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Abstract. We propose a new construction for format-preserving en-
cryption. Our design provides the flexibility for use in format-preserving
encryption (FPE) and for static table-driven tokenization. Our algo-
rithm is a substitution-permutation network based on random Sboxes.
Using pseudorandom generators and pseudorandom functions, we prove
a strong adaptive security based on the super-pseudorandom permuta-
tion assumption of our core design. We obtain empirical parameters to
reach this assumption. We suggest parameters for quantum security.

Our design accommodates very small domains, with a radix a from 4
to the Unicode alphabet size and a block length ℓ starting 2. The num-

ber of Sbox evaluations per encryption is asymptotically ℓ
3
2 , which is

also the number of bytes we need to generate using AES in CTR mode
for each tweak setup. For instance, we tokenize 10 decimal digits using
29 (parallel) AES computations to be done only once, when the tweak
changes.

1 Introduction

Symmetric encryption offers an efficient way to keep data private. How-
ever, it is typically only length-preserving in the sense that a plaintext
and a ciphertext occupy exactly the same space and structure in mem-
ory. However, length preservation falls short when we consider non-binary
plaintext data such as bank account numbers, driver license numbers, tax
ID’s and so forth. This limitation can be overcome by format-preserving
protection mechanisms. Format-Preserving Encryption (FPE) was pro-
posed to encrypt data while retaining the original format and field size of
the input data. It can, for instance, encrypt a 16-digit credit card number
(or part of it), as a series of digits, and produce a ciphertext which is still
16-digits long. One difficulty with FPE is that the message space can be
very small for common fields used in personal data processing scenarios,
for example, age, a postal code, names, bank sort codes, subsets of larger
fields, and so on. In particular, adversaries may be able to go through the



message space exhaustively. Hence, FPE is strengthened with a tweak,
following the tweakable encryption paradigm. Contrarily to a nonce, a
tweak can be reused. Tweakable encryption was formalized by Liskov et
al. [29].

Formally speaking, an FPE takes as input a key and a message, as
well as parameters specifying the format and the tweak. In standard FPE,
the format consists of a radix a and a length ℓ. The message domain has
cardinality aℓ.

FPE first appeared as a data-type preserving encryption [13] and in
the form of an omnicipher with the Hasty Pudding AES competitor [34].
The term FPE is due to Spies [36]. Rogaway presented a list of FPE
schemes [32]. Some constructions are based on cycle walking [11]. The
most popular FPEs are based on Feistel networks and have been stan-
dardized as FF1 and FF3 [1,3,7,8,12]. A weakness was found in FF1 and
FF3 by Bellare et al. [6]. FF3 was broken and repaired by Durak and Vau-
denay [18]. The attack was later improved by Hoang et al. [23,24]. There
exist some dedicated constructions based on substitution-permutation
network (SPN) such as TOY100 [21] and DEAN18 [5], but they are de-
signed only for fixed blocks of decimal digits. Actually, one difficulty with
SPN-based FPE is that the internal Sboxes must be adapted to the spe-
cific format of the input data. Another SPN-based construction allows
more formats but suffers from lack of flexibility as well [15]. Another con-
struction mixes the cycle walking techniques with SPN based on Sboxes
working on a domain which is larger than the format [16]. However, this
construction is not a pure SPN. It is rather based on one-time-pad with a
keystream generated from an SPN. Hence, it needs a nonce and it has triv-
ial chosen ciphertext decryption attacks.4 We believe that substitution-
permutation networks has been under-explored for FPE so far and will
present a new FPE design based on an SPN.

Some cipher designs use pseudorandom Sboxes and use them in a
pseudorandom sequence. Both random selections can be derived from the
secret key. This approach was used in LUCIFER [20] (the preliminary
version of DES), where Sboxes are invertible 4-bit to 4-bit functions se-
lected from a pool of two using a binary key for each Sbox. It was used
in KHUFU [31] as well, where Sboxes are pseudorandom 8-bit to 32-bit
functions generated from the secret key. BLOWFISH [33] also used pseu-
dorandom 8-bit to 32-bit functions. In our design, we use pseudorandom

4 Note that we want exact format preservation hence no stretch in the ciphertext.
Consequently, FPE cannot authenticate at the same time and authentication cannot
be used to defeat chosen ciphertext attacks.
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permutations over an alphabet set Za, where a is the radix of the message
to be encrypted. The key is used to select a sequence of Sboxes from a
pool. The pool of Sboxes is generated by a secret too.

Tokenization is another concept for format-preserving data protec-
tion that introduces the notion of mapping cleartext values to substi-
tute “token” values that retain format and structure of the original data,
but no cleartext data, while logically isolating the process that performs
the mapping. While encryption itself makes no assumption about key
ownership, tokenization typically implies that tokenization secret(s) and
mapping process are owned by a tokenization system, a strongly isolated
single entity authenticating and auditing access to the token mapping
process using the tokenization secret(s). ANSI X9.119-2 [2] defines three
main approaches for tokenization: (1) On Demand Random Assignment
(ODRA) which generates random tokens on demand and stores the as-
sociation with the plaintext value in a dynamic mapping table which
grows per new token generated. However, using the method, the large
and constantly growing mapping table creates severe operational issues
for environments requiring high performance and resilience. (2) Static
table-driven tokenization (a.k.a. vault-less tokenization) generates tokens
using a tokenization mapping process which operates using small pre-
generated static random substitution tables used as the tokenization se-
cret. (3) Encryption-based tokenization generates tokens using a suitable
FPE or symmetric encryption algorithm where the key serves as tok-
enization secret. Our design can be used as base for static table-driven
tokenization as well for encryption-based tokenization.

Our contribution. In this paper, we design and analyze a new format-
preserving protection construction method. We call our method FAST as
for Format-preserving Addition Substitution Transformation.5 FAST can
be used in FPE or tokenization mode. Tokenization mode differs from
FPE mode by having two specific inputs instead of one secret key: pre-
generated random Sboxes as stateless table secret, which can be common
to several domains, and a key, which is be used for domain separation. The
stateless table secret is much more used than a given domain-specific key.
Therefore, we consider a security model where the stateless table secret
is revealed to the adversary and the rest works like in FPE security. In
FPE mode, the pseudorandom Sboxes are generated from the key.

We formally define a strong security model for FPE which is essentially
a multi-target chosen format and chosen tweak super-PRP (pseudoran-

5 There exists another FAST algorithm in the literature which is unrelated [14].
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dom permutation) notion. Concretely, we consider adversaries who can
choose all parameters, have many targets, choose the plaintexts and the
ciphertexts. One challenge is that the encryption domain can be really
small. Hence, the adversary could get the complete codebook for some
tweaks and even look at their permutation parity. We model security by
indistinguishability from an ideal FPE making only even permutations.6

We formally prove strong security based on a weak security assump-
tion: that the core design is a super-PRP in a weak model where the
adversary uses a single target, a single format, and a single tweak. More
precisely, we reduce strong security to this weak security notion. We for-
mally prove this reduction in a tight and quantifiable manner.

The single-instance security of the core design is heuristic. We find
(what we believe to be) the best attacks on the core design. We optimize

our parameters to reduce the number of Sbox applications down to ℓ
3
2

(instead of ℓ2). We set the number of rounds to twice the one we can
break to have a good safety margin. We also consider quantum security.

We implement our algorithm and show good performance. Concretely,
our design needs some AES applications to generate random bytes for each
tweak. However, in contrast to the FF1 and FF3 algorithms which use AES
as round functions in a Feistel network, our design allows for these gen-
erations to be parallelized and thus achieve much higher performance
by design. Then, the core encryption needs no AES computation or ex-
pensive modular reductions. It is purely an SPN with Sboxes, additions,
subtractions, and permutations.

Structure of this paper. We first detail the specifications of FAST in Sec-
tion 2. In Section 3, we give implementation results. We formally define
a security model and we prove strong adaptive security of FAST based
on the hypothesis that our core scheme is a super pseudorandom permu-
tation in Section 4. Rationales are given in Section 5. The full version
of this article [17] further include the formal proofs and the best known
attacks which motivated our parameter choices.

2 Algorithm Specification

In what follows, we use the following integer parameters:

6 A permutation π is called even if the number of (x, y) pairs such that x < y and
π(x) > π(y) is even.
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s: bit-security target
L: bitlength of key K
L1: bitlength of key KSEQ

L2: bitlength of key KS (L1 = L2)
a: the alphabet size a.k.a. radix (a = 10 for decimal digits) (a ≥ 4)
ℓ: word length of input/output (ℓ ≥ 2)
m: number of Sboxes in the pool (m = 256)
n: total number of layers (r = n/ℓ rounds of ℓ layers)
w: a branch distance (0 ≤ w ≤ ℓ− 2)
w′: a second branch distance (1 ≤ w′ ≤ ℓ− w − 1)

Without loss of generality, the alphabet is Za = {0, 1, . . . , a−1} to which
we give the group structure defined by modulo a addition. The “input”
is an element of Zℓ

a. An Sbox is a permutation of Za. A pool of Sboxes is
a tuple S = (S0, . . . , Sm−1) of m Sboxes.

x0 x1 x2 x3

xw

· · · xℓ−3 xℓ−2

xℓ−w′

xℓ−1

+

Si

−

Si

y0 y1 y2 y3 · · · yℓ−3 yℓ−2 yℓ−1

x0 x1 x2

xw−1

x3 · · · xℓ−3

xℓ−w′−1

xℓ−2 xℓ−1

S−1
i

+

S−1
i

−

y0 y1 y2 y3 · · · yℓ−3 yℓ−2 yℓ−1

Fig. 1. One Layer with Circular Shift of Branches: Forward (on the left) and Backward
(on the right) with w = 3, w′ = 2

Layers of Encryption/Decryption. Given a pool S of m Sboxes and an
index i in {0, . . . ,m−1}, we define the permutation ES [i] of Z

ℓ
a as follows:

for any x = (x0, . . . , xℓ−1) ∈ Zℓ
a, we have

ES [i](x) =

{
(x1, . . . , xℓ−1, Si(Si(x0 + xℓ−w′))) if w = 0
(x1, . . . , xℓ−1, Si(Si(x0 + xℓ−w′)− xw)) if w > 0
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· · · · · ·

S̄ij

S̄ij+1

S̄ij+2

Fig. 2. Three Consecutive Layers with w = 3 and w′ = 2 and without the Circular
Shift of Branches (Each S̄ represents a double-Sbox)

as depicted in Fig. 1. We call it a forward layer. Similarly, we define a
backward layer

DS [i](x) =

{
(S−1i (S−1i (xℓ−1))− xℓ−w′−1, x0, . . . , xℓ−2) if w = 0

(S−1i (S−1i (xℓ−1) + xw−1)− xℓ−w′−1, x0, . . . , xℓ−2) if w > 0

If we represent layers without the circular shift of registers, the cir-
cuit of three consecutive layers looks like Fig. 2. Each layer involves one
register which was modified w′ layers before and one register which will
be modified w layers later.

Given a sequence i0, . . . , in−1 of n indices, we define our m-layer core
encryption/decryption functions

CEncS [i0, . . . , in−1] = ES [in−1] ◦ · · · ◦ ES [i0]

CDecS [i0, . . . , in−1] = DS [i0] ◦ · · · ◦DS [in−1]

so that (CEncS [i0, . . . , in−1])
−1 = CDecS [i0, . . . , in−1]. The n-layer encryp-

tion scheme is depicted in Fig. 3 with ℓ = 4, n = 16, w = 2, and w′ = 1.
Since we require n to be multiple of ℓ, we consider n layers as being n/ℓ
rounds of ℓ layers each.

Sbox Index Sequence Generation. Given an L1-bit key KSEQ, we generate
a sequence SEQ = [i0, i1, i2 . . . , in−1] of n indices in {0, 1, . . . ,m−1} using
a pseudorandom generator:

SEQ = PRNG1,m,n(KSEQ)

The choice of this function PRNG1,m,n is open. Our preferred option is
the use of AES in CTR mode as later explained.
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x0 x1 x2 x3

+
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+
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+
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+
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+
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+
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+

i10

+

i11

+

i12

+

i13

+

i14

+

i15

y0 y1 y2 y3

CEncS [i0, . . . , in−1](x0, . . . , xℓ−1)
1: for j = 0 to n− 1 do
2: z ← Sij (Sij (x0 + xℓ−w′ mod a)− xw mod a)
3: for k = 1 to ℓ− 1 do
4: xk−1 ← xk

5: end for
6: xℓ−1 ← z
7: end for
8: return (x0, . . . , xℓ−1)

CDecS [i0, . . . , in−1](y0, . . . , yℓ−1)
9: for j = n− 1 down to 0 do
10: z ← yℓ−1

11: for k = ℓ− 1 down to 1 do
12: yk ← yk−1

13: end for
14: y0 ← S−1

ij
(S−1

ij
(z) + yw mod a)− yℓ−w′ mod a

15: end for
16: return (y0, . . . , yℓ−1)

EncK(instance1, instance2, tweak, pt)
17: S ← Setup1(K, instance1)
18: SEQ← Setup2(K, instance1, instance2, tweak)
19: return CEncS [SEQ](pt)

DecK(instance1, instance2, tweak, ct)
20: S ← Setup1(K, instance1)
21: SEQ← Setup2(K, instance1, instance2, tweak)
22: return CDecS [SEQ](ct)

Setup1(K, instance1)
23: (a,m)← instance1
24: KS ← PRFL2 (K, instance1, cste2)
25: S ← PRNG2,a,m(KS)
26: return S

Setup2(K, instance1, instance2, tweak)
27: (a,m)← instance1
28: (ℓ, n, w,w′)← instance2
29: KSEQ ← PRFL1 (K, instance1, instance2, cste1, tweak)
30: SEQ← PRNG1,m,n(KSEQ)
31: return SEQ

i = −

Si

Si

Fig. 3. Core Encryption CEnc[i0, . . . , i15] with ℓ = 4, w = 2, w′ = 1, n = 16
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Sbox Generation. Given an L2-bit key KS ,

S ← PRNG2,a,m(KS)

The Sboxes can be any permutation of Za. The choice of PRNG2,a,m is
open. We suggest one algorithm below.

Stateless Table-Driven Tokenization. The tokenization function uses a
fixed pool S of Sboxes which plays the role of the stateless table secret.
Given an L-bit key K (the key), a tweak tweak, a format specified by
the parameters a and ℓ, the parameters (m,n,w,w′), the selected cipher
suite algo = (PRNG1,PRF), and a plaintext pt ∈ Zℓ

a, we define

instance1 = (a,m)

instance2 = (ℓ, n, w,w′)

KSEQ = PRFL1(K, instance1, instance2, cste1, tweak)

ct = CEncS [PRNG1,m,n(KSEQ)](pt)

pt = CDecS [PRNG1,m,n(KSEQ)](ct)

where KSEQ is an L1-bit key which is used to generate SEQ. The value
of cste1 is a constant which encodes the label “tokenization” and the size
L1. The function PRFλ is a pseudorandom function with an L-bit key
accepting an input of variable length and producing a λ-bit output.7

With λ = L1, we obtain a key KSEQ for PRNG1. The choice of PRF is
open. Typically, we use AES-CMAC.

Format-Preserving Encryption (FPE). The FPE uses a derived pool S of
Sboxes. Given an L-bit key K, a tweak tweak, a format specified by the
parameters a and ℓ, the parameters m and n, the selected cipher suite
algo = (PRNG1,PRNG2,PRF), and an input pt ∈ Zℓ

a, we define

instance1 = (a,m)

instance2 = (ℓ, n, w,w′)

KSEQ = PRFL1(K, instance1, instance2, cste2, tweak)

KS = PRFL2(K, instance1, cste3)

S = PRNG2,a,m(KS)

ct = CEncS [PRNG1,m,n(KSEQ)](pt)

pt = CDecS [PRNG1,m,n(KSEQ)](ct)

7 We will only use λ = L1 = L2. So, the superscript λ is only an informative notation.
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where instance1, instance2, and PRF are like for tokenization, cste2 is a
constant which encodes the label “FPE SEQ” and the size L1, and cste3
is a constant which encodes the label “FPE Pool” and the size L2. KSEQ

is an L1-bit key which is used to generate SEQ. KS is an L2-bit key
which is used to generate S. As m is the pool size and a is the Sbox size,
changing m or a requires to recompute a new pool S, which is a tedious
operation. However, changing ℓ should not require to recompute S. This
is why we separate instance1 and instance2. In the pseudocode of Fig. 3,
we separated the setup of S (in Setup1 using instance1) and the setup of
SEQ (in Setup2 using instance1 and instance2).

Example. We consider m = 256 so that each Sbox index is a byte.

We define PRNG1 from AES in CTR mode. We split KSEQ = (K1, IV1)
with IV1 of 128 bits with the last two bytes forced to 0.8 Then,

PRNG1,m,n(KSEQ) =

trunc8n
(
AESK1(IV1)‖AESK1(IV1 + 1)‖ · · · ‖AESK1

(
IV1 +

⌈ n

16

⌉
− 1

))
where trunc8n truncates to the first 8n bits and the addition is done
modulo 2128. The input of AES is an integer converted into a 128-bit
string. We implicitly assume that the 8n-bit result is converted into a
sequence of bytes which define (i0, . . . , in−1).

The PRNG2,a,m(KS) generator first splits KS = (K2, IV2) with IV2 of
128 bits and generates a sequence

coins = AESK2(IV2)‖AESK2(IV2 + 1)‖ · · ·

of pseudorandom coins (this is AES in CTR mode) then applies a shuf-
fling technique to generate each Sbox σ.9 We can use the Fisher-Yates
algorithm [26, p.145]:

1: initialize σ(i) = i for i = 0, . . . , a− 1
2: for i from a− 1 down to 1 do
3: pick j ∈ {0, . . . , i} at random using the random coins
4: exchange σ[j] and σ[i]
5: end for

8 Forcing the last two bytes of IV to 0 avoids that some slide properties in coins such
as IV′ = IV + 1 and K′ = K may occur (although the complexity to obtain such
properties could be very high).

9 Interestingly, if the algorithm generating coins is secure, there is no need to care
about constant-time implementation for the Sbox generations as discussed in Sec-
tion 5.
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The way we generate j can follow many options [4,27,28]. To generate
unbiased j from the random coins, we adapt a technique described by
Lemire [27]. This approach uses L random input bits to generate a ran-
dom value the range [0, ..., i] (with i < 2L) using only a multiplication with

rejection probability 2L mod (i+1)
2L

. We choose L as a tradeoff between ran-
dom bit consumption and rejection frequency: a value of dlog2(i+1)e+4
results in a maximum rejection probability of 1/24 = 0.0625 and a much
lower average rejection probability. We need on average a number of coins
per Sbox equal to

a−1∑
i=1

L

(
1− 2L mod (i+ 1)

2L

)−1
with L = dlog2(i+1)e+4. This generates unbiased Sboxes when the coins
are random.

We define PRFλ(K, list) as

truncλ (AES-CMACK(encode(0, list))‖AES-CMACK(encode(1, list))‖ · · · )

which returns a λ-bit key. We only use λ = L1 = L2. In practice, we use
λ = 256 or λ = 384 so that we only need 2 or 3 CMAC computations.
Here, encode must be a non-ambiguous encoding of a list into a bitstring.

As an example, we can take a = 10 and ℓ = 10 to encrypt a part
of credit card numbers. For that, our recommended parameters below
suggest to use n = 390 (i.e. 39 rounds of 10 layers), with w = 3 and
w′ = 2. We first need two AES computations to generate KS (assuming
encoding (instance1, cste2) takes a single 128-bit block) and 129 (parallel)
AES computations to generate the pool of Sboxes once for all. Thus, 131
AES for setting up the pool. Then, once for each tweak, we need 4 AES
computations to generate KSEQ then 25 AES computations to generate
SEQ. Thus, 29 AES for each new tweak. This latter computation can be
parallelized to have very fast processing. Finally, encryption/decryption
requires no AES computation.

Security goal. Our construction is supposed to offer a pretty high security
(e.g. 128-bit security) even though the input domain could be of very small
size aℓ. Security holds even when the adversary can choose the parameters,
the tweak, the plaintexts, and the ciphertexts. We also have security when
the pool of Sboxes is known, which may happen for instance when the
stateless table secret leaks in tokenization. Towards this goal, we will need
PRNG1 and PRNG2 to be secure pseudorandom generators, PRF to be a
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pseudorandom function, and we will reduce to the assumption that CEncS
is a super-pseudorandom permutation (keyed by a random SEQ) when S
is known but randomly set.

Recommended parameters. An instance defines a (a,m, ℓ, n, w,w′) tuple
and a set of algorithms. Admissible (instance1, instance2) instances are
defined by a set F . We define what admissible tuples are here, depending
on the targeted security s. We recommend L = s, L1 = L2 = 2s,m = 256,
a ≥ 4, ℓ ≥ 2, n multiple of ℓ, and w, w′, and n tuned as w ∼

√
ℓ, w′ ∼

√
ℓ,

and n ∼ ℓ
3
2 . More precisely,

w = min(b
√
ℓe, ℓ− 2)

w′ = max(1, w − 1)

n = ℓ×
⌈
2×max

(
2s

ℓ log2m
,

s√
ℓ ln(a− 1)

,
s√

ℓ log2(a− 1)
+ 2
√
ℓ

)⌉
(Note that the ℓ− 2 in the min defining w is reached only for ℓ ∈ {2, 3}.
Similarly, the 1 in the max defining w′ is reached only for ℓ ∈ {2, 3}. For,
ℓ > 3, we have w = b

√
ℓe and w′ = w−1.) These parameters were adjusted

based on cryptanalysis and performance reasons. For s = 128, we write
in Table 1 the number n/ℓ of “rounds” for a few sets of parameters.

For quantum security, we consider adversaries who can run quantum
algorithms such as Grover [22] or Simon [35]. However, we do not as-
sume quantum access to encryption/decryption oracles. To face quantum
adversaries, we use the same formulas by replacing s by 2s, except for
L1 = L2 = 3s. We obtain that the number of rounds is doubled for the
low ℓ values but remains unchanged for the large ones. This is because
our security analysis suggests n = Ω(sℓ

1
2 +ℓ

3
2 ). More details about figures

are provided in the full version [17]. For quantum 128-bit security, there
are a few changes in the underlying algorithms which should move to
quantum 128-bit security. Namely, PRNG1 and PRNG2 are still AES-CTR
but with a 256-bit key. As AES-CMAC does not offer 256-bit security, we
need another algorithm or to twist CMAC with a 256-bit key.

Our design does not accommodate radix a = 2 or a = 3. We did not
see as a disadvantage as radix a = 4 or 8 and a = 9 or 27 are possible if
needed.

Rationales for w and w′. Our first design was using w′ = 1 and w = 0
but had a powerful chosen ciphertext attack for up to ℓ2 layers. Using
w > 0 mitigated this attack and an optimal w ∼

√
ℓ was found. Then, we

observed that decryption was faster than encryption because optimized
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Table 1. Number r = n/ℓ of Rounds for 128-bit Security

ℓ: 2 3 4 5 6 7 8 9 10 12 16 32 50 64 100

a = 4 165 135 117 105 96 89 83 78 74 68 59 52 52 53 57
a = 5 131 107 93 83 76 70 66 62 59 54 48 46 47 48 53
a = 6 113 92 80 72 65 61 57 54 51 46 44 43 44 46 52
a = 7 102 83 72 64 59 55 51 48 46 43 41 41 43 45 50
a = 8 94 76 66 59 54 50 47 44 42 41 39 39 42 44 50
a = 9 88 72 62 56 51 47 44 42 40 39 38 38 41 43 49
a = 10 83 68 59 53 48 45 42 39 39 38 37 37 40 43 49
a = 11 79 65 56 50 46 43 40 38 38 37 36 37 40 42 48
a = 12 76 62 54 48 44 41 38 37 37 36 35 36 39 42 48
a = 13 73 60 52 47 43 39 37 36 36 35 34 36 39 41 48
a = 14 71 58 50 45 41 38 36 36 35 34 34 35 39 41 47
a = 15 69 57 49 44 40 37 36 35 34 34 33 35 38 41 47
a = 16 67 55 48 43 39 36 35 34 34 33 33 35 38 41 47
a = 100 40 33 28 27 26 26 25 25 25 26 26 30 34 37 44
a = 128 38 31 27 26 25 25 25 25 25 25 26 30 34 37 44
a = 256 33 27 25 24 23 23 23 23 23 24 25 29 33 37 44
a = 1000 32 22 21 21 21 21 21 21 21 22 23 28 32 36 43
a = 1024 32 22 21 21 21 21 21 21 21 22 23 28 32 36 43
a = 10 000 32 22 18 18 18 18 19 19 19 20 21 27 32 35 42
a = 65 536 32 22 17 17 17 17 17 18 18 19 21 26 31 35 42
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compiled codes could process the computation of consecutive branches
in parallel, but not for encryption. This motivated us to adopt a larger
w′, which is quite counter-intuitive. Indeed, it looks like slowing down
the diffusion. However, our analysis did not show any need to increase
the number of rounds. Using w′ ∼

√
ℓ was good but we had to care for

corner cases such as gcd(w,w′, ℓ) > 1. Having w′ = w − 1 ensures that
gcd(w,w′) = 1.

3 Implementation Results

We implemented the algorithm in C++ on Intel Xeon 1.80GHz, using
OpenSSL with AESNI support enabled.10 It was compiled using g++
with flags

-O3 -Wall -Wextra -Wno-unused-const-variable -fPIC -DG PLUS PLUS

-falign-functions=32 -DHOT ASSERTS=0

We took an open source implementation of FF1 and FF311 and optimized
it for using AESNI and 128-bit arithmetic for modulo reduction where
the input size allowed.12

Setting up a key and an instance requires generating the Sboxes. We
need some AES computations to generate pseudorandom coins then apply
the Fisher-Yates shuffling algorithm. Using our Sbox generation algorithm
for a = 10, we need 61.8 random coins per Sbox on average. Hence, 124
AES parallel computations for m = 256. Note that our model allows S
to be public, so even though side channel attacks might be considered
against rejection sampling, this should be of no harm.

Setting up a tweak implies generating SEQ by some parallel AES com-
putations. This can nicely exploit the AESNI pipeline architecture which
is 3-4 times faster than the CBC mode of AES which is needed in FF1
and FF3. The SEQ sequence occupies a space of n bytes (with m = 256)
in addition to the ma words of S, thus a total of 2-3KB for a = 10. For
our implementation, we used a tweak of 8 bytes.

Finally, the core encryption needs no further AES computation. Due
to w′ > 1, consecutive encryption branches can be done in parallel, which
speeds up the computation by the compiler. Similarly, w > 1 allows to
run consecutive decryption branches in parallel.

10 We tested other Intel CPUs and obtained comparable results.
11 https://github.com/0NG/Format-Preserving-Encryption
12 Our code is available on

https://github.com/comForte/Format-Preserving-Encryption.
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We report here some implementation results showing a big advantage
for FAST over FF1 and FF3. We plot in Fig. 4 the time for an encryp-
tion/decryption cycle per Za symbol (so it is 1

ℓ of the encryption time) for
FAST, FF1, and FF3. For FAST, we plot both the time when we reset the
tweak or we reuse it (hence with no AES computation). For FF1 or FF3,
changing the tweak or reusing it has no visible difference on the curve
so we did not plot it. Essentially, the figures for FAST are as follows for
Setup1, Setup2, and Enc/Dec:

– AES key setup: 572 cycles. (With 128-bit key K/KS/KSEQ in either
AES-CTR or AES-CMAC.)

– S generation (in PRNG2 based on AES-CTR, after AES key setup):
about 88 cycles for each Sbox to generate for a = 10. (for various a,
this is: 10 : 88, 16 : 137, 32 : 282, 64 : 617, 128 : 1334, 256 : 2831).
This includes the generation of the random coins and the shuffle.

– KSEQ and KS derivation (PRF based on two parallel AES-CMAC, after
AES key setup): ∼ 300 cycles per input block. With 16-byte instance
encoding and 8-byte tweak, we need 7 AES computations in total
(encryption of the zero-block, two CBC encryption of two blocks for
KSEQ, and two AES encryption of a single block for KS); some of them
could be done in parallel.

– SEQ derivation (in PRNG1 based on AES-CTR, after AES key setup):
1.2 to 0.8 cycles for each of the n bytes.

– Core encryption/decryption: 5.7 cycles for each of the n layers, for
a = 10.

For a best case comparison of most typical use cases, we optimized
the open source FF1 implementation (which used big number modular
arithmetic for all input lengths) to use the built-in (unsigned) int128

type provided by GCC as “native 128 bit integers” for this platform for
ℓ ≤ 32. We did not change the implementation for ℓ > 32 and acknowl-
edge that it does not leverage full optimization potential. Therefore, we
should take the ℓ > 32 figures with a grain of salt, but we do have good
performances compared to FF1/FF3 using built-in 128-bit integer arith-
metic for ℓ ≤ 32 and nearly sustain this performance for longer inputs.
(Note that FF3 limits to ℓ ≤ 56 and we abusively let an entry for ℓ = 64.)
We can safely say that FF1 performance per symbol is impacted nega-
tively by the need for using a big integer library where modulo operands
do not fit into 128 bits. The performance breakdown of FF1 for larger
strings is also acknowledged by other researchers.13

13 See https://www.researchgate.net/publication/332088303_Evolution_of_Format_

Preserving_Encryption_on_IoT_Devices_FF1 for instance.
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4 Security Proof

4.1 Security Definitions

We first define our strongest security notion by indistinguishability from
an ideal FPE. It corresponds to the natural notion of tweakable super-
pseudorandom permutation. I.e., the adversary can choose the tweak, a
plaintext, a ciphertext. The adversary can further change the parameters
(in the list F of allowed parameters). For instance, the adversary can
change the format adaptively by keeping the same key.

First, we assume that the interface of the algorithm can be modeled
by

F : K 7→
(
instance1, instance2, tweak 7→ even permutation of Zℓ

a

)
with instance1 = (a,m) and instance2 = (ℓ, n, w,w′) (indeed, we will see in
Section 5 that our permutations of Zℓ

a are always even). We assume a set
F of admissible instances. Given a secret k, Fk maps instance1, instance2,
and tweak to an even permutation Fk(instance1, instance2, tweak) of Zℓ

a.
Hence,

ct = Fk(instance1, instance2, tweak)(pt)

pt = (Fk(instance1, instance2, tweak))
−1 (ct)

Based on this, we propose the security game in Fig. 5. In the Step 1 of
the game, we implicitly mean that the game will define tables of (pt, ct)
pairs for (K, instance1, instance2, tweak) by lazy sampling, when needed in
OTE and OTD. We obtain the following strong security notion.

The INDstrong security definition (as for “Strong INDistinguishabil-
ity”) gives oracle access (through OTE and OTD, as for “Oracle - Target
Encryption/Decryption”) to encryption/decryption with the ith target
function with unknown key Ki. We limit the number of targets to a pa-
rameter τ as discussed below.

Definition 1. We say that the algorithm is (T, τ, q, ε)-INDstrong-secure
if for any INDstrong-adversary A running the INDstrong game with τ
targets, if the average complexity is limited by T , and if the average num-
ber of queries to the oracles is limited by q (we call this a (T, q)-limited
adversary), the advantage is bounded by ε:

AdvINDstrong(A) = Pr[INDstrong1 → 1]− Pr[INDstrong0 → 1] ≤ ε

16



The average complexity is measured when running the game on average
over all random coins (from the game and the adversary). We favor av-
erage number of queries instead of sharp upper bounds on the number of
queries of each type.

Game INDstrongb:
1: pick F following the interface at random:

for each K, instance1 (including a), instance2 (including ℓ), tweak,
FK(instance1, instance2, tweak) is an even permutation of Zℓ

a

2: pick K[1], . . . ,K[τ ] ∈ {0, 1}L at random
3: run AOTE,OTD → z
4: return z

Oracle OTE(i, instance1, instance2, tweak, pt)
5: if (instance1, instance2) ̸∈ F then return ⊥
6: if i ̸∈ {1, . . . , τ} then return ⊥
7: if b = 0 then
8: return FKi

(instance1, instance2, tweak)(pt)
9: else
10: return EncKi

(instance1, instance2, tweak, pt)
11: end if

Oracle OTD(i, instance1, instance2, tweak, ct)
12: if (instance1, instance2) ̸∈ F then return ⊥
13: if i ̸∈ {1, . . . , τ} then return ⊥
14: if b = 0 then
15: return

(
FKi

(instance1, instance2, tweak)
)−1

(ct)
16: else
17: return DecKi

(instance1, instance2, tweak, ct)
18: end if

Fig. 5. General Indistinguishability Game with Access to Ideal F

Our security model is quite powerful as it allows the adversary to
attack one of several target keys and also to mount attacks in which he
can choose the tweak, as well as the instance. Namely, the adversary can
adaptively choose the format (a, ℓ) and parameters (m,n,w,w′) (as long
as they are in an admissible set) and reuse the same keys with multiple
instances. The adversary can further choose the input to the encryption
or the decryption algorithm.

Regarding passive related-key attacks, since our keyK is only used
in a PRF, the security of PRF against passive related-key attacks and the
security of our design in a multi-target model imply the security against
passive related-key attacks. By passive related-key attack, we mean those
in which the adversary launches many targets K[1], . . . ,K[τ ] and expect
some to be related by random selection. We could also address active
related-key attacks in which the adversary can force the creation of a
target in a related manner to another, e.g. the creation of K[1] and K[2]

17



such that K[2] = K[1] + 1. We could prove that if PRF resists to related-
key attacks, then the FPE as well. Unfortunately, the PRF which we use
is based on AES which does not resist to this type of attacks for keys
larger than 128 bits [10]. However, we are not aware of any related-key
attack on our FPE.

On limiting the number of targets. An adversary can always prepare a
dictionary of u keys with the encryption of a fixed plaintext, make a
chosen plaintext attack on τ targets, and spot if any target belongs to
the dictionary [9]. This gives an easy distinguisher with advantage uτ/2L.
The value of τ could in principle reach a value close to q while the value
of u would be proportional to the time complexity T . This type of attack
applies well to AES too. With L = 128, we can take u = τ = 264 and
have a good distinguisher. In practice, it makes sense to assume that the
number of targets is limited to a small number τ . Since we do not want
to enlarge the key length due to this attack but still offer security with
large q, we chose to introduce a low τ parameter.

Meaning of a 128-bit security. We target a “128-bit security” (classical or
quantum). However, the meaning of 128-bit security is often incorrectly
understood as any attack would need at least T = 2128 complexity to
succeed. Attacks are however measured by several metrics such as T , q,
ε, and τ . We could have attacks with a small T and a ridiculously low ε
still 128-bit security.

It is hard to compare two attacks with different advantages. Some-
times, a (T, q, ε)-attack could be amplified into a (kT, kq, kε)-attack (in
which case we could say that the attack needs k = 1

ε to succeed, hence
it has a normalized complexity of T

ε ) but sometimes, the amplification

works as a (kT, kq,
√
kε)-attack (in which case we could say that the at-

tack needs k = 1
ε2

to succeed, hence it has a normalized complexity of
T
ε2
). It could also be the case that no amplification is possible. Hence,

there is no general rule. We could try, as much as possible, to focus on
adversaries achieving a constant advantage such as advantage 1

2 .
Another difficulty is the introduction of the multiple instances, target

keys, and tweaks as mentioned above. Things become easier when the
security notion implies a single key, a single target, and a single tweak.

Hence, by “128-bit security”, we mean “like AES”. We mean that in a
same (q, ε, τ) configuration, we could have an attack against AES with a
T which is lower or equal. If an adversary achieves a constant advantage
with a single target, a single instance, and a single tweak, it must have a
complexity comparable to an exhaustive search on a 128-bit key.
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Indistinguishability to even permutations. Most of existing ciphers are
even permutations. A random even permutation over a domain of sizeN is
perfectly indistinguishable from a random permutation when the number
of available input/output pairs does not reach N − 1. Block ciphers are
defined over domains with large N so this is not a problem. In FPE, N
can be very small and the parity may leak. Hence, we preferred to make
sure that our FPE are even permutations and to adopt as a security model
the indistinguishability to a random even permutation. In Section 5, we
prove that our FPE with the selected parameters is even.

Known pool security. Our construction is based on a pool S of Sboxes.
We can enrich the security notion to capture attacks in which the adver-
sary learns S: a “known S attack”.14 There are several motivations for
considering known S attacks:

– In tokenization mode, S is fixed once for all and the secret is only de-
termining SEQ. We could imagine that by time, the pool S eventually
leaks.

– Some (side-channel) attacks may uncover some Sboxes.

– Security in this model with single target and single instance offers
some nice security reductions from strong security.

Hence, it is relevant to wonder if some attacks could exploit having the
pool S as prior knowledge and with a random S and SEQ instead of a
pseudorandom one. We enrich our security game as in Fig. 6. This is
the INDKSsprp game (as for “Known-S Super-Pseudorandom Permuta-
tion”), working with the OE and OD oracles (as for “Oracle - Encryp-
tion/Decryption”) and OT1 and OT2 oracles to set up the target param-
eters.

Definition 2. We say that the algorithm is (T, q, ε)-INDKSsprp-secure
if for any (T, q)-limited INDKSsprp-adversary A running the INDKSsprp
game, the advantage is bounded by ε:

AdvINDKSsprp(A) = Pr[INDKSsprp1 → 1]− Pr[INDKSsprp0 → 1] ≤ ε

We could also consider revealing KS with the same arguments. We
would then have to set S generated by PRNG2 on a random KS in the
game. One advantage is that we would no longer need a specific security

14 A “chosen S attack” leads to trivial attacks. For instance, the adversary could pick all
Sboxes equal, or all Sboxes linear (over Za). Therefore, we do not consider chosen-S
models.
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Game INDKSsprpb:
1: run AOE,OD,OT1,OT2 → z
2: return z

Oracle OT1(instance1)
3: if S defined then return ⊥
4: (a,m)← instance1
5: pick S0, . . . , Sm−1 random permutations

of Za

6: S ← (S0, . . . , Sm−1)
7: return S

Oracle OT2(instance2)
8: if SEQ defined then return ⊥
9: if S undefined then return ⊥
10: if (instance1, instance2) ̸∈ F then return
⊥

11: (ℓ, n, w,w′)← instance2
12: pick a random even permutation F of Zℓ

a
13: pick random SEQ ∈ {0, . . . ,m− 1}n
14: return

Oracle OE(pt)
15: if S or SEQ undefined then return ⊥
16: if b = 0 then
17: return F (pt)
18: else
19: return CEncS [SEQ](pt)
20: end if

Oracle OD(ct)
21: if S or SEQ undefined then return ⊥
22: if b = 0 then
23: return F−1(ct)
24: else
25: return CDecS [SEQ](ct)
26: end if

Fig. 6. Single-Target/Instance/Tweak Known S Indistinguishability Game

for PRNG2 (it would be integrated in INDKSsprp with the above modifi-
cation) and we could “compress” the storage of S by KS if needed.

We finally define the one-time PRNG security and PRF security of our
algorithms by the games in Fig. 7 and Fig. 8.

Definition 3. We say that the algorithm is (T, ε)-INDPRNG1-secure if
for any T -limited INDPRNG1-adversary A running the INDPRNG1 game,
the advantage is bounded by ε:

AdvINDPRNG1(A) = Pr[INDPRNG1
1 → 1]− Pr[INDPRNG0

1 → 1] ≤ ε

We similarly define INDPRNG2-security. We similarly say that PRF is
(T, q, ε)-PRF-secure if for any (T, q)-limited PRF-adversary A running
the PRF game, the advantage is bounded by ε.

We can now formally reduce the strong security INDstrong to the weak
security INDKSsprp. The next step will be to heuristically assess the weak
security of our construction.

Theorem 4. There exists a (small) constant c such that for any s, T ,
q, and any (T, τ, q)-limited INDstrong-adversary A, there exist q′ ≤ q,
a (T + qc, q′)-limited INDKSsprp-adversary A′, a (T, q + 1)-limited PRF-
adversary B, a (T + qc)-limited INDPRNG1-adversary C and a (T + qc)-
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Game INDPRNGb
1:

1: run AOG → z
2: return z

Oracle OG(m,n)
3: if SEQ defined then return ⊥
4: if b = 0 then
5: pick random SEQ ∈ {0, . . . ,m− 1}n
6: else
7: pick KSEQ ∈ {0, 1}L1 at random
8: SEQ← PRNG1,m,n(KSEQ)
9: end if
10: return SEQ

Game INDPRNGb
2:

11: run AOG → z
12: return z

Oracle OG(a,m)
13: if S defined then return ⊥
14: if b = 0 then
15: pick S0, . . . , Sm−1, random Za per-

mutations
16: S ← (S0, . . . , Sm−1)
17: else
18: pick KS ∈ {0, 1}L2 at random
19: S ← PRNG2,a,m(KS)
20: end if
21: return S

Fig. 7. Indistinguishability Game for PRNG

Game PRFb:
1: pick a random function F with same

input/output domain as PRF
2: pick K at random
3: run AOF → z
4: return z

Oracle OF(x)
5: if b = 0 then
6: return F (x)
7: else
8: return PRFK(x)
9: end if

Fig. 8. Indistinguishability Game for PRF
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limited INDPRNG2-adversary D such that

AdvINDstrong(A) ≤ q ·
AdvINDKSsprp(A′)

q′
+ τ · AdvPRF(B) +

q · (AdvINDPRNG1(C) + AdvINDPRNG2(D)) +
τ2

2
· 2−L

In general, τ is limited by what is allowed in the implementation. The
proof is provided in the full version [17].

Given that AdvINDKSsprp(A′), AdvINDPRNG1(C), or AdvINDPRNG2(D) can
easily be as large as T ·q′ ·m−n, T ·2−L1 , or T ·2−L2 respectively (by doing
an exhaustive search on a list limited to T ), it is crucial that n log2m and
L1 are both larger than 2s. This will match the criteria (2) and (12) in
Section 5. Similarly, AdvPRF(B) can be as large as T · 2−L + q2 · 2−λ, with
λ being the output length of the PRFλ. By plugging all these values we
obtain the upper bound q · T ·

(
m−n + 2−L1 + 2−L2

)
+ τ · (T · 2−L + q2 ·

2−λ)+ τ2

2 · 2
−L for AdvINDstrong(A). Given that L = s and n log2m ≈ λ =

L1 = L2 = 2s, this is 3q · T · 2−2s + τ · (T · 2−s + q2 · 2−2s) + τ2

2 · 2
−s.

The first term is fine. The other terms account for a normal degradation
of the security by a factor τ in a multi-target setting. For instance, with
the extreme case q ≈ T , we need T ≈ 1

τ 2
s to reach a constant advantage.

The proof of Th. 4 follows several reduction steps as follows.

– Γ 0
b (A): We start with an INDstrong game.

– Γ 1
j (A): Reduce to a game with independent Fi instead of FK[i]. (Cost

is τ2

2 2
−L due to possible collisions on K[i].)

– Γ 2
b (Aj): Reduce to single target K. (Cost is a factor τ using an ad-

versary for each target.)

– Γ 3
b (Aj): Replace PRF by a random function. (Cost is AdvPRF.)

– Γ 4
b (Aj): Reduce to known S. (No cost.)

– Γ 5
j′(Aj) — Γ 6

b (Aj,j′): Reduce to single instance1 with hybrid games
and single adversary, then several adversaries playing a unique single-
instance game.

– Γ 7
j′′(Aj,j′) — Γ 8

b (Aj,j′,j′′): Reduce to single (instance2, tweak) with the
same method.

– Γ 9
b (Aj,j′,j′′): Replace PRNG1 by a truly random function. (Cost is

AdvINDPRNG1 .)

– INDKSsprpb(Aj,j′,j′′): Replace PRNG2 by a truly random function.
(Cost is AdvINDPRNG2 .)

– INDKSsprpb(A′): We obtain an INDKSsprp game.
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We use a trick to cumulate all hybrids which results in only a factor q.
Namely, we take the hybrid with maximal Adv

q′ and we upper bound the
advantage of hybrids by their number of queries times this ratio. Summing
them all results in q · Advq′ .

5 Rationales

On the choice of w′. The ℓ = 2 is a special case where we shall use w = 0
and w′ = 1. For ℓ > 2, we use w = b

√
ℓe and we wonder how to select w′.

We clearly need w′ > 0. Furthermore, it is required that w < ℓ − w′

to avoid changes in branch orders. Without loss of generality, we assume
w′ ≤ w (with the exception of ℓ = 2 for which w = 0). The previous
design was using w′ = 1. However, it may be nice for performances to
have w′ of same order of magnitude as w.

There is an easy attack when d ≥ 2, with d = gcd(w,w′, ℓ): if two
plaintexts pt and pt′ have a difference of form pt′ − pt = (?0d−1)ℓ/d, this
property is preserved after d layers. Hence, we have a distinguisher with
advantage close to 1 and any number of layers. To avoid this problem, we
adopt w′ = max(1, w − 1) which guaranties that gcd(w,w′) = 1 so d = 1
as well.

Parity of CEnc. We prove that the parity of encryption only depends on
the parameters a, ℓ, and n. Hence, it does not leak.

Lemma 5. For every y in a domain of size A, we consider a permutation
Py. The (x, y) 7→ (Py(x), y) is a permutation with parity equal to the sum
of the parities of every Py.

Proof. For y fixed, the permutation restricts to a permutation with same
cycle structure as Py. Hence, the permutation is a composition of permu-
tations with same cycle structure as Py, for every y. ut

Lemma 6. The (x, y) 7→ (x + y, y) permutation over Z2
a is even when

a is odd and has the parity of a
2 when a is even. The same holds for

(x, y) 7→ (x− y, y).

Proof. We let Py(x) = x + y mod a and we apply Lemma 5. Py is the
composition of a

k cycles of length k, where k is the order of y in Za. The
parity of Py is the parity of a

k (k − 1).
For y = 0, Py is even.
For a odd, we notice that for y 6= 0, Py and P−y have the same parity

hence cancel each other. Hence, the permutation is even when a is odd.
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For a even, the same observation holds for y ∈ {1, . . . , a2 − 1}. Hence,
the parity is the same as the parity of Pa/2. We have k = 2 for Pa/2, thus
its parity is the one of a

2 . ut

Lemma 7. The parity of CEncS [i0, . . . , in−1] is as follows:

– for a mod 4 6= 3, it is even;

– for a mod 4 = 3, it is the parity of n(ℓ− 1).

(For this, we assume that ℓ = 2 implies w = 0.)

Since n is a multiple of ℓ, n(ℓ−1) is always even. Hence, the permutation
CEncS [i0, . . . , in−1] is always even.

Proof. The encryption is the composition of permutations of n layers
using Si0 , . . . , Sin−1 . The layer using an Sbox σ is the composition of

P1 the permutation (x0, . . . , xℓ−1) 7→ (x0 + xℓ−1, x1, . . . , xℓ−1),

P1′ the permutation (x0, . . . , xℓ−1) 7→ (x0 − xw, x1, . . . , xℓ−1),

P2 the permutation (x0, . . . , xℓ−1) 7→ (σ(x0), x1, . . . , xℓ−1) (used twice),

P3 the permutation (x0, . . . , xℓ−1) 7→ (x1, . . . , xℓ−1, x0).

By writing P (x0, xℓ−1) = (x0 + xℓ−1, xℓ−1), for ℓ > 2, P1 has the form of
the permutation of Lemma 5 with y in a domain of size A = aℓ−2 and
all Py set to P , so the parity of P1 is aℓ−2 times the parity of P , which
is the same as a times the parity of P . For ℓ = 2, the permutation P1 is
P so has the same parity. By using Lemma 6, we obtain the parity of P .
Therefore, the parity of P1 is

– (a even and ℓ > 2) even,

– (a even and ℓ = 2) the parity of a
2 ,

– (a odd) even.

The same holds for P1′.

The second permutation P2 has the form of the permutation given
in Lemma 5 with a fixed permutation P = σ with y in a domain of size
A = aℓ−1. We obtain that the parity of P2 is the same as a times the
parity of σ. Therefore, the parity of P2 is

– (a even and ℓ > 2) even,

– (a even and ℓ = 2) even,

– (a odd) the parity of σ.
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However, P2 is used twice so its parity has no impact.
The third permutation P3 is the composition of ℓ − 1 permutations

of form (x0, . . . xℓ−1) 7→ (x0, . . . , xi−1, xi+1, xi, xi+2, . . . , xℓ−1) exchanging
the coordinates of index i and i+ 1. Those permutations can be written
as in Lemma 5 for ℓ > 2 with P (xi, xi+1) = (xi+1, xi). This permutation

has a fixed points and a2−a
2 cycles of length two. Hence, it has the same

parity as a2−a
2 . For ℓ > 2, we deduce that the parity of P3 is the parity

of (ℓ − 1)aa2−a
2 . For ℓ = 2, the parity of P3 is the parity of (ℓ − 1)a

2−a
2 .

Therefore, the parity of P3 is

– (a even and ℓ > 2) even,

– (a even and ℓ = 2) the parity of a2−a
2 ,

– (a odd) the parity of (ℓ− 1)a
2−a
2 .

We sum the parities over the n layers and obtain the result. In the a
even and ℓ > 2 case, everything is even. In the a even and ℓ = 2 case,
we first observe that w = 0 so P1′ is unused. Then, we observe that the
parity of a

2 +
a2−a
2 is always even. In the a odd case, we observe that a2−a

2
is even if and only if a mod 4 = 1. ut

Slide attack on previous SEQ scheme. A previous version of our construc-
tion was using SEQ with a sequence derived from a periodic repetition (or
modified repetition) of an AES-generated sequence. This made the entire
encryption process being a self-iteration on a simpler function, which is
subject to a devastating slide attack. In our construction, SEQ is a ran-
dom sequence of indices and the probability that it becomes periodic is
negligible. So, the slide attack is defeated.

Best known attacks. We investigated several attack methods which we
list here together with the requirement that security implies. They are
detailed in the full version [17].

– Linear collapse. With too small parameters, there are chances that
the encryption becomes linear over Za.

min(m,n) >
s

log2(a− 1)!− log2 φ(a)
(1)

– Known Sbox pool dictionary attack. With not enough layers, a partial
dictionary attack can work.

n >
2s

log2m
(2)
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– Chosen ciphertext distinguisher with w = 0 and w′ = 1.

n > ℓ(ℓ− 1) +
s

log2min(m, a
√
a)

if w = 0 and w′ = 1 (3)

– Chosen plaintext distinguisher with w > 1 and w and w′ coprime.

n > (w′ + 1)(ℓ− w′) +
s− 1 + 2 log2 a

log2min(m, a!)
if w > 1 (4)

– Chosen ciphertext distinguisher with w > 1 and w and w′ coprime.

n > (w + 1)(ℓ− w) +
s− 1 + 2 log2 a

log2min(m, a!)
if w > 1 (5)

– Chosen plaintext distinguisher with w + w′ factor of ℓ.

n > (w + w′)
s− 1 + ℓ log2 a

2 log2(a− 1)
(6)

n >
s− 1 + ℓ log2 a

log2min(m, a!)
(7)

– Chosen plaintext distinguisher with w′ factor of ℓ+ 1.

n > w′
s− 1 + (ℓ+ 2) log2 a

log2 a
(8)

n >
s− 1 + (ℓ+ 2) log2 a

log2min(m, a!)
(9)

– Differential and linear attacks. Given a framework which captures
truncated differentials, impossible differentials, regular differentials,
and linear hulls over the algebraic structure of Za, we can derive a
lower bound for n to achieve security.

n >
s
√
ℓ

ln(a− 1)
(10)

– Fixed point attacks. It may happen that all selected Sboxes have 0 as
a fixed point, which would lead to a trivial attack.

n >
s

log2 a
(11)

– Collision attacks. Trying many tweak until there is a collision on KSEQ

leads to a trivial distinguishing attack. Hence, the bitlength of KSEQ

must be at least 2s.
L1 ≥ 2s (12)
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Choice of parameters. The generic attacks have clearly shown that w
should be around

√
ℓ but lower bounded by ℓ− 2. As for the selection of

n, we looked at all obtained requirements. For each a and ℓ, we computed
the suggested w and the maximal requirement. Table 2 represents the
minimal value for n with a subscript set to the equation number of the
critical requirement. We set s = 128. For instance, a = 10 and ℓ = 6
(encryption of 6 decimal digits) has entry 14310 which means that we need
n ≥ 143 layers (24 rounds) which is critical for Eq (10), the differential
and linear attacks. We suggest 48 rounds which gives a good security
margin.

Table 2. Minimal Number n of Layers Following Criteria with Reference to the Critical
One

ℓ: 2 3 4 5 6 7 8 9 10 12 16 32 50 64 100

a = 4 16510 20210 23410 26110 28610 30910 33010 35010 36910 40410 46710 6636 9316 12076 19606
a = 5 13110 16010 18510 20710 22710 24510 26210 27710 29210 32010 37010 5546 7916 10346 17076
a = 6 11310 13810 16010 17810 19510 21110 22510 23910 25210 27610 31910 4976 7186 9456 15786
a = 7 10210 12410 14310 16010 17510 19010 20310 21510 22610 24810 28610 4626 6736 8906 14996
a = 8 9410 11410 13210 14810 16210 17510 18710 19810 20910 22810 26410 4376 6426 8536 14456
a = 9 8810 10710 12410 13810 15110 16310 17510 18510 19510 21410 24710 4196 6196 8256 14066
a = 10 8310 10110 11710 13110 14310 15510 16510 17510 18510 20210 23410 4056 6026 8046 13776
a = 11 7910 9710 11210 12510 13710 14810 15810 16710 17610 19310 22310 3946 5876 7876 13536
a = 12 7610 9310 10710 12010 13110 14210 15110 16110 16910 18510 21410 3856 5766 7736 13346
a = 13 7310 9010 10410 11610 12710 13710 14610 15510 16310 17910 20710 3776 5666 7626 13186
a = 14 7110 8710 10010 11210 12310 13310 14210 15010 15810 17310 20010 3706 5586 7526 13046
a = 15 6910 8510 9810 10910 11910 12910 13810 14610 15410 16910 19510 3656 5516 7436 12926
a = 16 6710 8210 9510 10610 11610 12610 13410 14210 15010 16410 19010 3596 5456 7366 12826
a = 100 4010 4910 5610 6310 6910 7410 7910 8410 8910 9710 1246 2826 4516 6256 11356
a = 128 3810 4610 5310 6010 6510 7010 7510 8010 8410 9210 1206 2776 4446 6186 11256
a = 256 3310 4110 4710 5210 5710 6210 6610 7010 7410 8110 1126 2646 4296 6006 11026
a = 1000 322 3310 3810 4210 4610 506 5310 5610 5910 6510 1016 2476 4086 5766 10726
a = 1024 322 322 3710 4210 4610 506 5310 5610 5910 6410 1016 2466 4086 5766 10716
a = 10 000 322 322 322 322 3510 426 446 476 496 565 906 2296 3886 5526 10416
a = 65 536 322 322 322 322 322 386 405 445 485 565 846 2206 3776 5406 10266

As we can see, low ℓ values have Eq. (10) (differential cryptanalysis)
as critical while high ℓ have one of the generic attacks as critical. Large ℓ
values have Eq. (6) (differential chosen plaintext attack) as best attack.
We can also see that Eq. (2) (Dictionary Attack) appears for low ℓ and

large a. Actually, our lower bounds asymptotically give n = Ω(sℓ
1
2 + ℓ

3
2 )

when s and ℓ grow to infinity. To select n, we doubled the requirement
for a safety margin and we took the smallest acceptable multiple of ℓ by
using Eq. (2), Eq. (10), and Eq. (6).

27



6 Conclusion

We constructed a flexible truly-SPN FPE. We proved that it is competi-
tive in terms of both throughput and security, even when the encryption
domain is very small. We encourage researchers to analyze the security.
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