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Abstract. Selective opening attacks (SOA) (for public-key encryption,
PKE) concern such a multi-user scenario, where an adversary adaptively
corrupts some fraction of the users to break into a subset of honestly
created ciphertexts, and tries to learn the information on the messages
of some unopened (but potentially related) ciphertexts. Until now, the
notion of selective opening attacks is only considered in two settings:
sender selective opening (SSO), where part of senders are corrupted and
messages together with randomness for encryption are revealed; and re-
ceiver selective opening (RSO), where part of receivers are corrupted and
messages together with secret keys for decryption are revealed.

In this paper, we consider a more natural and general setting for selective
opening security. In the setting, the adversary may adaptively corrupt
part of senders and receivers simultaneously, and get the plaintext mes-
sages together with internal randomness for encryption and secret keys
for decryption, while it is hoped that messages of uncorrupted parties
remain protected. We denote it as Bi-SO security since it is reminiscent
of Bi-Deniability for PKE.

We first formalize the requirement of Bi-SO security by the simulation-
based (SIM) style, and prove that some practical PKE schemes achieve
SIM-Bi-SO-CCA security in the random oracle model. Then, we suggest
a weak model of Bi-SO security, denoted as SIM-wBi-SO-CCA security,
and argue that it is still meaningful and useful. We propose a generic
construction of PKE schemes that achieve SIM-wBi-SO-CCA security in
the standard model and instantiate them from various standard assump-
tions. Our generic construction is built on a newly presented primitive,
namely, universal, hash proof system with key equivocability, which may
be of independent interest.
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1 Introduction

Public key encryption (PKE) is a fundamental tool to protect messages
sent over a public channel. Usually, a PKE scheme is used in an open
system with multi-users. The system contains multiple, say n, users, each
with a public key/secret key pair, i.e., there are n public keys in the
system. Anyone (even not registered in the system) can send messages
over the public channel to a user securely via encrypting the message
under the user’s public key. Thus, each public key will be used for multiple,
say k, times during the lifetime of the system.

Selective Opening Attacks. Currently, the standard security for P-
KE schemes is the so-called “Chosen-ciphertext attack (CCA) security”,
which allows the attacker to learn the decryption of its selected cipher-
texts. Generally, PKE schemes are designed to guarantee security of all
messages in the system against a CCA attacker under the assumption
that internal status of all users are properly protected. This assumption,
however, will be challenged in some real-world scenarios:

— The attacker may corrupt the senders and learn their messages and
the encryption randomness.

— The attacker may corrupt the receivers and learn their secret keys.
With the receivers’ secret keys, the attacker is able to decrypt all
ciphertexts sent to the receivers and obtain the messages.

While it is hopeless to protect those opened messages, one natural ques-
tion is whether the unopened messages are still well protected. The above
attacks are called selective opening attacks. Surprisingly, it is proved that
standard security notion (i.e., CCA security) is not able to guarantee se-
curity against selective opening attacks (SO security) [2, 18,17].

The notion of SO security for PKE was firstly formalized by Bellare
et al. [3] at EUROCRYPT 2009. To date, two settings have been con-
sidered for SO security: sender corruption [3] and receiver corruption [2].
In the sender corruption setting, part of senders are corrupted, with the
corruption exposing their coins and messages. In the receiver corruption
setting, part of receivers are corrupted, with corruption exposing their se-
cret keys and messages. We denote SO security in the sender-corruption
setting and in the receiver-corruption setting by SSO security and RSO
security, respectively.

Furthermore, for each setting, there are two types of definitions for
SO security: indistinguishability-based (IND) SO security and simulation-
based (SIM) SO security. IND-SO security requires that no efficient ad-



versary can distinguish the uncorrupted users’ ciphertexts from the en-
cryption of fresh messages, which are sampled according to a conditional
probability distribution (conditioned on the opened ciphertexts, which
means the ciphertexts of the corrupted parties). In other words, IND-
SO security requires that the considered message distributions should be
efficiently conditionally re-samplable [3]. SIM-SO security requires that
anything, which can be computed efficiently from the ciphertexts, the
opened messages as well as the corrupted information, can also be com-
puted efficiently only with the opened messages. SIM-SO security imposes
no limitation on the message distributions.

Motivations. Previous works on SIM-SO-CCA secure PKE schemes on-
ly provide either sender selective opening security [3,9, 16, 20, 26, 14, 25,
27,21], or receiver selective opening security [2, 12,23, 19,11, 32]. Howev-
er, it is rarely possible to predict whether the attacker will corrupt the
senders or the receivers beforehand in practice. Moreover, most of the
previous works about RSO security only focused on the single-challenge
setting, i.e., each public key can only be used once to produce a single
ciphertext. This is very unrealistic in practice.?

Based on the above facts, the following question is raised naturally:
How to define security models to capture the practical requirements of
selective opening security in the multi-user scenario, and provide secure
PKE schemes in the new models?

Our Contributions. In this paper, for a multi-user system with multi-
ple public keys where each public key will be used multiple times, we give
a new security definition of SO security, denoted as SIM-Bi-SO-CCA se-
curity. In the security model, the adversary may adaptively corrupt some
fraction of senders and receivers simultaneously, and get the plaintex-
t messages together with internal randomness for encryption and secret
keys for decryption, while it is hoped that messages of uncorrupted par-
ties remain protected. (The definition is reminiscent of Bi-Deniability [29]
for PKE.) We prove that some practical PKE schemes achieve SIM-Bi-
SO-CCA security in the random oracle model.

Then, we suggest a weak model of SIM-Bi-SO-CCA security, denoted
as SIM-wBi-SOy-CCA security (k € N), where (i) the adversary has to
specify whether it is going to corrupt the senders or the receivers after
receiving the public keys and before seeing the challenge ciphertexts, and

4 Very recently, Yang et al. [32] formalized the notion of RSO security in the multi-
challenge setting. But their work only considers the receiver corruption setting.



(ii) if the adversary chooses to corrupt some fraction of the receivers, it
is just allowed to corrupt the receivers whose public keys are employed
for encryption at most k times. We stress that the weak model is still
meaningful and useful because it provides the original SIM-SSO-CCA se-
curity and SIM-RSO-CCA security simultaneously. Furthermore, we show
that SIM-wBi-SOg-CCA security is strictly stronger than SIM-SSO-CCA
security and SIM-RSO-CCA security. We also stress that the recently
proposed SIM-RSO;-CCA security notion [32] is a special case of our
SIM-wBi-SOx-CCA security.

Finally, we propose a generic construction of PKE that achieves SIM-
wBi-SOg-CCA security in the standard model and instantiate it from
various standard assumptions. Our generic construction is built on a new
variant of hash proof system (HPS), which should additionally satisfy the
universali; property and key equivocability. The technical overview of
the generic construction is given in Sec. 4.1. We also explore the existence
of universalgy; HPS with key equivocability and provide instantiations
from either the DDH assumption or the DCR assumption.

Related works. Since proposed by Bellare et al. in [3], selective opening
secure PKE has been extensively studied.

For SSO security, Bellare et al. in [3] firstly showed that any lossy
encryption is IND-SSO-CPA secure. IND-SSO-CCA secure PKE schemes
were constructed from All-But-N lossy trapdoor functions [13] or All-
But-Many lossy trapdoor functions [16, 25,5, 21]. If this lossy encryption
has an efficient opener, then the resulting PKE scheme can be proven to
be SIM-SSO-CCA secure as shown in [3]. Fehr et al. [9] showed an ap-
proach, employing extended hash proof system and cross-authentication
code (XAC), to build SIM-SSO-CCA secure PKE schemes. As pointed out
in [20], a stronger property of XAC is needed to make the proof rigorous.
Following this line of research, a generic construction of SIM-SSO-CCA
seucre PKE, from a special kind of key encapsulation mechanism (KEM)
and a strengthened XAC, was proposed in [26] and then extended to
achieve tight security in [27]. As showed in [14, 15], some practical PKE
constructions also enjoy SIM-SSO-CCA security.

For RSO security, Hazay et al. [12] showed that SIM-RSO-CPA secure
PKE can be built from non-committing encryption for receiver (NCER)
[6], and IND-RSO-CPA secure PKE can be built from a tweaked variant
of NCER. IND-RSO-CCA secure PKE schemes were proposed in [23].
SIM-RSO-CCA secure PKE was constructed using indistinguishability
obfuscation (i0) in [22], and constructed based on standard computa-



tional assumptions in [11,19]. Recently, Yang et al. [32] formalized the
notion of multi-challenge RSO security (RSOy, security), proved that SIM-
RSO security is not enough to guarantee SIM-RSOy, security (k > 1), and
showed SIM-RSO-CPA/CCA secure PKE constructions.

Roadmap. In the rest part of this work, we give some preliminaries in
Sec. 2. We introduce the formal definitions for SIM-Bi-SO-CCA security
and SIM-wBi-SOx-CCA security (k € N), and show that SIM-wBi-SOg-
CCA security is strictly stronger than SIM-SSO-CCA and SIM-RSO-CCA
security in Sec. 3. Next, we introduce the main building block, namely,
universal, HPS with key equivocability, and present a generic construc-
tion of PKE scheme that achieves SIM-wBi-SOy-CCA security in the
standard model in Sec. 4. Finally, we show that some practical PKE
schemes achieve SIM-Bi-SO-CCA security in the random oracle model,
in Sec. 5.

2 Preliminaries

Notations. Throughout this paper, let A € N denote the security pa-
rameter. For n € N, let [n] denote the set {1,2,---,n}. For a finite set S,
we use |S| to denote the size of S; we use s <— S to denote the process of
sampling s uniformly from S. For a distribution Dist, z < Dist denotes
the process of sampling x from Dist.

We use boldface to denote vectors, e.g., x. We use x[i] to denote the
i-th component of x.

For a probabilistic algorithm A, let R 4 denote the randomness space
of A. We let y < A(x;r) denote the process of running .4 on input = and
inner randomness r € R 4 and outputting y. We write y < A(z) for y +
A(z;r) with uniformly chosen r € R 4. We write PPT for probabilistic
polynomial-time. For a function f()\), we write that f(\) < negl()\) if it
is negligible.

For two distributions Dist; and Disty, the statistical distance between
Dist; and Disty is defined as

A(Disty, Disty) := %Z\ Pr [X;i=z]—- Pr [Xo=2z].

X1+ Disty X2+ Distg

We say that Dist; and Disty are statistically indistinguishable (denoted
by Dist; ~ Dists), if A(Disty, Disty) is negligible.



Collision-resistant hash. We recall the definition of collision-resistant
hash function here.

Definition 1. (Collision-resistant hash function). A family of collision-
resistant hash function H, with domain Dom and range Rge, is a family

of functions having the following property: for any PPT algorithm A, its
advantage Adv%f{A()\) = Pr[H « H;(z,2') + AH) : 2 # 2/ AH(z) =
H(z')] is negligible.

Efficiently samplable and explainable domain. In this paper, some
of the domains are required to be efficiently samplable and explainable
[9]. We recall its definition as follows.

Definition 2. (Efficiently samplable and explainable domain). We
say that a domain Dom is efficiently samplable and explainable, if there
are two PPT algorithms (Sample, Explain):

— Sample(Dom;7): On input a domain Dom with uniformly sampled r <
Rsample; Sample outputs an element which is uniformly distributed
over Dom.

— Explain(Dom, z): On input Dom and x € Dom, Explain outputs r which
is uniformly distributed over the set {r € Rsample | Sample(Dom;r) =

This notion can be relaxed by allowing a negligibly small error probabil-
ity (which includes that sampling algorithms may produce near-uniform
output).

Cross-authentication code. The notion of /-cross-authentication code
(XAC) was proposed by Fehr et al. [9], and later adapted to strong and
semi-unique XAC in [24].

Definition 3. (/-Cross-authentication code). For ¢ € N, an {-cross-
authentication code (£-XAC) XAC, associated with a key space XK and
a tag space X7, consists of three PPT algorithms (XGen, XAuth, XVer).
Algorithm XGen(1?) generates a uniformly random key K € XK, deter-
ministic algorithm XAuth(K7y,--- , Ky) produces a tag T' € X'T, and de-
terministic algorithm XVer(K,T') outputs b € {0, 1}. The following prop-
erties are required:

e Correctness: For all i € [{], failxac(\) := Pr[XVer(K;, XAuth(K7,
, K;y)) # 1] is negligible, where K1, --, K, < XGen(1") in the
probability.



e Security against impersonation and substitution attacks: Advg\/{g

and AdvisS()) as defined below are both negligible: Advitab(A) :=

max Pr[K < XGen(1}) : XVer(K,T') = 1], where the max is over all

i€l and T € XT, and

K; + XGen(1%)

T TN\
SUB — — L) . .
Adviac(V) 1= max, Pr ;/—X}é?}:((KJ)Jem)-XVer(Ki’T,)_1 ,

where the max is over all i € [¢], all K4; == (K;); € XK' and all
possibly randomized functions F : XT — XT.

Definition 4. (Strong and semi-unique (-XAC). For ¢ € N, we say
that an £-XAC XAC is strong and semi-unique, if it has the following two
properties:

e Strongness: There is a PPT algorithm ReSamp, which takes i €
[(], K4 and T as input (where Ki,---,K; < XGen(1*) and T =
XAuth((Kj)jciq)) and outputs K7, such that K; and K; are statisti-
cally indistinguishable, i.e.,

SEDFREN (\) = A(K], K,)

LS Pl = KI(K 4, T)]  PrlK = K| (KT
KeXK

is negligible, where the probabilities are taken over K; «+ XGen(1*),
conditioned on (K;,T'), and the randomness of ReSamp.

e Semi-uniqueness: The key space XK can be written as g x K.
Given a tag T € XT and K, € K,, there is at most one K} € K such
that XVer((K,, K3),T) = 1.

3 Bi-SO Security for PKE

Previous security notions of SOA for PKE only consider either sender
corruption setting or receiver corruption setting. We consider a more
natural and general setting for selective opening security. In the setting,
the adversary may adaptively corrupt part of senders and receivers si-
multaneously. We denote it as Bi-SO security since it is reminiscent of
Bi-Deniability [29] for PKE.

For a multi-user system with multiple public keys where each public
key will be used many times, we firstly give the most natural security
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notion of Bi-SO security, denoted as SIM-Bi-SO-CCA security. Then, we
suggest a weak model of SIM-Bi-SO-CCA security, denoted as SIM-wBi-
SOx-CCA security (k € N). The weak model is still meaningful and useful
because it provides the original SIM-SSO-CCA security and SIM-RSO-
CCA security simultaneously. Finally, for completeness, we show that
SIM-wBi-SO-CCA security is strictly stronger than SIM-SSO-CCA and
SIM-RSO-CCA security.

3.1 Security Definitions

Simulation-based Bi-SO security. In the Bi-SO setting, some of the
senders and some of the receivers may be corrupted simultaneously, and
each public key may be used to encrypt multiple messages. The formal
definition is as follows.

Definition 5. (SIM-Bi-SO-CCA). We say that a PKE scheme PKE =
(Setup, Gen, Enc, Dec)® is SIM-Bi-SO-CCA secure, if for any PPT adver-
sary A, there exists a PPT simulator S, such that for any PPT distin-
guisher D,

SIM-Bi-SO-CCA i-SO-real
AdVPIKE,E\,S,D (A) = |P1"[D(EXP]§KE,A “N) =1]

~ PrDEpEE% () = 1]

is nmegligible, where both Explgkégfeal()\) and Expg’&%’%‘ideal()\) are defined
mn Fig. 1.

Note that in the real experiment, the total number of public keys
and the times that each public key is used for encryption are completely
determined by the adversary.

Remark 1 One can generalize both SIM-Bi-SO-CCA and SIM-wBi-SOy-
CCA security to a new version that the adversary is allowed to make
multiple selective opening queries adaptively. We stress that all the PKE
constructions presented in this paper also achieve the generalized security.

5 Note that both SIM-Bi-SO-CCA and SIM-wBi-SO;-CCA security capture the se-
curity requirements in a multi-user scenario, where multiple public/secret key pairs
are involved. In this setting, some global information is needed to be generated by
a global algorithm Setup, as done in previous works about multi-user security, such
as [1].
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pp < Setup(1?); n:=0 (M, 51) ¢ SpimttiRec(1A)

C=10; (M,s1)+ AT (pp) M = (mi, - ,m,) + M

M = (mi,--- ,my) < M len := ((Jmj], ‘m:[l]‘7 T |m:“mﬂ]|)l6[7z])

For i =1 to n: (Zs,Ir, s2) < Sa(len, s1)

For 7 =1 to |m,|: out < S3((m;[4]) (i, j)ezs, (Mi)iezy, S2)

ri[j] < R Return (M, M, Zs,Ig,out)
ci[j] « Enc(pki, m;[j]; r:[j])
C:=CcU{(icifj])} SimMkRec():

(Zs,Ir,s2) < A¥((c1,+ ,¢cn), 81)

out = AF((ri[j], milj]) ez, ni=ntl
(ski,m;)iczy, S2) Return L
Return (M, M,Zs,Zg,out)
Dec(i, c):
MkRec(): If (¢ >n) vV ((i,c) € C): return L
n=mn+1; (pkn, skn) < Gen(pp) Return Dec(sk;, c)
Return pk,,

Fig.1 Experiments for defining SIM-Bi-SO-CCA security of PKE. In these two ex-
periments, we require that Zg C {(4,7) | ¢ € [n],j € [|m;]]} and Zg C [n].

Simulation-based weak Bi-SO security. Now we introduce a weak
model of SIM-Bi-SO-CCA security, which we denote as SIM-wBi-SOy-
CCA security (k € N). The differences between these two security models
are that in the real experiment of SIM-wBi-SO;-CCA security: (i) the
adversary has to specify whether it is going to corrupt some fraction of
the senders or the receivers, before seeing the challenge ciphertexts; (ii) if
the adversary chooses to corrupt some fraction of the receivers, it is just
allowed to corrupt the receivers whose public keys are used for encryption
at most k times. The formal definition is as follows.

Definition 6. (SIM-wBi-SO,-CCA). For any k € N, we say that a
PKE scheme PKE = (Setup, Gen, Enc, Dec) is SIM-wBi-SOy-CCA secure,
if for any PPT adversary A, there exists a PPT simulator S, such that
for any PPT distinguisher D,

SIM-wBi-SO4-CCA -SO-
AdVPKE,Vj\,é,D g (A) = \PT[D(EXPIVDVEIE,?JM()\)) =1]

— Pr{D(ExpEREL 4 () = 1]



is negligible, where both Exp‘ﬁ,”,%i_‘fﬁ,jeal(/\) and Exp‘gE‘E'SOkldeal()\) are de-
fined in Fig. 2.

] ExppL Y (V)
pp < Setup(1?); n:=0 (B, M, 51) + SpimiRec(1)
C=0; (B,M,s1)« Af™"(pp) M :=(my,---,m,) + M
M :=(my,-- ,mp) < M len := ((lmi], [mi[1]|,--- , [mi[m]{]|)ie(m))
For i =1 to n: (Z, s2) « Sz2(len, s1)
For 7 =1 to |m,: If 8 =10: Open:= (m;[j])i, ez
r;[j] < R If 8=1: Open:= (m;)iez
ci[j] + Enc(pk;, m;[j];r:[4]) out + S3(Open, s2)
C:=CU{(icij])} Return (8, M, M, Z, out)

(Z,52) < A3*((c1, -+ ,€n), 51)
If 3= 0: Open := (r;[j], m;[j]);,j)ez SimMkRec():
If 8=1: Open := (ski,m;)iez

out < Agec(Open’ 52) n:=n-+1
Return (8, M, M, Z, out) Return L
MkRec(): Dec(i,c):

If (i >n) VvV ((i,¢) €C): return L

n:=n+1; (pkn, skn) < Gen(pp)
Return Dec(sk;, c)

Return pk,,

Fig. 2 Experiments for defining SIM-wBi-SO,-CCA security. Here in both
Expyn iokreal()\) and Exp‘gféﬁ%ideal()\), we require that (i) € {0,1}, and (ii) when
B=0,ZC{(i,j)]i€n],j€[m]]}, and when 8=1,Z C {i € [n] | |m;| < k}.

In both ExpWBl SO 1”eal()\) and ExpWBI SO-ideal(\) we use B = 0 (resp.
g =1) to represent "that adversary A/snnulator S chooses to corrupt
some of the senders (resp. receivers). We stress that in ExpWBI SO real()\),
when A; outputs 8 = 0, the parameter k puts no restrictions on sender
corruptions Z; and when A; outputs 8 = 1, A is allowed to corrupt the
receivers whose public keys are used for encryption at most k times (i.e.,
T cC{i€n]]|m; <k}).

Note that the original SIM-SSO-CCA security [13,9] and SIM-RSO-
CCA security [11, 19] are both special cases of SIM-wBi-SOx-CCA securi-
ty. Specifically, the original SIM-SSO-CCA security is SIM-wBi-SO,-CCA
security when A; always outputs = 0 and queries the MkRec oracle on-
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ly once®, and the original SIM-RSO-CCA security is SIM-wBi-SO,-CCA
security when A; always outputs § =1 and |m;| =--- = |m,| =1 (note
that the latter implicitly suggests £ = 1). Hence, for a SIM-wBi-SO-
CCA secure PKE scheme, it achieves the original SIM-SSO-CCA and
SIM-RSO-CCA (and even SIM-RSOy-CCA) security simultaneously.

Very recently, Yang et al. [32] introduced an enhanced security notion
of RSO, SIM-RSOy-CCA security (k € N), for PKE. We notice that
their SIM-RSO;-CCA security is a special case of SIM-wBi-SO,-CCA
security as well. Specifically, SIM-RSO-CCA security is SIM-wBi-SOy.-
CCA security when A; always outputs § = 1.

3.2 Separation of SIM-wBi-SOg-CCA and SIM-SSO-CCA &
SIM-RSO-CCA

Now we show that SIM-wBi-SO;-CCA security is strictly stronger than
SIM-SSO-CCA security and SIM-RSO-CCA security. Our conclusion is
derived from the fact that SIM-wBi-SOx-CCA security implies SIM-SSO-
CCA and SIM-RSO-CCA security simultaneously, and SIM-SSO-CCA
and SIM-RSO-CCA security do not imply each other. Actually, we have
stronger conclusions:

(1) Supposing that the k-Linear assumption holds (k € N), SIM-SSO-
CCA security does not imply SIM-RSO-CPA security;

(2) Supposing that the DDH or DCR assumption holds, SIM-RSO-CCA
security does not imply SIM-SSO-CPA security.

SIM-SSO-CCA+SIM-RSO-CPA. Bellare et al. [2] introduced the
notion of decryption verifiability for PKE, and showed that assuming the
existence of a family of collision-resistant hash functions, which can be
constructed under the discrete-logarithm assumption [10], any decryption-
verifiable PKE scheme is not SIM-RSO-CPA secure [2, Theorem 5.1]7.
Informally, a PKE scheme PKE = (Setup, Gen, Enc,Dec) is called
decryption-verifiable, if it is infeasible to generate (pk, sko, sk1, ¢, mo, m1)
such that (i) mo # mq, (ii) both sky and sk; are valid secret keys cor-
responding to pk, and (iii) Dec(skog,c) = mg and Dec(ski,c) = my. We

5 The SIM-SSO-CPA security notion presented in [4] allows the adversary to query
the MkRec oracle multiple times.

" Both [2, Theorem 5.1] and [2, Theorem 4.1] only hold in the the auxiliary input model
(i.e., in the experiments defining SIM-RSO-CPA and SIM-SSO-CPA security, both
the adversary and the simulator get an auxiliary input). So do our counterexamples
in this section. These counterexamples may be modified with the technique proposed
in [2, Sec. 6] to drop the auxiliary inputs.

11



note that (i) and (iii) implicitly suggest that skg # ski. In other words,
for any PKE scheme, if each of its public key uniquely determines its
corresponding secret key, then it must be decryption-verifiable.

We notice that the k-Linear-based SIM-SSO-CCA secure PKE scheme
proposed by Liu and Paterson [26] is such a decryption-verifiable P-
KE scheme. Generally, a public key of the x-Linear-based Liu-Paterson
scheme is of the form (g¥, (g“”",g“”"“e,g”ﬁ@)ge[m]), where ¢ is a generator
of a cyclic group G of prime order ¢ and (y, (24, 29, B9)oc|x]) € (Zg)3r+1,
and the corresponding secret key is (v, Bg,ﬂ?;ly)ge[,ﬂ. It’s obvious that
the public key uniquely determines its corresponding secret key. So the
k-Linear-based Liu-Paterson scheme is decryption-verifiable. According
to [2, Theorem 5.1], we conclude that assuming the existence of a fam-
ily of collision-resistant hash functions, the x-Linear-based Liu-Paterson
scheme is not SIM-RSO-CPA secure.

For completeness, we recall the formal definition of decryption veri-
fiability [2] and the k-Linear-based Liu-Paterson scheme [26] in the full
version of this paper.

SIM-RSO-CCA=SIM-SSO-CPA. As pointed out in [2, Theorem
4.1], the DDH-based Cramer-Shoup scheme [7] is not SIM-SSO-CPA se-
cure. On the other hand, Huang et al. [19] and Hara et al. [11] showed
that this PKE scheme (for single-bit message) achieves SIM-RSO-CCA
security. This fact suggests that when the DDH assumption holds, SIM-
RSO-CCA security does not imply SIM-SSO-CPA security. With similar
analysis, this conclusion can be extended to the case that the DCR as-
sumption holds.

4 PKE with SIM-wBi-SO-CCA Security

In this section, we propose a PKE scheme achieving SIM-wBi-SOx-CCA
security. We firstly introduce a new primitive, universal, HPS with key
equivocability for any polynomially bounded function x, and provide con-
crete constructions for it from the DDH assumption and the DCR, assump-
tion respectively. Then, with this new primitive as a building block, we
show our PKE construction and prove that it meets SIM-wBi-SO,-CCA
security in the standard model.

In order to make our idea more understandable, we firstly provide a
technique overview before going into the details.

12



4.1 Technique Overview

In the real experiment of SIM-wBi-SO,-CCA security, the bit 5 is used
to indicate whether the adversary wants to corrupt some fraction of the
senders (8 = 0) or the receivers (f = 1), and the adversary does not
specify the value of 3 until it sees public keys (pk;);c[,) via querying the
oracle MkRec. Hence, to prove SIM-wBi-SO;-CCA security, when 8 = 0,
we need to somehow generate malformed ciphertexts for (pk;);c(,), such
that they can be opened in the sense of SSO (i.e., exposing the messages
and the corresponding randomness to the adversary); and when g = 1,
we need to somehow generate malformed ciphertexts for (pk;);c[n), such
that they can be opened in the sense of RSO (i.e., exposing the messages
and the corresponding secret keys to the adversary).

Our scheme, encrypting ¢-bit messages, is inspired by the works of [9,
20, 24]. The public/secret key pair is ¢ pairs of public and secret keys (i.e.,
(hpky, hsky)yeiq) of a hash proof system (HPS) HPS [8]. Informally, to
encrypt a message m = (my,--- ,my) € {0,1}¢, the encryption algorithm
sets that for each v € [¢],

fm,=0: 2, + &; K, <+ Ky
Ifm,=1: x, <+ L; K, =PubEv(hpk,,x,,wy)
where £L C X and & are both finite sets generated with a hard subset

membership problem, PubEv is the public evaluation algorithm of HPS,
wy is a witness for z, € £, and Ky, is the range of PubEv. Then, we

use a strengthened cross-authentication code (XAC) to “glue” xq,--- ,xp
together, obtaining a XAC tag T'. So the generated ciphertext correspond-
ing to m is ¢ = (x1,--- ,x¢,T). To decrypt a ciphertext ¢ = (x1,--- ,xp,

T), the decryption algorithm firstly computes that (/K = SecEv(hsk,,
T))yef, Where SecEv is the secret evaluation algorithm of HPS, and
then for each v € [¢], sets m., = 1 if and only if T is verified correctly by
K, (via the verification algorithm of XAC).

Now we turn to the security proof. In order to prove SIM-wBi-SOg-
CCA security, we need to construct a PPT simulator S, such that the
ideal experiment and the real experiment are indistinguishable. In partic-
ular, we need to generate some malformed ciphertexts (before seeing the
real messages), such that they are computationally indistinguishable from
the real challenge ciphertexts, and meanwhile can be efficiently opened
according to the value of 5.

If B = 0, we need to generate malformed ciphertexts ¢ = (z1,--- , zy,
T'), and then open them according to the real messages m = (mq,--- ,my),
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by providing random coins which can be used to encrypt the real mes-
sages to recover the malformed ciphertexts. We generate the malformed
ciphertexts with encryptions of £ ones, i.e., for each v € [{], ., <~ L C X
and K., = PubEv(hpk,, z~,wy) C Kgp,. Hence, after generating these mal-
formed ciphertexts, to open a ciphertext, for each v € [f], if the real
message bit m, = 1, the random coin (i.e., w,) employed to generate (z-,
K.) can be returned directly; if m, = 0, return the random coin which
is generated by explaining x,, as a random element sampled from X', and
explaining K, as a random key sampled from g,

Now, we show that a real challenge ciphertext can be substituted
with the malformed ciphertext without changing the adversary’s view
significantly. For v =1 to ¥,

1) We modify the decryption procedure of the decryption oracle, such
that it does not make use of hsk.,. More specifically, for a decryption
query ¢ = (2, ,xp,T"), if L, ¢ L, the decryption oracle directly
sets m, = 0. The statistical properties of HPS and strengthened XAC
guarantee that this modification does not change the adversary’s view
significantly.

2) If m, = 0, the randomly sampled K is replaced with K, = SecEv(hsk,,
x). The perfect universality of HPS guarantees that this change is
imperceptible to the adversary.

3) If my = 0, K, is updated again via the resampling algorithm of
strengthened XAC. The statistical property of strengthened XAC
guarantees that this modification does not change the adversary’s view
significantly.

4) The decryption procedure of the decryption oracle is changed to work
with the original decryption rules. The statistical properties of HPS
and strengthened XAC guarantee that this modification is impercep-
tible to the adversary.

5) If my =0, z, < L instead of uniformly sampling from &". The under-
lying subset membership problem of HPS guarantees that this change
is also imperceptible to the adversary.

Note that these substitutions only consider the situation that a single
public key is used to encrypt a single message. Fortunately, we can extend
it to the situation that there are n public keys (for any n € N), and each
public key is employed to encrypt multiple messages.

If B = 1, we need to generate malformed ciphertexts, and then open
them according to the real messages, by providing valid secret keys which
can be used to decrypt the malformed ciphertexts to obtain the messages.

14



Note that a public key of this scheme is of the form pk = (hpky,---,
hpky), and the corresponding secret key is sk = (hsky,-- - , hsky). Hence,
informally, what we need is to generate a malformed ciphertext without
seeing the message, such that for any message m = (mq,---,my) € {0,
1}¥, we can generate some secret key sk’ = (hsk],--- ,hsk)) satisfying
that (i) sk’ is a valid secret key corresponding to pk (i.e., for all v € [¢],
hsk!, is a valid HPS secret key corresponding to hpk- ); (ii) decrypting the
malformed ciphertext with sk’ will lead to m.

We try to generate such a malformed ciphertext ¢ = (1, , 24, T).
For each v € [{], if x, € £ (with a witness w,), all the HPS secret
keys corresponding to hpk. will lead to the same IN(V = PubEv(hpk, z,
wy) = K,. In other words, for any fixed ciphertext (---,z,---,T), no
matter what the secret key is, the decryption of this ciphertext will lead
to the same m,. So it’s impossible to open the malformed ciphertext
successfully when m, = 1 —m,,. Hence, our malformed ciphertexts focus
on the case ¢ = (x1,- -+ ,x¢,T) that 1, -+ ,z, € X'\ L. On the other hand,
if K is uniformly sampled, it seems unlikely to decrypt the ciphertext to
recover the original message when m, = 1 due to the property of XAC. So
our malformed ciphertexts further focus on the case ¢ = (z1, -, x4, T)
that for all v € [(], x, € X'\ £ and K, = SecEv(hsk,, ).

We stress that in the real experiment of SIM-wBi-SO;-CCA security,
the adversary is just allowed to corrupt the receivers whose public keys
are used for encryption at most k times. So for simplicity, here we only
consider the case that pk = (hpky,--- , hpky) is used to encrypt ezactly
k messages (i.e., m; = (mj1, -+ ,mje) € {0,1}* (j € [k])). More specif-
ically, for each v € [{], hsk, is used k times (note that we use sk to
generate the malformed ciphertexts), generating k ciphertext parts (i.e.,
K, = SecEv(hsk,,x1), -+ , Ky~ = SecEv(hsk,xj)). In other words,
to generate the k£ malformed ciphertexts, for each v € [¢], we need to

(i) compute SecEv(hsk,,x1~),- - ,SecEv(hsky,xy ) for some xq,,---,
xy € X'\ L before seeing the messages;

(ii) generate a HPS secret key hsk’, such that SecEv(hsk.,z; ) = SecEv(hsk,,
Tj) if mj, = 1, and SecEv(hsk,z;,) # SecEv(hsk,,x;) if m;, =
0.

However, there is no algorithm for HPS which can generate two HPS se-
cret keys (i.e. hsk, and hsk’) meeting the above requirements. Therefore,
we introduce the following new property, which we call “key equivocabil-
ity”, of HPS. Informally, we require that there is an efficient algorithm
SampHsk and a trapdoor td, such that for any zq,--- ,z, € X \ L, the
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following two distribution ensembles, Dist§ and Dist}, are statistically in-
distinguishable:

Distlg :={(hsk, Ky, -, K, hpk:)’hsk‘ «— SK; hpk = p(hsk);
Vi e k] :
Kj — ,Csp if m; = 0;
K; = SecEv(hsk,zj) if mj =1}, (1)
Dist? : = {(hsk/, K1, , K, hpk:)|hsk «— SK; hpk = u(hsk);
(Kj = SecEv(hsk:, xj))je[k];
hsk' < SampHsk(hsk, td, {z;} ;i) }(2)

We stress that this property requires that no information about hsk be-
yond hpk is leaked. Similar to the proof of case § = 0, we introduce a
modification to the decryption oracle before employing the key equivo-
cability of HPS in order to make sure that nothing about hsk beyond
hpk is leaked. For any decryption query (f,---,z),T") and any =, if
x'v € X'\ L, the decryption oracle sets m, = 0 directly. However, we note
that in the SIM-wBi-SOg-CCA security model, each public key is used to
encrypt k£ messages. As a result, hsk may be employed k times, i.e., to
compute SecEv(hsk,z1),- - ,SecEv(hsk,zy) for some zy,- -+, x. So the
perfect universality, of HPS [8] is not enough to guarantee that the modi-
fication to the decryption oracle is imperceptible to the adversary. To solve
this problem, we introduce another property, perfect universalityyy1, for
HPS. Roughly speaking, HPS is called perfectly universaly i, if for any
x1, - ,xpy1 € X\ L and any K’ € K, even given (hpk,SecEv(hsk,
x1),- -+ ,SecEv(hsk,xy)), the probability that SecEv(hsk,z 1) = K’ is
ﬁ‘.
| pWith the help of this new variant of HPS, we can use algorithm
SampHsk to open the aforementioned equivocable ciphertexts ¢ = (7,
-, ¢, T) where for each v € [{], x, € X\ £ and K, = SecEv(hsk., z-),
successfully. Now, we show that a real challenge ciphertext can be sub-
stituted with the malformed ciphertext without changing the adversary’s
view significantly. A high-level description of the substitution is presented
as follows.

1) We use the secret keys to generate the challenge ciphertexts, instead
of the public keys. The statistical property of HPS guarantees that
this change is imperceptible to the adversary.

2) All the = (j € [k],y € [¢]) are sampled from X \ £, instead of being
sampled from £ (when m;, = 1). The underlying subset membership
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problem of HPS guarantees that this change is also imperceptible to
the adversary.
3) Note that sk = (hsky,--- , hsky) is employed to encrypt m; = (m; 1,
- ,m;z) € {0,1} (j € [k]), and specifically, for each v € [¢], hsk., is
used to handle my,---,my, as shown in Fig. 3. For each v € [/],
employ hsk, to compute Kj, when m;, = 0 (for all j € [£]). The
key equivocability of HPS guarantees that this modification does not
change the adversary’s view significantly.

sk v = (hsky, o hskp 1)

my = (myg,i e myp )

ms, = ( My q,i e , my, )

S N ¢ )
Fig. 3 Relations among sk and my,--- ,my

4.2 Universal, Hash Proof System with Key Equivocability

Now we introduce the main building block, namely, universal,, HPS with
key equivocability, for any polynomially bounded k, and show concrete
constructions for it.

The definition. For any polynomially bounded function , we provide
a definition of universal, HPS with key equivocability, which enhances
the standard HPS [8] with key equivocability and universal, property. It
works on a strengthened version of subset membership problem SSMP,
which defines some additional languages and provides a trapdoor to rec-
ognize elements from these languages.

Definition 7 (Strengthened Subset Membership Problem). A strength-
ened subset membership problem (SSMP) SSMP consists of five PPT al-
gorithms (SSmpG, SSmpX, SSmpL, SSmpLS, SSmpChk):

— SSmpG(1*, k): On input 1* and polynomially bounded k > 0, algorith-
m SSmpG outputs a system parameter prm and a trapdoor td. The
parameter prm defines 2k + 2 sets (X, L, Ly, , Lok), where X is an
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efficiently recognizable finite set, L C X, and Ly, --- , Lo, are distinct
subsets of X \ L. For simplicity of notation, we write

prm = (X, L, Ly, ..., Log)

when employing HPS for SSMP to construct PKE schemes.
SSmpX(prm): On input prm, SSmpX outputs a uniformly chosen z<—X.
SSmpL(prm): On input prm, SSmpL samples z<L with randomness
w € RssmpL, and outputs (x,w). We say that w is a witness for x € L.
SSmpLS(prm, i € [2k]): On input prm and i € [2k], SSmpLS outputs a
uniformly chosen x;<L;.

SSmpChk(prm, td, z): On input prm, td and x, SSmpChk outputs an
integer [0, 2k] or an abort symbol L.

Also, it satisfies the following properties:

— Hardness. For alli € [2k], for any PPT distinguisher D, the follow-
ing advantages are all negligible,

AdngSAMRg?'Dl’i()\) = |Pr[D(prm,zx) = 1] — Pr[D(prm, z;) = 1]|,

Advsémpp i (A) := [Pr[D(prm, w.) = 1] — Pr[D(prm, z;) = 1]|,

where the probabilities are over prm < SSmpG(1*, k), zx < SSmpX(prm),
(2, w) + SSmpL(prm), and x; + SSmpLS(prm,i). &
Sparseness. The probability

Sparsgyp(\) := Pr[(prm, td) < SSmpG (1}, k); zx + SampX(prm) : zx € L]

1s negligible.

Explainability. The finite set X is an efficiently samplable and ex-
plainable domain (as defined in Definition 2).

Sampling Correctness. Let (prm,td) < SSmpG(1*, k). Then the
distributions of the outputs of SSmpX(prm), SSmpL(prm), and SSmpLS(prm,
i) (i € [2k]) are statistically indistinguishable from uniform distribu-
tions over X, L and L; (i € [2k]) respectively.

— Checking Correctness. For any (prm,td) generated by SSmpG, if
x € L, then SSmpChk(prm,td,z) = 0; if there exists i € [2k] s.t.
x € L;, then SSmpChk(prm,td, z) = i; otherwise, SSmpChk(prm,td,
x)=1.

8 Note that a hard SSMP is also a hard SMP, since a simple hybrid argument shows

that for any PPT distinguisher D, |[Pr[D(prm,zx) = 1] — Pr[D(prm,zz) = 1]| <
Advighp,p,1 (A) + Advsgip 51 (A)-
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Remark 2 The additional trapdoor, gemerated by SSmpG, will also be
used in the key equivocability property (see Definition 10) of HPS.

Definition 8 (Hash Proof System [8]). A hash proof system HPS for
a SSMP SSMP consists of three PPT algorithms (PrmG, PubEv, SecEv):

— PrmG(prm): Given prm, which is generated by SSmpG(1*, k) and de-
fines 2k + 2 sets (X, L, L1,...,Lox), algorithm PrmG outputs a pa-
rameterized instance prmins := (Kgp, SIC, PIC, Ay, 1), where Kgp, SK,
PK are all finite sets, Ay : X — Ksp is a family of hash functions
indexed with secret hash key hsk € SK, and p : SK — PK is an
efficiently computable function.

— SecEv(hsk,x): On input hsk € SK and x € X, the deterministic secret
evaluation algorithm SecEv outputs a hash value K = Apgp(z) € Ksgp.

— PubEv(hpk, z,w): On input hpk = p(hsk) € PK, x € L and a witness
w for x € L, the deterministic public evaluation algorithm PubEv
outputs a hash value K = Apgp() € Kgp.

Also, it should be

— Projective. For any hsk € SK and any x € L with witness w, the
hash value Apgi(z) is uniquely determined by hpk = p(hsk) and z,
concretely, we require that SecEv(hsk,x) = PubEv(hpk, z,w).

— Perfectly Universal. For all prm generated by SSmpG(1%), all pos-
sible prmins < PrmG(prm), all hpk € PK, all x € X \ L, and all
K € Ksp, the probability Pr[Apep(x) = K | p(hsk) = hpk] = lClsp’
where the probability is over hsk + SK.

Definition 8 is the same as the original definition of HPS in [8]. In our
PKE construction, we further require that Ky, is efficiently samplable and
explainable. Besides, we require HPS to have the following two properties.

Definition 9 (Perfectly Universal, ). For any polynomial k, we say
that HPS is perfectly universal., if for all prm generated by SSmpG(1*,
k), all possible prmins <— PrmG(prm), all hpk € P, all pairwise different
x1,- T € X\ L, and all Ky, , K, € Kgp,

p(hsk) = hpk 1
Apsp(1) = K1, -+ Aps(w5-1) = K1 | Kol

Pr [Ahsk(x,i) = I(,.i

where the probability is over hsk + SK.
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Definition 10 (Key Equivocability). We say that HPS is key equiv-
ocable, if there is a PPT algorithm SampHsk, which takes (hsk,td,x1,

-, Xog) as input and outputs another secret key hsk', such that for all
possible (prm,td) < SSmpG(1*, k), all possible prmins = (Ks,, SK, PK,
Ay, ) < PrmG(prm), all permutations P : [2k] — [2k], and all (w1, ,
wor) € X2F satisfying that x; € Lp;), A(Disto, Dist1) is negligible, where
Distg and Disty are defined in Fig. 4.

hsk < SK; hpk = p(hsk) hsk < SK; hpk = p(hsk)
Fori=1to k: For i =1 to 2k :
K; = SecEv(hsk, ;) K; = SecEv(hsk, ;)
Fori=k+1 to 2k : hsk' < SampHsk(hsk,td, 1, ,xa2;)
K; + Ksp Return (hsk’, hpk, K1, -+, Kox)
Return (hsk, hpk, K1, -+ , Kai)

Fig.4 Distributions for defining key equivocability of HPS.

Instantiation from DDH. Now we present our instantiation of universal,
HPS with key equivocability from the DDH assumption. The definition
of the DDH assumption will be recalled in Appendix A.

Let A be the security parameter and let k, k be positive integers that
are polynomial in A. Let G be a multiplicative cyclic group of prime
order ¢ and let g be a generator of G. Let I' : G?**1 — ngH be an
injective function, which can be extended from the injective function in
the constructions of HPS in [8] directly.

We construct a strengthened subset membership problem SSMP; =
(SSmpG, SSmpX, SSmpL, SSmpLS, SSmpChk) as follows:

— SSmpG. On input a security parameter A and an integer k, the param-
eter generation algorithm first samples a;<Z, and computes g; = g%
for i € [2k + 1]. Then it sets:

X = {ul,...,ung |VZ € [2k—|—1],ui EG}

L={gV, . 9op+1 | w € Zg}
and for ¢ € [2k], it sets:

_ w1 W2k+1 / /
‘C’i_{gl v 9ok |waw Ganw#wa
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for

w; = w',Vj € 2k + 1)\ {i}, w; = w}

The public parameter prm = (G, ¢, ¢, 91, - .., g2k+1) and the trapdoor
td = (al, cee ,a2k+1)

SSmpX. On input a public parameter prm = (G, q,9,91,- -, 92k+1);
the algorithm samples u;«G for i € [2k+ 1] and outputs z = (uy, ..
U2kt1)-

SSmpL. On input a public parameter prm = (G, q, 9,91, -, g2k+1)s
the algorithm samples w<Z, and outputs z = (g¥’,...,9%,,,) and
the witness w.

SSmpLS. On input a public parameter prm = (G, q,9,91,-- -, 92k+1)
and an integer i € [2k|, the algorithm samples w<Z, and w'<Zg s.t.
w # w'. Then it computes u; = g% for j € [2k + 1]\{i} and u; = g
and outputs (ug, ..., usk+1)-

SSmpChk. On input a public parameter prm = (G, q, 9,91, - -, 92k+1);
a trapdoor td = (al,...,a2k+1),l and x = (uy,...,usk+1), the algo-

°

rithm first computes v; = u?j for j € [2k 4+ 1]. Tt outputs 0 if
V] = V2 = ... = vUggt1. It outputs j if there exists some j € [2k]
st. v, = vy for all 3,7 € [2k]\{j} and v; # vgr41. Otherwise, it

outputs L.

Also, we construct the HPS HPS; = (PrmG, PubEv, SecEv, SampHsk)
SSMP; as follows:

PrmG. On input a public parameter prm = (G,q,9,91,---,92k+1),

the algorithm defines Ky, = G, SK = Z((fkﬂ)mx(%ﬂ), and PK =
GQRE+1)xx

Then for any hsk = (Shi ;) ne[2k+1),iclx),je2k+1] € SK and any z = (u1,
.. Ugky1) € X, it defines the map A from SK x X to Ky, as

i—1
Sh,i,j &
Apsi(z) = 11 uy
he[2k+1]i€[k],jE[2k+1]

where (041, e ,a2k+1) = F(ZL‘) AlSO, for any hsk = (Shﬂ',j)he[2k+1]7ie[,ﬂ]7je[2k+1] S
SK, it defines the map p from SK to PK as

p(hsk) = (Prineperiicr = ( [1 957" neprtiicr
JE[2k+1]

SecEv. On input a secret key hsk = (spj)nhefor+1),iclx],je2k+1] € SK
and © = (uy,...,u9k4+1) € X, the secret evaluation algorithm outputs
K = Apgp (l‘)

21



— PubEv. On input a public key hpk = (pn.i)hefor+1),iclx) € PK, = (u1,
..., Ugk+1) € L and a witness w, the public evaluation algorithm com-

w~a171

putes (ay, ..., az1) = I'(x) and outputs K = [],ciop41)ie[5 Phi "
— SampHsk. On input a secret key hsk = (spij)he[2k+1],ic[x],je[2k+1]> @
trapdoor td = (a1, ..., ask+1), and 2k inputs (zp = (ug,1, - . . ,u(72k+1))ée[2k],

the algorithm works as follows:

1. For ¢ € [2Fk], it computes p[¢] = SSmpChk(prm, td, z,).

2. It outputs L if there exists ¢ € [2k] s.t. p[¢] € [2k] or there exist
distinct ¢, lo € [2K] s.t. p[l1] = p[la].

3. For h € 2k +1],i € [s],j € {p[L],...,p[k]}, it sets s} ; . = sp; ;-

4. For h € 2k + 1],i € [k],j € {plk + 1],...,p[2k]}, it samples
Shii$Lq-

5. For h € [2k + 1],7 € [k, it sets sﬁm%ﬂ = (Zje[2k+1] ajSh,ij —
> jel2k) ajsh; i) a2_k1+1'

6. It outputs hsk’ = (s}, ; ;) he[2hr1]ic(n] je2ht1]-

Theorem 1. Assuming the DDH assumption holds, SSMP1 is a strength-
ened subset membership problem with hardness, sparseness, explainability,
and correctness.

Theorem 2. HPS; is a perfect universal, HPS with key equivocability.

Proofs of Theorem 1 and Theorem 2 are provided in the full version.

Instantiation from DCR. We present our instantiation of universal,
HPS with key equivocability from the DCR assumption as follows. The
definition of the DCR assumption will be recalled in Appendix A.

Let A be the security parameter and let k, k be positive integers that
are polynomial in A\. We construct a strengthened subset membership
problem SSMPy = (SSmpG, SSmpX, SSmpL, SSmpLS, SSmpChk) as fol-

lows:

— SSmpG. On input a security parameter \ and an integer k, the parame-
ter generation algorithm first samples primes p’, ¢',p,¢ s.t. p =2p' +1
and ¢ = 2¢’ + 1. Then it computes N = pg and N’ = p'q¢’. Let
Zy2 = Gn - Gy - Gg - T, where Gy, Gy, G2, T are defined as in
Appendix A. Define X = Gy - Gys - T and L. = Gpr - T. Define
X : Zy2 — Zy as x(a) = |a/N|. Let I : X%¢ — ijk\,zﬂ be an
injective function, which can be extended from the injective fjunction
in the constructions of HPS in [8] directly. Also, let g € Z}, be a fixed
generator of L.
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for

Then it sets:
X ={u,...,ug | Vj € [2k],u; € X},
L={g",....,9"% |Vj € [2k],r; € Zan},
and for i € [2k], it sets:
Li=A{ui,... uy |u; € X\L,Vj € 2k]\{i},7; € Zonr,uj =g }.

The public parameter prm = (N, g) and the trapdoor td = N'.
SSmpX. On input a public parameter prm = (N, g), the algorithm

samples u;j<X for j € [2k] and outputs x = (uy,. .., us).

SSmpL. On input a public parameter prm = (N, g), the algorithm
samples 7;4Z| /2| for j € [2k] and outputs x = (¢™,...,¢"*) and
the witness (r1,...,79x).

SSmpLS. On input a public parameter prm = (N, g) and an integer
i € [2k], the algorithm samples ;<7 y/o for j € [2k]\{i} and u;«-X.
Then it computes u; = ¢’ for j € [2k]\{i} and outputs z = (uq, ...,
UQk).

SSmpChk. On input a public parameter prm = (N, g), a trapdoor
td = N, and z = (u1, ..., ug), the algorithm first computes v; = u?N/
for j € [2k]. It outputs 0 if v1 = vo = ... vg = 1. It outputs j if there
exists j € [2k] s.t. v, = 1 for all y € [2k]\{j} and v; # 1. Otherwise,
it outputs L.

Also, we construct the HPS HPS; = (PrmG, PubEv, SecEv, SampHsk)
SSMP5 as follows:

PrmG. On input a public parameter prm = (NN, g), the algorithm de-
fines Kgp = Zy, SK = Z(L%?/Xz(f)x(%), and PK = L(2k)*(x)x(2k) Then
for any hsk = (Shij)nef2r)icln),je2r] € SK and any z = (uq,...,
ugy) € X, it defines the map A from SKC x X to Ky as

N
Apsk(z) = x( 1T u M)

he|[2k],i€[k],jE[2K]

where (1, ..., aor) = I'(x). Also, for any hsk = (sh ) hefor) iclx],jel2k] €
SIKC, it defines the map p from SK to PK as

Shﬁi,j)

p(sk) = (ph,i,j)he[%],ie[n],je[2k] = (g he[2k] i€[k],j€[2k] -
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— SecEv. On input a secret key hsk = (Snij)ne(2k)ic[x],je[2k) € SK and
x = (u1,...,ug) € &, the secret evaluation algorithm outputs K =
Ahsk’(m)'

— PubEv. On input a public key hpk = (pnij)nepor)icix]jei2k] € PK,
x = (u1,...,ug) € L and a witness (r1,...,r9), the public eval-
uation algorithm computes (aq,...,a9;) = ['(x) and outputs K =

X nepricijepm Priy -
— SampHsk. On input a secret key hsk = (Sph.i.j)hef2r] ic(s] je[2k]> & trap-

door td = N', and 2k inputs (z¢ = (ug1, - - -, we,2k))refor]» the algorithm

works as follows:

1. For ¢ € [2Fk], it computes p[¢] = SSmpChk(prm, td, z/).

2. It outputs L if there exists ¢ € [2k] s.t. p[f] &€ [2k] or there exist
distinct £y, o € [2Kk] s.t. p[1] = p[la).

3. For h € [2k],i € [s],j € {p[l],....p[k]}, it sets s}, ; ;= sni ;-

4. For h € [2k],i € [k],j € {p[k+1],...,p[2k]}, it samples t«Zy and
uses the Chinese remainder theorem to compute s”hZ ; € Zonn s.t.
Sﬁmﬁj =t mod N and S%,i,j = sp,,; mod 2N".

5. It outputs hsk’ = (s}, ; ;) ne(2k] iclx],je[2k]-

Theorem 3. Assuming the DCR assumption holds, SSMPy is a strength-
ened subset membership problem with hardness, sparseness, explainability,
and correctness.

Theorem 4. HPS, is a perfect universal, HPS with key equivocability.

Proofs of Theorem 3 and Theorem 4 are similar to proofs of Theorem
1 and Theorem 2. So, we omit the details here. Note that SSMP2 only
achieves a statistical sampling correctness while SSMP; achieves a perfect
sampling correctness.

4.3 SIM-wBi-SO,-CCA Secure PKE Construction

For any polynomially bounded function & > 0, we propose a PKE scheme
achieving SIM-wBi-SOx-CCA security. Our construction is built from a
perfectly universalyy; HPS with key-equivocability, and a strong and
semi-unique XAC. The details are as follows.

Let SSMP = (SSmpG, SSmpX, SSmpL, SSmpLS, SSmpChk) be a hard
SSMP. Let HPS = (PrmG, PubEv, SecEv, SampHsk) be a perfectly universaly 1
and key equivocable HPS for SSMP, such that all the Ky, generated by
PrmG can be written as K, x Kp. For £ € N and any prmins = (Kp,
SK,PK, Ay, ) generated by PrmG, let XACpmins = (XGen, XAuth, XVer,
ReSamp) be a strong and semi-unique (¢4 1)-XAC with key space XK =
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Ksp = Ko x Ky, and tag space X7, and Hprmins : (X XP/C)Z — Ky be a fam-
ily of collision-resistant hash functions. Our PKE scheme PKE = (Setup,
Gen, Enc, Dec) (for ¢-bit messages) is defined in Fig. 5.

Setup(1?) :

(prm := (X, L, L1, , Lox), td) < SSmpG(1*, k)

prmins = (KCop = ICa x Ky, SKC, PKC, A(y, 1) <= PrmG(prm); H <= Hpmmins; Ko < Ka
Return pp := (prm, prmins, H, K,)

Gen(pp) :

Parse prmins = (KC,p, SK, P, T, A(y, 1)

(hskq)vere)  (SK)% (hpky = p(hsks))vere; Pk = (hky)yeia; sk = (hsky)yele
Return (pk, sk)

Enc(pk = (hpky)yefg,m) :

Parse m = (m1,--- ,m¢) € {0,1}*
ri= (r’(YX)vr’(y]C),w’y)we[Z] — (RSSme X 7—\)rSampIe X 7—\)ISSmpL)e
Fory=1to¢:

Ifm,=0: 2z, + SSme(prm;rE,X)); K, + Sample(lCSp;TE,K))
If my = 1: &y <= SSmpL(prm; w,); K, = PubEv(hpk,, z,, w,)
Ky = H(pk,x1,- - ,20); Kop1 = (Ka, Kp); T = XAuth(K1, -+, K¢g1)
Return ¢ = (z1,- -+ ,z¢,T)
Dec(sk = (hsky)yep,c = (21, ,2¢,T)) :
Ky =H(pk,z1, -+ ,x1)

If XVer((K., K),T) =0: Ty = -+ =m, = 0; return m = (M1, ,my)
Fory=1to¢:

K., = SecEv(hsky,x); i, = XVer(K.,,T)
Return m = (1, -+ - ,Te)

Fig.5 Construction of PKE.

Correctness. For v € [(], if m, = 1, then K., = K, by completeness of
HPS, so m, = Xver(K,,v,T) = 1 except with probability failxac(\) by
correctness of XAC. On the other hand, if m, = 0, subset sparseness of
SSMP and perfect universality of HPS guarantee that with overwhelming
probability, K. is uniformly random, even given pk,c and m. In this
case, m, = XVer(K.,T) = 0 except with probability Adv&l\ﬁlé()\). So,

correctness of PKE follows by a union bound over v € [].

Security. Formally, we have the following theorem, the formal proof of
which is provided in the full version.
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Theorem 5. For any polynomial function k > 0, PKE is SIM-wBi-SO-
CCA secure.

5 PKE with SIM-Bi-SO-CCA Security

In [14], Heuer et al. showed that a generic construction of DHIES [31]
meets SIM-SSO-CCA security in the random oracle model. In this section,
we show that a variant of the generic construction actually achieves SIM-
Bi-SO-CCA security in the random oracle model.

Building blocks. We simply recall the definitions of key encapsulation
mechanism (KEM) and message authentication code (MAC) as follows.

Key Encapsulation Mechanism. A KEM scheme, associated with a ses-
sion key space Kxgm and a ciphertext space Ckgm, is a tuple of PPT
algorithms KEM = (KemGen, Encap, Decap). The key generation algo-
rithm KemGen takes 1% as input, and outputs a public/secret key pair
(pk, sk). The encapsulation algorithm Encap takes pk as input, outputs
(K,c) € Kkem X Ckem- The decapsulation algorithm Decap, taking sk
and ¢ as input, outputs a value in Kxgm U {L}. Standard correctness is
required. Similar to [14], without loss of generality we assume that Encap
uniformly samples K < Kxem. We also assume that |Kyem| > 2* and
ICkem| > 22,

We say that KEM has unique encapsulations, if for any (pk, sk) gen-
erated by KemGen, and for any ciphertexts ¢, ¢’ satisfying Decap(sk, c) =
Decap(sk,d) # L, ec=¢.

The security notion, one-way security in the presence of a plaintext-
checking oracle (OW-PCA security) [28], is recalled in the full version.

Message Authentication Code. A MAC scheme, associated with a key
space Kmac, is a tuple of PPT algorithms MAC = (MacGen, Auth, Verf).
The key generation algorithm MacGen takes 1* as input and outputs a key
K € Kpac- The authentication algorithm Auth takes K and a message m
as input, outputs a tag t. On input (K, m,t), the verification algorithm
Verf outputs a bit ' € {0,1}. Standard correctness is also required here.

MAC is called deterministic, if Auth is deterministic. For a determin-
istic MAC, MAC is called injective, if Auth is an injective function (i.e.,
for any K € Kmac and any m # m/, Auth(K, m) # Auth(K,m’)).

The security notion of strong unforgeability under one-time chosen
message attacks (SUF-OT-CMA security) is recalled in the full version.

PKE Construction. Let KEM = (KemGen, Encap, Decap) be an OW-

PCA secure KEM scheme, having unique encapsulations, associated with
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Setup(1*) :
Return pp := 1*

Gen(pp = 17) :
(pk*e™  sk*e™) <« KemGen(1*); pk := pkFe™; sk := (pk™°™, sk*™)
Return (pk, sk)

Enc(pk = pkFe™ m) :
74 Rencap; (K, ™) = Encap(pk*“™;r); (K*V™, K™) = Hro(K)
Y™ = K™ @ my; t = Auth(K™C (pkFem cbem csvm))
Return ¢ = (c"°™, ¢*¥™, t)

Dec(sk = (pk*e™, sk*™), ¢ = (cF*™, c¥™ 1))
K = Decap(sk*e™, c*™); (K*'™, K™") = Hro(K)
If Verf(K™, (pkFe™, cke™ ¢5¥™) 1) = 0: return L

—=sym

Returmnm=c"Y" @ K

Fig. 6 Construction of PKEk.m.

a session key space Kkem and a ciphertext space Ckgm, where Encap uni-
formly samples K, |[Kkem| > 2* and |Ckem| > 2*. Let MAC = (MacGen,
Auth, Verf) be a deterministic, injective MAC scheme, associated with a
key space Kmac, achieving sUF-OT-CMA security. Let Hro : Kkem — {0,
1}€ x KCmac be a hash function. Our PKE scheme PKEk_y = (Setup, Gen,
Enc, Dec), associated with a message space {0, 1}, is defined in Fig. 6.

The correctness analysis of this scheme is trivial. Now we turn to its
security analysis. Formally, we have the following theorem. Note that, in
our construction, a valid ciphertext contains a tag ¢ generated on (pk*e™,
ckem ¢sym) where in [14], the tag ¢ is only generated on c*¥™. We stress
that this crucial modification makes our construction achieve SIM-Bi-SO-
CCA security. The intuition for the security proof and details are provided
in the full version.

Theorem 6. If KEM has unique encapsulations and is OW-PCA secure,
MAC is deterministic, injective and sUF-OT-CMA secure, and Hro is
modeled as a random oracle, then PKEk.m is SIM-Bi-SO-CCA secure in
the random oracle model.
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A Cryptographic Assumptions

The DDH Assumption. Let G be a cyclic group of prime order g with
a generator g. The DDH assumption requires that it is hard to distinguish
(9%, g% g°) and (g%, ¢°, g®), where a,b, c+Z,.
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The DCR Assumption. Now, we recall the Decision Composite Resid-
uosity (DCR) assumption [30] and some useful facts about it shown in
8].

Let p,q,p’,q be primes such that p = 2p' +1 and ¢ = 2¢' + 1. Let
N = pq and N’ = p'q’. Then the group Z%,, can be decomposed as the
direct product Gy - Gy/ - Go - T, where Gps and Go are cyclic groups
of order N’ and order 2 respectively; Gy is a cyclic group of order N
generated by ¢ = (1 + N) mod N?; and T is the order-2 subgroup of
Z» generated by (—1 mod N?). Note that {* = (1+aN) mod N? for
ac{0,1,--- N}

The DCR assumption requires that it is hard to distinguish a random
element in Z7, and a random element in Gy - Gg - T.

Next, define X = Gy - Gyr - T. The set X is an efficiently samplable
and explainable domain, where the sample algorithm and the explain
algorithm work as follows:

— Sample: The sample algorithm proceeds as follows:
1. For i € [1,160]:

(a) x+Zye
(b) If the Jacobi symbol (§) = 1: output .
2. OQutput L.
— Explain: on input an element x € X, the explain algorithm proceeds
as follows:

1. Set r to be an empty string.
2. For i € [1,160]:
(a) Sample b«{0,1}.
(b) If b= 1, append z to r and outputs r.
(¢) Otherwise, sample an element z'<Zpy2 s.t. the Jacobi symbol
(%) = —1 and append 2’ to r.

3. Output L.
Note that as |Z.*—X|| = 1/2, the expected repetition in the sample algorithm
N2

is about 2 and the probability that the sample algorithm outputs L is
21%, which is negligible. Also, it is easy to see the probability that the
explain algorithm outputs L is also 21%, which is negligible.

Also, define x : Zpn2 — Zn as x(a) = |a/N|. For any fixed = € X,
X(x£€) is uniform in Zy if c<Zy.

Finally, define . = G - T. It is easy to create a generator g for
L by first sampling a random element u € Z},, and then computing
g = —p?N. Besides, the DCR assumption implies that a random element
in X is computationally indistinguishable from a random element in L.
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