
Beyond Software Watermarking:
Traitor-Tracing for Pseudorandom Functions

Rishab Goyal1∗, Sam Kim2†, Brent Waters3,4‡, and David J. Wu3§

1 MIT, Cambridge, MA
2 Stanford University, Stanford, CA

3 University of Texas at Austin, Austin, TX
4 NTT Research, Sunnyvale, CA

Abstract. Software watermarking schemes allow a user to embed an
identifier into a piece of code such that the resulting program is nearly
functionally-equivalent to the original program, and yet, it is difficult to
remove the identifier without destroying the functionality of the program.
Such schemes are often considered for proving software ownership or for
digital rights management. Existing constructions of watermarking have
focused primarily on watermarking pseudorandom functions (PRFs).

In this work, we revisit the definitional foundations of watermark-
ing, and begin by highlighting a major flaw in existing security notions.
Existing security notions for watermarking only require that the iden-
tifier be successfully extracted from programs that preserve the exact
input/output behavior of the original program. In the context of PRFs,
this means that an adversary that constructs a program which computes
a quarter of the output bits of the PRF or that is able to distinguish
the outputs of the PRF from random are considered to be outside the
threat model. However, in any application (e.g., watermarking a decryp-
tion device or an authentication token) that relies on PRF security, an
adversary that manages to predict a quarter of the bits or distinguishes
the PRF outputs from random would be considered to have defeated the
scheme. Thus, existing watermarking schemes provide very little security
guarantee against realistic adversaries. None of the existing constructions
of watermarkable PRFs would be able to extract the identifier from a
program that only outputs a quarter of the bits of the PRF or one that
perfectly distinguishes.

∗Email: goyal@utexas.edu. Part of this work was done while at UT Austin and the
Simons Institute for the Theory of Computing. Research supported in part by an IBM
PhD fellowship and the Simons-Berkeley research fellowship.

†Email: skim13@cs.stanford.edu. Part of this work was done at the Simons Institute
for the Theory of Computing. Research supported by NSF, DARPA, a grant from
ONR, and the Simons Foundation.

‡Email: bwaters@cs.utexas.edu. Research supported by NSF CNS-1908611, a Simons
Investigator award, and a Packard Foundation Fellowship.

§Email: dwu4@cs.utexas.edu. Part of this work was done at the University of Vir-
ginia and while visiting the Simons Institute for the Theory of Computing. Research
supported by NSF CNS-1917414, CNS-2045180, and a Microsoft Research Faculty
Fellowship.

To address the shortcomings in existing watermarkable PRF defini-
tions, we introduce a new primitive called a traceable PRF. Our defini-
tions are inspired by similar definitions from public-key traitor tracing,
and aim to capture a very robust set of adversaries: namely, any ad-
versary that produces a useful distinguisher (i.e., a program that can
break PRF security), can be traced to a specific identifier. We provide a
general framework for constructing traceable PRFs via an intermediate
primitive called private linear constrained PRFs. Finally, we show how
to construct traceable PRFs from a similar set of assumptions previously
used to realize software watermarking. Namely, we obtain a single-key
traceable PRF from standard lattice assumptions and a fully collusion-
resistant traceable PRF from indistinguishability obfuscation (together
with injective one-way functions).

1 Introduction

Software watermarking is a mechanism for protecting against unauthorized re-
distribution of software. In a watermarking scheme, a user can embed some
special information called a “mark” into a program such that the resulting pro-
gram is nearly functionally-equivalent to the original one, and moreover, it is
difficult for an adversary to remove the watermarking without destroying its
input/output behavior. The majority of works studying cryptographic notions
of watermarking have focused primarily on watermarking pseudorandom func-
tions (PRFs) [CHN+16, BLW17, KW17, QWZ18, YAL+18, KW19, YAL+19,
YAYX20]. Namely, the goal in each of these constructions is to embed an identi-
fier (e.g., a user’s name or a device id) into a PRF key such that (1) the marked
key still preserves the input/output behavior of the original PRF; and (2) no ef-
ficient adversary is able to construct a key that both preserves the input/output
behavior of the PRF on an ε-fraction of the domain and does not contain the
identifier. The first requirement corresponds to “correctness” while the second
corresponds to “unremovability.”

The limitations of existing definitions. While these correctness and unremov-
ability requirements seem to capture an intuitive notion of what we might desire
from a watermarking scheme, they fall short of capturing meaningful notions of
security in many realistic settings. For instance, take a watermarkable PRF that
is secure under the above notions, and consider an adversary that takes a marked
circuit C : {0, 1}n → {0, 1}n and outputs a circuit C ′ that on input x, outputs
the first n/4 bits of C(x). Under existing definitions, mark-extraction is allowed
to fail in this setting (since C ′ does not preserve the input/output behavior of
the marked program). At the same time, C ′ still reveals substantial information
about the original function and is often sufficient to compromise security of any
cryptographic scheme that relies on the watermarked PRF. For instance, if the
PRF is used to construct a symmetric encryption scheme, a circuit that outputs
a quarter of the bits of the PRF completely breaks semantic security of the en-
cryption scheme (see Fig. 1 for a visual example of this). However, even though

2

(a) Original (b) Encrypted (c) Recovered (pixel-
level)

(d) Recovered
(block-level)

Fig. 1: Illustration of plaintext recovery using a PRF-based encryp-
tion scheme given a circuit that computes the leading n/4 bits of the
PRF. Fig. 1a shows the original image and Fig. 1b shows the image
encrypted using a PRF in counter mode. Figs. 1c and 1d shows the
recovered image if the image is encrypted pixel-by-pixel and block-
by-block, respectively, and the adversary has a circuit that computes
the n/4 most significant bits of the PRF output.

C ′ suffices to completely break semantic security of the encryption scheme, the
watermarking scheme cannot recover the mark from the compromised key.

The above example highlights a limitation in existing security notions for
cryptographic watermarking: namely, the existing definition only allows for a re-
strictive (and unrealistic) set of adversarial strategies. Indeed, none of the exist-
ing constructions [CHN+16, BLW17, KW17, QWZ18, YAL+18, KW19, YAL+19,
YAYX20] of software watermarking remain secure if we expand the set of ad-
missible adversarial strategies to include the simple example described above.
Existing watermarking constructions all take the approach of carefully embed-
ding the identifier in the output of the function. Such an embedding critically
exploits of the assumption that the adversary must preserve much of the exact
input/output behavior of the original function, in which case, most of the origi-
nal outputs (that embed the identifier) are also preserved. Consequently, if the
adversary constructs a circuit that does not exactly preserve the input/output
behavior, then the tracing algorithm cannot recover the embedded identifier.5

In cryptography, it is not only prudent, but oftentimes, essential for appli-
cations, to design expressive threat models that enable the broadest range of
adversaries. Indeed, the very first formal security notions [GM84, GGM84] in

5In some cases (e.g., [CHN+16]), the tracing algorithm can still partially recover the
identity (e.g., a quarter of the bits) from a circuit that outputs a quarter the bits
of each output. But this tracing algorithm can be defeated by an adversary which
outputs a circuit that only distinguishes the output of the PRF (i.e., on input (x, y),
output 1 if Eval(msk, x) = y and 0 otherwise) or a circuit that computes the parity of
the bits of the PRF output.

3

cryptography carefully distinguished between the functionality requirements of
a primitive and what the adversary would need to do to break it. In the case
of semantic security [GM84], it sufficed for an adversary to distinguish between
encryptions of two messages, and not that the adversary be able to recover the
original message. In the case of PRFs [GGM84], it sufficed that the adversary
could distinguish PRF evaluations from random as opposed to needing to predict
the outputs of the PRF (and indeed, imposing such a restriction on the adver-
sary would limit the usefulness of the primitive). In each of these examples, the
adversary’s objective is easier to achieve than emulating the exact functionality
or semantic requirements of the primitive. This is the philosophy we take when
designing our security definitions.

This work. Our primary goals in this work are to highlight the deficiencies of ex-
isting security notions for cryptographic watermarking and to introduce a new se-
curity framework that better models our intuitive notions of security for a water-
marking scheme. Our definitions are inspired by similar notions developed in the
literature on traitor tracing [CFN94, BSW06, NWZ16, GKRW18, GKW18] and
recent work on watermarking public-key cryptographic primitives [GKM+19].
We begin by introducing a new notion of a traceable PRF which both suffices
to instantiate the existing applications of watermarkable PRFs and addresses
the limitations of existing watermarkable PRF definitions and offers meaning-
ful security guarantees in realistic scenarios (e.g., they can be used to con-
struct traceable symmetric encryption schemes). We then show how to construct
non-collusion-resistant traceable PRFs from private constrained PRFs [BLW17]
and fully collusion-resistant traceable PRFs from indistinguishability obfusca-
tion [BGI+01]. We note that the assumptions needed to instantiate both of our
schemes match the assumptions needed to instantiate watermarkable PRFs. This
means that our new primitives can be instantiated from the same assumptions
as watermarkable PRFs, and yet, provide much stronger security guarantees.

1.1 Our Results

Our first contribution is a new security definition that better captures the se-
curity goals in watermarkable PRFs. Here, we start from the beginning by re-
examining the original motivation for building watermarkable PRFs. The orig-
inal intent of watermarking PRFs is to be able to give a user a marked imple-
mentation of a PRF (e.g., for use in a symmetric encryption or authentication
scheme) such that if the user later on tries to replicate the PRF functionality,
there is a way to trace the replicated program back to the user’s original key.
The question is what constitutes a “valid” attempt at replicating the function-
ality. In this work, we consider any program that violates the security of the
PRF (i.e., is able to distinguish PRF outputs from random) to be a “valid” at-
tack. This definition is in part inspired by security definitions proposed in the
setting of traitor tracing by Nishmaki et al. [NWZ16] (and adopted by later pa-
pers [GKRW18, GKW18]). In the earlier definitions starting with [CFN94], the
tracing algorithm was only required to work against adversarial decoders that

4

could successfully decrypt and recover the original message in its entirety from
a ciphertext. However, [NWZ16] observed that this definition can be too restric-
tive as it ruled out valid attacks that could extract partial information about
the encrypted message (e.g., the first quarter of an encrypted video stream) or
simply distinguished between different messages. Fortunately, most traitor trac-
ing constructions developed under earlier definitions also remained secure under
the strengthened definition. However, this does not appear to be the case for
watermarkable PRFs.

Our notion: traceable PRFs. Since the functionality in this case is a PRF, a
natural security notion is that if the adversary outputs any functionality that
helps one break pseudorandomness (i.e., distinguish the outputs of the PRF from
random), then it should be possible to trace the identity associated with the func-
tionality. In this work, we require that the tracing algorithm succeeds against any
distinguisher that can break weak pseudorandomness of the PRF. Specifically,
any program that can distinguish the PRF outputs on random domain elements
can be traced to one (or more) compromised keys. Observe that this not only
captures adversarial strategies that preserve the exact input/output behavior of
the PRF on an ε-fraction of the domain (as in the case of watermarking), but
also the previous example of a program that outputs a quarter of the bits of the
PRF. It also includes more general strategies such as a distinguisher circuit that
outputs 1 if (x, y) is an input/output pair of the PRF and 0 otherwise. Under
our definition, no efficient adversary can remove a mark from the program unless
it produces a program that does not break weak pseudorandomness of the PRF.

It is natural to ask whether we could trace the embedded mark from any
PRF distinguisher, such as a distinguisher that can adaptively choose the inputs
rather than only seeing evaluations at random points. While this may seem more
natural, a closer inspection shows that it is unsatisfiable. This is because under
this definition, we can construct an untraceable PRF distinguisher by simply
hardwiring a single PRF input-output pair (x, y) in the distinguisher. This dis-
tinguisher completely breaks pseudorandomness, but is untraceable as it contains
no information about the PRF except a single input-output pair. It is crucial to
observe that such a distinguisher is also useless for any adversarial applications
of the PRF. This shows that the concept of traceability must be carefully defined
to precisely capture the semantics of a “useful” distinguisher. We discuss this
in more detail in Section 3.1. Our definition considers distinguishers for weak
pseudorandomness, which means that the adversary’s program necessarily con-
tains information about the PRF on a noticeable fraction of the domain. We also
note that this does not preclude a traceable PRF to satisfy pseudorandomness
as a standalone primitive (and indeed, the constructions we propose in this work
satisfy the usual notion of pseudorandomness). The restriction to distinguishers
that break weak pseudorandomness is only in the definition of tracing security.

Traceable PRF syntax. A traceable PRF scheme consists of four algorithms:
Setup, KeyGen, Eval, and Trace. The Setup algorithm samples a PRF key msk
and a tracing key tk that is used for tracing. The key-generation algorithm takes

5

as input the PRF key msk and an identifier id and outputs a “marked” key
skid. The evaluation algorithm Eval takes as input either the PRF key msk or an
identity key skid and implements PRF evaluation. We require that Eval(skid, ·)
and Eval(msk, ·) agree almost everywhere (i.e., on all but a negligible fraction of
the domain). This property is the analog of the “correctness” or “functionality-
preserving” property in the setting of watermarking schemes. Finally, there is
a trace algorithm Trace that takes as input the tracing key tk and has oracle
access to a distinguisher D, and outputs a set of compromised keys (if any).
Our security requirement says that if the distinguisher D is able to break weak
pseudorandomness of the PRF (i.e., distinguish the outputs of Eval(msk, ·) at
random points from those of a random function), then the tracing algorithm must
successfully identify a set of compromised keys used to construct D. Similar to
the corresponding notions in traitor tracing (and watermarking), we can consider
several variations of our basic schema and requirements:

– Collusion-resistance: We say that a traceable PRF is fully collusion-
resistant if an adversary who has an arbitrary number of identity keys
S = {skid1 , . . . , skidk} still cannot construct a useful distinguisher D where
TraceD(tk) does not output a non-empty set T ⊆ S.6 We say that a scheme
satisfies bounded (resp., Q-key) collusion resistance if security only holds
against adversaries that compromise an a priori bounded number of keys
(resp., at most Q keys). In this work, we show how to construct a single-
key traceable PRF from standard lattice assumptions7 and a fully collusion
resistant traceable PRF from indistinguishability obfuscation (and injective
one-way functions).

– Public tracing vs. secret tracing: We say that a traceable PRF supports
public tracing if security holds even if the tracing key tk is public. Otherwise,
we say the traceable PRF is in the secret tracing setting. Our basic single-
key traceable PRF from lattices is secure in the secret-tracing setting, while
our obfuscation-based construction is secure in the public-tracing setting.

We provide the full definition in Section 4.1.

Constructing traceable PRFs. To construct traceable PRFs, we introduce an
intermediate primitive of a private linear constrained PRF. This primitive can be
viewed as a symmetric analog of a “private linear broadcast encryption” (PLBE)
from [BSW06] and which has featured prominently in a number of subsequent

6We cannot stipulate that T = S since the adversary might not use every compromised
key when constructing the distinguisher D. The tracing algorithm can only recover
the keys the adversary actually uses.

7A traceable PRF bears many similarities with a constrained PRF [BW13, KPTZ13,
BGI14], and all known constructions of collusion-resistant constrained PRFs for suf-
ficiently complex constraints from standard lattice assumptions are secure only in
the single-key setting [BV15]. Fully collusion-resistance constrained PRFs for general
constraints are only known from indistinguishability obfuscation [BZ14] and one-way
functions. Recent work has shown how to construct indistinguishability obfuscation
from the combination of multiple standard assumptions [JLS21].

6

traitor tracing constructions [GKSW10, NWZ16, GKW18]. First, recall that in
a constrained PRF [BW13, KPTZ13, BGI14], the holder of the PRF master
secret key msk can issue a constrained key skf for a constraint f such that the
constrained key can be used to evaluate on only the inputs x that satisfy the
constraint (i.e., the inputs x where f(x) = 1). Moreover, the value of the PRF
at points x where f(x) = 0 remain pseudorandom even given skf .

A private linear constrained PRF is similar in spirit to a constrained PRF
for a class of linear constraints.8 In this case, the constrained keys are each
associated with a κ-bit index id ∈ [0, 2κ − 1]. Every input in the domain is
associated with a private index t ∈ [0, 2κ] and a constrained key for index id
can be used to evaluate the PRF on all inputs whose index t ≤ id. In addition
to the usual Setup (for sampling the PRF key), KeyGen (for issuing constrained
keys), and Eval (for evaluating the PRF), there is a fourth algorithm Samp that
is used to sample domain elements with a given index t together with the PRF
evaluation at the sampled point. The sampling algorithm Samp can either be
public-key algorithm (in which case we obtain a publicly-traceable PRF) or a
secret-key algorithm (in which case we obtain a secretly-traceable PRF). Similar
to a PLBE scheme, there are three main security requirements we require on a
private linear constrained PRF:

– Normal hiding: A random domain element is computationally indistin-
guishable from a randomly-sampled domain element with index 0 (output
by Samp), even given any collection of identity keys.

– Identity hiding: A randomly-sampled domain element with index i is
computationally indistinguishable from a randomly-sampled domain element
with index j, provided that the adversary does not have any identity keys
for an index id ∈ [i, j − 1].

– Pseudorandomness: The PRF evaluations on randomly-sampled domain
elements with index 2κ are computationally indistinguishable from uniform
given any collection of identity keys.

Given a private linear constrained PRF satisfying the above properties, we can
construct a traceable PRF using a similar type of transformation used to con-
struct traitor tracing from PLBE. Namely, we can reduce the tracing problem to
a “jump-finding” problem as follows. LetD be the decoder constructed by the ad-
versary. By assumption, we assume that D is useful: namely, it breaks weak pseu-
dorandomness of the encryption scheme. This means that D is able to distinguish
the PRF evaluation at a randomly-sampled domain element from a uniformly
random value with non-negligible advantage ε. By the normal hiding property,
D must also have advantage ε when distinguishing evaluations at randomly-
sampled points with index 0. Next, by the pseudorandomness property, the dis-
tinguishing advantage of D for randomly-sampled points with index 2κ must be

8As we describe more formally below, the “privacy” requirement refers to a property
on the inputs to the PRF, and not the notion of constraint-privacy in the standard
definition of a “private constrained PRF” from [BLW17].

7

negligible. Thus, there must be a “jump” in the decoder’s distinguishing advan-
tage on domain elements on some index 0 < t < 2κ. By the identity-hiding prop-
erty, such “jumps” can only occur on indices for which the adversary possesses
an identity key. We can then identify these jumps (and correspondingly, the set
of compromised keys) by either performing a linear scan over the identity space
(when the identity space is polynomial) [BSW06, GKSW10, GKW18] or by using
a jump-finding algorithm (when the identity space is exponential) [NWZ16].

Due to some technical differences between PLBE and private linear con-
strained PRFs, we actually have to run the tracing algorithm twice in our con-
struction. Very briefly, the reason behind this requirement is that, unlike en-
cryption systems where the distinguisher just receives a single ciphertext and
has to output its guess, the distinguisher in the case of traceable PRFs receives
a tuple consisting of both a random domain element together with its evaluation.
Here, the distinguisher may stop working if it notices the tracer is changing the
distribution used to sample the inputs (i.e., domain elements). This means that
if the tracer only performs a single scan, such decoders may evade detection.
Thus, we need to apply the underlying tracing algorithm twice to circumvent
this issue. In the first scan, the tracer runs the scan with a consistent output
distribution, and then it performs a second scan where the output distribution
is random and essentially independent of the input distribution. We provide the
full technical details in Section 4.2.

Constructing private linear constrained PRFs. In this work, we describe two
constructions of private linear constrained PRFs. The first construction gives a
single-key private linear constrained PRF in the secret-tracing setting and can
be instantiated from LWE while the second construction is a collusion-resistant
private linear constrained PRF in the public-tracing setting. Interestingly, both
of our constructions rely on a similar set of building blocks as those used for
watermarkable PRFs. We give a high-level sketch of our main constructions
here:

– Single-key private linear constrained PRF. Our first construction com-
bines a private constrained PRF together with an authenticated encryp-
tion scheme with pseudorandom ciphertexts (such authentication encryption
schemes can be based on one-way functions). Recall first that a private con-
strained PRF is a constrained PRF where the constrained key skf hides the
associated constraint function f .

Let ` be the bit-length of the ciphertexts in the authenticated encryption
scheme, and let sk be the secret key of the authenticated encryption scheme.
The domain of our PRF will be {0, 1}`, and a point with index t ∈ [0, 2κ]
will be an authenticated encryption of t. A constrained key for an identity id
consists of a private constrained key for the function fsk,id where fsk,id(x) = 0
whenever x is a valid encryption under sk of some index t′ > id, and is 1
otherwise. The (secret-key) sampling algorithm will first encrypt the target
index t under sk and output the resulting ciphertext ctt together with the
PRF evaluation at ctt.

8

At a high-level, the security proof relies on the fact that a private constrained
PRF hides the constraint function, which in this particular case, means that
it hides the secret key sk. Then, normal hiding and identity hiding follows
from the fact that ciphertexts are pseudorandom, and pseudorandomness
follows from constrained security of the underlying constrained PRF. We
give the full description and analysis in Section 5.

– Collusion-resistant private linear constrained PRF with public-
tracing. Our second construction gives a fully collusion resistant private
linear constrained PRF that supports public tracing from indistinguishabil-
ity obfuscation and injective one-way functions. By the recent breakthrough
work of Jain et al. [JLS21], both assumptions hold assuming the existence
of a PRG in NC0 together with the LWE, LPN, and SXDH assumptions.
The high-level idea is very similar to our secret-key scheme above. Namely,
the domain elements are ciphertexts in a (puncturable) public-key encryp-
tion scheme [CHN+16], and the identity keys consist of an obfuscated pro-
gram with the decryption key hard-wired within it. To publicly sample in-
puts/outputs of the PRF (needed for public tracing), we provide an obfus-
cated program with a (puncturable) PRF key hard-wired within. We provide
the details and analysis in Section 6.

An application: secret-key traitor tracing. We note that our notion of traceable
PRFs lends itself naturally to a secret-key traitor tracing scheme. For instance,
we can take our encryption scheme to be standard nonce-based encryption with
a PRF (i.e., to encrypt a message m, sample a random r ← {0, 1}n and compute
the ciphertext ct = (r,m⊕PRF(k, r)). If we instantiate the underlying PRF with
a traceable PRF, then the resulting scheme immediately gives a traitor tracing
scheme. Namely, any decoder that is able to distinguish between the encryption
of two messages m0 and m1 also necessarily is able to distinguish PRF(k, r) from
uniformly random for a random choice of r ← {0, 1}n. The claim then follows
by tracing security. We stress here that a similar notion would not follow if we
replace PRF with a watermarkable PRF. Here, it is not clear how to translate a
decoder D that is only able to distinguish between encryptions of two messages
into an algorithm that is able to recover the full input/output behavior of the
PRF on a noticeable fraction of the domain.

Comparison with watermarkable PRFs. One distinction between traceable PRFs
and watermarkable PRFs is that in our definition of a traceable PRF, the tracing
key is sampled jointly with the PRF key. In classic definitions of watermarking,
it is possible to have a single (fixed) tracing key for an entire family of PRFs.
This means that it is possible to sample a PRF key and decide to mark it at
a later point in time. As we discuss in Section 3.1, having a tracing key that
depends on the PRF key is essential to realizing the strong security notions in a
traceable PRF. In most practical scenarios, if one wanted to take advantage of
watermarking for software protection, it seems reasonable for them to sample the
PRF key together with the marked key(s). Thus this distinction does not seem
significant in practice, and we believe that the stronger and meaningful security

9

notions achieved by traceable PRFs makes it a far more suitable primitive than
a watermarkable PRF in any realistic environment.

1.2 Related Work

Watermarking. Barak et al. [BGI+01, BGI+12] and Hopper et al. [HMW07]
introduced the first rigorous mathematical frameworks for software watermark-
ing that considered arbitrary adversarial strategies (i.e., the adversary is allowed
to output an arbitrary circuit that preserves the input-output behavior of the
original program). Cohen et al. [CHN+16] provided the first construction of a
watermarking scheme for PRFs using indistinguishability obfuscation. Earlier
works on watermarking [NSS99, YF11, Nis13] imposed additional restrictions
on the adversary’s capabilities. Several works have also studied watermarking
public-key cryptographic primitives [CHN+16, BKS17, GKM+19, Nis20]. Here,
the work of Goyal et al. [GKM+19] expanded watermarking security definitions
(in the public-key setting) to include adversaries that are able to break the “se-
mantics” of a scheme (as opposed to just the set of adversaries that preserve
exact input/output behavior).

Traitor tracing. The notion of traitor tracing was first proposed by Chor et
al. [CFN94] for solving the piracy problem in broadcast systems. Since then,
numerous relaxations have been studied in order to achieve short ciphertexts.
Broadly these can be categorized as follows: schemes where the traceability
guarantees hold as long as the adversary corrupts an a priori bounded num-
ber of users and schemes where the guarantees hold as long as the adversary’s
decoder succeeds with probability greater than an a priori threshold. The for-
mer relaxation leads to traitor tracing schemes in the bounded collusion set-
ting where we have numerous constructions via combinatorial tools [CFN94,
SW98, CFNP00, SSW01, PST06, BP08] as well as a variety of cryptographic as-
sumptions [KD98, BF99, KY02a, KY02b, CPP05, ADM+07, FNP07, LPSS14,
NWZ16, ABP+17]. The latter schemes are typically referred to as “threshold
traitor tracing” [NP98, CFNP00, BN08]. In another line of work, [GKRW18]
considered schemes with a relaxed tracing guarantee: namely, the tracing algo-
rithm does not need to be succeed in all cases. Recently, there has been significant
progress on constructing fully collusion-resistant compact traitor tracing schemes
from standard lattice assumptions [GKW18, GKW19a]. Since then, a sequence
of works has built new traitor tracing systems with more functionality from
standard cryptographic assumptions [CVW+18, GQWW19, GKW19b, KW20].

2 Preliminaries

We write PPT to denote probabilistic polynomial-time. We denote the set of
all positive integers up to n as [n] := {1, . . . , n}. Throughout this paper, unless
specified otherwise, all polynomials we consider are positive polynomials. For
any finite set S, x ← S denotes a uniformly random element x from the set

10

S. Similarly, for any distribution D, x ← D denotes an element x drawn from
distribution D. The distribution Dn is used to represent a distribution over
vectors of n components, where each component is drawn independently from
the distribution D.

For (possibly randomized) algorithms A and D, we use the notation AD to
denote that algorithm A has oracle access to algorithm D. Here, if the algorithm
D is stateless, then on each query made by A to D, the oracle responds with
a randomly drawn sample from the corresponding output distribution. If the
algorithm D is stateful, then whenever A queries the oracle D, it can choose to
either suspend the current execution of the oracle D or to continue executing
D while it maintains its state. If D terminates after receiving an input, then it
sends the final output of the computation as its query response to A.

Pseudorandom generator. A pseudorandom generator PRG : {0, 1}λ → {0, 1}` is
secure if for every PPT adversary A, there exists a negligible function negl(·)
such that

Pr

[
A(tb) = b :

s← {0, 1}λ, t0 ← PRG(s)
t1 ← {0, 1}`, b← {0, 1}

]
≤ 1

2
+ negl(λ).

3 Defining Traceable PRFs

In this section, we formally introduce our notion of a traceable PRF.

Syntax. A traceable PRF scheme, with input-output space X = {Xλ,κ}λ,κ∈N
and Y = {Yλ,κ}λ,κ∈N

9, consists of the following four algorithms:

Setup(1λ, 1κ)→ (msk, tk). The setup algorithm takes as input the security pa-
rameter λ, the “’identity space” parameter κ, and outputs a master PRF
key msk and a tracing key tk.

KeyGen(msk, id)→ skid. The key generation algorithm takes as input the master
key and an identity id ∈ {0, 1}κ. It outputs a secret key skid.

Eval(sk, x)→ y. The decryption algorithm takes as input a secret key sk (which
could be the master key), input x ∈ X , and outputs y ∈ Y.

TraceD(tk, 1z)→ T ⊆ {0, 1}κ. The tracing algorithm has oracle access to a pro-
gram D, it takes as input the tracing key tk, parameter z, and it outputs a
set T of identities.

Weak pseudorandomness. Below we define the weak pseudorandomness property
for traceable PRFs.

9Throughout the paper, we drop the dependence of spaces Xλ,κ and Yλ,κ on security
parameter λ and identity length parameter κ whenever clear from context.

11

Definition 3.1 (Weak pseudorandomness). A traceable PRF scheme Tr-PRF =
(Setup,KeyGen,Eval,Trace) satisfies weak pseudorandomness property if for ev-
ery stateful PPT adversary A, there exists a negligible function negl(·) such that
for all λ ∈ N, the following holds

Pr

[
AOb(msk) = b :

1κ ← A(1λ), b← {0, 1}
(msk, tk)← Setup(1λ, 1κ)

]
≤ 1

2
+ negl(λ),

where the oracle Ob(msk) is defined as follows: if b = 0, then on each evaluation
query made by adversary A, the oracle samples random input x← X and sends
(x,Eval(msk, x)) to A; otherwise, if b = 1, then on each evaluation query made
by adversary A, the oracle samples random input x← X and sends (x, f(x)) to
A where f : X → Y is a random function.10

Key-similarity property. Informally, the key-similarity property says that the
marked key is functionally equivalent to the original unmarked key on all but a
negligible fraction of inputs. Formally, we define the property as follows:

Definition 3.2 (Key similarity). A traceable PRF scheme Tr-PRF = (Setup,
KeyGen,Eval,Trace) satisfies key-similarity if there exists a negligible function
negl(·) such that for all λ, κ ∈ N, identity id ∈ {0, 1}κ, (msk, tk)← Setup(1λ, 1κ),
the following holds

Pr

[
Eval(msk, x) 6= Eval(skid, x) :

skid ← KeyGen(msk, id)
x← X

]
≤ negl(λ).

We note that while the marked keys agree with the unmarked key almost every-
where, it may still be easy for an adversary to efficiently find a point on which
they differ. Thus, we can consider a strengthening of the property called “key
indistinguishability” which we introduce next.

Key-indistinguishability property. Informally, the key-indistinguishability prop-
erty states that it should be hard for any PPT adversary to find inputs where
the marked key (for an identity of the adversary’s choosing) disagrees with the
unmarked key. Formally, we define key indistinguishability as follows:

Definition 3.3 (Key indistinguishability). A traceable PRF scheme Tr-PRF =
(Setup,KeyGen,Eval,Trace) satisfies key indistinguishability if for every state-
ful PPT adversary A, there exists a negligible function negl(·) such that for all
λ ∈ N, the following holds

Pr

[
Eval(msk, x) 6= Eval(sk∗, x) :

1κ ← A(1λ), (msk, tk)← Setup(1λ, 1κ)
(x, idx, id∗)← AEval(msk,·),KeyGen(msk,·)

]
≤ negl(λ),

10Note that instead of actually sampling a random function, the challenger simulates
it by sampling random input-output pairs on the fly and storing them in a table.

12

where sk∗ is defined as

sk∗ =

{
sk(idx) if idx 6= ⊥
skid∗ ← KeyGen(msk, id∗) otherwise,

and sk(`) denotes the `th key A submits to the key-generation oracle.

Remark 3.4 (Key similarity vs. key indistinguishability). It is easy to see that
key indistinguishability is a strictly stronger property than key similarity. As
a result, this property is only achievable in the secret-tracing setting. As we
define more formally below, our tracing algorithm only has oracle access to the
adversary’s distinguishing circuit. If this tracing algorithm can be run publicly,
then it must be the case that the tracing algorithm must be able to efficiently
find some input where the unmarked key and the marked key differ. Otherwise, it
cannot distinguish between the two keys given just oracle access to the evaluation
algorithm.

In the full version of this paper [GKWW20], we also describe a weaker notion of
key indistinguishability that we consider in some of our constructions.

Secure tracing. The secure tracing property states that if any PPT adversary
creates a successful PRF distinguisher with respect to a master key, then the
tracing algorithm, when provided with the PRF distinguisher, outputs the iden-
tity of at least one corrupted secret key, while never outputting the identity of
an uncorrupt secret key. We define secure tracing as follows:

Definition 3.5 (Secure tracing). Let Tr-PRF = (Setup,KeyGen,Eval,Trace)
be a traceable PRF scheme. For any nonnegligible function ε(·), polynomial p(·)
and PPT adversary A, we define the tracing experiment ExptTPRFTr-PRF

A,ε (λ) in

Fig. 2. Based on ExptTPRFTr-PRF
A,ε , we define the following set of (probabilistic)

events and their corresponding probabilities (which are a functions of λ and
parameterized by A, ε):

– Good-Dis : Pr
[
DOb(msk)(1λ) = b : b← {0, 1}

]
≥ 1

2 + ε(λ),
where the probability is taken over the coins of D, and oracle Ob(msk) is
exactly as defined in Definition 3.1.
Intuitively, this says that a distinguisher D is an ε-good distinguisher if D
can break weak pseudorandomness of the underlying PRF with advantage
ε = ε(λ).
Pr -G-DA,ε(λ) = Pr[Good-Dis].

– Cor-Tr : T 6= ∅ ∧ T ⊆ SID
This event corresponds to the tracing algorithm successfully outputting one
or more of the keys the adversary possesses.
Pr -Cor-TrA,ε(λ) = Pr[Cor-Tr].

13

Experiment ExptTPRFTr-PRF
A,ε (λ)

– 1κ ← A(1λ).
– (msk, tk)← Setup(1λ, 1κ).
– D ← AEval(msk,·),KeyGen(msk,·),SplEval(msk,·,·).
– T ← TraceD(tk, 11/ε(λ)).

Let SID be the set of identities queried by A to the key generation
oracle KeyGen(msk, ·). Here, SplEval denotes a special evaluation algo-
rithm that is defined as a randomized oracle algorithm that has msk
hardwired, takes as input an identity id ∈ {0, 1}κ, a string x ∈ X , and
outputs y = Eval(skid, x) where skid ← KeyGen(msk, id). We discuss
the rationale for this oracle in Remark 3.7.

Fig. 2: Experiment ExptTPRF

– Fal-Tr : T 6⊆ SID
This event corresponds to the tracing algorithm outputting a key that the
adversary did not request (i.e., falsely implicating an honest user).
Pr -Fal-TrA,ε(λ) = Pr[Fal-Tr].

A traceable PRF scheme Tr-PRF (with secret-key tracing) is said to satisfy se-
cure tracing property if for every PPT adversary A, polynomial q(·), and non-
negligible function ε(·), there exists a negligible function negl(·) such that for all
λ ∈ N satisfying ε(λ) > 1/q(λ), the following two properties hold:

Pr -Fal-TrA,ε(λ) ≤ negl(λ) and Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl(λ).

Intuitively, the first property states that the tracing algorithm cannot falsely im-
plicate an honest user with non-negligible probability and the second property
requires that whenever D is a ε-good distinguisher, then the tracing algorithm
correctly traces at least one corrupt user.

Remark 3.6 (Security for publicly-traceable PRFs). A traceable PRF scheme
with public-tracing is defined identically to its secret-tracing counterpart, ex-
cept now the adversary is additionally provided the tracing key tk in all of the
security games. In the public-tracing setting, we require the scheme to satisfy
weak pseudorandomness, key similarity, and the secure public tracing property
(but not key indistinguishability; see Remark 3.4).

Remark 3.7 (Special evaluation oracle SplEval). In our tracing experiment, we
allow an attacker to not only corrupt keys for different users, but also query for
PRF evaluations under keys of non-corrupt users on inputs of the adversary’s
choosing. Although providing access to this “special evaluation” oracle SplEval
is not necessary for applications of traceable PRFs to traitor tracing systems,
we include this as part of our definition to cover a broader class of adversarial
strategies. For instance, this definition captures adversaries that may passively
observe interactions between honest users using their respective identity keys.

14

Our definition says that even if the adversary can see (polynomially-many) such
evaluations, they cannot construct a distinguisher that evades the tracing algo-
rithm (nor can they cause the tracing algorithm to implicate one of the honest
users). Thus, by allowing the adversary access to such an oracle, the definition
provides security even against these much powerful adversaries.

Also, one could possibly have a seemingly stronger mechanism for capturing
the special evaluation oracle where now it will be a stateful oracle and the
adversary can ask the oracle to either sample (and store) a fresh key followed by
evaluation with respect to the sampled key, or answer a evaluation query with
respect to a previously-sampled key. Although this might seem like a stronger
definition, this is not necessary since we can always assume without loss of
generality that key generation algorithm is deterministic (by using a standard
PRF for derandomization).

3.1 Note on Weak Pseudorandomness and Other Definitional
Choices

In this section, we briefly discuss and motivate the definitional choices for our
traceable PRF notion.

On weak pseudorandomness. In our definitional framework above, we focus on
weak pseudorandomness as the target for both PRF security as well as the class
of distinguishers against which we provide the tracing guarantee. There are a
few technical reasons for the above choice. First, observe that it is impossible for
a traceable PRF to be a secure PRF in the standard sense (i.e., appear pseudo-
random on adversarially-chosen inputs) while also providing tracing guarantees
against distinguishers that only break pseudorandomness in the standard sense.
This is because in such a scenario, the adversary can construct an untraceable
distinguisher by simply hardwiring a single PRF input-output pair (on a random
input) and use that to claim that it is a valid distinguisher. Such a distinguisher
can break the standard PRF game with advantage close to 1 by querying on
its hard-wired input, and yet, no tracing algorithm can succeed here (since with
overwhelming probability, the single input-output pair chosen by the adversary
coincides with the real PRF evaluation on that input, and thus, cannot contain
any information about an embedded identity).

Another possibility could be to allow the distinguisher to make arbitrary
evaluation queries to the PRF, but the challenge point would still be chosen
randomly. While this is a meaningful notion, this causes problems when defining
publicly-traceable PRFs. Under this definition, the tracing algorithm would need
the actual code of the distinguisher, as opposed to only requiring oracle access
to the distinguisher. This is because under this definition, the tracing algorithm
would need a way to respond to the distinguisher’s evaluation queries (in order
to use the distinguisher at tracing time). But if the distinguisher can make arbi-
trary PRF evaluation queries that the public tracing algorithm can answer, then
the tracing algorithm can be used to break pseudorandomness. Consequently,
this model is only achievable in the setting where the public tracing algorithm

15

has access to the code of the distinguisher. In this work, we focus on settings
where tracing can be done just given black-box access to the decoder. Note that
if we restrict ourselves to weak pseudorandomness, then there is no inherent
contradiction; namely, a public tracing key only needs to provide an ability to
sample random input-output evaluations of the PRF. Using indistinguishabil-
ity obfuscation, we can realize this by publishing an obfuscated program that
can sample input-output evaluations from a sparse pseudorandom subset of the
domain and which does not compromise standard pseudorandomness.

A third possibility is to consider secure tracing against distinguishers which
only break weak pseudorandomness, while requiring the PRF to achieve (regu-
lar) pseudorandomness security. Although this is not impossible (and our cur-
rent constructions can be shown to satisfy this property), we decided to simply
consider weak pseudorandomness security for PRF security since that yields a
unified definitional framework and sufficed for many applications. Basically our
intuition here is to avoid unevenness between the target pseudorandomness se-
curity for PRF security and the class of distinguishers against which we provide
secure traceability.

Joint sampling of tracing and PRF keys. Lastly, our definitions assume that
the tracing key is generated together with a PRF master key (via the Setup
algorithm). That is, each PRF key is associated with a specific tracing key. An
alternate definition could be to sample a single tracing key during the system
setup, and then PRF keys could be sampled independent of the tracing key.
This is the setting encountered in the context of watermarking PRFs [CHN+16].
However PRFs are a symmetric-key primitive. This means that in this scenario,
the tracing algorithm would either need a description of the master PRF key
to run the tracing algorithm, or the PRF setup must non-trivially depend on
the tracing key itself. In the former case, it seems very restrictive since now the
tracing party needs to know the full master key which may not be accessible in
most applications. As to the latter case, it is not clear whether it provides any
more functionality compared to our current definition. Therefore, we decided
to consider a single joint setup for sampling the master PRF key as well as
the tracing parameters as done in prior works on traitor tracing for public-key
encryption systems [BSW06, NWZ16, GKRW18, GKW19a].

4 Traceable PRFs via Private Linear Constrained PRFs

In this section, we introduce an intermediate abstraction, that we call pri-
vate linear constrained PRFs (PLCPRFs), towards building a traceable PRF
scheme. This primitive mirrors the notion of private linear broadcast encryption
(PLBE) [BSW06] from traitor tracing literature where PLBE was used as a use-
ful abstraction for building general traitor tracing systems. We first present the
syntax and security definitions for PLCPRFs, and later show that PLCPRFs
lead to traceable PRFs.

16

4.1 Defining Private Linear CPRFs

Syntax. A private linear CPRF scheme with input-output space X = {Xλ,κ}λ,κ∈N
and Y = {Yλ,κ}λ,κ∈N

11 consists of the following four algorithms:

Setup(1λ, 1κ)→ (msk, tk). The setup algorithm takes as input the security pa-
rameter λ, the “identity space” parameter κ, and outputs a master PRF key
msk and a tracing key tk.

KeyGen(msk, id)→ skid. The key generation algorithm takes as input the master
key and an identity id ∈ {0, 1}κ. It outputs a secret key skid.

12

Eval(sk, x)→ y. The decryption algorithm takes as input a secret key sk (which
could be the master key), input x ∈ X , and outputs y ∈ Y.

Samp(tk, t)→ (x, y). The sampling algorithm takes as input the tracing key tk,
a threshold t ∈ [0, 2κ], and it outputs a input-output pair (x, y) ∈ X × Y.

Key similarity and key indistinguishability. We define key similarity and key
indistinguishability for PLCPRFs to be identical to that for traceable PRFs as
in Definitions 3.2 and 3.3.

Security. We now introduce some useful security properties for PLCPRFs that
will be useful for constructing traceable PRFs. Intuitively, the properties can be
stated as follows. The first property is called the normal hiding property which
states that for any PPT adversary, it should be hard to distinguish whether
an input string x is sampled uniformly at random from the full domain X , or
if it is sampled uniformly at random using the sample algorithm for threshold
0 (that is, as (x, y) ← Samp(tk, 0)). The second property is called the iden-
tity hiding property which states that an input string x should also hide the
threshold t corresponding to which it is sampled as long as the adversary can-
not trivially learn it by simply evaluating at x using its secret keys. Lastly,
we define the pseudorandomness property which states that the PRF output
on input strings sampled corresponding to threshold 2κ are pseudorandom. For-
mally, we define each notion similar to the corresponding set of PLBE definitions
from [BSW06, GKW18, GKW19a]. However, in our setting, we allow the adver-
sary to make an a priori unbounded number of oracle queries, which will be
essential to our construction of traceable PRFs from PLCPRFs. In the public-
key setting, handling a single encryption query is sufficient to construct traitor
tracing.

Definition 4.1 (Normal hiding). A PLCPRF scheme is said to satisfy nor-
mal hiding if for every stateful PPT adversary A, there exists a negligible func-

11As mentioned previously, we drop the dependence on λ, κ whenever clear from con-
text.

12This could also be viewed as a “constrain” algorithm (in the language of constrained
PRFs [BW13, KPTZ13, BGI14]), but there are some semantic differences. As such,
we refer to this algorithm as a “key-generation” algorithm instead.

17

tion negl(·) such that for every λ ∈ N, the following holds:

Pr

AS(·),E(·),K(·),SlE(·,·)(xb) = b :
1κ ← A(1λ); (msk, tk)← Setup(1λ, 1κ)

b← {0, 1}; x0 ← X
(x1, y1)← Samp(tk, 0)


≤ 1

2
+ negl(λ),

where the oracles S,E,K,SlE are defined as follows:

— S(·) = Samp(tk, ·) is the sampling oracle with tk hardwired,
— E(·) = Eval(msk, ·) is the evaluation oracle with msk hardwired,
— K(·) = KeyGen(msk, ·) is the key-generation oracle with msk hardwired, and
— SlE(·, ·) is a randomized oracle that has msk hardwired, takes as input an

identity id ∈ {0, 1}κ, a string x ∈ X , and outputs y = Eval(skid, x) where
skid ← KeyGen(msk, id).

Definition 4.2 (Identity hiding). A PLCPRF scheme is said to satisfy iden-
tity hiding if for every stateful PPT adversary A, there exists a negligible function
negl(·) such that for every λ ∈ N, the following holds:

Pr

AS(·),E(·),K(·),SlE(·,·)(x) = b :
1κ ← A(1λ); (msk, tk)← Setup(1λ, 1κ)

(t0, t1)← AS(·),E(·),K(·),SlE(·,·)

b← {0, 1}; (x, y)← Samp(tk, tb)


≤ 1

2
+ negl(λ),

where the oracles are defined as in Definition 4.1, and A must not query oracle
SlE on the input-identity pair (x, id) where id ∈ [t0, t1 − 1], and each query
id made by A to the key-generation oracle K must satisfy the condition that
id /∈ [t0, t1− 1].13 We say the PLCPRF scheme satisfies selective identity hiding
if the adversary has to commit to its challenge identities (t0, t1) at the beginning
of the game before it makes any oracle queries. Note that selective security implies
adaptive security at the expense of a sub-exponential loss in the security reduction
via a technique called complexity leveraging [BB04].

Definition 4.3 (Pseudorandomness). A PLCPRF scheme is said to satisfy
pseudorandomness if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following holds:

Pr

[
AS(·),E(·),K(·),SlE(·,·)(x, yb) = b :

1κ ← A(1λ); (msk, tk)← Setup(1λ, 1κ)
b← {0, 1}; (x, y0)← Samp(tk, 2κ); y1 ← Y

]
≤ 1

2
+ negl(λ),

where the oracles are defined as in Definition 4.1, A cannot query oracle SlE on
the input-identity pair (x, 2κ), and A cannot query the evaluation oracle E on
input x.
13Here and throughout, the κ-bit identities are interpreted as non-negative integers

between 0 and 2κ − 1 for comparison.

18

Remark 4.4 (Multi-challenge security). For security of PLCPRFs, we consider
three properties (normal hiding, identity hiding, and pseudorandomness). Note
that in each of Definitions 4.1 to 4.3, we consider a single-challenge variant which
means that the adversary gets to see exactly one challenge element. For instance,
in the normal hiding game it gets a single challenge xb which is either a random
input or an input sampled corresponding to threshold 0.

Consider a multi-challenge variant of these security properties where the ad-
versary instead gets unbounded access to a challenge oracle, where the challenge
oracle on each query provides a fresh sample from the corresponding challenge
distribution. For instance, in the multi-challenge version of normal hiding, the
adversary gets oracle access to a challenge oracle where on every query, the chal-
lenger provides a freshly sampled input xb which is either a random input or an
input sampled for threshold 0. (Here, the challenge bit b is chosen only once.) In
our transformation provided in Section 4.2, we will rely on this multi-challenge
variant of the security game. Note that single-challenge and multi-challenge defi-
nitions are equivalent since the adversary is given unbounded oracle access to the
sampling oracle S in these games already. This follows from a standard hybrid
argument.

Remark 4.5 (Security for publicly-sampleable PLCPRFs). Similar to that for
traceable PRFs, a PLCPRF with public-sampleability is defined identically to
its secret-key counterpart, except now the attacker is additionally provided the
tracing key tk in all the security games.

Remark 4.6 (Single-key security). In some settings, we will consider private
linear constrained PRFs where the security properties (Definitions 4.1 and 4.3)
only hold against adversaries that can make a single key-generation query. We
refer to such schemes as single-key private linear constrained PRFs. In the single-
key setting, we also consider the selective notion of security where the adversary
is required to commit to its key-generation query at the beginning of the security
game (before making any oracle queries or in the case of the public-tracing
setting, seeing the tracing key). Note that selective single-key security implies
the standard adaptive single-key security at the expense of making a stronger
sub-exponential hardness assumption via complexity leveraging [BB04].

4.2 Building Traceable PRFs

In this section, we show how to build a traceable PRF scheme from a private
linear CPRF scheme. First, we recall the ‘jump-finding’ problem introduced in
the work of Nishimaki et al. [NWZ16]. Later on, we describe our construction.

Definition 4.7 (Noisy jump finding problem [NWZ16, Definition 3.6]).
The (N, q, δ, ε)-jump-finding problem is defined as follows. An adversary chooses

a set C ⊆ [N] of q unknown points. Then, the adversary provides an oracle
P : [0, N]→ [0, 1]R with the following properties:

– |P (N)− P (0)| ≥ ε.

19

– For any x, y ∈ [0, N] where x < y and [x+1, y]∩C = ∅, then |P (y)− P (x)| <
δ.

The (N, q, δ, ε)-jump finding problem is to interact with the oracle P and output
an element in C. In the (N, q, δ, ε)-noisy jump finding problem, the oracle P is
replaced with a randomized oracle Q : [0, N]→ {0, 1} where on input x ∈ [0, N],
Q(x) outputs 1 with probability P (x). A fresh independent draw is chosen for
each query to Q(x).

Theorem 4.8 (Noisy jump finding algorithm [NWZ16, Theorem 3.7]).
There is an efficient algorithm QTraceQ(λ,N, q, δ, ε) that runs in time t =

poly(λ, logN, q, 1/δ) and makes at most t queries to Q that solves the (N, q, δ, ε)-
noisy-jump-finding problem whenever ε > δ(5 + 2(dlogN − 1e)q). In particular,
QTraceQ(λ,N, q, δ, ε) will output at least one element in C with probability 1 −
negl(λ) and will never output an element outside C. Moreover, any element x
output by QTraceQ(λ,N, q, δ, ε) has the property that P (x)−P (x−1) > δ, where
P (x) = Pr[Q(x) = 1].

Remark 4.9 (Relaxed non-intersection property [NWZ16, Remark 3.8]). The al-
gorithm QTraceQ in Theorem 4.8 succeeds in solving the (N, q, δ, ε)-noisy-jump-
finding problem even if the associated oracle P does not satisfy the second prop-
erty in Definition 4.7: namely, there may exist x, y where [x+ 1, y]∩C = ∅ and
|P (y)− P (x)| ≥ δ. As long as the property holds for all pairs x, y queried by
QTraceQ, Theorem 4.8 applies.

Construction 4.10 (Traceable PRF). Let PLCPRF = (PL.Setup,PL.KeyGen,
PL.Eval,PL.Samp) be a private linear CPRF scheme with input-output space X
and Y. Below we construct a traceable PRF scheme with identical input-output
spaces. (Here we provide a transformation for PRF schemes with secret key
tracing, but the construction can be easily extended to work in the public tracing
setting if the special sampling algorithm in the underlying PLCPRF scheme is
public key as well, that is tracing key tk is public).

Setup(1λ, 1κ)→ (msk, tk). The setup algorithm runs the PLCPRF setup as (msk, tk)
← PL.Setup(1λ, 1κ), and outputs master secret-tracing key pair as (msk, tk).

KeyGen(msk, id)→ skid. The key generation algorithm runs the PLCPRF key gen-
eration algorithm as skid ← PL.KeyGen(msk, id), and outputs secret key skid.

Eval(sk, x)→ y. The evaluation algorithm runs the PLCPRF evaluation algo-
rithm as y = PL.Eval(sk, x), and outputs y.

TraceD(tk, 1z, q)→ T. The tracing algorithm runs the QTrace algorithm twice

as T (real) ← QTraceQ
(real)
D (λ, 2κ, q, δ, ε) and T (rnd) ← QTraceQ

(rnd)
D (λ, 2κ, q, δ, ε),

where δ = ε/(5 + 2κq), ε = 1/z, and oracles Q
(real)
D and Q

(rnd)
D are described

in Fig. 3. Finally, it outputs the set as T (real) ∪ T (rnd).

20

On input τ ∈ [0, 2κ], the oracle Q
(mode)
D proceeds as follows:

– Let compτ denote the comparison function that on input inp, outputs
1 if and only if inp ≥ τ .

– Run the (stateful) oracle D, where on each query made by D the
oracle QD samples an input-output pair as (x, y)← PL.Samp(tk, τ).
It samples a random output string y′ ← Y. If mode = real, it sends
(x, y) as the query response to D. Otherwise, it sends (x, y′) as the
query response to D.

– Finally, D outputs a bit b, and oracle QD outputs the same bit b.

Fig. 3: The distinguishing oracle Q
(mode)
D for mode ∈ {real, rnd}.

Remark 4.11 (Additional parameter q). Note that here the trace algorithm takes
an additional parameter q. This is not an additional restriction since one could
simply run the tracing algorithm increasingly with parameter q growing as suc-
cessive powers of two as long as the tracing algorithm outputs an empty set. A
similar approach was taken in prior works such as [NWZ16, GKW19b].

4.3 Security

In this section, we prove security of our construction. Formally, we prove the
following.

Theorem 4.12 (Correctness). If the PLCPRF scheme PLCPRF = (PL.Setup,
PL.KeyGen,PL.Eval,PL.Samp) satisfies the key-similarity (resp., key-indistinguishability)
property (Definitions 3.2 and 3.3, respectively), then the scheme T = (Setup,
KeyGen, Eval, Trace) from Construction 4.10 also satisfies key-similarity (resp.,
key-indistinguishability).

The above theorem follows directly from our construction. Next, we prove tracing
security of our scheme.

Theorem 4.13 (Security). If the scheme PLCPRF = (PL.Setup,PL.KeyGen,
PL.Eval,PL.Samp) satisfies normal hiding (Definition 4.1), identity hiding (Def-
inition 4.2), and pseudorandomness (Definition 4.3) (resp., in the absence of
SlE queries), then the scheme T = (Setup, KeyGen, Eval, Trace) from Construc-
tion 4.10 is a secure traceable PRF scheme as per Definition 3.5 (resp., in the
absence of SlE queries).

We provide an overview of the security proof below and provide the full proof
in the full version of this paper [GKWW20].

Proof overview. We prove the theorem in two parts. First, we show that the
false tracing probability is bounded by a negligible function. Next, we show the

21

correct tracing probability is close to the probability of adversary outputting an
ε-good distinguisher for some non-negligible ε.

We begin by introducing some notation for the overview. Fix some master
secret-tracing key pair (msk, tk). Given any pirate distinguisher D and threshold
τ ∈ [0, 2κ], let

pτ,D = Pr
[
DPL.Samp(tk,τ)(1λ) = 0

]
and qτ,D = Pr

[
D

˜PL.Samp(tk,τ)(1λ) = 0,
]

where the oracle algorithm ˜PL.Samp is defined as the regular PL.Samp oracle
algorithm, except the second tuple element (i.e., the output string) is sampled

uniformly at random. Concretely, on each query to ˜PL.Samp(tk, τ), the oracle
first samples (x, y) ← PL.Samp(tk, τ), y′ ← Y, and outputs (x, y′) as the re-
sponse. Here the probability is taken over the random coins of distinguisher D
as well as the randomness used by the sample algorithm. Similarly, let

pnrml,D = Pr
[
DReal(msk)(1λ) = 0

]
, and prnd,D = Pr

[
DRand(1λ) = 0

]
where oracle Real(msk) on each query, samples a random input x ← X , and
outputs (x,Eval(msk, x)) as the query response; whereas the oracle Rand is sim-
ulated by sampling by a random function f : X → Y, and on each query, it
samples a random input x ← X , and outputs (x, f(x))) as the query response.
The above probabilities are also parameterized by the PLCPRF keys, but for
simplicity of notation we do not include them as they are clear from context.

Now, suppose there exists a successful attacker A. That is, A produces a dis-
tinguisher D∗, after making polynomially-many evaluation and key-generation
queries, such that pnrml,D∗ − prnd,D∗ ≥ 2ε, and the tracing algorithm outputs ei-
ther an empty set or an identity outside the set of identities queried by A.14 Let
δ = ε/(5 + 2κq) as used in the construction. Let γ∗ denote the probability that
the distinguisher D∗ outputs 0 when given oracle access to a random function.
Thus, we get that pnrml,D∗ ≥ γ∗ + 2ε. We first argue that it must also be the
case that p0,D

∗
> γ∗+2ε−δ, as otherwise we could use A to break the PLCPRF

normal hiding property. Next, we also show that for any two thresholds τ1 < τ2,
pτ1,D

∗ − pτ2,D∗
< δ and qτ2,D

∗ − qτ1,D∗
< δ as long as A does not make any

key-generation query for an identity in the range [τ1, τ2 − 1]. This argument
relies on the identity hiding property of the PLCPRFs. Next, we argue that
p2
κ,D∗−q2κ,D∗

< δ, as otherwise we could break the pseudorandomness security
of the PLCPRFs. Lastly, we also argue that q0,D

∗ − prnd,D∗
< δ, as otherwise we

could break the PLCPRF normal hiding property. Combining these statements
with the guarantees provided by the noisy jump finding algorithm (Theorem 4.8),
we conclude that the tracing does not output an incorrect identity.

14Recall that if D∗ is a ε-good distinguisher, then we have the bound

Pr
[
D∗Ob(msk)(1λ) = b : b← {0, 1}

]
≥ ε. This can be rewritten as pnrml,D∗

−

prnd,D
∗
≥ 2ε.

22

Remark 4.14 (Public-tracing and handling SlE oracle queries). In the proof
of Theorem 4.13 above, we showed that Construction 4.10 gives a traceable
PRF scheme with private tracing (which is secure in the absence of special
evaluation oracle (SlE) queries), as long as the underlying PLCPRF scheme is
privately-sampleable and secure in the absence of SlE queries. However, if the
underlying PLCPRF scheme is either publicly-sampleable or secure in presence
of SlE queries, or both, then the reduction algorithm described above easily
extends to prove the construction described above to be publicly-traceable, or
secure in presence of SlE queries, or both, respectively.

Remark 4.15 (Single-key security). In the proof of Theorem 4.13, the number
of key-generation queries each of the reduction algorithms needs to make to
the underlying private linear constrained PRF is equal to the number of key-
generation queries the tracing adversary makes. Thus, if we have a single-key
private linear constrained PRF (Remark 4.6), that implies a traceable PRF with
security against adversaries that can only make a single key-generation query.
In Section 5, we show how to construct a single-key private linear constrained
PRF from standard lattice assumptions (using single-key private constrained
PRFs) as a starting point. It is an open problem to construct a many-key (i.e.,
collusion-resistant) private linear constrained PRF (or a traceable PRF) from
standard lattice assumptions. We can construct a fully collusion-resistant private
linear constrained PRF from indistinguishability obfuscation and injective one-
way functions (see Section 6).

5 Privately-Traceable Private Linear Constrained PRFs

In this section, we show how to construct a single-key private linear constrained
PRF from a private constrained PRF (for general circuit constraints) and an
authenticated encryption scheme. Together with Construction 4.10, this yields
a single-key traceable PRF in the private-tracing setting (and without access
to the SlE) from standard lattice assumptions (namely, on the sub-exponential
hardness of LWE with a sub-exponential modulus-to-noise ratio). We define pri-
vate constrained PRFs below and provide the formal definitions of authenticated
encryption in the full version of this paper [GKWW20].

5.1 Private Constrained PRFs

Syntax. A private constrained PRF with input space X , output-space Y, and
constraint family F = {Fλ,κ}λ,κ∈N where Fλ,κ = {f : X → {0, 1}} consists of
the following algorithms:

Setup(1λ, 1κ)→ msk. The setup algorithm takes as input the security parameter
λ and a constraint-family parameter κ and outputs a master PRF key msk.

Constrain(msk, f)→ skf . The constrain algorithm takes as input the master se-
cret key msk and a constraint f ∈ Fλ,κ and outputs a constrained key skf .

Eval(sk, x)→ y. The evaluation algorithm takes as input a secret key sk (which
could be the master secret key msk) and an input x ∈ X and outputs a value
y ∈ Y.

23

Correctness and security. We describe the correctness and security definitions
for a private constrained PRF in the full version of this paper [GKWW20].

Instantiations. Private constrained PRFs (for general circuit constraints) sat-
isfying the above properties can be built assuming sub-exponential hardness of
LWE (with a sub-exponential modulus-to-noise ratio) [BTVW17, PS18].

5.2 Constructing a Private Linear Constrained PRF

We begin with a brief overview of our construction of a private linear constrained
PRF. As discussed in Section 1.1, the domain of our PRF will be the cipher-
text space {0, 1}` for an authenticated encryption scheme with pseudorandom
ciphertexts. A point corresponding to an index t ∈ [0, 2κ] (as would be output
by the Samp algorithm) is an authenticated encryption of t. The PRF itself is
implemented using a private constrained PRF, and the marked keys in our sys-
tem correspond to a constrained key. Specifically, a marked key for an identity id
consists of a constrained key for the function fsk,id that has the secret key sk and
the identity id hard-wired within in. The constraint fsk,id has the property that
fsk,id(x) = 0 whenever x is a valid encryption under sk of some index t′ > id,
and is 1 otherwise.

At a high-level, the security proof relies on the fact that a private constrained
PRF hides the constraint function, which in this particular case, means that it
hides the secret key sk. Then, normal hiding and identity hiding follows from
the fact that the ciphertexts in the underlying authenticated encryption scheme
are pseudorandom, and pseudorandomness follows from constrained security of
the underlying constrained PRF. We give our formal construction and security
analysis below:

Construction 5.1 (Private linear constrained PRF). Fix a security parameter
λ and an identity-space parameter κ. Our private linear constrained PRF relies
on the following ingredients:

– A symmetric encryption scheme (SE.Setup,SE.Enc,SE.Dec) with key-space
K, message-space M = {Mκ}κ∈N where Mκ = [0, 2κ], and ciphertext space

C = {Cλ,κ}λ,κ∈N. Suppose that Cλ,κ ⊆ {0, 1}` where ` = `(λ, κ).

– For a symmetric encryption key k ∈ K and a threshold t ∈ [0, 2κ], let
fk,t : {0, 1}` → {0, 1} be the following predicate:

On input ct ∈ {0, 1}`:

1. Compute t′ ← SE.Dec(k, ct). If SE.Dec(k, ct) does not have this
form, output 1.

2. Output 1 if t′ ≤ t and 0 otherwise.

– A private constrained PRF (PCPRF.Setup,PCPRF.Eval,PCPRF.Constrain) with
input space X = {0, 1}`, output space Y and constraint family Fλ,κ =
{fk,t | k ∈ K, t ∈ [0, 2κ]}.

24

We construct a private linear constrained PRF with input space X = {0, 1}`,
output space Y as follows:

Setup(1λ, 1κ)→ (msk, tk) The setup algorithm samples a symmetric encryption
key k ← SE.Setup(1λ, 1κ) and a private constrained PRF key pcprf.msk ←
PCPRF.Setup(1λ, 1κ). Then, it outputs msk = tk = (k, pcprf.msk).

KeyGen(msk, id)→ skid. The key-generation algorithm takes as input a master
secret key msk = (k, pcprf.msk) and an identity id ∈ [0, 2κ] and outputs
skid ← PCPRF.Constrain(pcprf.msk, fk,id).

Eval(sk, x)→ y. The evaluation algorithm takes as input a secret key sk and an
input x ∈ {0, 1}` and output y ← PCPRF.Eval(sk, x).

Samp(tk, t)→ (x, y). The sampling algorithm takes as input the tracing key tk =
(k, pcprf.msk) and a threshold t ∈ [0, 2κ]. It computes x ← SE.Enc(k, t) and
y ← PCPRF.Eval(pcprf.msk, x) and outputs (x, y).

As long as the underlying private constrained PRF PCPRF is single-key secure
and the underlying authenticated encryption scheme is secure, Construction 5.1
is a single-key private linear constrained PRF (see Remarks 4.6 and 4.15 for a
discussion of single-key security). We provide the proofs in the full version of
this paper [GKWW20].

Theorem 5.2 (Key indistinguishability). Suppose PCPRF satisfies correct-
ness and single-key selective privacy, and that SE satisfies ciphertext integrity.
Then, the private linear constrained PRF from Construction 5.1 satisfies single-
key selective key indistinguishability where the adversary is only able to choose
idx = 1 (i.e., the adversary can only target the identity key skid it requested).

Theorem 5.3 (Single-key normal hiding). Suppose PCPRF satisfies single-
key selective privacy, SE is correct and satisfies ciphertext integrity and cipher-
text pseudorandomness. Then, the private linear constrained PRF from Con-
struction 5.1 satisfies selective single-key normal hiding security (without SlE
queries).

Theorem 5.4 (Single-key identity hiding). Suppose PCPRF satisfies single-
key selective privacy, SE is correct and satisfies ciphertext integrity and CPA-
security. Then, the private linear constrained PRF from Construction 5.1 satis-
fies selective single-key identity hiding security (without SlE queries).

Theorem 5.5 (Single-key pseudorandomness). Suppose PCPRF satisfies
constrained pseudorandomness and SE is correct and satisfies CPA-security.
Then, the private linear constrained PRF from Construction 5.1 satisfies se-
lective single-key pseudorandomness (without SlE queries).

Instantiating Construction 5.1. Combining a private constrained PRF for cir-
cuit constraints [BTVW17, PS18] with an authenticated encryption scheme with
pseudorandom ciphertexts (implied by any one-way function), we obtain a pri-
vate linear constrained PRF from sub-exponential hardness of LWE with a sub-
exponential modulus-to-noise ratio (by applying complexity leveraging [BB04]
to the selectively secure construction above).

25

6 Publicly-Traceable Private Linear Constrained PRFs

In this section, we show how to construct a publicly-traceable private linear
constrained PRF from indistinguishability obfuscation [BGI+01] together with
a puncturable public-key encryption scheme [CHN+16]. We provide the formal
definitions of these building blocks in the full version of this paper [GKWW20].

Our construction takes the same general approach as our previous construc-
tion based on private constrained PRFs in Section 5. Namely, the domain of the
PRF is the ciphertext space for a sparse (puncturable) public-key encryption
scheme with pseudorandom ciphertexts.15 The special points associated with
an index t ∈ [0, 2κ] used for tracing correspond to encryptions of t under the
public-key encryption scheme. A marked key for an identity id consists of an ob-
fuscated program that has both the decryption key hard-wired within it (needed
to identify special points) as well as the master PRF key (in order to compute
valid PRF evaluations on non-special points). Similarly, the public sampling al-
gorithm consists of an obfuscated program with the master PRF key hard-wired
and which takes an index t and randomness r, and samples an input-output
pair for the PRF. In the security proof, we show that security holds as long as
the public-key encryption scheme and the underlying PRF are puncturable, and
the analysis is a standard application of the punctured programming paradigm
of [SW14].

Construction 6.1 (Private linear constrained PRF with public tracing). Fix a
security parameter λ and an identity-space parameter κ. We rely on the following
ingredients:

– A puncturable public-key encryption scheme (PE.Setup,PE.Enc,PE.Dec,PE.Puncture)
with message spaceM = {Mκ}κ∈N whereMκ = [0, 2κ], and ciphertext space

C = {Cλ,κ}λ∈N,κ∈N, where Cλ,κ ⊆ {0, 1}` for some ` = `(λ, κ). Let ρ = ρ(λ)
be a bound on the number of bits of randomness PE.Enc takes.

– A length-doubling pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
– A puncturable PRF16 (PPRF.Setup,PPRF.Eval,PPRF.Puncture) with domain
{0, 1}`+2λ and range Y.

– An indistinguishability obfuscator iO for general circuits.

We construct our private linear constrained PRF family with domain {0, 1}`+2λ

and range Y as follows:

Setup(1λ, 1κ)→ (msk, tk). Sample a public and secret key-pair (PE.pk,PE.sk)←
PE.Setup(1λ, 1κ) and a puncturable PRF key PPRF.msk← PPRF.Setup(1λ).
Let PSamp[PE.pk,PPRF.msk] be the following program:

15To implement the punctured programming ideas from [SW14] in the security analysis,
we also adjoin a long pseudorandom string to the domain

16A puncturable PRF is a constrained PRF (see Section 5.1) is a constrained PRF for
the family of “puncturing” constraints F = {fx : X → {0, 1} : x ∈ X} where fx(y) =
1 if x 6= y and 0 if x = y. They can be built directly from one-way functions [GGM84,
BW13, KPTZ13, BGI14].

26

Hard-wired: a PE public key PE.pk and a puncturable PRF key
PPRF.msk

Input: an index t ∈ [0, 2κ], and randomness r ∈ {0, 1}ρ+λ.

– Parse r = r0‖r1 where r0 ∈ {0, 1}ρ and r1 ∈ {0, 1}λ. Compute
ct ← PE.Enc(PE.pk, t; r0), set z ← ct‖PRG(r1) ∈ {0, 1}`+2λ, and
output (z,PPRF.Eval(PPRF.msk, z)).

Fig. 4: The program PSamp[PE.pk,PPRF.msk]

The setup algorithm outputs msk ← (PE.pk,PE.sk,PPRF.msk) and tk ←
iO(1λ, PSamp[PE.pk,PPRF.msk]). Note that PSamp[PE.pk,PPRF.msk] is padded
to be the maximum size of all modified P ′Samp programs that appear in the
security analysis.

KeyGen(msk, id)→ skid. Let PEval[id,PE.sk,PPRF.msk] be the following program:

Hard-wired: an identity id ∈ {0, 1}κ, a PE secret key PE.sk, and a PRF
key PPRF.msk

Input: an input x ∈ {0, 1}`+2λ

– Parse x as ct‖x′ where ct ∈ {0, 1}` and x′ ∈ {0, 1}2λ. Compute
t′ ← PE.Dec(PE.sk, ct). If t′ = ⊥, output PPRF.Eval(PPRF.msk, x).

– Otherwise, output PPRF.Eval(PPRF.msk, x) if t′ ≤ id and ⊥ if t′ >
id.

Fig. 5: The program PEval[id,PE.sk,PPRF.msk]

Output skid ← iO(1λ, PEval[id,PE.sk,PPRF.msk]). Similar to Setup, the pro-
gram PEval[id,PE.sk,PPRF.msk] is padded to be the maximum size of all mod-
ified P ′Eval programs that appear in the security analysis.

Eval(sk, x)→ y. If the secret key sk has the form (PE.pk,PE.sk,PPRF.msk), then
output PPRF.Eval(PPRF.msk, x). Otherwise, if skid is a description of an
obfuscated program, output skid(x).

Samp(tk, t)→ (x, y). Sample a random r ← {0, 1}ρ+λ and output tk(t, r).

Due to space limitations, we defer the formal theorem statements and their
proofs to the full version of this paper [GKWW20].

References

ABP+17. Shweta Agrawal, Sanjay Bhattacherjee, Duong Hieu Phan, Damien Stehlé,
and Shota Yamada. Efficient public trace and revoke from standard as-
sumptions: Extended abstract. In ACM CCS, pages 2277–2293, 2017.

ADM+07. Michel Abdalla, Alexander W. Dent, John Malone-Lee, Gregory Neven,
Duong Hieu Phan, and Nigel P. Smart. Identity-based traitor tracing. In
PKC, pages 361–376, 2007.

27

BB04. Dan Boneh and Xavier Boyen. Secure identity based encryption without
random oracles. In CRYPTO, pages 443–459, 2004.

BF99. Dan Boneh and Matthew K. Franklin. An efficient public key traitor
tracing scheme. In CRYPTO, pages 338–353, 1999.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In CRYPTO, pages 1–18, 2001.

BGI+12. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. J. ACM, 59(2):6, 2012.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In PKC, pages 501–519, 2014.

BKS17. Foteini Baldimtsi, Aggelos Kiayias, and Katerina Samari. Watermark-
ing public-key cryptographic functionalities and implementations. In ISC,
pages 173–191, 2017.

BLW17. Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom
functions privately. In PKC, pages 494–524, 2017.

BN08. Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext.
In ACM CCS, pages 501–510, 2008.

BP08. Olivier Billet and Duong Hieu Phan. Efficient traitor tracing from collusion
secure codes. In ICITS, pages 171–182, 2008.

BSW06. Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor
tracing with short ciphertexts and private keys. In EUROCRYPT, pages
573–592, 2006.

BTVW17. Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck
Wee. Private constrained prfs (and more) from LWE. In TCC, pages
264–302, 2017.

BV15. Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-
homomorphic prfs from standard lattice assumptions - or: How to secretly
embed a circuit in your PRF. In TCC, pages 1–30, 2015.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In ASIACRYPT, pages 280–300, 2013.

BZ14. Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. In CRYPTO,
pages 480–499, 2014.

CFN94. Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO,
pages 257–270, 1994.

CFNP00. Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors.
IEEE Trans. Information Theory, 46(3):893–910, 2000.

CHN+16. Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan,
and Daniel Wichs. Watermarking cryptographic capabilities. In STOC,
pages 1115–1127, 2016.

CPP05. Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public trace-
ability in traitor tracing schemes. In EUROCRYPT, pages 542–558, 2005.

CVW+18. Yilei Chen, Vinod Vaikuntanathan, Brent Waters, Hoeteck Wee, and
Daniel Wichs. Traitor-tracing from LWE made simple and attribute-based.
In TCC, pages 341–369, 2018.

FNP07. Nelly Fazio, Antonio Nicolosi, and Duong Hieu Phan. Traitor tracing with
optimal transmission rate. In ISC, pages 71–88, 2007.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions (extended abstract). In FOCS, pages 464–479, 1984.

28

GKM+19. Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J.
Wu. Watermarking public-key cryptographic primitives. In CRYPTO,
pages 367–398, 2019.

GKRW18. Rishab Goyal, Venkata Koppula, Andrew Russell, and Brent Waters. Risky
traitor tracing and new differential privacy negative results. In CRYPTO,
pages 467–497, 2018.

GKSW10. Sanjam Garg, Abishek Kumarasubramanian, Amit Sahai, and Brent Wa-
ters. Building efficient fully collusion-resilient traitor tracing and revoca-
tion schemes. In ACM CCS, pages 121–130, 2010.

GKW18. Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant
traitor tracing from learning with errors. In STOC, pages 660–670, 2018.

GKW19a. Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant
traitor tracing from learning with errors. SIAM Journal on Computing,
(0):STOC18–94, 2019.

GKW19b. Rishab Goyal, Venkata Koppula, and Brent Waters. New approaches to
traitor tracing with embedded identities. In TCC, pages 149–179, 2019.

GKWW20. Rishab Goyal, Sam Kim, Brent Waters, and David J. Wu. Beyond software
watermarking: Traitor-tracing for pseudorandom functions. IACR Cryptol.
ePrint Arch., 2020:316, 2020.

GM84. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

GQWW19. Rishab Goyal, Willy Quach, Brent Waters, and Daniel Wichs. Broad-
cast and trace with nˆε ciphertext size from standard assumptions. In
CRYPTO, pages 826–855, 2019.

HMW07. Nicholas Hopper, David Molnar, and David A. Wagner. From weak to
strong watermarking. In TCC, pages 362–382, 2007.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. 2021.

KD98. Kaoru Kurosawa and Yvo Desmedt. Optimum traitor tracing and asym-
metric schemes. In EUROCRYPT, pages 145–157, 1998.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In ACM
CCS, pages 669–684, 2013.

KW17. Sam Kim and David J. Wu. Watermarking cryptographic functionalities
from standard lattice assumptions. In CRYPTO, pages 503–536, 2017.

KW19. Sam Kim and David J. Wu. Watermarking PRFs from lattices: Stronger
security via extractable PRFs. In CRYPTO, pages 335–366, 2019.

KW20. Sam Kim and David J. Wu. Collusion resistant trace-and-revoke for arbi-
trary identities from standard assumptions. In ASIACRYPT, 2020.

KY02a. Aggelos Kiayias and Moti Yung. Traitor tracing with constant transmis-
sion rate. In EUROCRYPT, pages 450–465, 2002.

KY02b. Kaoru Kurosawa and Takuya Yoshida. Linear code implies public-key
traitor tracing. In PKC, pages 172–187, 2002.

LPSS14. San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness
of k-LWE and applications in traitor tracing. In CRYPTO, pages 315–334,
2014.

Nis13. Ryo Nishimaki. How to watermark cryptographic functions. In EURO-
CRYPT, pages 111–125, 2013.

Nis20. Ryo Nishimaki. Equipping public-key cryptographic primitives with wa-
termarking (or: A hole is to watermark). In TCC, 2020.

29

NP98. Moni Naor and Benny Pinkas. Threshold traitor tracing. In CRYPTO,
pages 502–517, 1998.

NSS99. David Naccache, Adi Shamir, and Julien P. Stern. How to copyright a
function? In PKC, pages 188–196, 1999.

NWZ16. Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor
tracing: How to embed arbitrary information in a key. In EUROCRYPT,
pages 388–419, 2016.

PS18. Chris Peikert and Sina Shiehian. Privately constraining and programming
PRFs, the LWE way. In PKC, pages 675–701, 2018.

PST06. Duong Hieu Phan, Reihaneh Safavi-Naini, and Dongvu Tonien. Generic
construction of hybrid public key traitor tracing with full-public-
traceability. In ICALP, pages 264–275, 2006.

QWZ18. Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking prfs un-
der standard assumptions: Public marking and security with extraction
queries. In TCC, pages 669–698, 2018.

SSW01. Jessica Staddon, Douglas R. Stinson, and Ruizhong Wei. Combinatorial
properties of frameproof and traceability codes. IEEE Trans. Information
Theory, 47(3):1042–1049, 2001.

SW98. Douglas R. Stinson and Ruizhong Wei. Combinatorial properties and con-
structions of traceability schemes and frameproof codes. SIAM J. Discrete
Math., 11(1):41–53, 1998.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In STOC, pages 475–484, 2014.

YAL+18. Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu.
Unforgeable watermarking schemes with public extraction. In SCN, pages
63–80, 2018.

YAL+19. Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Col-
lusion resistant watermarking schemes for cryptographic functionalities.
In ASIACRYPT, pages 371–398, 2019.

YAYX20. Rupeng Yang, Man Ho Au, Zuoxia Yu, and Qiuliang Xu. Collusion resis-
tant watermarkable prfs from standard assumptions. In CRYPTO, pages
590–620, 2020.

YF11. Maki Yoshida and Toru Fujiwara. Toward digital watermarking for cryp-
tographic data. IEICE Transactions, 94-A(1), 2011.

30

	Beyond Software Watermarking: Traitor-Tracing for Pseudorandom Functions

