
Quantum Encryption with Certified Deletion,
Revisited:

Public Key, Attribute-Based, and Classical
Communication

Taiga Hiroka1, Tomoyuki Morimae1,2, Ryo Nishimaki3, and Takashi Yamakawa3

1 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan
2 PRESTO, JST, Saitama, Japan

3 NTT Corporation, Tokyo, Japan

Abstract. Broadbent and Islam (TCC ’20) proposed a quantum crypto-
graphic primitive called quantum encryption with certified deletion. In this
primitive, a receiver in possession of a quantum ciphertext can generate a
classical certificate that the encrypted message has been deleted. Although
their construction is information-theoretically secure, it is limited to the
setting of one-time symmetric key encryption (SKE), where a sender
and receiver have to share a common key in advance and the key can be
used only once. Moreover, the sender has to generate a quantum state
and send it to the receiver over a quantum channel in their construction.
Deletion certificates are privately verifiable, which means a verification
key for a certificate must be kept secret, in the definition by Broadbent
and Islam. However, we can also consider public verifiability.
In this work, we present various constructions of encryption with certified
deletion.
– Quantum communication case: We achieve (reusable-key) public key

encryption (PKE) and attribute-based encryption (ABE) with certi-
fied deletion. Our PKE scheme with certified deletion is constructed
assuming the existence of IND-CPA secure PKE, and our ABE
scheme with certified deletion is constructed assuming the existence
of indistinguishability obfuscation and one-way functions. These two
schemes are privately verifiable.

– Classical communication case: We also achieve interactive encryption
with certified deletion that uses only classical communication. We
give two schemes, a privately verifiable one and a publicly verifiable
one. The former is constructed assuming the LWE assumption in the
quantum random oracle model. The latter is constructed assuming the
existence of one-shot signatures and extractable witness encryption.

1 Introduction

The no-cloning theorem, which states that an unknown quantum state cannot be
copied in general, is one of the most fundamental principles in quantum physics.
As any classical information can be trivially copied, this indicates a fundamental



difference between classical and quantum information. The no-cloning theorem
has been the basis of many quantum cryptographic protocols, including quantum
money [Wie83] and quantum key distribution [BB84].

Broadbent and Islam [BI20] used the principle to construct quantum encryp-
tion with certified deletion. In this primitive, a sender encrypts a classical message
to generate a quantum ciphertext. A receiver in possession of the quantum cipher-
text and a classical decryption key can either decrypt the ciphertext or “delete"
the encrypted message by generating a classical certificate. After generating a
valid certificate of deletion, no adversary can recover the message even if the de-
cryption key is given.4 We remark that this functionality is classically impossible
to achieve since one can copy a classical ciphertext and keep it so that s/he can
decrypt it at any later time. They prove the security of their construction without
relying on any computational assumption, which ensures information-theoretical
security. Although they achieved the exciting new functionality, their construction
is limited to the one-time symmetric key encryption (SKE) setting. A sender and
receiver have to share a common key in advance in one-time SKE, and the key
can be used only once.

A possible application scenario of quantum encryption with certified deletion
is the following. A user uploads encrypted data on a quantum cloud server.
Whenever the user wishes to delete the data, the cloud generates a deletion
certificate and sends it to the user. After the user verifies the validity of the
certificate, s/he is convinced that the data cannot be recovered even if the
decryption key accidentally leaks later. Such quantum encryption could prevent
data retention and help to implement the right to be forgotten [GDP16]. In this
scenario, one-time SKE is quite inconvenient. By the one-time restriction, the
user has to locally keep as many decryption keys as the number of encrypted
data in the cloud, in which case there seems to be no advantage of uploading
the data to the cloud server: If the user has such large storage, s/he could have
just locally kept the messages rather than uploading encryption of them to the
cloud. Also, in some cases, a party other than the decryptor may want to upload
data to the cloud. This usage would be possible if we can extend the quantum
encryption with certified deletion to public key encryption (PKE). We remark
that the one-time restriction is automatically resolved for PKE by a simple
hybrid argument. Even more flexibly, a single encrypted data on the cloud may
be supposed to be decrypted by multiple users according to some access control
policy. Attribute-based encryption (ABE) [SW05, GPSW06] realizes such an
access control in classical cryptography. Thus, it would be useful if we have ABE
with certified deletion. Our first question in this work is:

Can we achieve PKE and ABE with certified deletion?

Moreover, a sender needs to send quantum states (random BB84 states [BB84])
over a quantum channel in the construction by Broadbent and Islam [BI20]. Al-
4 We note that if the adversary is given the decryption key before the deletion, it can
decrypt the ciphertext to obtain the message and keep it even after the deletion, but
such an “attack" is unavoidable.

2



though generating and sending random BB84 states are not difficult tasks (and
they are already possible with current technologies), a classical sender and com-
munication over only a classical channel are much easier. Besides, communicating
over a classical channel is desirable in the application scenario above since many
parties want to upload data to a cloud. In addition to these practical motivations,
achieving classical channel certified deletion is also an interesting theoretical
research direction given the fact that many quantum cryptographic protocols
have been “dequantized" recently [Mah18, CCKW19, RS19, AGKZ20, KNY20].
Thus, our second question in this work is:

Can we achieve encryption with certified deletion, a classical sender, and
classical communication?

In the definition by Broadbent and Islam [BI20], a verification key for a
deletion certificate must be kept secret (privately verifiable). If the verification
key is revealed, the security is no longer guaranteed in their scheme. We can also
consider public verifiability, which means the security holds even if a verification
key is revealed to adversaries. Broadbent and Islam left the following question as
an open problem:

Is publicly verifiable encryption with certified deletion possible?

1.1 Our Result

We solve the three questions above affirmatively in this work.

PKE and ABE with certified deletion and quantum communication. We present
formal definitions of PKE and ABE with certified deletion, and present construc-
tions of them:

– We construct a PKE scheme with certified deletion assuming the existence of
(classical) IND-CPA secure PKE. We also observe that essentially the same
construction gives a reusable SKE scheme with certified deletion if we use
IND-CPA secure SKE, which exists under the existence of one-way function
(OWF), instead of PKE.

– We construct a (public-key) ABE scheme with certified deletion assuming
the existence of indistinguishability obfuscation (iO) [BGI+12] and OWF.
This construction satisfies collusion resistance and adaptive security, i.e., it
is secure against adversaries that adaptively select a target attribute and
obtain arbitrarily many decryption keys.

All builiding blocks above are post-quantum secure in this work. We note that our
constructions rely on computational assumptions and thus are not information-
theoretically secure, unlike the construction in [BI20]. This is unavoidable since
even plain PKE or ABE cannot be information-theoretically secure. We also note
that the constructions above are privately verifiable as the definition of one-time
SKE by Broadbent and Islam [BI20].

3



Our main technical insight is that we can combine the one-time secure SKE
with certified deletion of [BI20] and plain PKE to construct PKE with certified
deletion by a simple hybrid encryption technique if the latter satisfies receiver
non-committing (RNC) security [CFGN96, JL00, CHK05]. Since it is known that
PKE/SKE with RNC security can be constructed from any IND-CPA secure
PKE/SKE [CHK05, KNTY19], our first result follows.

For the second result, we first give a suitable definition of RNC security for
ABE that suffices for our purpose. Then we construct an ABE scheme with RNC
security based on the existence of iO and OWF. By combining this with one-time
SKE with certified deletion by hybrid encryption, we obtain an ABE scheme
with certified deletion.

Interactive encryption with certified deletion, a classical sender, and classical
communication. We also present formal definitions of PKE with certified deletion
and classical communication, and present two constructions:

– We construct an interactive encryption scheme with privately verifiable
certified deletion and classical communication in the quantum random ora-
cle model (QROM) [BDF+11]. Our construction is secure under the LWE
assumption in the QROM.

– We construct an interactive encryption scheme with publicly verifiable certi-
fied deletion and classical communication. Our construction uses one-shot sig-
natures [AGKZ20] and extractable witness encryption [GGSW13, GKP+13].
This solves the open problem by Broadbent and Islam [BI20].

A sender is a classical algorithm in both constructions but needs to interact with
a receiver during ciphertext generation.

An encryption algorithm must be interactive in the classical communication
case even if we consider computationally bounded adversaries (and even in the
QROM). The reason is that a malicious QPT receiver can generate two copies of
a quantum ciphertext from classical messages sent from a sender. One is used for
generating a deletion certificate, and the other is used for decryption.

Moreover, both constructions rely on computational assumptions and thus are
not information-theoretically secure, unlike the construction by Broadbent and
Islam [BI20]. This is unavoidable even if an encryption algorithm is interactive
(and even in the QROM). The reason is that a computationally unbounded
malicious receiver can classically simulate its honest behavior to get a classical
description of the quantum ciphertext.

For the first construction, we use a new property of noisy trapdoor claw-free
(NTCF) functions, the cut-and-choose adaptive hardcore property (Lemma 4.1),
which we introduce in this work. We prove that the cut-and-choose adaptive
hardcore property is reduced to the adaptive hardcore bit property [BCM+18]
and injective invariance [Mah18]. Those properties hold under the LWE assump-
tion [BCM+18, Mah18]. This new technique is of independent interest. The idea
of the second construction is to encrypt a plaintext by witness encryption so that
a valid witness is a one-shot signature for bit 0. We use a valid one-shot signature
for bit 1 as a deletion certificate. The one-shot property of one-shot signatures

4



prevents decryption of witness encryption after issuing a valid deletion certificate.
Georgiou and Zhandry [GZ20] used a similar combination of one-shot signatures
and witness encryption to construct unclonable decryption keys.

1.2 Related work

Before the work by Broadbent and Islam [BI20], Fu and Miller [FM18] and
Coiteux-Roy and Wolf [CRW19] also studied the concept of certifying deletion
of information in different settings. (See [BI20] for the comparison with these
works.)

The quantum encryption scheme with certified deletion by Broadbent and
Islam [BI20] is based on Wiesner’s conjugate coding, which is the backbone of
quantum money [Wie83] and quantum key distribution [BB84]. A similar idea
has been used in many constructions in quantum cryptography that include
(but are not limited to) revocable quantum timed-release encryption [Unr15],
uncloneable quantum encryption [BL20], single-decryptor encryption [GZ20],
and copy protection/secure software leasing [CMP20]. Among them, revocable
quantum timed-release encryption is conceptually similar to quantum encryption
with certified deletion. In this primitive, a receiver can decrypt a quantum
ciphertext only after spending a certain amount of time T . The receiver can
also choose to return the ciphertext before the time T is over, in which case
it is ensured that the message can no longer be recovered. As observed by
Broadbent and Islam [BI20], an essential difference from quantum encryption
with certified deletion is that the revocable quantum timed-release encryption does
not have a mechanism to generate a classical certificate of deletion. Moreover, the
construction by Unruh [Unr15] heavily relies on the random oracle heuristic [BR97,
BDF+11], and there is no known construction without random oracles.

Kundu and Tan [KT20] constructed (one-time symmetric key) quantum
encryption with certified deletion with the device-independent security, i.e., the
security holds even if quantum devices are untrusted. Moreover, they show that
their construction satisfies composable security.

The notion of NTCF functions was first introduced by Brakerski et al. [BCM+18],
and further extended to construct a classical verification of quantum computing by
Mahadev [Mah18]. (See also a related primitive so-called QFactory [CCKW19].)
The adaptive hardcore bit property of NTCF functions was also used for semi-
quantum money [RS19] and secure software leasing with classical communica-
tion [KNY20].

Ananth and Kaleoglu concurrently and independently present reusable secret
key and public key uncloneable encryption schemes [AK21]. Uncloneable encryp-
tion [BL20] is related to but different from quantum encryption with certified
deletion. Uncloneable encryption prevents adversaries from creating multiple
ciphertexts whose plaintext is the same as that of the original ciphertext. Their
constructions are based on a similar idea to one of our main ideas. Specifically,
their construction is obtained by combining one-time secret key uncloneable en-
cryption and standard SKE/PKE with the “fake-key property", which is similar
to the RNC security.

5



1.3 Technical Overview Part I: Quantum Communication Case

We provide an overview of how to achieve PKE and ABE with certified deletion
using quantum communication in this section. To explain our idea, we introduce
the definition of PKE with certified deletion.

Definition of quantum encryption with certified deletion. A PKE with certified
deletion consists of the following algorithms.

KeyGen(1λ)→ (pk, sk): This is a key generation algorithm that generates a pair
of public and secret keys.

Enc(pk,m)→ (vk,CT): This is an encryption algorithm that generates a cipher-
text of plaintext and a verification key for this ciphertext.

Dec(sk,CT)→ m′: This is a decryption algorithm that decrypts a ciphertext.
Del(CT)→ cert: This is a deletion algorithm that generates a certificate to

guarantee that the ciphertext CT was deleted.
Vrfy(vk, cert)→ > or ⊥: This is a verification algorithm that checks the validity

of a certificate cert by using a verification key. As correctness, we require
that this algorithm returns > (i.e., it accepts) if cert was honestly generated
by Del(CT) and (vk,CT) was honestly generated by Enc.

Roughly speaking, certified deletion security requires that no quantum polynomial
time (QPT) adversary given pk and CT can obtain any information about the
plaintext in CT even if sk is given after a valid certificate cert ← Del(CT) is
generated. The difference between PKE and reusable SKE with certified deletion
is that, in reusable SKE, KeyGen outputs only sk. In the one-time SKE case by
Broadbent and Islam [BI20], Enc does not output vk and Vrfy uses sk instead of
vk.

Our idea for PKE. We use the construction of one-time SKE with certified
deletion by Broadbent and Islam [BI20]. However, we do not need to know
the detail of the SKE scheme since we use it in a black-box way in our PKE
scheme. What we need to understand about the SKE scheme are the following
abstracted properties: (1) A secret key and a plaintext are classical strings. (2) A
ciphertext is a quantum state. (3) The encryption algorithm does not output a
verification key since the verification key is equal to the secret key. (4) It satisfies
the verification correctness and certified deletion security explained above.

Our idea is to convert the SKE with certified deletion scheme into a PKE
with certified deletion scheme by combining with a standard PKE scheme (stan-
dard hybrid encryption technique). This conversion is possible since a secret
key of the SKE scheme is a classical string. Let PKE.(KeyGen,Enc,Dec) and
SKE.(KeyGen,Enc,Dec,Del,Vrfy) be normal PKE and one-time SKE with certi-
fied deletion schemes, respectively. Our PKE with certified deletion scheme is
described as follows.

KeyGen(1λ): This outputs (pke.pk, pke.sk)← PKE.KeyGen(1λ).

6



Enc(pk,m): This generates ske.sk← SKE.KeyGen(1λ), ske.CT← SKE.Enc(ske.sk,m),
and pke.CT← PKE.Enc(pke.pk, ske.sk), and outputs vk := ske.sk and CT :=
(ske.CT, pke.CT).

Dec(sk,CT): This computes ske.sk′ ← PKE.Dec(pke.sk, pke.CT)
and m′ ← SKE.Dec(ske.sk′, ske.CT), and outputs m′.

Del(CT): This generates and outputs cert← SKE.Del(ske.CT).
Vrfy(vk, cert): This outputs the output of SKE.Vrfy(ske.sk, cert) (note that vk =

ske.sk).
At first glance, this naive idea seems to work since even if pke.sk is given to
an adversary after a valid cert is generated, ske.CT does not leak information
about the plaintext by certified deletion security of the SKE scheme. Note that
PKE is used to encrypt ske.sk (not m). One-time SKE is sufficient since ske.sk is
freshly generated in Enc. The proof outline is as follows. First, we use IND-CPA
security of normal PKE to erase information about ske.sk. Then, we use the
one-time certified deletion security of SKE. Unfortunately, we do not know how
to prove the first step above because we must give pke.sk to an adversary in a
security reduction. In the first step, we need to show that if a distinguisher detects
that PKE.Enc(pke.pk, ske.sk) is changed to PKE.Enc(pke.pk, 0|ske.sk|), we can break
IND-CPA security of the normal PKE. However, to run the distinguisher, we need
to give pke.sk to the distinguisher after it sends a valid certificate for deletion.
The reduction has no way to give pke.sk to the distinguisher since the reduction
is trying to break the PKE scheme!

To solve this problem, we use RNC encryption (RNCE) [JL00, CHK05].
RNCE consists of algorithms (KeyGen,Enc,Dec,Fake,Reveal). The key genera-
tion algorithm outputs not only a key pair (pk, sk) but also an auxiliary trap-
door information aux. The fake ciphertext generation algorithm Fake(pk, sk, aux)
can generate a fake ciphertext C̃T that does not include information about a
plaintext. The reveal algorithm Reveal(pk, sk, aux, C̃T,m) can generate a fake
secret key that decrypts C̃T to m. The RNC security notion requires that
(C̃T = Fake(pk, sk, aux),Reveal(pk, sk, aux, C̃T,m)) is computationally indistin-
guishable from (Enc(pk,m), sk).

RNCE perfectly fits the scenario of certified deletion. We use an RNCE scheme
RNCE.(KeyGen,Enc,Dec,Fake,Reveal) instead of a normal PKE in the PKE with
certified deletion scheme above. To erase ske.sk, we use the RNC security. We
change RNCE.Enc(rnce.pk, ske.sk) and rnce.sk into rnce.C̃T = RNCE.Fake(rnce.pk, rnce.sk,
rnce.aux) and RNCE.Reveal(rnce.pk, rnce.sk, rnce.aux, rnce.C̃T, ske.sk), respectively.
Thus, as long as ske.sk is given after a valid certification is generated, we can
simulate the secret key of the PKE with certified deletion scheme. Using RNCE
solves the problem above since the reduction obtains both a target ciphertext and
a secret key (real or fake) in the RNC security game. To complete the security
proof, we use the certified deletion security of SKE. Here, the point is that the
reduction can simulate a secret key by Reveal since the reduction is given ske.sk
after a valid certificate is sent in the certified deletion security game.

If we use secret key RNCE instead of public key RNCE, we can achieve reusable
SKE with certified deletion via the design idea above. Secret/public key RNCE

7



can be constructed from IND-CPA SKE/PKE, respectively [CHK05, KNTY19],
and SKE with certified deletion exists unconditionally [BI20]. Thus, we can
achieve PKE (resp. reusable SKE) with certified deletion from IND-CPA PKE
(resp. OWFs).

Note that the RNCE technique above is the fundamental technique in this
work. We use this technique both in the quantum communication case and in
the classical communication case.

Our idea for ABE. We can extend the idea for PKE to the ABE setting. In this
work, we focus on key-policy ABE, where a policy (resp. attribute) is embedded
in a secret key (resp. ciphertext). The crucial tool is (receiver) non-committing
ABE (NCABE), which we introduce in this work.

Although the definition of NCABE is basically a natural extension of that of
RNCE, we describe algorithms of NCABE for clarity. It helps readers who are
not familiar with normal ABE. The first four algorithms below are algorithms of
normal ABE.

Setup(1λ)→ (pk,msk): This is a setup algorithm that generates a public key
and a master secret key.

KeyGen(msk, P )→ skP : This is a key generation algorithm that generates a
secret key for a policy P .

Enc(pk, X,m)→ CTX : This is an encryption algorithm that generates a cipher-
text of m under an attribute X.

Dec(skP ,CTX)→ m′ or ⊥: This is a decryption algorithm that decrypts CTX
if P (X) = >. If P (X) = ⊥, it outputs ⊥.

FakeSetup(1λ)→ (pk, aux): This is a fake setup algorithm that generates a public
key and a trapdoor auxiliary information aux.

FakeCT(pk, aux, X)→ C̃TX : This is a fake ciphertext generation algorithm that
generates a fake ciphertext C̃TX under an attribute X.

FakeSK(pk, aux, P )→ s̃kP : This is a fake key generation algorithm that generates
a fake secret key s̃kP for P .

Reveal(pk, aux, C̃T,m)→ m̃sk: This is a reveal algorithm that generates a fake
master secret key m̃sk.

Roughly speaking, the NCABE security notion requires that the fake public key,
master secret key, ciphertext, and secret keys are computationally indistinguish-
able from the normal public key, master key, ciphertext, and secret keys. It is
easy to see that the hybrid encryption approach works in the ABE setting as
well. Thus, the goal is to achieve an NCABE scheme.

Our NCABE construction follows the RNCE construction based on IND-CPA
PKE [CHK05, KNTY19]. However, the crucial difference between the PKE and
ABE settings is that, in the ABE setting, adversaries are given many secret keys
for queried policies (that is, we consider collusion-resistance). There is an obstacle
to achieving collusion resistance because secret keys for policies depend on a
master secret key. Note that adversaries can send secret key queries both before
and after the target ciphertext is given.

8



First, we explain the RNCE scheme from PKE. Although we explain the
1-bit plaintext case, it is easy to extend to the multi-bit case. The idea is
the simple double encryption technique by Naor and Yung [NY90], but we
do not need non-interactive zero-knowledge (NIZK). We generate two key
pairs (pk0, sk0) and (pk1, sk1) and set pk := (pk0, pk1), sk := skz, and aux =
(sk0, sk1, z

∗) where z, z∗ ← {0, 1}. A ciphertext consists of Enc(pk0, b) and
Enc(pk1, b). We can decrypt the ciphertext by using skz. A fake ciphertext
C̃T is (Enc(pkz∗ , 0),Enc(pk1−z∗ , 1)). To generate a fake secret key for a plaintext
m∗, the reveal algorithm outputs skz∗⊕m∗ . It is easy to see that decrypting C̃T
with skz∗⊕m∗ yields m∗.

Our NCABE is based on the idea above. That is, we use two key pairs
(pk0,msk0) and (pk1,msk1) of a normal ABE scheme ABE.(Setup,KeyGen,Enc,Dec),
and a ciphertext consists of (ABE.Enc(pk0, X, b),ABE.Enc(pk1, X, b)) where X is
an attribute. Our reveal algorithm outputs mskz∗⊕m∗ for a plaintext m∗ as in the
PKE case. The problem is a secret key for a policy P . A naive idea is that a key
generation algorithm outputs skP ← ABE.KeyGen(mskz, P ) where z ← {0, 1}
is chosen in the setup algorithm, and a fake key generation algorithm outputs
s̃kP ← ABE.KeyGen(mskz∗⊕m∗ , P ). However, this apparently does not work since
s̃kP depends on m∗. Unless s̃kP is independent of m∗, we cannot use NCABE to
achieve ABE with certified deletion because ske.sk of SKE with certified deletion
is sent after a valid certification is generated (ske.sk would be a plaintext of ABE
in the hybrid encryption). To make a fake key generation be independent of m∗,
we need to hide which master secret key is used to generate a secret key for P . If
a secret key leaks information about which secret key (extracted from msk0 or
msk1) is used, we cannot adaptively select a fake master secret key in the reveal
algorithm.

iO helps us to overcome this hurdle. Our idea is as follows. A key generation
algorithm outputs an obfuscated circuit of a circuit D[skz] that takes a cipher-
text (abe.CT0, abe.CT1) := (ABE.Enc(pk0, X, b),ABE.Enc(pk1, X, b)) and outputs
ABE.Dec(skz, abe.CTz) where z ← {0, 1} and skz ← ABE.KeyGen(mskz, P ) is
hard-coded in D. A fake key generation algorithm outputs an obfuscated circuit of
a circuit D0[sk0] that takes (abe.CT0, abe.CT1) and outputs ABE.Dec(sk0, abe.CT0)
where sk0 ← ABE.KeyGen(msk0, P ) is hard-coded in D0. Note that the fake se-
cret key cannot be used to decrypt a fake ciphertext (abe.CTz∗ , abe.CT1−z∗) :=
(ABE.Enc(pkz∗ , X, 0),ABE.Enc(pk1−z∗ , X, 1)) where z∗ ← {0, 1} since P (X) = ⊥
must hold by the requirement on ABE security. Since the decryption circuits D
and D0 are obfuscated, adversaries have no idea about which secret key (sk0 or
sk1) is used for decryption. This idea is inspired by the functional encryption
(FE) scheme by Garg et al. [GGH+16].

The final issue is that adversaries can detect whether a secret key is real or
fake if they use an invalid ciphertext (ABE.Enc(pk0, b),ABE.Enc(pk1, 1− b)) as an
input to the obfuscated circuits. To prevent this attack, we use statistically sound
NIZK to check the consistency of double encryption as the FE scheme by Garg
et al. [GGH+16]. By the statistical soundness of NIZK, we can guarantee that
the obfuscated decryption circuit does not accept invalid ciphertexts, and D and

9



D0 are functionally equivalent. Note that a secret key for policy P outputs ⊥ for
the target ciphertext since a target attribute X∗ in the target ciphertext satisfies
P (X) = ⊥. We do not need the simulation-soundness, unlike the FE scheme by
Garg et al. due to the following reason. In the FE scheme, plain PKE schemes are
used for the double encryption technique and a secret key sk0 or sk1 is hard-coded
in a functional decryption key. Before we use PKE security under pkb, we need
to switch the decryption key from skb to sk1−b by iO security. During this phase,
we need to use a fake simulated proof of NIZK. Thus, the simulation-soundness
is required. However, in our ABE setting, a secret key for P (not the master
secret keys msk0,msk1) is hard-coded in D (or D0) above. Thanks to the ABE key
oracle, sk0 and sk1 for P are always available in reductions. We can first use iO
security to switch from D to D0. After that, we change a real NIZK proof into a
fake one. Thus, our NCABE scheme does not need the simulation-soundness. This
observation enables us to achieve the adaptive security rather than the selective
security, unlike the FE scheme by Garg et al.5 Thus, we can achieve NCABE
from iO and OWFs since adaptively secure standard ABE can be constructed
from iO and OWFs.

1.4 Technical Overview Part II: Classical Communication Case

We provide an overview of how to achieve privately verifiable and publicly verifi-
able interactive encryption with certified deletion using classical communication in
this section. We note that both of them rely on interactive encryption algorithms.

Privately verifiable construction. For realizing a privately verifiable construction
with classical communication, we rely on NTCF functions [BCM+18, Mah18].
In this overview, we consider an ideal version, noise-free claw-free permutations
for simplicity. A trapdoor claw-free permutation is f : {0, 1} × {0, 1}w → {0, 1}w
such that (1) f(0, ·) and f(1, ·) are permutations over {0, 1}w, (2) given the
description of f , it is hard to find x0 and x1 such that f(0, x0) = f(1, x1), and
(3) there is a trapdoor td that enables one to efficiently find x0 and x1 such
that f(0, x0) = f(1, x1) = y for any y. In addition, the existing work showed
that (a noisy version of) it satisfies a property called the adaptive hardcore bit
property under the LWE assumption [BCM+18]. To explain this, suppose that
one generates the state

∑
b,x |b〉 |x〉|f(b, x)〉, and measures the third register in

the computational basis to get a result y. Then the first and second registers
collapse to the state 1√

2 (|0〉 |x0〉+ |1〉 |x1〉) with f(0, x0) = f(1, x1) = y. If one
measures the state in the computational basis, the measurement outcome is
(0, x0) or (1, x1). If, on the other hand, one measures the state in the Hadamard
basis, the measurement outcome is (e, d) such that e = d · (x0⊕x1). The adaptive
hardcore bit property roughly means that once one gets (0, x0) or (1, x1), it
cannot output (e, d) such that d 6= 0 and e = d · (x0⊕ x1) with probability better
5 In the initial version of this work [NY21], we achieve only the selective security
because we use statistical simulation-sound NIZK as the FE scheme by Garg et
al. [GGH+16]. We improve the result.

10



than 1/2 + negl(λ). Note that this is a tight bound since e = d · (x0 ⊕ x1) holds
with probability 1/2 if we randomly choose e. Existing works showed that this
property can be amplified by parallel repetition [RS19, KNY20]: Specifically, let
(0, xi,0) and (1, xi,1) be the preimages of yi under fi for i ∈ [n] where n = ω(log λ).
Then once one gets a sequence {bi, xi,bi

}i∈[n] for some b1‖...‖bn ∈ {0, 1}n, it can
get a sequence {ei, di}i∈[n] such that di 6= 0 and ei = di · (xi,0 ⊕ xi,1) only with
negligible probability.

We use this property to construct an encryption scheme with certified deletion.
A natural idea would be as follows: The sender sends n functions {fi}i∈[n] to the re-
ceiver, the receiver generates {yi}i∈[n] along with states { 1√

2 (|0〉 |xi,0〉+ |1〉 |xi,1〉)}i∈[n]

as above and sends {yi}i∈[n] to the sender, and the sender sends receiver a ci-
phertext CT decryptable only when {bi, xi,bi

}i∈[n] for some b1‖...‖bn ∈ {0, 1}n
is available. We discuss how to implement such a ciphertext later. We use
{ei, di}i∈[n] such that ei = di · (xi,0 ⊕ xi,1) as a deletion certificate. The receiver
can decrypt the ciphertext by measuring the states in the computational basis,
and once it outputs a valid deletion certificate, it must “forget" preimages by the
amplified adaptive hardcore property and thus cannot decrypt the ciphertext.
This idea can be implemented in a straightforward manner if we generate CT by
(extractable) witness encryption [GGSW13, GKP+13] under the corresponding
NP language. However, since witness encryption is a strong assumption, we
want to avoid this. Indeed, we can find the following candidate construction
using a hash function H modeled as a random oracle. We set the ciphertext as
CT := {CTi,b}i∈[n],b∈{0,1} where {mi}i∈[n] is an n-out-of-n secret sharing of the
message m and CTi,b := mi ⊕H(b‖xi,b). The intuition is that an adversary has
to get mi for all i ∈ [n] to get m and it has to know (0, xi,0) or (1, xi,1) to know
mi. Therefore, it seems that any adversary that gets any information of m can be
used to extract a sequence {bi, xi,bi

}i∈[n] for some b1‖...‖bn ∈ {0, 1}n. If this is
shown, it is straightforward to prove that the adversary can get no information of
m once it submits a valid deletion certificate by the amplified adaptive hardcore
property as explained above. However, turning this intuition into a formal proof
seems difficult. A common technique to extract information from adversary’s
random oracle queries is the one-way to hiding lemma [Unr15, AHU19]. The
lemma roughly claims that if the adversary distinguishes H(X) from random,
then we would get X with non-negligible probability by measuring a randomly
chosen query. Here, a problem is that we have to extract n strings {bi, xi,bi}i∈[n]
simultaneously. On the other hand, the extraction by the one-way to hiding
lemma disturbs adversary’s state by a measurement, and thus we cannot use this
technique sequentially.6

The difficulty above comes from the fact that the sender cannot know which
of (0, xi,0) and (1, xi,1) the receiver will get, and thus it has to send a ciphertext
that can be decrypted in either case. To resolve this issue, we rely on the
injective invariance, which roughly says that there is an injective function g that
6 A recent work by Coladangelo, Majenz, and Poremba [CMP20] studied what is called
“simultaneous one-way to hiding lemma", but their setting is different from ours and
their lemma cannot be used in our setting.

11



is computationally indistinguishable from f [Mah18]. First, suppose that we
just use g instead of f in the above idea. Since g is injective, there is a unique
preimage (bi, xi) of yi, in which case the sender knows that the receiver will get
{(bi, xi)}i∈[n] by the standard basis measurement. In this case, the aforementioned
problem can be easily resolved by setting CT := m⊕H(b1‖x1‖...‖bn‖xn) as the
ciphertext. In this case, it is easy to prove that we can extract {bi, xi}i∈[n] if an
adversary obtains some information of m by applying the standard one-way to
hiding lemma. However, the obvious problem is that the deletion certificate no
longer works for g since the receiver’s state collapses to a classical state after the
measurement of {yi}i∈[n] and thus the Hadamard basis measurement results in
just uniform bits.

Our idea is to take advantages of both of them. Specifically, the sender
sends functions {ηi}i∈[n], where ηi is the g-type function for i ∈ S and it is
the f -type function for i ∈ [n] \ S with a certain set S ⊂ [n]. The receiver
generates a set of states. Each state is a superposition of two preimages of a
f -type function or a state encoding the unique preimage of a g-type function.
The preimages of g-type functions are used for encryption/decryption, and the
Hadamard measurement results are used for deletion certificate, whose validity
is only checked on positions where f -type functions are used. We also include a
ciphertext of the description of the subset S in the ciphertext. The ciphertext
enables a legitimate receiver to know which position should be used in the
decryption. More precisely, we set CT := (Enc(S),m ⊕H({bi, xi}i∈[S])) where
Enc is a PKE scheme with the RNC security.78 A deletion certificate {ei, di}i∈[n]
is valid if we have di 6= 0 and ei = di · (xi,0 ⊕ xi,1) for all i ∈ [n] \ S. For the
security proof of this construction, the amplified adaptive hardcore property
cannot be directly used, because it is a property about f -type functions whereas
the above construction mixes f -type functions and g-type functions, and what
we want to have is the mutually-exclusive property between preimages of g-type
functions and deletion certificates of f -type functions. To solve the problem, we
introduce a new property which we call the cut-and-choose adaptive hardcore
property (Lemma 4.1). The cut-and-choose adaptive hardcore property intuitively
means that once the receiver issues a deletion certificate {ei, di}i∈[n] that is valid
for all i ∈ [n] \ S before knowing S, it can no longer generate correct preimages
{bi, xi}i∈[S] even if it receives S later. Intuitively, this holds because the only
way to obtain such {ei, di}i∈[n] before knowing S would be to measure the states
in the Hadamard basis for all i ∈ [n], in which case the receiver should forget
all preimages. We show that the cut-and-choose adaptive hardcore property can
be reduced to the adaptive hardcore bit property and injective invariance. The

7 We require Enc to satisfy the RNC security due to a similar reason to that in Sec. 1.3,
which we omit to explain here.

8 In the actual construction, there is an additional component that is needed for
preventing an adversary from decrypting the ciphertext before outputting a valid
deletion certificate without the decryption key. This is just a security as standard
PKE and can be added easily. Thus, we omit this and focus on the security after
outputting a valid deletion certificate.

12



new property we show itself is of independent interest, and we believe it will be
useful in many other applications of quantum cryptography.

Because the only known construction of NTCF functions [BCM+18, Mah18]
assumes the LWE assumption, our construction of the interactive encryption
with privately verifiable certified deletion with classical communication is also
based on the LWE assumption, and our security proof is done in the QROM. We
note that the construction only achieves private verification because verification
of deletion certificates requires both of two preimages of f -type functions, which
cannot be made public.

Publicly verifiable construction. The above construction is not publicly verifiable
because the verification of the validity of (ei, di) requires both preimages xi,0 and
xi,1, which cannot be made public. One might notice that the validity check of
the preimage can be done publicly, and might suggest the following construction:
preimages are used for deletion certificate, and Hadamard measurement outcomes
{ei, di}i∈[n] are used as the decryption key of the encryption. Because a valid
{ei, di}i∈[n] is a witness of an NP statement, we could use (extractable) witness
encryption [GGSW13, GKP+13] to ensure that a receiver can decrypt the message
only if it knows a valid {ei, di}i∈[n]. However, this idea does not work because the
statement of the witness encryption contains private information (i.e., preimages),
and witness encryption ensures nothing about privacy of the statement under
which a message is encrypted.

Our idea to solve the problem is to use the one-shot signature [AGKZ20].
Roughly speaking, one-shot signatures (with a message space {0, 1}) enable one
to generate a classical public key pk along with a quantum secret key sk, which
can be used to generate either of a signature σ0 for message 0 or σ1 for message
1, but not both. We note that a signature can be verified publicly.

We combine one-shot signatures with extractable witness encryption.9 The
encryption Enc(m) of a message m in our construction is a ciphertext of witness
encryption of message m under the statement corresponding to the verification
of one-shot signature for message 0. The deletion certificate is, on the other hand,
a one-shot signature for message 1. Once a valid signature of 1 is issued, a valid
signature of 0, which is a decryption key of our witness encryption, is no longer
possible to generate due to the security of the one-shot signature. This intuitively
ensures the certified deletion security of our construction. Because signatures are
publicly verifiable, the verification of our construction is also publicly verifiable.
In the actual construction, in order to prevent an adversary from decrypting the
ciphertext before issuing the deletion certificate, we add an additional layer of
encryption, for which we use RNCE due to a similar reason to that in Sec. 1.3.

Unfortunately, the only known construction of the one-shot signature needs
classical oracles. Thus, the security proof of existing one-shot signature construc-
tions is a heuristic. Our publicly verifiable construction assumes the existence
9 We note that a combination of one-shot signatures and extractable witness encryption
appeared in the work of Georgiou and Zhandry [GZ20] in a related but different
context.

13



of provably secure one-shot signatures. It is an open question whether we can
construct an interactive encryption with publicly verifiable certified deletion with
classical communication based on only standard assumptions such as the LWE
assumption.

2 Preliminaries

2.1 Notations and Mathematical Tools

We introduce basic notations and mathematical tools used in this paper.
In this paper, x ← X denotes selecting an element from a finite set X

uniformly at random, and y ← A(x) denotes assigning to y the output of a
probabilistic or deterministic algorithm A on an input x. When we explicitly
show that A uses randomness r, we write y ← A(x; r). When D is a distribution,
x← D denotes sampling an element from D. Let [`] denote the set of integers
{1, · · · , `}, λ denote a security parameter, and y := z denote that y is set, defined,
or substituted by z. For a string s ∈ {0, 1}`, s[i] denotes i-th bit of s. QPT stands
for quantum polynomial time. PPT stands for (classical) probabilistic polynomial
time. For a subset S ⊆W of a set W , S is the complement of S, i.e., S := W \S.

A function f : N → R is a negligible function if for any constant c, there
exists λ0 ∈ N such that for any λ > λ0, f(λ) < λ−c. We write f(λ) ≤ negl(λ) to
denote f(λ) being a negligible function. A function g : N → R is a noticeable
function if there exist constants c and λ0 such that for any λ ≥ λ0, g(λ) ≥ λ−c.
The trace distance between two states ρ and σ is given by ‖ρ− σ‖tr, where
‖A‖tr := Tr

√
A†A is the trace norm. We call a function f a density on X if

f : X → [0, 1] such that
∑
x∈X f(x) = 1. For two densities f0 and f1 over the

same finite domain X, the Hellinger distance between f0 and f1 is H2(f0, f1) :=
1−

∑
x∈X

√
f0(x)f1(x).

2.2 Cryptographic Tools

In this section, we review cryptographic tools used in this paper. Some explana-
tions are omitted, and given in the full version.

Encryption with certified deletion. Broadbent and Islam introduced the notion of
encryption with certified deletion [BI20]. Their notion is for secret key encryption
(SKE). They consider a setting where a secret key is used only once (that is,
one-time SKE). Although it is easy to extend the definition to the reusable secret
key setting, we describe the definition for the one-time setting in this section.
We provide a definition that is accommodated to the reusable setting in the full
version.

Definition 2.1 (One-Time SKE with Certified Deletion (Syntax)). A
one-time secret key encryption scheme with certified deletion is a tuple of QPT
algorithms (KeyGen,Enc,Dec,Del,Vrfy) with plaintext spaceM and key space K.

14



KeyGen(1λ)→ sk: The key generation algorithm takes as input the security pa-
rameter 1λ and outputs a secret key sk ∈ K.

Enc(sk,m)→ CT: The encryption algorithm takes as input sk and a plaintext
m ∈M and outputs a ciphertext CT.

Dec(sk,CT)→ m′ or ⊥: The decryption algorithm takes as input sk and CT and
outputs a plaintext m′ ∈M or ⊥.

Del(CT)→ cert: The deletion algorithm takes as input CT and outputs a certifi-
cation cert.

Vrfy(sk, cert)→ > or ⊥: The verification algorithm takes sk and cert and outputs
> or ⊥.

Definition 2.2 (Correctness for One-Time SKE with Certified Dele-
tion). There are two types of correctness. One is decryption correctness and the
other is verification correctness.

Decryption correctness: There exists a negligible function negl such that for
any λ ∈ N, m ∈M,

Pr
[
Dec(sk,CT) 6= m

∣∣∣∣ sk← KeyGen(1λ)
CT← Enc(sk,m)

]
≤ negl(λ).

Verification correctness: There exists a negligible function negl such that for
any λ ∈ N, m ∈M,

Pr

Vrfy(sk, cert) = ⊥

∣∣∣∣∣∣
sk← KeyGen(1λ)
CT← Enc(sk,m)
cert← Del(CT)

 ≤ negl(λ).

Definition 2.3 (Certified Deletion Security for One-Time SKE). Let
Σ = (KeyGen,Enc,Dec,Del,Vrfy) be a secret key encryption with certified deletion.
We consider the following security experiment Expotsk-cert-del

Σ,A (λ, b).

1. The challenger computes sk← KeyGen(1λ).
2. A sends (m0,m1) ∈M2 to the challenger.
3. The challenger computes CTb ← Enc(sk,mb) and sends CTb to A.
4. A sends cert to the challenger.
5. The challenger computes Vrfy(sk, cert). If the output is ⊥, the challenger

sends ⊥ to A. If the output is >, the challenger sends sk to A.
6. A outputs b′ ∈ {0, 1}.

We say that the Σ is OT-CD secure if for any QPT A, it holds that

Advotsk-cert-del
Σ,A (λ) :=

∣∣∣Pr
[
Expotsk-cert-del

Σ,A (λ, 0) = 1
]
− Pr

[
Expotsk-cert-del

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

We sometimes call it one-time SKE with certified deletion if it satisfies OT-CD
security.

15



Remark 2.1. Definition 2.3 intuitively means that once the valid certificate is
issued, decrypting the ciphertext becomes impossible. One might think that it
would also be possible to define the inverse: once the ciphertext is decrypted, the
valid certificate can no longer be issued. However, this property is impossible to
achieve due to the decryption correctness (Definition 2.2). In fact, if the quantum
decryption algorithm Dec on a quantum ciphertext CT succeeds with probability
at least 1− negl(λ), then the gentle measurement lemma guarantees that CT is
only negligibly disturbed, from which the valid certificate can be issued.

Remark 2.2. We modified the security definition of certified deletion due to the
following reason. Broadbent and Islam [BI20] require ciphertext indistinguisha-
bility, which is security as a normal one-time SKE, in addition to the certified
deletion security. We observe that these two security notions can be captured
in a single security game if we allow the adversary to make a guess even if the
deletion certificate is invalid.

We emphasize that in the existing construction of SKE with certified deletion,
a secret key is a classical string though a ciphertext must be a quantum state.
Broadbent and Islam prove the following theorem.

Theorem 2.1 ([BI20]). There exists OT-CD secure SKE with certified deletion
with M = {0, 1}`m and K = {0, 1}`k where `m and `k are some polynomials,
unconditionally.

Receiver non-committing encryption. We introduce the notion of (public key)
receiver non-committing encryption (RNCE) [CFGN96, JL00, CHK05], which is
used in Sections 3.2 and 4.3. See the full version for the definition of secret key
RNCE.

Definition 2.4 (RNCE (Syntax)). An RNCE scheme is a tuple of PPT
algorithms (KeyGen,Enc,Dec,Fake,Reveal) with plaintext spaceM.

KeyGen(1λ)→ (pk, sk, aux): The key generation algorithm takes as input the secu-
rity parameter 1λ and outputs a key pair (pk, sk) and an auxiliary information
aux.

Enc(pk,m)→ CT: The encryption algorithm takes as input pk and a plaintext
m ∈M and outputs a ciphertext CT.

Dec(sk,CT)→ m′ or ⊥: The decryption algorithm takes as input sk and CT and
outputs a plaintext m′ or ⊥.

Fake(pk, sk, aux)→ C̃T: The fake encryption algorithm takes pk, sk and aux, and
outputs a fake ciphertext C̃T.

Reveal(pk, sk, aux, C̃T,m)→ s̃k: The reveal algorithm takes pk, sk, aux, C̃T and
m, and outputs a fake secret key s̃k.

Correctness is the same as that of PKE.

Definition 2.5 (Receiver Non-Committing (RNC) Security). An RNCE
scheme is RNC secure if it satisfies the following. Let Σ = (KeyGen,Enc,Dec,Fake,Reveal)
be an RNCE scheme. We consider the following security experiment Exprec-nc

Σ,A (λ, b).

16



1. The challenger computes (pk, sk, aux)← KeyGen(1λ) and sends pk to A.
2. A sends a query m ∈M to the challenger.
3. The challenger does the following.

– If b = 0, the challenger generates CT← Enc(pk,m) and returns (CT, sk)
to A.

– If b = 1, the challenger generates C̃T ← Fake(pk, sk, aux) and s̃k ←
Reveal(pk, sk, aux, C̃T,m) and returns (C̃T, s̃k) to A.

4. A outputs b′ ∈ {0, 1}.

Let Advrec-nc
Σ,A (λ) be the advantage of the experiment above. We say that the Σ is

RNC secure if for any QPT adversary, it holds that

Advrec-nc
Σ,A (λ) :=

∣∣Pr
[
Exprec-nc

Σ,A (λ, 0) = 1
]
− Pr

[
Exprec-nc

Σ,A (λ, 1) = 1
]∣∣ ≤ negl(λ).

Theorem 2.2 ([KNTY19, Section 7.2 in the eprint version]). If there
exists an IND-CPA secure SKE/PKE scheme (against QPT adversaries), there
exists an RNC secure secret/public key RNCE scheme (against QPT adversaries)
with plaintext space {0, 1}`, where ` is some polynomial, respectively.

Note that Kitagawa, Nishimaki, Tanaka, and Yamakawa [KNTY19] prove the
theorem above for the SKE case in the classical setting, but it is easy to extend
their theorem to the post-quantum PKE setting by using post-quantum PKE
schemes as building blocks. We also note that the core idea of Kitagawa et al. is
based on the observation by Canetti, Halevi, and Katz [CHK05].

3 Public Key Encryption with Certified Deletion

In this section, we define the notion of PKE with certified deletion, which is a
natural extension of SKE with certified deletion and present how to achieve PKE
with certified deletion from OT-CD secure SKE and IND-CPA secure (standard)
PKE.

3.1 Definition of PKE with Certified Deletion

The definition of PKE with certified deletion is an extension of SKE with certified
deletion. Note that a verification key for verifying a certificate is generated in
the encryption algorithm.

Definition 3.1 (PKE with Certified Deletion (Syntax)). A PKE with
certified deletion is a tuple of QPT algorithms (KeyGen,Enc,Dec,Del,Vrfy) with
plaintext spaceM.

KeyGen(1λ)→ (pk, sk): The key generation algorithm takes as input the security
parameter 1λ and outputs a classical key pair (pk, sk).

Enc(pk,m)→ (vk,CT): The encryption algorithm takes as input the public key
pk and a plaintext m ∈M and outputs a classical verification key vk and a
quantum ciphertext CT.

17



Dec(sk,CT)→ m′ or ⊥: The decryption algorithm takes as input the secret key
sk and the ciphertext CT, and outputs a classical plaintext m′ or ⊥.

Del(CT)→ cert: The deletion algorithm takes as input the ciphertext CT and
outputs a classical certificate cert.

Vrfy(vk, cert)→ > or ⊥: The verification algorithm takes the verification key vk
and the certificate cert, and outputs > or ⊥.

Definition 3.2 (Correctness for PKE with Certified Deletion). There
are two types of correctness. One is decryption correctness and the other is
verification correctness.

Decryption correctness: There exists a negligible function negl such that for
any λ ∈ N, m ∈M,

Pr
[
Dec(sk,CT) 6= m

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(vk,CT)← Enc(pk,m)

]
≤ negl(λ).

Verification correctness: There exists a negligible function negl such that for
any λ ∈ N, m ∈M,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(vk,CT)← Enc(pk,m)
cert← Del(CT)

 ≤ negl(λ).

Definition 3.3 (Certified Deletion Security for PKE). Let Σ =
(KeyGen,Enc,Dec,Del,Vrfy) be a PKE with certified deletion scheme. We consider
the following security experiment Exppk-cert-del

Σ,A (λ, b).

1. The challenger computes (pk, sk)← KeyGen(1λ) and sends pk to A.
2. A sends (m0,m1) ∈M2 to the challenger.
3. The challenger computes (vkb,CTb)← Enc(pk,mb) and sends CTb to A.
4. At some point, A sends cert to the challenger.
5. The challenger computes Vrfy(vkb, cert). If the output is ⊥, it sends ⊥ to A.

If the output is >, it sends sk to A.
6. A outputs its guess b′ ∈ {0, 1}.

Let Advpk-cert-del
Σ,A (λ) be the advantage of the experiment above. We say that the Σ

is IND-CPA-CD secure if for any QPT adversary A, it holds that

Advpk-cert-del
E,A (λ) :=

∣∣∣Pr
[
Exppk-cert-del

Σ,A (λ, 0) = 1
]
− Pr

[
Exppk-cert-del

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

3.2 PKE with Certified Deletion from PKE and SKE with Certified
Deletion

In this section, we present how to construct a PKE scheme with certified deletion
from an SKE scheme with certified deletion and an RNCE scheme, which can be
constructed from standard IND-CPA PKE schemes.

18



Our PKE Scheme. We construct Σpkcd = (KeyGen,Enc,Dec,Del,Vrfy) with plain-
text spaceM from an SKE with certified deletion scheme Σskcd = SKE.(Gen,Enc,
Dec,Del,Vrfy) with plaintext spaceM and key space K and a public key RNCE
scheme Σrnce = RNCE.(KeyGen,Enc,Dec,Fake,Reveal) with plaintext space K.

KeyGen(1λ):
– Generate (rnce.pk, rnce.sk, rnce.aux) ← RNCE.KeyGen(1λ) and output

(pk, sk) := (rnce.pk, rnce.sk).
Enc(pk,m):

– Parse pk = rnce.pk.
– Generate ske.sk← SKE.Gen(1λ).
– Compute rnce.CT← RNCE.Enc(rnce.pk, ske.sk) and ske.CT← SKE.Enc(ske.sk,m).
– Output CT := (rnce.CT, ske.CT) and vk := ske.sk.

Dec(sk,CT):
– Parse sk = rnce.sk and CT = (rnce.CT, ske.CT).
– Compute sk′ ← RNCE.Dec(rnce.sk, rnce.CT).
– Compute and output m′ ← SKE.Dec(sk′, ske.CT).

Del(CT):
– Parse CT = (rnce.CT, ske.CT).
– Generate ske.cert← SKE.Del(ske.CT).
– Output cert := ske.cert.

Vrfy(vk, cert):
– Parse vk = ske.sk and cert = ske.cert.
– Output b← SKE.Vrfy(ske.sk, ske.cert).

Correctness. The decryption and verification correctness easily follow from the
correctness of Σrnce and Σskcd.

Security. We prove the following theorem.

Theorem 3.1. If Σrnce is RNC secure and Σskcd is OT-CD secure, Σpkcd is
IND-CPA-CD secure.

Proof of Theorem 3.1. Let A be a QPT adversary and b ∈ {0, 1} be a bit. We
define the following hybrid game Hyb(b).

Hyb(b): This is the same as Exppk-cert-del
Σpkcd,A

(λ, b) except that the challenger generate
the target ciphertext as follows. It generates ske.sk ← SKE.Gen(1λ) and
computes rnce.CT∗ ← RNCE.Fake(rnce.pk, rnce.sk, rnce.aux) and ske.CT∗ ←
SKE.Enc(ske.sk,mb). The target ciphertext is CT∗ := (rnce.CT∗, ske.CT∗).
In addition, we reveal s̃k← Reveal(rnce.pk, rnce.sk, rnce.aux, rnce.CT∗, ske.sk)
instead of rnce.sk.

Proposition 3.1. If Σrnce is RNC secure,
∣∣∣Pr
[
Exppk-cert-del

Σpkcd,A (λ, b) = 1
]
− Pr[Hyb(b) = 1]

∣∣∣ ≤
negl(λ).

19



Proof of Proposition 3.1. We construct an adversary Brnce that breaks the RNC
security of Σrnce by assuming that A distinguishes these two experiments. First,
Brnce is given rnce.pk from the challenger of Exprec-nc

Σrnce,Brnce
(λ, b′) for b′ ∈ {0, 1}. Brnce

generates ske.sk← SKE.Gen(1λ) and sends rnce.pk to A. When A sends (m0,m1),
Brnce sends ske.sk to the challenger of Exprec-nc

Σrnce,Brnce
(λ, b′), receives (rnce.CT∗, s̃k),

and generates ske.CT← SKE.Enc(ske.sk,mb). Brnce sends (rnce.CT∗, ske.CT) to A
as the challenge ciphertext. At some point,A outputs cert. If SKE.Vrfy(ske.sk, cert) =
>, Brnce sends s̃k to A. Otherwise, Brnce sends ⊥ to A. Finally, Brnce outputs
whatever A outputs.

– If b′ = 0, i.e., (rnce.CT∗, s̃k) = (RNCE.Enc(rnce.pk, ske.sk), rnce.sk), Brnce
perfectly simulates Exppk-cert-del

Σpkcd,A (λ, b).
– If b′ = 1, i.e., (rnce.CT∗, s̃k) =

(RNCE.Fake(rnce.pk, rnce.sk, rnce.aux),RNCE.Reveal(rnce.pk, rnce.sk, rnce.aux, rnce.CT∗,
ske.sk)), Brnce perfectly simulates Hyb(b).

Thus, if A distinguishes the two experiments, Brnce breaks the RNC security
of Σrnce. This completes the proof.

Proposition 3.2. If Σskcd is OT-CD secure, |Pr[Hyb(0) = 1]− Pr[Hyb(1) = 1]| ≤
negl(λ).

Proof of Proposition 3.2. We construct an adversary Bskcd that breaks the OT-
CD security of Σskcd assuming that A distinguishes these two experiments. Bskcd
plays the experiment Expotsk-cert-del

Σskcd,Bskcd
(λ, b′) for some b′ ∈ {0, 1}. First, Bskcd gen-

erates (rnce.pk, rnce.sk, rnce.aux) ← RNCE.KeyGen(1λ) and sends rnce.pk to A.
WhenA sends (m0,m1), Bskcd sends (m0,m1) to the challenger of Expotsk-cert-del

Σskcd,Bskcd
(λ, b′),

receives ske.CT∗, and generates rnce.C̃T← RNCE.Fake(rnce.pk, rnce.sk, rnce.aux).
Bskcd sends (rnce.C̃T, ske.CT∗) to A as the challenge ciphertext. At some point,
A outputs cert. Bskcd passes cert to the challenger of OT-CD SKE. If the chal-
lenger returns ske.sk, Bskcd generates s̃k← RNCE.Reveal(rnce.pk, rnce.sk, rnce.aux,
rnce.C̃T, ske.sk) and sends s̃k to A. Otherwise, Bskcd sends ⊥ to A. Finally, Bskcd
outputs whatever A outputs.

– If b′ = 0, i.e., ske.CT∗ = SKE.Enc(ske.sk,m0), Bskcd perfectly simulates
Hyb(0).

– If b′ = 1, i.e., ske.CT∗ = SKE.Enc(ske.sk,m1), Bskcd perfectly simulates
Hyb(1).

Thus, if A distinguishes the two experiments, Bskcd breaks the OT-CD security.
This completes the proof.

By Propositions 3.1 and 3.2, we immediately obtain Theorem 3.1.

By Theorems 2.1, 2.2 and 3.1, we immediately obtain the following corollary.

Corollary 3.1. If there exists IND-CPA secure PKE against QPT adversaries,
there exists IND-CPA-CD secure PKE with certified deletion.

20



Reusable SKE with certified deletion. We can construct a secret key variant of
Σpkcd above (that is, reusable SKE with certified deletion) by replacing Σrnce
with a secret key RNCE scheme. We omit the proof since it is almost the same as
that of Theorem 3.1. By Theorem 2.2 and the fact that OWFs imply (reusable)
SKE [HILL99, GGM86], we also obtain the following theorem.

Theorem 3.2. If there exists OWF against QPT adversaries, there exists IND-
CPA-CD secure SKE with certified deletion.

See the full version for the definition and construction of reusable SKE with
certified deletion.

3.3 Attribute-Based Encryption with Certified Deletion

By extending the idea in the previous subsections, we construct ABE with
certified deletion based on indistinguishability obfuscation and one-way functions.
See the full version for details.

4 Interactive Encryption with Certified Deletion and
Classical Communication

In this section, we define the notion of interactive encryption with certified
deletion and classical communication, and construct it from the LWE assumption
in the QROM. In Sec. 4.1, we present the definition of the interactive encryption
with certified deletion and classical communication. In Sec. 4.2, we introduce
what we call the cut-and-choose adaptive hardcore property, which is used in the
security proof of the interactive encryption with certified deletion and classical
communication. In Sec. 4.3, we construct an interactive encryption with certified
deletion and classical communication, and show its security.

4.1 Definition of Interactive Encryption with Certified Deletion
and Classical Communication

We define interactive encryption with certified deletion and classical communi-
cation. Note that the encryption algorithm of an interactive encryption with
certified deletion and classical communication is interactive unlike PKE with cer-
tified deletion and quantum communication as defined in Definition 3.1. It is easy
to see that the interaction is necessary if we only allow classical communication.

Definition 4.1 (Interactive Encryption with Certified Deletion and Clas-
sical Communication (Syntax)). An interactive encryption scheme with
certified deletion and classical communication is a tuple of quantum algorithms
(KeyGen,Enc,Dec,Del,Vrfy) with plaintext spaceM.

KeyGen(1λ)→ (pk, sk): The key generation algorithm takes as input the security
parameter 1λ and outputs a classical key pair (pk, sk).

21



Enc〈S(pk,m),R〉 → (vk,CT): This is an interactive process between a classical
sender S with input pk and a plaintext m ∈ M, and a quantum receiver
R without input. After exchanging classical messages, S outputs a classical
verification key vk and R outputs a quantum ciphertext CT.

Dec(sk,CT)→ m′ or ⊥: The decryption algorithm takes as input the secret key
sk and the ciphertext CT, and outputs a plaintext m′ or ⊥.

Del(CT)→ cert: The deletion algorithm takes as input the ciphertext CT and
outputs a classical certificate cert.

Vrfy(vk, cert)→ > or ⊥: The verification algorithm takes the verification key vk
and the certificate CT, and outputs > or ⊥.

Definition 4.2 (Correctness for Interactive Encryption with Certified
Deletion and Classical Communication). There are two types of correctness.
One is decryption correctness and the other is verification correctness.

Decryption correctness: For any λ ∈ N, m ∈M,

Pr
[
Dec(sk,CT) 6= m

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(vk,CT)← Enc〈S(pk,m),R〉

]
≤ negl(λ).

Verification correctness: For any λ ∈ N, m ∈M,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(vk,CT)← Enc〈S(pk,m),R〉
cert← Del(CT)

 ≤ negl(λ).

Definition 4.3 (Certified Deletion Security for Interactive Encryption
with Classical Communication). Let Σ = (KeyGen,Enc,Dec,Del,Vrfy) be a
PKE scheme with certified deletion and classical communication. We consider
the following security experiment Expccpk-cert-del

Σ,A (λ, b).

1. The challenger computes (pk, sk)← KeyGen(1λ) and sends pk to A.
2. A sends (m0,m1) ∈M2 to the challenger.
3. The challenger and A jointly execute (vkb,CTb) ← Enc〈S(pk,mb),A(pk)〉

where the challenger plays the role of the sender and A plays the role of the
receiver.

4. At some point, A sends cert to the challenger.
5. The challenger computes Vrfy(vkb, cert). If the output is ⊥, the challenger

sends ⊥ to A. If the output is >, the challenger sends sk to A.
6. A outputs its guess b′ ∈ {0, 1}.

Let Advccpk-cert-del
Σ,A (λ) be the advantage of the experiment above. We say that the

Σ is IND-CPA-CD secure if for any QPT adversary A, it holds that

Advccpk-cert-del
Σ,A (λ) :=

∣∣∣Pr
[
Expccpk-cert-del

Σ,A (λ, 0) = 1
]
− Pr

[
Expccpk-cert-del

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

22



4.2 Preparation: Cut-and-choose adaptive hardcore property

We prove that any injective invariant NTCF family satisfies a property which
we call the cut-and-choose adaptive hardcore property, which is used in the
security proof of our interactive encryption with certified deletion with classical
communication.

Lemma 4.1 (Cut-and-Choose Adaptive Hardcore Property). Let F be
an injective invariant NTCF family and G be the corresponding trapdoor injective
family. Then F and G satisfy what we call the cut-and-choose adaptive hardcore
property defined below. For a QPT adversary A and a positive integer n, we
consider the following experiment Expcut-and-choose

(F,G),A (λ, n).

1. The challenger chooses a uniform subset S ⊆ [4n] such that |S| = 2n.10

2. The challenger generates (ki, tdi)← GenG(1λ) for all i ∈ S and (ki, tdi)←
GenF (1λ) for all i ∈ S and sends {ki}i∈[4n] to A.

3. A sends {yi, di, ei}i∈[4n] to the challenger.
4. The challenger computes xi,β ← InvF (tdi, β, yi) for all (i, β) ∈ S × {0, 1}

and checks if di ∈ Gki,0,xi,0 ∩Gki,1,xi,1 and ei = di · (J(xi,0)⊕ J(xi,1)) hold
for all i ∈ S. If they do not hold for some i ∈ S, the challenger immediately
aborts and the experiment returns 0.

5. The challenger sends S to A.
6. A sends {bi, xi}i∈S to the challenger.
7. The challenger checks if ChkG(ki, bi, xi, yi) = 1 holds for all i ∈ S. If this

holds for all i ∈ S, the experiment returns 1. Otherwise, it returns 0.

Then for any n such that n ≤ poly(λ) and n = ω(log λ), it holds that

Advcut-and-choose
(F,G),A (λ, n) := Pr

[
Expcut-and-choose

(F,G),A (λ, n) = 1
]
≤ negl(λ).

Its proof is given in the full version.

4.3 Construction

We construct an interactive encryption scheme with certified deletion and classical
communication Σcccd = (KeyGen,Enc,Dec,Del,Vrfy) with plaintext spaceM =
{0, 1}` from an NTCF family F with the corresponding trapdoor injective family
G for which we use similar notations as in [Mah18], a public key RNCE scheme
Σrnce = RNCE.(KeyGen,Enc,Dec,Fake,Reveal) with plaintext space {S ⊆ [4n] :
|S| = 2n} where n is a positive integer such that n ≤ poly(λ) and n = ω(log λ)
and we just write S to mean the description of the set S by abuse of notation,
a OW-CPA secure PKE scheme Σow = OW.(KeyGen,Enc,Dec) with plaintext
space {0, 1}λ, and a hash function H from {0, 1}λ × ({0, 1} × X )2n to {0, 1}`
modeled as a quantumly-accessible random oracle.
10 We can also take S ⊆ [2n] such that |S| = n, but we do as above just for convenience

in the proof.

23



KeyGen(1λ):
– Generate (rnce.pk, rnce.sk, rnce.aux)← RNCE.KeyGen(1λ) and (ow.pk, ow.sk)←

OW.KeyGen(1λ) and output (pk, sk) := ((rnce.pk, ow.pk), (rnce.sk, ow.sk)).
Enc〈S(pk,m),R〉: This is an interactive protocol between a sender S with input

(pk,m) and a receiver R without input that works as follows.
– S parses pk = (rnce.pk, ow.pk).
– S chooses a uniformly random subset S ⊆ [4n] such that |S| = 2n,

generates

(ki, tdi)←
{

GenG(1λ) i ∈ S
GenF (1λ) i ∈ S

for i ∈ [4n], and sends {ki}i∈[4n] to R.
– For i ∈ [4n], R generates a quantum state

|ψ′i〉 =


1√
|X |

∑
x∈X ,y∈Y,b∈{0,1}

√
(gki,b(x))(y)|b, x〉|y〉 (i ∈ S)

1√
|X |

∑
x∈X ,y∈Y,b∈{0,1}

√
(f ′ki,b

(x))(y) |b, x〉 |y〉 (i ∈ S)

by using Samp, measure the last register to obtain yi ∈ Y, and let |φ′i〉
be the post-measurement state where the measured register is discarded.
Note that this can be done without knowing S since SampF = SampG ,
which is just denoted by Samp. Then, we can see that for all i ∈ [4n],
|φ′i〉 has a negligible trace distance from the following state:

|φi〉 =
{
|bi〉 |xi〉 (i ∈ S)

1√
2 (|0〉 |xi,0〉+ |1〉 |xi,1〉) (i ∈ S)

where (xi, bi) ← InvG(tdi, yi) for i ∈ S and xi,β ← InvF (tdi, β, yi) for
(i, β) ∈ S × {0, 1}.11 R sends {yi}i∈[4n] to S and keeps {|φ′i〉}i∈[4n].

– S chooses K ← {0, 1}λ and computes (bi, xi) ← InvG(tdi, yi) for all
i ∈ S. If ChkG(ki, bi, xi, yi) = 0 for some i ∈ S, S returns ⊥ to R.
Otherwise, let i1, ..., i2n be the elements of S in the ascending order. S
sets Z := (K, (bi1 , xi1), (bi2 , xi2), ..., (bi2n

, xi2n
)), computes

rnce.CT← RNCE.Enc(rnce.pk, S),
ow.CT← OW.Enc(ow.pk,K),
CTmsg := m⊕H(Z),

and sends (rnce.CT, ow.CT,CTmsg) to R.
– S outputs vk := {tdi, yi}i∈S and R outputs

CT := ({|φ′i〉}i∈[4n], rnce.CT, ow.CT,CTmsg).
Dec(sk,CT):

– Parse sk = (rnce.sk, ow.sk) and CT = ({|φ′i〉}i∈[4n], rnce.CT, ow.CT,CTmsg).
11 Indeed, |φ′

i〉 = |φi〉 for i ∈ S.

24



– Compute S′ ← RNCE.Dec(rnce.sk, rnce.CT).
– Compute K ′ ← OW.Dec(ow.sk, ow.CT).
– For all i ∈ S′, measure |φ′i〉 in the computational basis and let (b′i, x′i) be

the outcome.
– Compute and outputm′ := CTmsg⊕H(K ′, (b′i1 , x

′
i1

), (b′i2 , x
′
i2

), ..., (b′i2n
, x′i2n

))
where i1, ..., i2n are the elements of S′ in the ascending order.12

Del(CT):
– Parse CT = ({|φ′i〉}i∈[4n], rnce.CT, ow.CT,CTmsg).
– For all i ∈ [4n], evaluate the function J on the second register of |φ′i〉.

That is, apply an isometry that maps |b, x〉 to |b, J(x)〉 to |φ′i〉. (Note that
this can be done efficiently since J is injective and efficiently invertible.)
Let |φ′′i 〉 be the resulting state.

– For all i ∈ [4n], measure |φ′′i 〉 in the Hadamard basis and let (ei, di) be
the outcome.

– Output cert := {(ei, di)}i∈[4n].
Vrfy(vk, cert):

– Parse vk = {tdi, yi}i∈S and cert = {(ei, di)}i∈[4n].
– Compute xi,β ← InvF (tdi, β, yi) for all (i, β) ∈ S × {0, 1}.
– Output > if di ∈ Gki,0,xi,0 ∩ Gki,1,xi,1 and ei = di · (J(xi,0) ⊕ J(xi,1))

hold for all i ∈ S and output ⊥ otherwise.

Correctness. As observed in the description, |φ′i〉 in the ciphertext has a negligible
trace distance from |φi〉. Therefore, it suffices to prove correctness assuming that
|φ′i〉 is replaced with |φi〉. After this replacement, decryption correctness clearly
holds assuming correctness of Σrnce and Σow.

We prove verification correctness below. For i ∈ S, if we apply J to the second
register of |φi〉 and then apply Hadamard transform for both registers as in Del,
then the resulting state can be written as

2−
w+2

2
∑
d,b,e

(−1)d·J(xi,b)⊕eb |e〉 |d〉

= 2−w
2

∑
d∈{0,1}w

(−1)d·J(xi,0) |d · (J(xi,0)⊕ J(xi,1))〉 |d〉 .

Therefore, the measurement result is (ei, di) such that ei = di · (J(xi,0)⊕ J(xi,1))
for a uniform di ← {0, 1}w. By the definition of an NTCF family [Mah18], it holds
that di ∈ Gki,0,xi,0 ∩Gki,1,xi,1 except for a negligible probability. Therefore, the
certificate cert = {(ei, di)}i∈[4n] passes the verification by Vrfy with overwhelming
probability.

Security. We prove the following theorem.

Theorem 4.1. If Σrnce is RNC secure, Σow is OW-CPA secure, and F is an
injective invariant NTCF family with the corresponding injective trapdoor family
G, Σcccd is IND-CPA-CD secure in the QROM where H is modeled as a quantumly-
accessible random oracle.
12 If S′ = ⊥ or K′ = ⊥, output ⊥.

25



Proof of Theorem 4.1. What we need to prove is that for any QPT adversary A,
it holds that

Advccpk-cert-del
Σcccd,A (λ) :=

∣∣∣Pr
[
Expccpk-cert-del

Σcccd,A (λ, 0) = 1
]
− Pr

[
Expccpk-cert-del

Σcccd,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Let q = poly(λ) be the maximum number of A’s random oracle queries. For
clarity, we describe how Expccpk-cert-del

Σcccd,A (λ, b) works below.

1. A uniformly random function H from {0, 1}λ × ({0, 1} × X )2n to {0, 1}` is
chosen, and A can make arbitrarily many quantum queries to H at any time
in the experiment.

2. The challenger generates (rnce.pk, rnce.sk, rnce.aux)← RNCE.KeyGen(1λ) and
(ow.pk, ow.sk)← OW.KeyGen(1λ) and sends pk := (rnce.pk, ow.pk) to A.

3. A sends (m0,m1) ∈M2 to the challenger.
4. The challenger chooses a uniform subset S ⊆ [4n] such that |S| = 2n,

generates

(ki, tdi)←
{

GenG(1λ) i ∈ S
GenF (1λ) i ∈ S

for i ∈ [4n], and sends {ki}i∈[4n] to A.
5. A sends {yi}i∈[4n] to the challenger.
6. The challenger chooses K ← {0, 1}λ and computes (bi, xi) ← InvG(tdi, yi)

for all i ∈ S. If ChkG(ki, bi, xi, yi) = 0 for some i ∈ S, the challenger sets
Z := null and returns ⊥ to A where null is a special symbol indicating that
Z is undefined. Otherwise, let i1, . . . , i2n be the elements of S in the ascend-
ing order. The challenger sets Z := (K, (bi1 , xi1), (bi2 , xi2), ..., (bi2n

, xi2n
)),

computes

rnce.CT← RNCE.Enc(rnce.pk, S),
ow.CT← OW.Enc(ow.pk,K),
CTmsg := mb ⊕H(Z),

and sends (rnce.CT, ow.CT,CTmsg) to A.
7. A sends cert = {(ei, di)}i∈[4n] to the challenger.
8. The challenger computes xi,β ← InvF (tdi, β, yi) for all (i, β) ∈ S × {0, 1}. If
di ∈ Gki,0,xi,0 ∩Gki,1,xi,1 and ei = di · (J(xi,0) ⊕ J(xi,1)) hold for all i ∈ S,
sends sk := (rnce.sk, ow.sk) to A, and otherwise sends ⊥ to A.

9. A outputs b′. The output of the experiment is b′.

We define the following sequence of hybrids.

Hyb1(b): Let Revealsk be the event that the challenger sends sk in Step 8. Hyb1(b)
is identical to Expccpk-cert-del

Σcccd,A (λ, b) except that K is chosen at the beginning
and the oracle given to A before Revealsk occurs is replaced with HK‖∗→H′ ,
which is H reprogrammed according to H ′ on inputs whose first entry is K

26



where H ′ is another independent random function. More formally, HK‖∗→H′

is defined by

HK‖∗→H′(K ′, (b1, x1), ..., (b2n, x2n)) :={
H(K ′, (b1, x1), ..., (b2n, x2n)) (K ′ 6= K)
H ′(K ′, (b1, x1), ..., (b2n, x2n)) (K ′ = K)

.

We note that the challenger still uses H to generate CTmsg and the oracle
after Revealsk occurs is still H similarly to the real experiment. On the other
hand, if Revealsk does not occur, the oracle HK‖∗→H′ is used throughout
the experiment except for the generation of CTmsg.

Hyb2(b): This is identical to Hyb1(b) except that rnce.CT and rnce.sk that may
be sent to A in Step 6 and 8 are replaced by

rnce.C̃T← RNCE.Fake(rnce.pk, rnce.sk, rnce.aux),

rnce.s̃k← RNCE.Reveal(rnce.pk, rnce.sk, rnce.aux, rnce.C̃T, S).

Hyb3(b): This is identical to Hyb2(b) except that the oracle given to A after
Revealsk occurs is replaced with HZ→r, which is H reprogrammed to output
r on input Z = (K, (bi1 , xi1), ..., (bi2n

, xi2n
)) where r is an independently

random `-bit string. More formally, HZ→r is defined by

HZ→r(Z ′) :=
{
H(Z ′) (Z ′ 6= Z)
r (Z ′ = Z)

.

Note that we have HZ→r = H if Z = null, i.e., if ChkG(ki, bi, xi, yi) = 0 for
some i ∈ S in Step 6.

Proposition 4.1. If Σow is OW-CPA secure,
∣∣∣Pr
[
Expccpk-cert-del

Σcccd,A (λ, b) = 1
]
− Pr[Hyb1(b) = 1]

∣∣∣ ≤
negl(λ).

The only difference between Expccpk-cert-del
Σcccd,A (λ, b) and Hyb1(b) is that the ran-

dom oracle is reprogrammed on inputs with prefix K before Revealsk occurs. By
applying the one-way to hiding lemma [AHU19], if A distinguishes these two
games, then we can use it to extract K before Revealsk occurs. This contradicts
the OW-CPA security of Σow. Therefore, these two games are indistinguishable.
The full proof is given in the full version.

Proposition 4.2. If Σrnce is RNC secure, |Pr[Hyb1(b) = 1]− Pr[Hyb2(b) = 1]| ≤
negl(λ).

This can be reduced to the RNC security of Σrnce in a similar manner to that
in Proposition 3.1. The full proof is given in the full version.

Proposition 4.3. If F and G satisfy the cut-and-choose adaptive hardcore prop-
erty described in Lemma 4.1, |Pr[Hyb2(b) = 1]− Pr[Hyb3(b) = 1]| ≤ negl(λ).

27



The only difference between Hyb2(b) and Hyb3(b) is that the random oracle
is reprogrammed on Z = (K, (bi1 , xi1), ..., (bi2n

, xi2n
)) after Revealsk occurs. By

applying the one-way to hiding lemma [AHU19], if A distinguishes these two
games, then we can use it to extract Z = (K, (bi1 , xi1), ..., (bi2n

, xi2n
)) after

Revealsk occurs. This can be used to break the cut-and-choose adaptive hardcore
property of (F ,G). Therefore, these two games are indistinguishable. The full
proof is given in the full version.

Proposition 4.4. It holds that Pr[Hyb3(0) = 1] = Pr[Hyb3(1) = 1].

Proof of Proposition 4.4. In Hyb3, the challenger queries H while the adversary
queries HK‖∗→H′ or HZ→r. Therefore, H(Z) is used only for generating CTmsg
in Hyb3 and thus CTmsg is an independently uniform string regardless of b from
the view of the adversary. Therefore Proposition 4.4 holds.

By combining Propositions 4.1 to 4.4 Theorem 4.1 is proven.

4.4 Publicly Verifiable Construction

The scheme given in the previous subsection is privately verifiable. We construct
publicly verifiable interactive encryption with certified deletion and classical
communication based on extractable witness encryption and one-shot signatures.
See the full version for details.

Acknowledgement

TM is supported by the MEXT Q-LEAP, JST FOREST, JST PRESTO No.JPMJPR176A,
and the Grant-in-Aid for Scientific Research (B) No.JP19H04066 of JSPS.

References

AGKZ20. R. Amos, M. Georgiou, A. Kiayias, and M. Zhandry. One-shot signatures
and applications to hybrid quantum/classical authentication. In 52nd ACM
STOC, pages 255–268. 2020.

AHU19. A. Ambainis, M. Hamburg, and D. Unruh. Quantum Security Proofs Using
Semi-classical Oracles. In CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 269–295. 2019.

AK21. P. Ananth and F. Kaleoglu. Uncloneable Encryption, Revisited. IACR
Cryptol. ePrint Arch., 2021:412, 2021.

BB84. C. H. Bennett and G. Brassard. Quantum Cryptography: Public Key
Distribution and Coin Tossing. In IEEE International Conference on
Computers Systems and Signal Processing, pages 175–179. IEEE, 1984.

BCM+18. Z. Brakerski, P. Christiano, U. Mahadev, U. V. Vazirani, and T. Vidick. A
Cryptographic Test of Quantumness and Certifiable Randomness from a
Single Quantum Device. In 59th FOCS, pages 320–331. 2018.

28



BDF+11. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and
M. Zhandry. Random Oracles in a Quantum World. In ASIACRYPT 2011,
volume 7073 of LNCS, pages 41–69. 2011.

BGI+12. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan,
and K. Yang. On the (im)possibility of obfuscating programs. Journal of
the ACM, 59(2):6:1–6:48, 2012.

BI20. A. Broadbent and R. Islam. Quantum Encryption with Certified Deletion.
In TCC 2020, Part III, volume 12552 of LNCS, pages 92–122. 2020.

BL20. A. Broadbent and S. Lord. Uncloneable Quantum Encryption via Oracles. In
15th Conference on the Theory of Quantum Computation, Communication
and Cryptography, TQC 2020, June 9-12, 2020, Riga, Latvia, volume 158
of LIPIcs, pages 4:1–4:22. 2020.

BR97. M. Bellare and P. Rogaway. Collision-Resistant Hashing: Towards Making
UOWHFs Practical. In CRYPTO’97, volume 1294 of LNCS, pages 470–484.
1997.

CCKW19. A. Cojocaru, L. Colisson, E. Kashefi, and P. Wallden. QFactory: Classically-
Instructed Remote Secret Qubits Preparation. In ASIACRYPT 2019, Part I,
volume 11921 of LNCS, pages 615–645. 2019.

CFGN96. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively Secure Multi-
Party Computation. In 28th ACM STOC, pages 639–648. 1996.

CHK05. R. Canetti, S. Halevi, and J. Katz. Adaptively-Secure, Non-interactive
Public-Key Encryption. In TCC 2005, volume 3378 of LNCS, pages 150–
168. 2005.

CMP20. A. Coladangelo, C. Majenz, and A. Poremba. Quantum copy-protection
of compute-and-compare programs in the quantum random oracle model.
arXiv, 2009.13865, 2020.

CRW19. X. Coiteux-Roy and S. Wolf. Proving Erasure. 2019 IEEE International
Symposium on Information Theory (ISIT), 2019.

FM18. H. Fu and C. A. Miller. Local randomness: Examples and application.
Physical Review A, 97(3), 2018.

GDP16. Regulation (eu) 2016/679 of the european parliament and of the council
of 27 april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and
repealing directive 95/46 (general data protection regulation). Official
Journal of the European Union (OJ), pages 1–88, 2016.

GGH+16. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters.
Candidate Indistinguishability Obfuscation and Functional Encryption for
All Circuits. SIAM J. Comput., 45(3):882–929, 2016.

GGM86. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, 1986.

GGSW13. S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its
applications. In 45th ACM STOC, pages 467–476. 2013.

GKP+13. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
How to Run Turing Machines on Encrypted Data. In CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 536–553. 2013.

GPSW06. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-Based Encryption
for Fine-Grained Access Control of Encrypted Data. In ACM CCS 2006,
pages 89–98. 2006. Available as Cryptology ePrint Archive Report 2006/309.

GZ20. M. Georgiou and M. Zhandry. Unclonable Decryption Keys. Cryptology
ePrint Archive, Report 2020/877, 2020. https://eprint.iacr.org/2020/
877.

29

https://eprint.iacr.org/2020/877
https://eprint.iacr.org/2020/877


HILL99. J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A Pseudorandom
Generator from any One-way Function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

JL00. S. Jarecki and A. Lysyanskaya. Adaptively Secure Threshold Cryptography:
Introducing Concurrency, Removing Erasures. In EUROCRYPT 2000,
volume 1807 of LNCS, pages 221–242. 2000.

KNTY19. F. Kitagawa, R. Nishimaki, K. Tanaka, and T. Yamakawa. Adaptively Secure
and Succinct Functional Encryption: Improving Security and Efficiency,
Simultaneously. In CRYPTO 2019, Part III, volume 11694 of LNCS, pages
521–551. 2019.

KNY20. F. Kitagawa, R. Nishimaki, and T. Yamakawa. Secure Software Leasing
from Standard Assumptions. Cryptology ePrint Archive, Report 2020/1314,
2020. https://eprint.iacr.org/2020/1314.

KT20. S. Kundu and E. Tan. Composably secure device-independent encryption
with certified deletion. arXiv, 2011.12704, 2020.

Mah18. U. Mahadev. Classical Verification of Quantum Computations. In 59th
FOCS, pages 259–267. 2018.

NY90. M. Naor and M. Yung. Public-key Cryptosystems Provably Secure against
Chosen Ciphertext Attacks. In 22nd ACM STOC, pages 427–437. 1990.

NY21. R. Nishimaki and T. Yamakawa. Quantum Encryption with Certified
Deletion: Public Key and Attribute-Based. IACR Cryptol. ePrint Arch.,
2021:394, 2021.

RS19. R. Radian and O. Sattath. Semi-Quantum Money. arXiv, abs/1908.08889,
2019.

SW05. A. Sahai and B. R. Waters. Fuzzy Identity-Based Encryption. In EURO-
CRYPT 2005, volume 3494 of LNCS, pages 457–473. 2005.

Unr15. D. Unruh. Revocable Quantum Timed-Release Encryption. J. ACM,
62(6):49:1–49:76, 2015.

Wie83. S. Wiesner. Conjugate Coding. SIGACT News, 15(1):78–88, 1983.

30

https://eprint.iacr.org/2020/1314

	 Quantum Encryption with Certified Deletion, Revisited: Public Key, Attribute-Based, and Classical Communication 
	Introduction
	Our Result
	Related work
	Technical Overview Part I: Quantum Communication Case
	Technical Overview Part II: Classical Communication Case

	Preliminaries
	Notations and Mathematical Tools
	Cryptographic Tools

	Public Key Encryption with Certified Deletion
	Definition of PKE with Certified Deletion
	PKE with Certified Deletion from PKE and SKE with Certified Deletion
	Attribute-Based Encryption with Certified Deletion

	Interactive Encryption with Certified Deletion and Classical Communication
	Definition of Interactive Encryption with Certified Deletion and Classical Communication
	Preparation: Cut-and-choose adaptive hardcore property
	Construction
	Publicly Verifiable Construction



