MixColumns and MixRows are defined as in Figure 5a and Figure 5b,
respectively. The only difference of our construction from AES is that each entry
of the matrix is an element of Zt.

Nonlinear Layers. The nonlinear map Cube is the concatenation of 16 copies
of the same S-box, where the S-box is defined by x 7→ x3 over Zt. So, for
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Fig. 4: State of HERA. Each square stands for the component in Zt.
y0c
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y3c

 =
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1 2 3 1

1 1 2 3

3 1 1 2

 ·

x0c
x1c
x2c
x3c


(a) MixColumns


yc0
yc1
yc2
yc3

 =


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 ·

xc0
xc1
xc2
xc3


(b) MixRows

Fig. 5: Definition of MixColumns and MixRows. For c ∈ {0, 1, 2, 3}, xij and yij
are defined as in Figure 4.

x = (x0, . . . , x15) ∈ Z16
t , we have

Cube(x) = (x30, . . . , x
3
15).

For the bijectivity of S-boxes, it is required that gcd(3, t− 1) = 1.

Encryption Mode. When a keystream of k blocks (in (Z16
t )k) is needed for

some k > 0, the “inner-counter mode” can be used; for ctr = 0, 1, . . . , k− 1, one
computes

z[ctr] = HERA [k, nc‖ctr] (ic),

where ic denotes a constant (1, 2, . . . , 16) ∈ Z16
t .

4.2 Design Rationale

Symmetric cipher designs for advanced protocols so far have been targeted at
homomorphic encryption as well as various privacy preserving protocols such
as multiparty computation (MPC) and zero knowledge proof (ZKP). In such
protocols, multiplication is significantly more expensive than addition, so a new
design principle has begun to attract attention in the literature: to use simple
nonlinear layers at the cost of highly randomized linear layers (e.g., FLIP [44]
and Rasta [21]). However, to the best of our knowledge, most symmetric ciphers
following this new design principle operate only on binary spaces, rendering it
difficult to apply them to our hybrid framework.

One might consider literally extending FLIP [44] or Rasta [21] to modular
spaces. This straightforward approach will degrade the overall efficiency of the
cipher. Furthermore, unlike MPC and ZKP, linear maps over homomorphically
encrypted data may not be simply “free”. In order to use the batching techniques
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for homomorphic evaluation, the random linear layers should be encoded into
HE-plaintexts, and then applied to HE-ciphertexts. Since multiplication between
(encoded) plaintexts and ciphertexts require O(N logN) time (besides many HE
rotations), randomized linear layers might not be that practical except that a
small number of rounds are sufficient to mitigate algebraic attacks. For this
reason, we opted for fixed linear layers.

In Table 2, we compare different types of linear maps to the (nonlinear) Cube
map in terms of evaluation time and noise budget consumption. This experiment
is conducted with the HE-parameters (N, dlog qe) = (32768, 275) using row-wise
packing, where the noise budget after the initialization is set to 239 bits. In this
table, “Fixed matrix” and “Freshly-generated matrix” represent a non-sparse
fixed matrix, and a set of distinct matrices freshly generated over different slots,
respectively, where all the matrices are 16 × 16 square matrices and randomly
generated. We see that a freshly-generated linear layer takes more time than
Cube. A fixed linear layer is better than a freshly-generated one, but its time
complexity is not negligible yet compared to Cube. On the other hand, our linear
layer is even faster than (uniformly sampled) fixed linear layer due to its sparsity.

Time (ms) Consumed Budget (bits)

MixRows ◦MixColumns 23.55 4

Fixed matrix 461.68 27

Freshly-generated matrix 4006.03 34.9

Cube 3479.07 86.4

Table 2: Comparisons of different types of maps in terms of evaluation time and
noise budget consumption.

The HERA cipher uses a sparse linear layer, whose design is motivated by the
MixColumns layer in AES, enjoying a number of nice features; it is easy to analyze
since its construction is based on an MDS (Maximum Distance Separable) matrix
and needs a small number of multiplications due to the sparsity of the matrix.
We design a Zt-variant of the matrix and use it in the linear layers; it turns
out to be an MDS matrix over Zt when t is a prime number such that t >
17. Instead of using ShiftRows of AES, HERA uses an additional layer MixRows
which is a “row version” of MixColumns to enhance the security against algebraic
attacks; the composition of two linear functions generates all possible monomials,
which makes algebraic attacks infeasible. Also, using MixRows mitigates linear
cryptanalysis; the branch number of the linear layer is 8 (see the full version
[19]) so that HERA does not have a high-probability linear trail.

In the nonlinear layer, Cube takes the component-wise cube of the input.
The cube map is studied from earlier multivariate cryptography [42], recently
attracting renewed interest for the use in MPC/ZKP-friendly ciphers [2, 4]. The
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cube map has good linear/differential characteristics, whose inverse is of high
degree, mitigating meet-in-the-middle algebraic attacks.

As multiplicative depth heavily impacts on noise growth of HE-ciphertexts,
it is desirable to design HE-friendly ciphers using a small number of rounds.
One of the most threatening attacks on ciphers with low algebraic degrees is the
higher order differential attack. For a λ-bit secure (possibly non-binary) cipher,
the algebraic degree of the cipher should be at least λ− 1. However, the attack
is not available on randomized ciphers such as FLIP and Rasta.

To balance between efficiency and security, we propose a new direction: ran-
domizing the key schedule. A randomized key schedule (RKS) is motivated by
the tweakey framework [36]. In the tweakey framework, a key schedule takes as
input a public value (called a tweak) and a key, where an adversary is allowed
to take control of tweaks. On the other hand, RKS is a key schedule which takes
as input a randomized public value and a key together, where the random value
comes from a certain pseudorandom function. So, in our design, an adversary is
not able to freely choose the random value.

The design principle behind our RKS is simple: to use as small number of
multiplications as possible. One might consider simply adding a fresh random
value to the master key for every round. This type of key schedule might provide
security against differential cryptanalysis, but it still might be vulnerable to al-
gebraic attacks and linear cryptanalysis. It is important to enlarge the number
of monomials in the first linear layer, while this candidate cannot obtain this
effect since an adversary is able to use the linear change of variables (see the
full version [19]). Based on this observation, we opt for component-wise multi-
plication. It offers better security on algebraic attacks and linear cryptanalysis.
For a traditional block cipher using fixed keys, outer affine layers do not affect
its overall security; when it comes to HERA, the first and the last affine layers,
combined with the randomized key schedule, increases the number of monomials.

The input constant ic = (1, 2, . . . , 16) consists of distinct numbers in Z16
t ;

it will make a larger number of monomials in the polynomial representation of
the cipher (compared to using a too simple constant, say the all-zero vector),
enhancing security against algebraic attacks.

4.3 Security Analysis of HERA

In this section, we provide a summary of the security analysis of HERA (due to
the page limit). All the details are given in the full version [19]. Table 3 shows
the number of rounds to prevent each of the attacks considered in this section
according to the security level λ, where we assume that t > 216.

Assumptions and the Scope of Analysis. We limit the number of encryp-
tions under the same key up to the birthday bound with respect to λ, i.e., 2λ/2,
since otherwise one would not be able to avoid a nonce collision (when nonces
are chosen uniformly at random).

In this work, we will consider the standard “secret-key model”, where an
adversary arbitrarily chooses a nonce, and obtains the corresponding keystream
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Attack

λ
80 128 192 256

Trivial Linearization 4 5 6 7

GCD Attack 1 1 1 7

Gröbner Basis Attack 4 5 6 7

Interpolation Attack 4 5 6 7

Linear Cryptanalysis 2 4 4 6

Table 3: Recommended number of rounds with respect to each attack.

without any information on the secret key. The related-key and the known-key
models are beyond the scope of this paper.

Since HERA takes as input counters, an adversary is not able to control the
differences of the inputs. Nonces can be adversarially chosen, while they are also
fed to the extendable output function, which is modeled as a random oracle. So
one cannot control the difference of the internal variables. For this reason, we
believe that our construction is secure against any type of chosen-plaintext attack
including (higher-order) differential, truncated differential, invariant subspace
trail and cube attacks. A recent generalization of an integral attack [7] requires
only a small number of chosen plaintexts, while it is not applicable to HERA
within the birthday bound.

The HERA cipher can be represented by a set of polynomials over Zt in
unknowns k0, . . . , k15, where ki ∈ Zt denotes the i-th component of the secret
key k ∈ Z16

t . Since multiplication is more expensive than addition in HE schemes,
most HE-friendly ciphers have been designed to have a low multiplicative depth.
This property might possibly make such ciphers vulnerable to algebraic attacks.
With this observation, our analysis will be focused on algebraic attacks.

Trivial Linearization. Trivial linearization is to solve a system of linear
equations by replacing all monomials by new variables. When applied to the r-
round HERA cipher, the number of monomials appearing in this system is upper
bounded by

S =

3r∑
i=0

(
16 + i− 1

i

)
.

Therefore, at most S equations will be enough to solve this system of equations.
All the monomials of degree at most 3r are expected to appear after r rounds of
HERA (as explained in detail in the full version [19]). Therefore, we can conclude
that this attack requires O(S) data and O(Sω) time, where 2 ≤ ω ≤ 3. An ad-
versary might take the guess and determine strategy before trivial linearization.
However, this strategy will not be useful when t > 216.

GCD Attack. The GCD attack seeks to compute the greatest common divisor
(GCD) of univariate polynomials, and it can be useful for a cipher operating on
a large field with its representation being a polynomial in a single variable. This
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attack can be extended to a system of multivariate polynomial equations by
guessing all the key variables except one. For r-round HERA, the complexity
of GCD attack is estimated as O(t15r23r). For a security parameter λ ≤ 240,
HERA will be secure against the GCD attack even with a single round as long
as t > 216. If λ = 256, then the number of round should be at least 7.

Gröbner Basis Attack. The Gröbner basis attack is to solve a system of
equations by computing a Gröbner basis of the system. We analyze the security
of HERA against the Gröbner basis attack under the semi-regular assumption,
which is reasonable as conjectured in [26].

The degree of regularity of the system can be computed as the degree of the
first non-positive coefficient in the Hilbert series

HS(z) =
(

1− z3
r
)m−16( 3r−1∑

i=0

zi

)16

where r is the number of rounds and m is the number of equations. Since the
summation does not have any negative term, one easily see that the degree dreg
of regularity cannot be smaller than 3r. Therefore, the time complexity of the
Gröbner basis attack is lower bounded by

O

((
16 + 3r

3r

)2
)
.

Any variant based on the guess-and-determine strategy requires even higher
complexity when r ≤ 6. Even for r = 7, there is no significant impact on the
security.

Instead of a system of equations of degree 3r, one can establish a system of
16rk cubic equations in 16(r− 1)k+ 16 variables, where k is the block length of
each query. In this case, the complexity is estimated as

O

((
16(r − 1)k + 16 + dreg(r, k)

dreg(r, k)

)ω)
.

In the full version [19], we compute the degree dreg(r, k) of regularity and esti-
mate the time complexity of the attack.

Interpolation Attack. The interpolation attack is to establish an encryption
polynomial in plaintext variables without any information on the secret key and
to distinguish it from a random permutation [35]. It is known that the data
complexity of this attack depends on the number of monomials in the polynomial
representation of the cipher.

For the r-round HERA cipher, let rc = (rc0, . . . , rcr) ∈ (Z16
t )r+1 be a se-

quence of the outputs from XOF. For i = 0, . . . , r, rci is evaluated by a poly-
nomial of degree 3r−i. As we expect that the r-round HERA cipher has almost
all monomials of degree ≤ 3r in its polynomial representation, the number of
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monomials is lower bounded by

r∑
j=0

3j∑
i=0

(
16 + i− 1

i

)
.

One might try to recover the secret key using the interpolation attack on r−1
rounds. However, HERA uses the full key material for every round. It implies that
the key recovery attack needs brute-force search for the full key space.

The inverse of the cube map is of degree (2t − 1)/3, so the degree of the
equation in the middle state will be too high to recover all its coefficients. So we
conclude that the meet-in-the-middle approach is not applicable to HERA.

Linear Cryptanalysis. Linear cryptanalysis typically applies to block ciphers
operating on binary spaces. However, linear cryptanalysis can be extended to
non-binary spaces [6]; for a prime t, the linear probability of a cipher E : Znt → Znt
with respect to input and output masks a,b ∈ Znt can be defined as

LPE(a,b) =

∣∣∣∣Em

[
exp

{
2πi

t

(
− 〈a,m〉+ 〈b,E(m)〉

)}]∣∣∣∣2 ,
where m follows the uniform distribution over Znt . When E is a random permu-
tation, the expected linear probability is denoted by

ELPE(a,b) = EE[LPE(a,b)].

One might consider two different approaches in the application of linear
cryptanalysis on HERA according to how to take the input variables: the XOF
output variables or the key variables. In the first case, unlike traditional linear
cryptanalysis, the probability of any linear trail of HERA depends on the key
since it is multiplied to the input. It seems infeasible to make a plausible linear
trail without any information on the key material.

In the second case, the attack is reduced to solving an LWE-like problem as
follows; given pairs (nci,yi) such that HERA(k, nci) = yi, one can establish

〈b,yi〉 = 〈a,k〉+ ei

for some vectors a 6= 0,b ∈ Znt and error ei sampled according to a certain
distribution χ. It requires 1/ELPE(a,b) samples to distinguish χ from the uni-
form distribution [6]. The linear probability of r-round HERA is upper bounded
by (LPS)B`·b r2 c, where LPS and B` denote the linear probability of the S-box
and the (linear) branch number of the linear layer, respectively. Therefore, the
data complexity for linear cryptanalysis is lower bounded approximately by
1/(LPS)B`·b r2 c. Again, we have LPS ≤ 4/t as seen in the full version [19]. As
the branch number of the linear layer of HERA is 8 (as shown in the full ver-
sion [19]), we can conclude that r-round HERA provides λ-bit security against
linear cryptanalysis when (

t

4

)8·b r2 c

> 2λ.
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5 Implementation

In this section, we evaluate the performance of the RtF framework combined
with the HERA cipher in terms of encryption speed and ciphertext expansion.
The source codes of server-side computation are developed in Golang version
1.16.4 with Lattigo library [1] which implements RNS variants of the FV and
CKKS schemes. The source codes of client-side computation are developed in
C++17, using GNU C++ 7.5.0 compiler with AVX2 instruction set. XOF is
instantiated with SHAKE256 in XKCP library [49]. Our experiments are done in
AMD Ryzen 7 2700X @ 3.70 GHz single-threaded with 64 GB memory.

Additionally, we evaluate the performance of HERA combined with BGV only
in order to make a fair comparison with previous works. One can find the result
in the full version [19].

5.1 Parameter

The sets of parameters used in our implementation are given in Table 4, where

– λ is the security parameter;
– p is the number of precision bits of the RtF framework;
– L′ is the ciphertext level at the end of the framework;
– t is the plaintext modulus;
– r is the number of rounds of the symmetric ciphers;
– N is the degree of the polynomial modulus in the HE schemes;
– ` is the number of slots in the FV scheme in the RtF framework;
– QP is the largest ciphertext modulus of the HE schemes including special

primes.

For the CKKS scheme, the message space is C`/2.
In Table 4, we recommend secure parameters of HERA when combined with

the RtF framework. For the parameters related to bootstrapping, we follow the
choice of bootstrapping parameters in [8]. Specifically,

– the hamming weight h of the secret key is 192;
– the range K of the sine evaluation is 25;
– the number R of the double angle formula is 2;
– the degree dsin of the sine evaluation is 63;
– the degree darcsin of the inverse sine evaluation is 7, if necessary.

We also experiment the effect of the inverse sine evaluation [38]. The param-
eter names ending with a stands for the evaluation of the inverse sine function.
The parameter sets ending with s stands for a small number of slots. It uses 16
slots in order to evaluate HERA. Parameter q0/∆

′ is the ratio of the first cipher-
text modulus q0 to the bootstrapping scaling factor ∆′ which is introduced in
Section 3.3. We use 128-bit secure HE parameters for all parameter sets. If an
application requires more depth with 80-bit security, then a few dozens of level
can be appended without raising N and degradation of security.
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Set λ
SKE HE

dlog te r logN log ` dlogQP e ∆CKKS q0/∆
′ arcsin

Par-80 80 28 4 16 16 1533 240 512 7

Par-80a 80 25 4 16 16 1533 245 16 3

Par-80s 80 28 4 16 4 1533 240 512 7

Par-80as 80 25 4 16 4 1533 245 16 3

Par-128 128 28 5 16 16 1533 240 512 7

Par-128a 128 25 5 16 16 1533 245 16 3

Par-128s 128 28 5 16 4 1533 240 512 7

Par-128as 128 25 5 16 4 1533 245 16 3

Table 4: Selected sets of parameters used in our implementation. The
rest of the bootstrapping parameters is set to be (h,K,R, dsin, darcsin) =
(192, 25, 2, 63, 0/7).

Set CER

Client-side Server-side

Lat. Thrp. Lat. Thrp. p log qL′

(µs) (MB/s) Off (s) On (s) (KB/s)

Par-80 1.54 1.520 22.86 98.56 16.84 5.066 17.22 500

Par-80a 1.24 1.443 26.62 91.09 20.68 5.412 19.13 375

Par-80s 1.53 1.520 22.95 71.89 13.23 0.0019 17.29 500

Par-80as 1.23 1.443 26.77 68.31 14.14 0.0020 19.25 375

Par-128 1.54 1.599 21.73 128.7 19.00 4.738 17.22 500

Par-128a 1.24 1.520 25.26 120.7 20.88 5.077 19.13 375

Par-128s 1.54 1.599 21.72 89.62 13.34 0.0018 17.21 500

Par-128as 1.23 1.520 25.26 84.02 14.31 0.0019 19.35 375

Table 5: Performance of the RtF transciphering framework with HERA.

5.2 Benchmarks

We measure the performance of the RtF framework, distinguishing two different
parts: the client-side and the server-side as separated in Figure 2. On the client-
side, the latency includes time for generating pseudorandom numbers (needed to
generate a single keystream in Z16

t ), keystream generation from HERA, message
scaling, rounding and vector addition over Zt. The extendable output function
is instantiated with SHAKE256 in XKCP.

The server-side offline latency includes time for the randomized key sched-
ule, homomorphic evaluation of the keystreams from HERA, and SlotToCoeffFV.
HERA is homomorphically evaluated by using row-wise packing. The online la-
tency includes scaling up to FV-ciphertext space, the homomorphic subtraction,
rescaling to the lowest level, and HalfBoot. We measure the latency until the
first HE-ciphertext comes out, while the throughput is measured until all the
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16 HE-ciphertexts come out. We note that our evaluation does not take into ac-
count key encryption since the encrypted key will be used over multiple sessions
once it is computed. For the same reason, the initialization process of the HE
schemes is not considered.

We summarize our implementation results in Table 5. This table includes
ciphertext expansion ratio (CER), time-relevant measurements, precision, and
homomorphic capacity. One can see that the parameters with arcsin (Par-a)
offer smaller CER while the remaining levels are less than other parameters.
On the other hand, the parameters with small slots (Par-s) take less time for
evaluation since the complexity of evaluating SlotToCoeffFV and CoeffToSlotCKKS

is affected by the number of slots.

Comparison. We compare the result to the recent implementation of LWEs-to-
RLWE conversions [40] and CKKS itself. The comparison is summarized in Table
6. We run all those schemes by ourselves except the †-marked one. The source
codes of LWEs-to-RLWE conversion is taken from the OpenPegasus library7. As
OpenPegasus library does not include symmetric LWE encryption, we implement
(seeded) symmetric LWE encryption with AVX2-optimized SHAKE256. We use
Lattigo library for CKKS encryption.

In this table, the security parameter λ is set to 128. For the fairness of
comparison, we try to make L′ equal. Regardless of `, the number of real number
messages encrypted on the client side using RtF and LWE is 16 and 1 respectively.
We evaluate the LWE encryption in LWEs-to-RLWE and the CKKS encryption
in CKKS-only environment as (seeded) symmetric encryptions since they offer
smaller ciphertext expansion ratio. For all experiments, we sample the domain
of each component of the message vector from uniform distribution over (−1, 1).
When computing the ciphertext expansion ratio, we use the formula log t/(p+1),
which excludes the effect of sending a public nonce. Multiple use of different
nonces can be dealt with a counter so that the effect of nonce to the ratio is
asymptotically zero.

Since the OpenPegasus library supports only selected sets of parameters in
terms of the number of slots and the ciphertext modulus (at the point of submis-
sion), we implemented LWEs-to-RLWE for N = 216 and ` = 210 which does not
provide exactly the same functionality as ours with full available slots; we addi-
tionally implemented the RtF framework with HERA using the parameter ` = 29

which processes the same number of data in order to make a fair comparison.

One can see that our RtF framework outperforms the LWEs-to-RLWE con-
version and the CKKS-only environment with respect to CER and client-side
performance, achieving the main purpose of the transciphering framework. On
the server-side, the RtF framework enjoys larger throughput at the cost of larger
latency due to the highly nonlinear structure of the HERA compared to LWE
encryption. We note that the CKKS-only environment requires no additional
computation since it uses CKKS-ciphertexts with nonzero level.

7 https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS
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Scheme N `

Ctxt. Exp. Client Server

Ctxt.
Ratio

Lat. Thrp. Lat. Thrp. p L′

(KB) (µs) (MB/s) (s) (KB/s)

RtF 216 216 0.055 1.54 1.599 21.73 147.68 4.738 17.2 11

RtF 216 29 0.055 1.53 1.599 21.78 117.71 0.051 17.2 11

LWE [40] 216(210) 210 0.007 4.84 21.60 0.051 89.61 0.006 9.2 11

LWE [40]† 216(210) 213 0.007 - - - 51.71 - - 6

CKKS 214 214 640 35.31 14527 1.218 none 17.1 11

†: data is directly from the paper.

Table 6: Comparison of the RtF transciphering framework with HERA to LWEs-
to-RLWE conversion (denoted by LWE) and the CKKS-only environment. All the
experiments are done with 128-bit security. Parameter N in parentheses implies
the dimension of LWE. The parameter p stands for the bits of precision. “-”
indicates that the previous work did not report the value.
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[36] Jean, J., Nikolić, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The
TWEAKEY Framework. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptol-
ogy – ASIACRYPT 2014. vol. 8874, pp. 274–288. Springer (2014)

[37] Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A Low Latency
Framework for Secure Neural Network Inference. In: Proceedings of the 27th
USENIX Conference on Security Symposium. p. 1651–1668. USENIX Associa-
tion (2018)

[38] Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: High-Precision Bootstrapping
of RNS-CKKS Homomorphic Encryption Using Optimal Minimax Polynomial
Approximation and Inverse Sine Function. In: Canteaut, A., Standaert, F.X. (eds.)
Advances in Cryptology – EUROCRYPT 2021. pp. 618–647. Springer (2021)

[39] Lepoint, T., Naehrig, M.: A Comparison of the Homomorphic Encryption Schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) Progress in Cryptology
– AFRICACRYPT 2014. vol. 8469, pp. 318–335. Springer (2014)

[40] Lu, W., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: Bridging Polyno-
mial and Non-polynomial Evaluations in Homomorphic Encryption. In: 2021 2021
IEEE Symposium on Security and Privacy (SP). pp. 1057–1073. IEEE Computer
Society (may 2021)

29

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144


[41] Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT
2010. vol. 6110, pp. 1–23. Springer (2010)

[42] Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Barstow, D., Brauer, W.,
Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller,
G., Stoer, J., Wirth, N., Günther, C.G. (eds.) Advances in Cryptology – EURO-
CRYPT ’88. vol. 330, pp. 419–453. Springer (1988)

[43] Méaux, P., Carlet, C., Journault, A., Standaert, F.X.: Improved Filter Permuta-
tors for Efficient FHE: Better Instances and Implementations. In: Hao, F., Ruj,
S., Sen Gupta, S. (eds.) Progress in Cryptology – INDOCRYPT 2019. vol. 11898,
pp. 68–91. Springer (2019)
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