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Abstract. The random oracle model (ROM) enjoys widespread popu-
larity, mostly because it tends to allow for tight and conceptually sim-

ple proofs where provable security in the standard model is elusive or
costly. While being the adequate replacement of the ROM in the post-
quantum security setting, the quantum-accessible random oracle model
(QROM) has thus far failed to provide these advantages in many set-
tings. In this work, we focus on adaptive reprogrammability, a feature of
the ROM enabling tight and simple proofs in many settings. We show
that the straightforward quantum-accessible generalization of adaptive
reprogramming is feasible by proving a bound on the adversarial advan-
tage in distinguishing whether a random oracle has been reprogrammed
or not. We show that our bound is tight by providing a matching attack.
We go on to demonstrate that our technique recovers the mentioned ad-
vantages of the ROM in three QROM applications: 1) We give a tighter
proof of security of the message compression routine as used by XMSS.
2) We show that the standard ROM proof of chosen-message security for
Fiat-Shamir signatures can be lifted to the QROM, straightforwardly,
achieving a tighter reduction than previously known. 3) We give the �rst
QROM proof of security against fault injection and nonce attacks for the
hedged Fiat-Shamir transform.

Keywords: Post-quantum security, QROM, adaptive reprogramming,
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1 Introduction

Since its introduction, the Random oracle model (ROM) has allowed cryptog-
raphers to prove e�cient practical cryptosystems secure for which proofs in the
standard model have been elusive. In general, the ROM allows for proofs that
are conceptually simpler and often tighter than standard model security proofs.

With the advent of post-quantum cryptography, and the introduction of
quantum adversaries, the ROM had to be generalized: In this scenario, a quan-
tum adversary interacts with a non-quantum network, meaning that "online"
primitives (like signing) stay classical, while the adversary can compute all "of-
�ine" primitives (like hash functions) on its own, and hence, in superposition. To
account for these stronger capabilities, the quantum-accessible ROM (QROM)
was introduced [8]. While successfully �xing the de�nitional gap, the QROM
does not generally come with the advantages of its classical counterpart:

- Lack of conceptual simplicity. QROM proofs are extremely complex for vari-
ous reasons. One reason is that they require some understanding of quantum



information theory. More important, however, is the fact that many of the
useful properties of the ROM (like preimage awareness and adaptive pro-
grammability) are not known to translate directly to the QROM.

- Tightness. Many primitives that come with tight security proofs in the ROM
are not known to be supported by tight proofs in the QROM. For example,
there has been an ongoing e�ort [33, 24, 25, 7, 27, 21] to give tighter QROM
proofs for the well-known Fujisaki-Okamoto transformation [18, 19], which
is proven tightly secure in the ROM as long as the underlying scheme ful�lls
IND-CPA security [20].

In many cases, we expect certain generic attacks to only di�er from the
ROM counterparts by a square-root factor in the required number of queries
if the attack involves a search problem, or no signi�cant factor in the case of
guessing. Hence, it was conjectured that it might be su�cient to prove security
in the ROM, and then add a square-root factor for search problems. However,
recent results [38] demonstrate a separation of ROM and QROM, showing that
this conjecture does not hold true in general, as there exist schemes which are
provably secure in the ROM and insecure in the QROM. As a consequence, a
QROM proof is crucial to establish con�dence in a post-quantum cryptosystem.1

Adaptive programmability. A desirable property of the (classical) ROM is
that any oracle value O(x) can be chosen when O is queried on x for the �rst time
(lazy-sampling). This fact is often exploited by a reduction simulating a security
game without knowledge of some secret information. Here, an adversary A will
not recognize the reprogramming of O(x) as long as the new value is uniformly
distributed and consistent with the rest of A's view. This property is called
adaptive programmability.

The ability to query an oracle in superposition renders this formerly simple
approach more involved, similar to the di�culties arising from the question how
to extract classical preimages from a quantum query (preimage awareness) [35,
4, 7, 27, 39, 16, 28, 10, 14]. Intuitively, a query in superposition can be viewed
as a query that might contain all input values at once. Already the �rst answer
of O might hence contain information about every value O(x) that might need
to be reprogrammed as the game proceeds. It hence was not clear whether it is
possible to adaptively reprogram a quantum random oracle without causing a
change in the adversary's view.

Until recently, both properties only had extremely non-tight variants in the
QROM. For preimage awareness, it was essentially necessary to randomly guess
the right query and measure it (with an unavoidable loss of at least 1/q for q
queries, and the additional disadvantage of potentially rendering the adversary's
output unusable due to measurement disturbance). In a recent breakthrough re-
sult, Zhandry developed the compressed oracle technique that provides preimage
awareness [39] in many settings. For adaptive reprogramming, variants of Un-
ruh's one-way-to-hiding lemma allowed to prove bounds but only with a square-
root loss in the entropy of the reprogramming position [34, 36, 17, 23].

1 Unless, of course, a standard model proof is available.
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In some cases [8, 26, 33, 21], reprogramming could even be avoided by giving a
proof that rendered the oracle �a-priori consistent�, which is also called a �history-
free� proof: In this approach, the oracle is completely rede�ned in a way such
that it is enforced to be a priori consistent with the rest of an adversary's
view, meaning that it is rede�ned before execution of the adversary, and on all
possible input values. Unfortunately, it is not always clear whether it is possible
to lift a classical proof to the QROM with this strategy. Even if it is, the �a-
priori� approach usually leads to conceptually more complicated proofs. More
importantly, it can even lead to reductions that are non-tight with respect to
runtime, and may necessitate stronger or additional requirements like, e.g., the
statistical counterpart of a property that was only used in its computational
variant in the ROM. One example are history-free proofs of CMA security for
Fiat-Shamir signatures as e.g. given in [37] and later in [26].

Hence, in this work we are interested in the question:

Can we tightly prove that adaptive reprogramming can also be
done in the quantum random oracle model?

Our contribution. For common use cases in the context of post-quantum cryp-
tography, this work answers the question above in the a�rmative. In more detail,
we present a tool for adaptive reprogramming that comes with a tight bound,
supposing that the reprogramming positions hold su�ciently large entropy, and
reprogramming is triggered by classical queries to an oracle that is provided by
the security game (e.g., a signing oracle). These preconditions are usually met
in (Q)ROM reductions: The reprogramming is usually triggered by adversar-
ial signature or decryption queries, which remain classical in the post-quantum
setting, as the oracles represent honest users.

While we prove a very general lemma, using the simplest variant of the
superposition oracle technique [39], we present two corollaries, tailored to cases
like a) hash-and-sign with randomized hashing and b) Fiat-Shamir signatures.
(Note that we do not have to give a full proof for Fiat-Shamir: We only tend to
proving that UF-KOA implies UF-CMA security, as UF-KOA security has already
been covered by [37, 26, 16].) In both cases, reprogramming occurs at a position
of which one part is an adversarially choosen string. For a), the other part is a
random string z, sampled by the reduction (simulating the signer). For b), the
other part is a commitment w chosen from a distribution with su�cient min-
entropy, together with additional side-information. In both cases, we manage to
bound the distinguishing advantage of any adversary that makes qs signing and
qH random oracle queries by

1.5 · qs
√
qH · 2−r ,

where r is the length of z for a), and the min-entropy of w for b). We note that it
might be possible to alternatively prove a less general adaptive reprogramming
lemma covering the special cases a) and b) above by generalizing the semi-
classical O2H lemma from [4].

We then demonstrate the applicability of our tool, by giving
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� a tighter proof for hash-and-sign applications leading to a tighter proof for
message-compression as used by the hash-based signature scheme XMSS in
RFC 8391 [22] as a special case,

� a runtime-tight reduction of unforgeability under adaptive chosen message
attacks (UF-CMA) to plain unforgeability (UF-CMA0, sometimes denoted
UF-KOA or UF-NMA) for Fiat Shamir signatures.

� the �rst proof of fault resistance for the hedged Fiat-Shamir transform, re-
cently proposed in [5], in the post-quantum setting.

Hash-and-sign. As a �rst motivating and mostly self-contained application we
analyze the hash-and-sign construction that takes a �xed-message-length signa-
ture scheme SIG and turns it into a variable-message-length signature scheme
SIG′ by �rst compressing the message using a hash function. We show that if
SIG is secure under random message attacks (UF-RMA), SIG′ is secure under
adaptively chosen message attacks (UF-CMA). Then we show that along the
same lines, we can tighten a recent security proof [9] for message-compression
as described for XMSS [11] in RFC 8391. Our new bound shows that one can
use random strings of half the length to randomize the message compression in
a provably secure way.

The Fiat-Shamir transform. In Section 4.1, we show that if an identi�ca-
tion scheme ID is Honest-Veri�er Zero-Knowledge (HVZK), and if the resulting
Fiat-Shamir signature scheme SIG := FS[ID,H] furthermore possesses UF-CMA0

security, then SIG is also UF-CMA secure, in the quantum random oracle model.
Here, UF-CMA0 denotes the security notion in which the adversary only obtains
the public key and has to forge a valid signature without access to a signing
oracle. While this statement was already proven in [26], we want to point out
several advantages of our proof strategy and the resulting bounds.

Conceptual simplicity. A well-known proof strategy for HVZK,UF-CMA0 ⇒
UF-CMA in the random oracle model (implicitly contained in [1]) is to replace
honest transcripts with simulated ones, and to render H a-posteriori consistent
with the signing oracle during the proceedings of the game. I.e., H(w,m) is
patched after oracle SIGN was queried on m. Applying our lemma, we observe
that this approach actually works in the quantum setting as well. We obtain a
very simple QROM proof that is congruent with its ROM counterpart.

In [26], the issue of reprogramming quantum random oracle H was circum-
vented by giving a history-free proof: In the proof, messages are tied to potential
transcripts by generating the latter with message-dependent randomness, a pri-
ori, and H is patched accordingly, right from the beginning of the game. During
each computation of H(w,m), the reduction therefore has to keep H a-priori
consistent by going over all transcript candidates (wi, ci, zi) belonging to m, and
returning ci if w = wi.

Applicability to a broader class of signature schemes. To achieve a-
priori consistency, [26] crucially relies on statistical HVZK. Furthermore, they
require that the HVZK simulator outputs transcripts such that the challenge c
is uniformly distributed. We are able to drop the requirement on c altogether,
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and to only require computational HVZK. As a practical example, alternate
NIST candidate Picnic [12] satis�es only computational HVZK: here, we give
the �rst QROM reduction from chosen-message security, i.e. UF-CMA, to plain
unforgeability, i.e. UF-CMA0.

2

Tightness with regards to running time. Our reduction B has about the
running time of the adversary A, as it can simply sample simulated transcripts
and reprogram H, accordingly. The reduction in [26] su�ers from a quadratic
blow-up in its running time: They have running time Time(B) ≈ Time(A)+qHqS ,
as the reduction has to execute qS computations upon each query to H in order
to keep it a-priori consistent. As they observe, this quadratic blow-up renders the
reduction non-tight in all practical aspects. On the other hand, our upper bound
comes with a bigger disruption in terms of commitment entropy (the min-entropy
of the �rst message (the commitment) in the identi�cation scheme). While the
source of non-tightness in [26] can not be balanced out, however, we o�er a
trade-o�: If needed, the commitment entropy can be increased by appending a
random string to the commitment.3

Robustness of the hedged Fiat-Shamir transform against fault at-
tacks.When it comes to real-world implementations, the assessment of a signa-
ture scheme will not solely take into consideration whether an adversary could
forge a fresh signature as formalized by the UF-CMA game, as UF-CMA does
not capture all avenues of real-world attacks. For instance, an adversary inter-
acting with hardware that realizes a cryptosystem can try to induce a hardware
malfunction, also called fault injection, in order to derail the key generation
or signing process. Although it might not always be straightforward to predict
where exactly a triggered malfunction will a�ect the execution, it is well un-
derstood that even a low-precision malfunction can seriously injure a schemes'
security. In the context of the ongoing e�ort to standardize post-quantum se-
cure primitives [31], it hence made sense to a�rm [32] that desirable additional
security features include, amongst others, resistance against fault attacks and
randomness generation that has some bias.

Recently [5], the hedged Fiat-Shamir construction was proven secure against
biased nonces and several types of fault injections, in the ROM. This result

2 As a matter of fact, the inapplicability of the history-free reduction from [26], that
was used in [16] to give a full reduction for Fiat Shamir signatures (starting with
a quantum-extractable identi�cation scheme) was initially overlooked by the Picnic
Team. The Picnic team has acknowledged that, and is working on a revision of the
Picnic submission to the NIST standardization process for post-quantum crypto-
graphic schemes that will use our reduction.

3 While this increases the signature size, the increase is mild in typical post-quantum
Fiat-Shamir based digital signature schemes. As an example, suppose Dilithium-
1024x768, which has a signature size of 2044 bytes, had zero commitment entropy
(it actually has quite some, see remarks in [26]). To ensure that about 2128 hash
queries are necessary to make the term in our security bound that depends on the
commitment entropy equal 1, about 32 bytes would need to be added, an increase
of about 1.6% (assuming 264 signing queries).
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can for example be used to argue that alternate NIST candidate Picnic [12] is
robust against many types of fault injections. We revisit the hedged Fiat-Shamir
construction in Section 4.2 and lift the result of [5] to the QROM. In particular,
we thereby obtain that Picnic is resistant against many fault types, even when
attacked by an adversary with quantum capabilities.

We considered to generalize the result further by replacing the standard Fiat-
Shamir transform with the Fiat�Shamir with aborts transform [29, 26]. While our
security statements can be extended in a straightforward manner, we decided not
to further complicate our proof with the required modi�cations. For Dilithium,
the implications are limited anyway, as several types of faults are only proven
ine�ective if the underlying scheme is subset-revealing, which Dilithium is not.4

Optimality of our bound. We also show that our lower bound is tight for
the given setting, presenting a quantum attack that matches our bound, up
to a constant factor. Let us restrict our attention to the simple case where
H : {0, 1}n → {0, 1}k is a random function, which is potentially reprogrammed
at a random position x∗ resulting in a new oracle H ′. Consider an attacker that
is allowed 2q queries to the random oracle.

A classical attack that matches the classical bound for the success probabil-
ity, O(q · 2−n), is the following: pick values x1, ..., xq and compute the XOR of
the outputs H(xi). After the oracle is potentially reprogrammed, the attacker
outputs 0 i� the checksum computed before is unchanged.

In order to match the quantum lower bound, we use the same attack, but on a
superposition of tuples of inputs: the attacker queries H with the superposition
of all possible inputs, and then applies a cyclic permutation σ on the input
register. This process is repeated q − 1 times (on the same state). After the
potential reprogramming, we repeat the same process, but now applying the
permutation σ−1 and querying H ′. Using techniques from [2], we show how to
distinguish the two cases with advantage Ω

(√
q
2n

)
in time poly(q, n).

2 Adaptive reprogramming: the toolbox

Before we describe our adaptive reprogramming theorem, let us quickly recall
how we usually model adversaries with quantum access to a random oracle: As
established in [8, 6], we model quantum access to a random oracle O : X × Y
via oracle access to a unitary UO, which is de�ned as the linear completion of
|x〉X |y〉Y 7→ |x〉X |y ⊕ O(x)〉Y , and adversaries A with quantum access to O as
a sequence of unitaries, interleaved with applications of UO. We write A|O〉 to
indicate that O is quantum-accessible.

As a warm-up, we will �rst present our reprogramming lemma in the simplest
setting. Say we reprogram an oracle Rmany times, where the position is partially
controlled by the adversary, and partially picked at random. More formally, let

4 Intuitively, an identi�cation scheme is called subset-revealing if its responses do not
depend on the secret key. Dilithium computes its responses as z := y + c · s1, where
s1 is part of the secret key.
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X1 and X2 be two �nite sets, where X1 speci�es the domain from which the
random portions are picked, and X2 speci�es the domain of the adversarially
controlled portions. We will now formalize what it means to distinguish a random
oracle O0 : X1 ×X2 → Y from its reprogrammed version O1. Consider the two
Repro games, given in Fig. 1: In games Reprob, the distinguisher has quantum
access to oracle Ob (see line 03) that is either the original random oracle O0

(if b = 0), or the oracle O1 which gets reprogrammed adaptively (b = 1). To
model the actual reprogramming, we endow the distinguisher with (classical)
access to a reprogramming oracle Reprogram. Given a value x2 ∈ X2, oracle
Reprogram samples random values x1 and y, and programs the random oracle
to map x1‖x2 to y (see line 06). Note that apart from already knowing x2, the
adversary even learns the part x1 of the position at which O1 was reprogrammed.

GAME Reprob

01 O0 ←$ Y
X1×X2

02 O1 := O0

03 b′ ← A|Ob〉,Reprogram

04 return b′

Reprogram(x2)
05 (x1, y)←$ X1 × Y
06 O1 := O

(x1‖x2)7→y
1

07 return x1

Fig. 1. Adaptive reprogramming games Reprob for bit b ∈ {0, 1} in the most basic
setting.

Proposition 1. Let X1, X2 and Y be �nite sets, and let A be any algorithm
issuing R many calls to Reprogram and q many (quantum) queries to Ob as
de�ned in Fig. 1. Then the distinguishing advantage of A is bounded by

|Pr[ReproA
1 ⇒ 1]− Pr[ReproA

0 ⇒ 1]| ≤ 3R

2

√
q

|X1|
. (1)

The above theorem constitutes a signi�cant improvement over previous bounds.
In [34] and [17], a bound proportional to q|X1|−1/2 for the distinguishing advan-
tage in similar settings, but for R = 1, was given. In [23], a bound proportional to
q2|X1|−1 is claimed, but that seems to have resulted from a �translation mistake�
from [17] and should be similar to the bounds from [34, 17]. What is more, we
show in Section 6 that the above bound, and therefore also its generalizations,
are tight, by presenting a distinguisher that achieves an advantage equal to the
right hand side of Eq. (1) for trivial X1, up to a constant factor.

In fact, we prove something more general than Proposition 1: We prove that
an adversary will not behave signi�cantly di�erent, even if

- the adversary does not only control a portion x2, but instead it even controls
the distributions according to which the whole positions x := (x1, x2) are
sampled at which O1 is reprogrammed,

- it can additionally pick di�erent distributions, adaptively, and
- the distributions produce some additional side information x′ which the ad-
versary also obtains,
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as long as the reprogramming positions x hold enough entropy.
Overloading notation, we formalize this generalization by games Repro,

given in Fig. 2: Reprogramming oracle Reprogram now takes as input the
description of a distribution p that generates a whole reprogramming position
x, together with side information x′. Reprogram samples x and x′ according
to p, programs the random oracle to map x to a random value y, and returns
(x, x′).

GAME Reprob

01 O0 ←$ Y
X

02 O1 := O0

03 b′ ← D|Ob〉,Reprogram

04 return b′

Reprogram(p)

05 (x, x′)← p
06 y ←$ Y
07 O1 := Ox 7→y

1

08 return (x, x′)

Fig. 2. Adaptive reprogramming games Reprob for bit b ∈ {0, 1}.

We are now ready to present our main Theorem 1. On a high level, the only
di�erence between the statement of Proposition 1 and Theorem 1 is that we now
have to consider R many (possibly di�erent) joint distributions on X ×X ′, and
to replace 1

|X1| (the probability of the uncontrolled reprogramming portion) with

the highest likelihood of any of those distributions generating a position x.

Theorem 1 (�Adaptive reprogramming� (AR)). Let X, X ′, Y be some �-
nite sets, and let D be any distinguisher, issuing R many reprogramming instruc-
tions and q many (quantum) queries to O. Let qr denote the number of queries
to O that are issued inbetween the (r−1)-th and the r-th query to Reprogram.
Furthermore, let p(r) denote the rth distribution that Reprogram is queried

on. By p
(r)
X we will denote the marginal distribution of X, according to p(r), and

de�ne

p(r)max := Emax
x

p
(r)
X (x),

where the expectation is taken over D's behaviour until its rth query to Reprogram.

|Pr[ReproD
1 ⇒ 1]− Pr[ReproD

0 ⇒ 1]| ≤
R∑
r=1

(√
q̂rp

(r)
max +

1

2
q̂rp

(r)
max

)
, (2)

where q̂r :=
∑r−1
i=0 qi.

For R = 1 and without additional side information output x′, the proof of
Theorem 1 is given in Section 5. The extension to general R is proven in the full
version via a standard hybrid argument. Finally, all our bounds are information-
theoretical, i.e. they hold against arbitrary query bounded adversaries. The ad-
ditional output x′ can therefore be sampled by the adversary.

We will now quickly discuss how to simplify the bound given in Eq. (2) for
our applications, and in particular, how we can derive Eq. (1) from Theorem 1:
Throughout sections 3 and 4, we will only have to consider reprogramming in-
structions that occur on positions x = (x1, x2) such that
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- x1 is drawn according to the same distribution p for each reprogramming
instruction, and

- x2 represents a message that is already �xed by the adversary.

To be more precise, x1 will represent a uniformly random string z in 3, and
no side information x′ has to be considered. In Section 4, (x1, x

′) will represent
a tuple (w, st) that is drawn according to Commit(sk).

In the language of Theorem 1, the marginal distribution p
(r)
X will always be

the same distribution p, apart from the already �xed part x2. We can hence upper

bound p
(r)
max by pmax := maxx1

p(x1), and q̂r by q, to obtain that q̂rp
(r)
max < qpmax

for all 1 ≤ r ≤ R.
In our applications, we will always require that p holds su�ciently large

entropy. To be more precise, we will assume that pmax <
1
q . In this case, we have

that qpmax < 1, and that we can upper bound qpmax by
√
qpmax to obtain

Proposition 2. Let X1, X2, X
′ and Y be some �nite sets, and let p be a dis-

tribution on X1 × X ′. Let D be any distinguisher, issuing q many (quantum)
queries to O and R many reprogramming instructions such that each instruction
consists of a value x2, together with the �xed distribution p. Then

|Pr[ReproD
1 ⇒ 1]− Pr[ReproD

0 ⇒ 1]| ≤ 3R

2

√
qpmax ,

where pmax := maxx1
p(x1).

From this we obtain Proposition 1 setting pmax = |X1|−1.

3 Basic applications

In this section, we present two motivating examples that bene�t from the most
basic version of our bound as stated in Proposition 1. As a �rst example we
chose the canonical hash-and-sign construction when used to achieve security
under adaptive chosen message attacks (UF-CMA) from a scheme that is secure
under random message attacks (UF-RMA). It is mostly self-contained and similar
to our second example. The second example is a tighter bound for the security
of hash-and-sign as used in RFC 8391, the recently published standard for the
stateful hash-based signature scheme XMSS.

3.1 From RMA to CMA security via Hash-and-Sign

In the following, we present a conceptually easy proof with a tighter bound
for the canonical UF-RMA to UF-CMA transform using hash-and-sign SIG′ =
HaS[SIG,H], in the QROM (which additionally allows for arbitrary message space
expansion). Recall that Sign′(sk ,m′) �rst samples a uniformly random bitstring
z ←$ Z, computes σ ← Sign(sk ,H(z‖m′)) and returns the pair (z, σ). Vrfy′

accordingly �rst computes m := H(z‖m′) and then calls Vrfy(pk ,m, σ).
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The reduction M from UF-RMA to UF-CMA in this case works as follows:
First, we have to handle collision attacks. We show that an adversary which
�nds a forgery for SIG′ that contains no forgery for SIG breaks the multi-target
version of extended target collision resistance (M-eTCR) of H, and give a QROM
bound for this property. Having dealt with collision attacks leaves us with the
case where A generates a forgery that contains a forgery for SIG. The challenge in
this case is how to simulate the signing oracle SIGN. Our respective reduction M
against UF-RMA proceeds as follows: Collect the qs many message-signature pairs
{(mi, σi)}1≤i≤qs , provided by the UF-RMA game. When A queries SIGN(m′i) for
the ith time, sample a random zi, reprogram H(zi‖m′i) := mi, and return (zi, σi).
See also Fig. 5 below.

In the QROM, this reduction has previously required qs applications of the
O2H Lemma in two steps, loosing an additive O(qs · q/

√
|Z|) term. In contrast,

we only loose a O(qs
√
q/|Z|) (both constants hidden by the O are small):

Theorem 2. For any (quantum) UF-CMA adversary A issuing at most qs (clas-
sical) queries to the signing oracle SIGN and at most qH quantum queries to H,
there exists an UF-RMA adversary M such that

SuccUF-CMA
SIG′ (A) ≤ SuccUF-RMA

SIG (M) +
8qs(qs + qH + 2)2

|M′|
+ 3qs

√
qH + qs + 1

|Z|
,

and the running time of M is about that of A.

The second term accounts for the complexity to �nd a second preimage for
one of the messages mi, which is an unavoidable generic attack. The third term
is the result of 2qs reprogrammings. Half of them are used in the QROM bound
for M-eTCR, the other half in the reduction M. This term accounts for an attack
that correctly guesses the random bitstring used by the signing oracle for one of
the queries (such an attack still would have to �nd a collision for this part but
this is inherently not re�ected in the used proof technique).

Proof. We now relate the UF-CMA security of SIG′ to the UF-RMA security of
SIG via a sequence of games.

Game G0. We begin with the original UF-CMA game for SIG′ in game G0. The
success probability of A in this game is AdvUF-CMA

SIG′ (A) per de�nition.

Game G1.We obtain game G1 from game G0 by adding an additional condition.
Namely, game G1 returns 0 if there exists an 0 < i ≤ qs such that H(z∗‖m′∗) =
H(zi‖m′i), where z∗ is the random element in the forgery signature, and zi is the
random element in the signature returned by SIGN(m′i) as the answer to the
ith query. We will now argue that

|Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]| ≤ 8qs(qs + qH + 2)2

|M′|
+

3qs
2

√
qH + qs + 1

|Z|
.

Towards this end, we give a reduction B in Fig. 3, that breaks the M-eTCR
security of H whenever the additional condition is triggered, making qs + qH +1
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queries to its random oracle. B simulates the UF-CMA game for SIG′, using H
and an instance of SIG. Clearly, B runs in about the same time as game GA

0 ,
and succeeds whenever A succeeds and the additional condition is triggered. To
complete this step, it hence remains to show that the success probability of any
such (qs + qH + 1)-query adversary is

SuccM-eTCR
H (B, qs) ≤

8qs(qs + qH + 2)2

|M′|
+

3qs
2

√
qH + qs + 1

|Z|
. (3)

We delay the proof of Eq. (3) until the end.

BBox,|H〉()
01 (pk , sk)← KG
02 (m′∗, σ′∗) = ASIGN,|H〉(pk)
03 Parse σ′∗ as (z∗, σ∗)
04 if ∃j : H(z∗‖m′∗) = H(zj‖m′j)
05 i := j
06 else i←$ [1, qs]
07 return (m′∗, z∗, i)

SIGN(m′i)

08 zi ← Box(m′i)
09 σi ← Sign(sk ,H(zi,m

′
i))

10 return (zi, σi)

Fig. 3. Reduction B breaking M-eTCR. Here, Box is the M-eTCR challenge oracle.

Game G2. The next game di�ers from G1 in the way the signing oracle works.
In game G2 (see Fig. 4), the ith query to SIGN is answered by �rst sampling
a random value zi, as well as a random message mi, and programming H′ :=

H′
(zi‖m′i)7→mi . Then mi is signed using the secret key. We will now show that

|Pr[GA
1 ⇒ 1]− Pr[GA

2 ⇒ 1]| ≤ 3qs
2

√
qH + qs + 1

|Z|
.

Consider a reduction C that simulates game G2 for A to distinguish the
Reprob game. Accordingly, C forwards access to its own oracle Ob to A instead
of H. Instead of sampling zi,mi itself in line 08 and programming H in line 09,
C obtains zi ← Reprogram(m′i) from its own oracle and computes mi :=
Ob(zi‖m′i) as the output of its random oracle. Now, if C plays in Repro0 it
perfectly simulates G1 for A, as the oracle remains unchanged. If C plays in
Repro1 it perfectly simulates G2, as can be seen by inlining Reprogram and
removing doubled calls used to recompute mi. Consequently,

|Pr[GA
1 ⇒ 1]− Pr[GA

2 ⇒ 1]|

= |Pr[ReproCA

0 ⇒ 1]− Pr[ReproCA

1 ⇒ 1]| ≤ 3qs
2

√
qH + qs + 1

|Z|
.

To conclude our main argument, we will now argue that

Pr[GA
2 ⇒ 1] = AdvUF-RMA

SIG (M) ,
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Game G2

01 i := 1
02 (pk , sk)← KG()
03 (m′∗, σ′∗) = ASIGN,|H〉(pk)
04 Parse σ′∗ as (z∗, σ∗)
05 if ∃1 ≤ i ≤ qs : H(z∗‖m′∗) = H(zi‖m′i)
06 return 0
07 return Vrfy(pk ,m′∗, σ∗) ∧m′∗ 6∈ {m′i}qsi=1

SIGN(m′i)
08 zi ←$ Z,mi ←$ M
09 H := H(zi‖m′i)7→mi

10 σi ← Sign(sk ,mi)
11 i := i+ 1
12 return (zi, σi)

Fig. 4. Game G2.

MA,|H〉(pk , {(mi, σi)}1≤i≤qs)

01 H′ := H; i := 1
02 (m′∗, σ′∗) = ASIGN,|H′〉(pk)
03 Parse σ′∗ as (z∗, σ∗)
04 return (H(z∗‖m′∗), σ)

SIGN(m′i)
05 zi ←$ Z
06 if ∃m̂i s. th. (zi‖m′i, m̂i) ∈ LH′

07 LH′ := LH′ \ {(zi‖m′i, m̂i)}
08 LH′ := LH′ ∪ {(zi‖m′i,mi)}
09 i := i+ 1
10 return (zi, σi)

H′(z‖m′)
11 if ∃m s. th. (z‖m′,m) ∈ LH′

12 return m
13 else return H(z‖m′)

Fig. 5. Reduction M reducing UF-RMA to UF-CMA.

where reduction M is given in Fig. 5. Since reprogramming is done a-posteriori in
game G2, M can simulate a reprogrammed oracle H′ via access to its own oracle
H and an initial table look-up: M keeps track of the (classical) values on which
H′ has to be reprogrammed (see line 08) and tweaks A's oracle H′, accordingly.
The latter means that, given the table LH′ of pairs (zi‖m′i,mi) that were already
de�ned in previous signing queries, controlled on the query input being equal
to zi‖m′i output mi, and controlled on the input not being equal to any zi‖m′i,
forward the query to M's own oracle H. If needed, M reprograms values (see
line 07) by adding an entry to its look-up table. Given quantum access to H, M
can implement this as a quantum circuit, allowing quantum access to H′.

Hence, M perfectly simulates game G2 towards A. The only di�erences are
that M neither samples themi itself, nor computes the signatures for them. Both
are given to M by the UF-RMA game. However, they follow the same distribution
as in game G2. Lastly, whenever A would win in game G2, M succeeds in its
UF-RMA game as it can extract a valid forgery for SIG on a new message. This
is enforced with the condition we added in game G1.

The �nal bound of the theorem follows from collecting the bounds above,
and it remains to prove the bound on M-eTCR claimed in Eq. (3). We improve

12



a bound from [23], in which it was shown that for a small constant c,5

SuccM-eTCR
H (B, qs) ≤

8qs(qH + 1)2

|M′|
+ c

qsqH√
|Z|

.

Their proof of this bound is explicitly given for the single target step. It
is then argued that the multi-target step can be easily obtained, which was
recently con�rmed in [9]. The proof proceeds in two steps. The authors construct
a reduction that generates a random function from an instance of an average-
case search problem which requires to �nd a 1 in a boolean function f . The
function has the property that all preimages of a randomly picked point m in
the image correspond to 1s of f . When A makes its query to Box, the reduction
picks a random z and programs H(z‖m′) 7→m. An extended target collision for
(z‖m′) hence is a 1 in f by design. This gives the �rst term in the above bound,
which is known to be optimal.

The second term in the bound is the result of above reprogramming. I.e., it
is a bound on the di�erence in success probability of A when playing the real
game or when run by the reduction. More precisely, the bound is the result of
analyzing the distinguishing advantage between the following two games (which
we rephrased to match our notation):

Game Ga. A gets access to H. In phase 1, after making at most q1 queries to
H, A outputs a message m′ ∈ M′. Then a random z ←$ Z is sampled and
(z,H(z‖m′)) is handed to A. A continues to the second phase and makes at most
q2 queries. A outputs b ∈ {0, 1} at the end.
Game Gb. A gets access to H. After making at most q1 queries to H, A outputs
a message m′ ∈ M′. Then a random z ←$ Z is sampled as well as a random
range element m←$M. Program H := H(z‖m′)7→m. A receives (z,m = H(z‖m′))
and proceeds to the second phase. After making at most q2 queries, A outputs
b ∈ {0, 1} at the end.

The authors of [23] showed that for a small constant c (see Footnote 5),

|Pr[GA
b ⇒ 1]− Pr[GA

a ⇒ 1]| ≤ c qH√
|Z|

.

A straightforward application of Proposition 1 shows that

|Pr[GA
b ⇒ 1]− Pr[GA

a ⇒ 1]| ≤ 3

2

√
qH + 1

|Z|
.

as the games above virtually describe the games Reprob with the exception that
in Reprob the oracle Reprogram only returns z and not H(z‖m′)). Hence, a
reduction needs one additional query per reprogramming.

When applying this to the qs-target case, a hybrid argument shows that
the bound becomes 3qs/2

√
qH+1/|Z|. Combining this with the reduction of [23]

and taking into account that B makes (qs +qH +1) queries con�rms the bound
claimed in Eq. (3).
5 This is a corrected bound from [23], see discussion in Section 2.
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3.2 Tight security for message hashing of RFC 8391

Another extremely similar application of our basic bound is for another case of
the hash-and-sign construction, used to turn a �xed message length UF-CMA-
secure signature scheme SIG into a variable input length one SIG′. This case is
essentially covered already by Section 3.1: A proof can omit game G2 and state
a simple reduction that simulates game G1 to extract a forgery. The bound
changes accordingly, requiring one reprogramming bound less and becoming
SuccUF-CMA

SIG′ (A) ≤ SuccUF-CMA
SIG (M) + 8qs(qs+qH)

2
/|M′|+ 1.5qs

√
qH+qs/|Z|.

In [22], it was suggested that for stateful hash-based signature schemeslike
XMSS [22], the multi-target attacks which cause the �rst occurence of qs in the
bound could be avoided. This was recently formally proven in [9]. The idea is to
exploit the property of hash-based signature schemes that every signature has
an index which binds the signature to a one-time public key. Including this index
into the hash forces an adversary to also include it in a collision to make it useful
for a forgery. Even more, the index is di�erent for every signature and therefore
for every target hash.

Summarizing, the authors of [9] showed that there exists a tight standard
model proof for the hash-and-sign construction, as used by XMSS in RFC 8391,
if the used hash function is qs-target extended target-collision resistant with
nonce (nM-eTCR), an extension of M-eTCR that considers the index.

To demonstrate the relevance of this result, the authors analyzed the nM-eTCR-
security of hash functions under generic attacks, proving a bound for nM-eTCR-
security in the QROM in the same way as outlined for M-eTCR above. So far,
this bound was suboptimal, as it included a bound on distinguishing variants of
games Ga and Gb above in which H takes an additional, externally given index as
input). Hence, the bound was SuccnM-eTCR

H (A, p) ≤ 8(qs+qH)
2
/|M′|+32qsq

2
H/|Z|. Due

to the translation error, we believe that the second term needs to be updated to
32qs · α, where α = qH/

√
|Z|, instead of 32qs · α2. In [9], it was conjectured that

in α, a factor of
√
qH can be removed. We can con�rm this conjecture. As in the

case above, Proposition 1 can be directly applied to the distinguishing bound
for games Ga and Gb. A reduction would simply treat the index as part of the
message sent to Reprogram. Plugging this into the proof in [9] leads to the
bound

SuccnM-eTCR
H (A, p) ≤ 8(qs + qH)

2

|M′|
+ 1.5qs

√
qH + qs
|Z|

.

4 Applications to the Fiat-Shamir transform

For the sake of completeness, we include all used de�nitions for identi�cation and
signature schemes in the full version . The only non-standard (albeit straightfor-
ward) de�nition is computational HVZK for multiple transcripts, which we give
below.
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(Special) HVZK simulator. We �rst recall the notion of an HVZK simulator.
Our de�nition comes in two �avours: While a standard HVZK simulator gener-
ates transcripts relative to the public key, a special HVZK simulator generates
transcripts relative to (the public key and) a particular challenge.

De�nition 1 ((Special) HVZK simulator). An HVZK simulator is an algo-
rithm Sim that takes as input the public key pk and outputs a transcript (w, c, z).
A special HVZK simulator is an algorithm Sim that takes as input the public key
pk and a challenge c and outputs a transcript (w, c, z).

Computational HVZK for multiple transcripts. In our security proofs,
we will have to argue that collections of honestly generated transcripts are in-
distinguishable from collections of simulated ones. Since it is not always clear
whether computational HVZK implies computational HVZK for multiple tran-
scripts, we extend our de�nition, accordingly: In the multi-HVZK game, the ad-
versary obtains a collection of transcripts (rather than a single one). Similarly,
we extend the de�nition of special computational HVZK from [5].

De�nition 2 ((Special) computational multi-HVZK). Assume that ID comes
with an HVZK simulator Sim. We de�ne multi-HVZK games t-HVZK as in Fig. 6,
and the multi-HVZK advantage function of an adversary A against ID as

Advt-HVZKID (A) :=
∣∣∣Pr[t-HVZKA

1 ID ⇒ 1]− Pr[t-HVZKA
0 ID ⇒ 1]

∣∣∣ .
To de�ne special multi-HVZK, assume that ID comes with a special HVZK sim-
ulator Sim. We de�ne multi-sHVZK games as in Fig. 6, and the multi-sHVZK
advantage function of an adversary A against ID as

Advt-sHVZKID (A) :=
∣∣∣Pr[t-sHVZKA

1 ID ⇒ 1]− Pr[t-sHVZKA
0 ID ⇒ 1]

∣∣∣ .
GAME t-HVZKb

01 (pk , sk)← IG(par)
02 for i ∈ {1, · · · , t}
03 trans0i ← getTrans(sk)
04 trans1i ← Sim(pk)
05 b′ ← A(pk , (transbi )1≤i≤t)
06 return b′

GAME t-sHVZKb

07 i := 1
08 (pk , sk)← IG(par)
09 b′ ← AgetTransO(pk)
10 return b′

getTransO(c)

11 if i > t return ⊥
12 i := i+ 1
13 trans0 ← getTransChall(sk , c)
14 trans1 ← Sim(pk , c)
15 return transb

Fig. 6. Multi-HVZK game and multi-sHVZK game for ID. Both games are de�ned
relative to bit b ∈ {0, 1}, and to the number t of transcripts the adversary is given.
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Statistical HVZK. Unlike computational HVZK, statistical HVZK can be gen-
eralized generically, we therefore do not need to deviate from known statistical
de�nitions.

We denote the respective upper bound for (special) statistical HVZK by
∆HVZK (∆sHVZK).

4.1 Revisiting the Fiat-Shamir transform

In this section, we show that if an identi�cation scheme ID is HVZK, and if
SIG := FS[ID,H] possesses UF-CMA0 security (also known as UF-KOA security),
then SIG is also UF-CMA secure, in the QROM. Note that our theorem makes
no assumptions on how UF-CMA0 is proven. For arbitrary ID schemes this can
be done using a general reduction for the Fiat-Shamir transform [16], incurring
a q2H multiplicative loss that is, in general, unavoidable [15]. For a lossy ID
scheme ID, UF-CMA0 of FS[ID,H] can be reduced tightly to the extractability
of ID in the QROM [26]. In addition, while we focus on the standard Fiat-
Shamir transform for ease of presentation, the following theorem generalizes to
signatures constructed using the multi-round generalization of the Fiat-Shamir
transform like, e.g., MQDSS [13].

Theorem 3. For any (quantum) UF-CMA adversary A issuing at most qs (clas-
sical) queries to the signing oracle SIGN and at most qH quantum queries to H,
there exists a UF-CMA0 adversary B and a multi-HVZK adversary C such that

SuccUF-CMA
FS[ID,H](A) ≤ SuccUF-CMA0

FS[ID,H] (B) + Advqs−HVZKID (C) (4)

+
3qs
2

√
(qH + qs + 1) · γ(Commit) , (5)

and the running time of B and C is about that of A. The bound given in Eq. (4)
also holds for the modi�ed Fiat-Shamir transform that de�nes challenges by let-
ting c := H(w,m, pk) instead of letting c := H(w,m).

Note that if ID is statistically HVZK, we can replace Advqs−HVZKID (C) with
qs ·∆HVZK.

Proof. Consider the sequence of games given in Fig. 7.

GAMES G0 - G2

01 (pk , sk)← IG(par)
02 (m∗, σ∗)← ASIGN,|H〉(pk)
03 if m∗ ∈ LM return 0
04 Parse (w∗, z∗) := σ∗

05 c∗ := H(w∗,m∗)
06 return V(pk , w∗, c∗, z∗)

SIGN(m)
07 LM := LM ∪ {m}
08 (w, c, z)← getTrans(m) �G0-G1

09 (w, c, z)← Sim(pk) �G2

10 H := H(w,m)7→c �G1 -G2

11 return σ := (w, z)

getTrans(m) �G0-G1

12 (w, st)← Commit(sk)
13 c := H(w,m) �G0

14 c′ ←$ C �G1

15 z ← Respond(sk , w, c, st)
16 return (w, c, z)

Fig. 7. Games G0 - G2 for the proof of Theorem 3.
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Game G0. Since game G0 is the original UF-CMA game,

SuccUF-CMA
FS[ID,H](A) = Pr[GA

0 ⇒ 1] .

Game G1. In game G1, we change the game twofold: First, the transcript is
now drawn according to the underlying ID scheme, i.e., it is drawn uniformly at
random as opposed to letting c := H(w,m), see line 14. Second, we reprogram
the random oracle H in line 10 such that it is rendered a-posteriori-consistent
with this transcript, i.e., we reprogram H such that H(w,m) = c.

To upper bound the game distance, we construct a quantum distinguisher
D in Fig. 8 that is run in the adaptive reprogramming games ReproR,b with
R := qS many reprogramming instances. We identify reprogramming position x
with (w,m), additional input x′ with st, and y with c. Hence, the distribution
p consists of the constant distribution that always returns m (as m was already
chosen by A), together with the distribution Commit(sk). Since D perfectly sim-
ulates game Gb if run in its respective game Reprob, we have

|Pr[GA
0 = 1]− Pr[GA

1 = 1]| = |Pr[ReproD
1 ⇒ 1]− Pr[ReproD

0 ⇒ 1]| .

Since D issues qS reprogramming instructions and (qH+qS+1) many queries
to H, Proposition 2 yields

|Pr[ReproD
1 ⇒ 1]− Pr[ReproD

0 ⇒ 1]| ≤ 3qS
2

√
(qH + qS + 1) · pmax , (6)

where pmax = EIG maxw PrW,ST←Commit(sk)[W = w] = γ(Commit).

Distinguisher D|H〉

01 (pk , sk)← IG(par)
02 (m∗, σ∗)← ASIGN,|H〉(pk)
03 if m∗ ∈ LM return 0
04 Parse (w∗, z∗) := σ∗

05 c∗ := H(w∗,m∗)
06 return V(pk , w∗, c∗, z∗)

SIGN(m)
07 LM := LM ∪ {m}
08 (w, st)← Reprogram(m,Commit(sk))
09 c := H(w,m)
10 z ← Respond(sk , w, c, st)
11 return σ := (w, z)

Fig. 8. Reprogramming distinguisher D for the proof of Theorem 3.

Game G2. In game G2, we change the game such that the signing algorithm
does not make use of the secret key any more: Instead of being de�ned relative
to the honestly generated transcripts, signatures are now de�ned relative to the
simulator's transcripts. We will now upper bound |Pr[GA

1 = 1]−Pr[GA
2 = 1]| via

computational multi-HVZK. Consider multi-HVZK adversary C in Fig. 9. C takes
as input a list of qs many transcripts, which are either all honest transcripts or
simulated ones. Since reprogramming is done a-posteriori in game G1, C can
simulate it via an initial table look-up, like the reduction M that was given in
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Section 3.1 (see the description on p. 12). C perfectly simulates game G1 if run
on honest transcripts, and game G2 if run on simulated ones, hence

|Pr[GA
1 = 1]− Pr[GA

2 = 1]| ≤ AdvqS−HVZKID (C) .

Adversary C|H〉(pk , ((wi, ci, zi)i∈{1,··· ,qs})
01 i := 0
02 LH′ := ∅
03 (m∗, σ∗)← ASIGN,|H′〉(pk)
04 if m∗ ∈ LM return 0
05 Parse (w∗, z∗) := σ∗

06 c∗ := H(w∗,m∗)
07 return V(pk , w∗, c∗, z∗)

SIGN(m)
08 i++
09 LM := LM ∪ {m}
10 (w, c, z) := (wi, ci, zi)
11 if ∃c′ s. th. (w,m, c′) ∈ LH′

12 LH′ := LH′ \ {(w,m, c′)}
13 LH′ := LH′ ∪ {(w,m, c)}
14 return σ := (w, z)

H′(w,m)
15 if ∃c s. th. (w,m, c) ∈ LH′

16 return c
17 else return H(w,m)

Fig. 9. HVZK adversary C for the proof of Theorem 3.

It remains to upper bound Pr[GA
2 ⇒ 1]. Consider adversary B, given in

Fig. 10. B is run in game UF-CMA0 and perfectly simulates game G2 to A. If
A wins in game G2, it cannot have queried SIGN on m∗. Therefore, H′ is not
reprogrammed on (m∗, w∗) and hence, σ∗ is a valid signature in B's UF-CMA0

game.

Pr[GA
2 ⇒ 1] ≤ SuccUF-CMA0

FS[ID,H] (B) .

Collecting the probabilities yields the desired bound.

Adversary B|H〉(pk)
01 LH′ := ∅
02 (m∗, σ∗)← ASIGN,|H′〉(pk)
03 if m∗ ∈ LM ABORT
04 return (m∗, σ∗)

SIGN(m)
05 LM := LM ∪ {m}
06 (w, c, z)← Sim(pk)
07 if ∃c′ s. th. (w,m, c′) ∈ LH′

08 LH′ := LH′ \ {(w,m, c′)}
09 LH′ := LH′ ∪ {(w,m, c)}
10 return σ := (w, z)

H′(w,m)
11 if ∃c s. th. (w,m, c) ∈ LH′

12 return c
13 else

14 return H(w,m)

Fig. 10. Adversary B for the proof of Theorem 3.

It remains to show that the bound also holds if challenges are derived by
letting c := H(w,m, pk). To that end, we revisit the sequence of games given in
Fig. 7: We replace c := H(w,m) (and c∗ := H(w∗,m∗)) with c := H(w,m, pk)
(and c∗ := H(w∗,m∗, pk)) in line 13 (line 05), and change the reprogram in-
struction in line 10, accordingly. Since pk is public, we can easily adapt both
distinguisher D and adversaries B and C to account for these changes. In par-
ticular, D will simply include pk as a (�xed) part of the probability distribution
that is forwarded to its reprogramming oracle. Since the public key holds no
entropy once that it is �xed by the game, this change does not a�ect the upper
bound given in Eq. (6).
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4.2 Revisiting the hedged Fiat-Shamir transform

In this section, we show how Theorem 1 can be used to extend the results of [5]
to the quantum random oracle model: We show that the Fiat-Shamir transform
is robust against several types of one-bit fault injections, even in the quantum
random oracle model, and that the hedged Fiat-Shamir transform is as robust,
even if an attacker is in control of the nonce that is used to generate the signing
randomness. In this section, we follow [5] and consider the modi�ed Fiat-Shamir
transform that includes the public key into the hash when generating challenges.
We consider the following one-bit tampering functions:

flip-biti(x): Does a logical negation of the i-th bit of x.
set-biti(x, b): Sets the i-th bit of x to b.

Hedged signature schemes. Let N be any nonce space. With a signature
scheme SIG = (KG,Sign,Vrfy) with secret key space SK and signing randomness
space RSign, and random oracle G : SK ×M×N → RSign, we associate

R2H[SIG,G] := SIG′ := (KG,Sign′,Vrfy) ,

where the signing algorithm Sign′ of SIG′ takes as input (sk ,m, n), deterministi-
cally computes r := G(sk ,m, n), and returns σ := Sign(sk ,m; r).

Security of (hedged) Fiat-Shamir against fault injections and nonce
attacks.Next, we de�ne UnForgeability in the presence of Faults, under Chosen
Message Attacks (UF-F-CMA), for Fiat-Shamir transformed schemes. In game
UF-F-CMA, the adversary has access to a faulty signing oracle FAULTSIGN which
returns signatures that were created relative to an injected fault. To be more
precise, game UF-FF -CMA is de�ned relative to a set F of indices, and the indices
i ∈ F specify at which point during the signing procedure exactly the faults are
allowed to occur. An overview is given in Fig. 11.
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Fig. 11. Faulting a (hedged) Fiat-Shamir signature. Circles represent faults, and their
numbers are the respective fault indices i ∈ F (following [5], for the formal de�nition
see Fig. 12). Greyed out fault wires indicate that the hedged construction can not
be proven robust against these faults, in general. Dashed fault nodes indicate that the
Fiat-Shamir construction is robust against these faults if the scheme is subset-revealing.
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For the hedged Fiat-Shamir construction, we further de�ne UnForgeability,
with control over the used Nonces and in the presence of Faults, under Chosen
Message Attacks (UF-N-F-CMA). In game UF-N-F-CMA, the adversary is even
allowed to control the nonce n that is used to derive the internal randomness of
algorithm Commit. We therefore denote the respective oracle by N-FAULTSIGN.
Our de�nitions slightly simplify the one of [5]: While [5] also considered fault
attacks on the input of algorithm Commit (with corresponding indices 2 and
3), they showed that the hedged construction can not be proven robust against
these faults, in general. We therefore omitted them from our games, but adhered
to the numbering for comparability.

The hedged Fiat-Shamir scheme derandomizes the signing procedure by re-
placing the signing randomness by r := G(sk ,m, n). Hence, game UF-N-F-CMA
considers two additional faults: An attacker can fault the input of G, i.e., either
the secret key (fault index 1), or the tuple (m,n) (fault index 0). As shown in
[5], the hedged construction can not be proven robust against faults on (m,n),
in general, therefore we only consider index 1.

Furthemore, we do not formalize derivation/serialisation and drop the corre-
sponding indices 8 and 10 to not overly complicate our application example. A
generalization of our result that also considers derivation/serialisation, however,
is straightforward.

De�nition 3. (UF-F-CMA and UF-N-F-CMA) For any subset F ⊂ {4, · · · , 9},
we de�nethe UF-FF -CMA game as in Fig. 12, and the UF-FF -CMA success prob-
ability of a quantum adversary A against FS[ID,H] as

SuccUF-FF -CMA
FS[ID,H] (A) := Pr[UF-FF -CMAA

FS[ID,H] ⇒ 1] .

Furthermore, we de�ne the UF-N-FF -CMA game (also in Fig. 12) for any
subset F ⊂ {1, 4, · · · , 9}, and the UF-N-FF -CMA success probability of a quantum
adversary A against SIG′ := R2H[FS[ID,H],G] as

SuccUF-N-FF -CMA
SIG′ (A) := Pr[UF-N-FF -CMAA

SIG′ ⇒ 1] .

From UF-CMA0 to UF-F-CMA. First, we generalize [5, Lemma 5] to the quan-
tum random oracle model. The proof is given in the full version .

Theorem 4. Assume ID to be validity aware. If SIG := FS[ID,H] is UF-CMA0

secure, then SIG is also UF-FF -CMA secure for F := {5, 6, 9}, in the quantum
random oracle model. Concretely, for any adversary A against the UF-FF -CMA
security of SIG, issuing at most qS (classical) queries to FAULTSIGN and qH
(quantum) queries to H, there exists an UF-CMA0 adversary B and a multi-
sHVZK adversary C such that

Succ
UF-F{5,6,9}-CMA

SIG (A) ≤ SuccUF-CMA0

SIG (B) + Advqs−sHVZKID (C)

+
3qS
2

√
2 · (qH + qS + 1) · γ(Commit) . (7)
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Game UF-FF -CMA UF-N-FF -CMA

01 (pk , sk)← IG(par)

02 (m∗, σ∗)← AFAULTSIGN,|H〉(pk)

03 (m∗, σ∗)← AN-FAULTSIGN,|H〉,|G〉(pk)

04 if m∗ ∈ LM return 0
05 Parse (w∗, z∗) := σ∗

06 c∗ := H(w∗,m∗)
07 return V(pk , w∗, c∗, z∗)

FAULTSIGN(m, i ∈ F , φ)
08 fi := φ and fj := id ∀ j 6= i
09

10 (w, st)← Commit(sk)
11 (w, st) := f4(w, st)
12 (ŵ, m̂, p̂k) := f5(w,m, pk)
13 c := f6(H(ŵ, m̂, p̂k))
14 z ← Respond(f7(sk , c, st))
15 LM := LM ∪ {m̂}
16 return σ := f9(w, z)

N-FAULTSIGN(m,n, i ∈ F , φ)
17 fi := φ and fj := id ∀ j 6= i
18 r := G(f1(sk),m, n)
19 (w, st)← Commit(sk ; r)
20 (w, st) := f4(w, st)
21 (ŵ, m̂, p̂k) := f5(w,m, pk)
22 c := f6(H(ŵ, m̂, p̂k))
23 z ← Respond(f7(sk , c, st))
24 LM := LM ∪ {m̂}
25 return σ := f9(w, z)

Fig. 12. Left: Game UF-FF -CMA for SIG = FS[ID,H], and game UF-N-FF -CMA for
the hedged Fiat-Shamir construction SIG′ := R2H[FS[ID,H],G], both de�ned relative
to a set F of allowed fault index positions. φ denotes the fault function, which either
negates one particular bit of its input, sets one particular bit of its input to 0 or 1, or
does nothing. We implicitly require fault index i to be contained in F , i.e., we make
the convention that both faulty signing oracles return ⊥ if i /∈ F .

and B and C have about the running time of A.
If we assume that ID is subset-revealing, then SIG is even UF-FF ′-CMA secure

for F ′ := F ∪ {4, 7}. Concretely, the bound of Eq. (7) then holds also for F ′ =
{4, 5, 6, 7, 9}.

From UF-F-CMA to UF-N-F-CMA. Second, we generalize [5, Lemma 4] to the
QROM. The proof is given in the full version .

Theorem 5. If SIG := FS[ID,H] is UF-FF -CMA secure for a fault index set
F , then SIG′ := R2H[SIG,G] is UF-N-FF ′-CMA secure for F ′ := F ∪ {1},
in the quantum random oracle model, against any adversary that issues no
query (m,n) to N-FAULTSIGN more than once. Concretely, for any adversary
A against the UF-N-FF -CMA security of SIG′ for F ′, issuing at most qS queries
to N-FAULTSIGN, at most qH queries to H, and at most qG queries to G, there
exist UF-FF -CMA adversaries B1 B2 such that

Succ
UF-N-FF′ -CMA
SIG′ (A) ≤ SuccUF-FF -CMA

SIG (B1) + 2qG ·
√
SuccUF-FF -CMA

SIG (B2) ,

and B1 has about the running time of A, while B2 has a running time of roughly
Time(B2) ≈ Time(A) + |sk | · (Time(Sign) + Time(Vrfy)), where |sk | denotes the
length of sk .

With regards to the reduction's advantage, this proof is not as tight as the
one in [5]: R2H[SIG,G] derives the commitment randomness as r := G(sk ,m, n).
During our proof, we need to decouple r from the secret key. In the ROM, it is
straightforward how to turn any adversary noticing this change into an extractor
that returns the secret key. In the QROM, however, all currently known extrac-
tion techniques still come with a quadratic loss in the extraction probability. On
the other hand, our reduction is tighter with regards to running time, which we
reduce by a factor of qG when compared to [5]. If we hedge with an indepen-
dent seed s of length ` (instead of sk), it can be shown with a multi-instance
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generalization of [33, Lem. 2.2] that

SuccUF-N-FF -CMA
SIG′ (A) ≤ SuccUF-FF -CMA

SIG (B) + (`+ 1) · (qS + qG) ·
√

1/2`−1 .

5 Adaptive reprogramming: proofs

We will now give the proof for our main Theorem 1, which can be broken down
into three steps: In this section, we consider the simple special case in which only
a single reprogramming instance occurs, and where no additional input x′ is pro-
vided to the adversary. The generalisation to multiple reprogramming instances
follows from a standard hybrid argument. The generalisation that considers ad-
ditional input is also straightforward, as the achieved bounds are information-
theoretical and a reduction can hence compute marginal and conditioned distri-
butions on its own. For the sake of completeness, we include the generalisation
steps in the full version .

In this and the following sections, we need quantum theory. We stick to the
common notation as introduced in, e.g. [30]. Nevertheless we introduce some of
the most important basics and notational choices we make. For a vector |ψ〉 ∈ H
in a complex Euclidean space H, we denote the standard Euclidean norm by
‖ |ψ〉 ‖. We use a subscript to indicate that a vector |ψ〉 is the state of a quantum
register A with Hilbert space H, i.e. |ψ〉A. Similarly, MA indicates that a matrix
M acting on H is considered as acting on register A. The joint Hilbert space
of multiple registers is given by the tensor product of the single-register Hilbert
spaces. Where it helps simplify notation, we take the liberty to reorder registers,
keeping track of them using register subscripts. The only other norm we will
require is the trace norm. For a matrix M acting on H, the trace norm ‖M‖1
is de�ned as the sum of the singular values of M . An important quantum gate
is the quantum extension of the classical CNOT gate. This quantum gate is a
unitary matrix CNOT acting on two qubits, i.e. on the vector space C2 ⊗ C2,
as CNOT |b1〉 |b2〉 = |b1〉 |b2 ⊕ b1〉. We sometimes subscript a CNOT gate with
control register A and target register B with A : B, and extend this notation to
the case where many CNOT gates are applied, i.e. CNOT⊗nA:B means a CNOT
gate is applied to the i-th qubit of the n-qubit registers A and B for each
i = 1, ..., n with the qubits in A being the controls and the ones in B the targets.

5.1 The superposition oracle

For proving the main result of this section, we will use the (simplest version
of the) superposition oracle introduced in [39]. In the following, we introduce
that technique, striving to keep this explanation accessible even to readers with
minimal knowledge about quantum theory.

Superposition oracles are perfectly correct methods for simulating a quantum-
accessible random oracle O : {0, 1}n → {0, 1}m. Di�erent variants of the super-
position oracle have di�erent additional features that make them more useful
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than the quantum-accessible random oracle itself. We will use the fact that in
the superposition oracle formalism, the reprogramming can be directly imple-
mented by replacing a part of the quantum state held by the oracle, instead of
using a simulator that sits between the original oracle and the querying algo-
rithm. Notice that for this, we only need the simplest version of the superposition
oracle from [39].6 In that basic form, there are only three relatively simple con-
ceptual steps underlying the construction of the superposition oracle, with the
third one being key to its usefulness in analyses:
� For each x ∈ {0, 1}n, O(x) is a random variable uniformly distributed on
{0, 1}m. This random variable can, of course, be sampled using a quantum mea-
surement, more precisely a computational basis measurement of the state

|φ0〉 = 2−m/2
∑

y∈{0,1}m
|y〉 .

� For a function o : {0, 1}n → {0, 1}m, we can store the string o(x) in a quan-
tum register Fx. In fact, to sample O(x), we can prepare a register Fx in state
|φ0〉, perform a computational basis measurement and keep the collapsed so-
called post-measurement state. Outcome y of the measurement corresponds to
the projector |y〉〈y|, and a post-measurement state proportional to

|y〉〈y| |φ0〉 = 2−
m
2 |y〉 .

Now a query with input |x〉X |ψ〉Y can be answered using CNOT gates, i.e.
we can answer queries with a superposition oracle unitary O acting on input
registers X,Y and an oracle register F = F0mF0m−11...F1m such that

OXY F |x〉〈x|X = |x〉〈x|X ⊗
(
CNOT⊗m

)
Fx:Y

.

� Since the matrices |y〉〈y|Fx
and

(
CNOT⊗m

)
Fx:Y

commute, we can delay the
measurement that performs the sampling of the random oracle until the end
of the runtime of the querying algorithm. Queries are hence answered using the
unitary O, but acting on oracle registers Fx that are all initialized in the uniform
superposition state |φ0〉, and only after the querying algorithm has �nished, the
register F is measured to obtain the concrete random function O.

A quantum-accessible oracle for a random function O : {0, 1}n → {0, 1}m is
thus implemented as follows:
� Initialize: Prepare the initial state

|Φ〉F =
⊗

x∈{0,1}n
|φ0〉Fx

.

� Oracle: A quantum query on registers X and Y is answered using OXY F
� Post-processing: Register F is measured to obtain a random function O. The

6 Note that this basic superposition oracle does not provide an e�cient simulation of
a quantum-accessible random oracle, which is �ne for proving a query lower bound
that holds without assumptions about time complexity.
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last step can be (partially) omitted whenever the function O is not needed for
evaluation of the success or failure of the algorithm. In the following, the querying
algorithm is, e.g. tasked with distinguishing two oracles, a setting where the �nal
sampling measurement can be omitted.

Note that it is straightforward to implement the operation of reprogramming
a random oracle to a fresh random value on a certain input x: just discard the
contents of register Fx and replace them with a freshly prepared state |φ0〉. In
addition, we need the following lemma

Lemma 1 (Lemma 2 in [3], reformulated). Let |ψq〉AF be the joint adversary-
oracle state after an adverary has made q queries to the superposition oracle with
register F . Then this state can be written as

|ψq〉AF =
∑

S⊂{0,1}n
|S|≤q

|ψ(S)
q 〉AFS

⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

,

where for any set R = {x1, x2, ..., x|R|} ⊂ {0, 1}n we have de�ned FR = Fx1
Fx2

...Fx|R|

and |ψ(S)
q 〉AFS

are vectors such that 〈φ0|Fx
|ψ(S)
q 〉AFS

= 0 for all x ∈ S.

5.2 Reprogramming once

We are now ready to study our simple special case. Suppose a random oracle
O is reprogrammed at a single input x∗ ∈ {0, 1}n, sampled according to some
probability distribution p, to a fresh random output y∗ ← {0, 1}m. We set O0 =
O and de�ne O1 by O1(x

∗) = y and O1(x) = O(x) for x 6= x∗. We will show that
if x∗ has su�cient min-entropy given O, such reprogramming is hard to detect.

More formally, consider a two-stage distinguisher D = (D0,D1). The �rst
stage D0 has trivial input, makes q quantum queries to O and ouputs a quantum
state |ψint〉 and a sampling algorithm for a probability distribution p on {0, 1}n.
The second stage D1 gets x∗ ← p and |ψint〉 as input, has arbitrary quantum
query access to Ob and outputs a bit b′ with the goal that b′ = b. We prove the
following.

Theorem 6. The success probability for any distinguisher D as de�ned above is
bounded by

Pr[b = b′] ≤ 1

2
+

1

2

√
qpDmax +

1

4
qpDmax,

where the probability is taken over b ← {0, 1}, (|ψint〉 , p) ← DO
0 (1

n) and b′ ←
DOb

1 (x∗, |ψint〉), and pDmax = E
(|ψint〉,p)←D

O0
0 (1n)

maxx p(x).

Proof. We implement O = O0 as a superposition oracle. Without loss of gener-
ality7, we can assume that D proceeds by performing a unitary quantum com-
putation, followed by a measurement to produce the classical output p and the

7 This can be seen by employing the Stinespring dilation theorem, or by using standard
techniques to delay measurement and discard operations until the end of a quantum
algorithm.
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discarding of a working register G. Let |γ〉RGF be the algorithm-oracle-state after
the unitary part of D0 and the measurement have been performed, conditioned
on its second output being a �xed probability distribution p. R contains D0's
�rst output.

De�ne εx = 1 −
∥∥ 〈φ0|Fx

|γ〉RGF
∥∥2, a measure of how far the contents of

register Fx are from the uniform superposition. Intuitively, this is the `probabil-
ity' that the distinguisher knows O(x), and should be small in expectation over
x ← p. We therefore begin by bounding the distinguishing advantage in terms
of this quantity. For a �xed x, we can write the density matrix ρ(0) = |γ〉〈γ| as

ρ
(0)
RGF = 〈φ0|Fx

ρ
(0)
RGF |φ0〉Fx

⊗ |φ0〉〈φ0|Fx
+ ρ

(0)
RGF

(
1− |φ0〉〈φ0|Fx

)
+
(
1− |φ0〉〈φ0|Fx

)
ρ
(0)
RGF |φ0〉〈φ0|Fx

. (8)

The density matrix ρ
(1,x)
RGF for the algorithm-oracle-state after D0 has �nished

and the oracle has been reprogrammed at x (i.e. b = 1) is

ρ
(1,x)
RGF = TrFx

[ρ
(1,x)
RGF ]⊗ |φ0〉〈φ0|Fx

= 〈φ0|Fx
ρ
(0)
RGF |φ0〉Fx

⊗ |φ0〉〈φ0|Fx

+TrFx [(1− |φ0〉〈φ0|Fx
)ρ

(0)
RGF ]⊗ |φ0〉〈φ0|Fx

8, (9)

where the second equality is immediate when computing the partial trace in an
orthonormal basis containing |φ0〉.

We analyze the success probability of D. In the following, set x∗ = x. The
second stage, D1, has arbitrary query access to the oracle Ob. In the superposition
oracle framework, that means D1 can apply arbitrary unitary operations on its
registers R and G, and the oracle unitary O to some sub-register registers XY
of G and the oracle register F . We bound the success probability by allowing
arbitraty operations on F , thus reducing the oracle distinguishing task to the

task of distinguishing the quantum states ρ
(b,x)
RF = TrGρ

(b,x)
RGF for b = 0, 1, where

ρ(0,x) := ρ(0). By the bound relating distinguishing advantage and trace distance,

Pr[b = b′|x∗ = x] ≤1

2
+

1

4

∥∥ρ(0)RF − ρ(1,x)RF

∥∥
1
≤ 1

2
+

1

4

∥∥ρ(0)RGF − ρ(1,x)RGF

∥∥
1
, (10)

where the probability is taken over b ← {0, 1}, |ψint〉 ← DO0
0 (1n) and b′ ←

DOb
1 (x, |ψint〉), and we have used that the trace distance is non-increasing under

8 Note that the partial trace expression yields a positive semide�nite matrix due to
the cyclicity of the trace and the fact that 1 − |φ0〉〈φ0|Fx

is a projector and hence
Hermitian.
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partial trace. Using Equation (8) and (9), we bound∥∥ρ(0)RGF − ρ(1,x)RGF

∥∥
1

≤
∥∥∥ρ(0)RGF (1− |φ0〉〈φ0|Fx

)
+
(
1− |φ0〉〈φ0|Fx

)
ρ
(0)
RGF |φ0〉〈φ0|Fx

− TrFx
[(1− |φ0〉〈φ0|Fx

)ρ
(0)
RGF ]⊗ |φ0〉〈φ0|Fx

∥∥∥
1

≤
∥∥∥ρ(0)RGF (1− |φ0〉〈φ0|Fx

) ∥∥∥
1
+
∥∥∥ (1− |φ0〉〈φ0|Fx

)
ρ
(0)
RGF |φ0〉〈φ0|Fx

∥∥∥
1

+
∥∥∥TrFx

[(1− |φ0〉〈φ0|Fx
)ρ

(0)
RGF ]⊗ |φ0〉〈φ0|Fx

∥∥∥
1
,

Where the last line is the triangle inequality. The trace norm of a positive
semide�nite matrix is equal to its trace, so the last term can be simpli�ed as∥∥∥TrFx

[(1− |φ0〉〈φ0|Fx
)ρ

(0)
RGF ]⊗ |φ0〉〈φ0|Fx

∥∥∥
1

= Tr[(1− |φ0〉〈φ0|Fx
) |γ〉〈γ|RGF ] = εx.

The second term is upper-bounded by the �rst via Hölder's inequality, which
simpli�es as∥∥∥ρ(0)RGF (1− |φ0〉〈φ0|Fx

) ∥∥∥
1
=
∥∥∥ |γ〉〈γ|RGF (1− |φ0〉〈φ0|Fx

) ∥∥∥
1

=
∥∥∥ (1− |φ0〉〈φ0|Fx

)
|γ〉RGF

∥∥∥
2
=
√
εx

where the second equality uses that |γ〉 is normalized. In summary we have∥∥ρ(0)RGF − ρ(1,x)RGF

∥∥
1
≤ 2
√
εx + εx. (11)

It remains to bound εx in expectation over x← p. To this end, we prove

Ex∗←p
[∥∥ 〈φ0|Fx∗

|γ〉RGF
∥∥2] ≥ 1− qpmax, (12)

where pmax = maxx p(x). In the following, sums over S are taken over S ⊂
{0, 1}n : |S| ≤ q, with additional restrictions explicitly mentioned. We have

Ex∗←p
[∥∥ 〈φ0|Fx∗

|γ〉RGF
∥∥2] = ∑

x∗∈{0,1}n
p(x∗)

∥∥ 〈φ0|Fx∗
|γ〉RGF

∥∥2
=

∑
x∗∈{0,1}n

p(x∗)
∥∥∑

S

〈φ0|Fx∗
|ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2,
where we have used Lemma 1 as well as the notation |ψ(S)

q 〉 from there. (Lemma
1 clearly also holds after the projector corresponding to second output equaling

p is applied). Using 〈φ0|Fx
|ψ(S)
q 〉RGFS

= 0 for all x ∈ S we simplify∑
x∗∈{0,1}n

p(x∗)
∥∥∑

S

〈φ0|Fx∗
|ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2
=

∑
x∗∈{0,1}n

p(x∗)
∥∥ ∑
S 63x∗

|ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|−1)
)
FSc\{x∗}

∥∥2.
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The summands in the second sum are pairwise orthogonal, so∑
x∗∈{0,1}n

p(x∗)
∥∥ ∑
S 63x∗

|ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|−1)
)
FSc\{x∗}

∥∥2
=

∑
x∗∈{0,1}n

p(x∗)
∑
S 63x∗

∥∥ |ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|−1)
)
FSc\{x∗}

∥∥2
=
∑
S

∑
x∗∈Sc

p(x∗)
∥∥ |ψ(S)

q 〉RGFS
⊗
(
|φ0〉⊗(2

n−|S|−1)
)
FSc\{x∗}

∥∥2
=
∑
S

∑
x∗∈Sc

p(x∗)
∥∥ |ψ(S)

q 〉RGFS
⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2
where we have used the fact that the state |φ0〉 is normalized in the last line.
But for any S ⊂ {0, 1}n we have∑

x∗∈Sc

p(x∗) =1−
∑
x∗∈S

p(x∗) ≥ 1− |S|pmax,

where here, pmax = maxx p(x). We hence obtain∑
S

∑
x∗∈Sc

p(x∗)
∥∥ |ψ(S)

q 〉RGFS
⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2
≥
∑
S

(1− |S|pmax)
∥∥ |ψ(S)

q 〉RGFS
⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2
≥ (1− qpmax)

∑
S

∥∥ |ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2 = 1− qpmax,

where we have used the normalization of |γ〉RGF in the last equality. Combin-
ing the above equations proves Equation (12). Putting everything together, we
bound

Pr[b = b′] =EpEx Pr[b = b′|p, x] ≤ 1

2
+

1

4
EpEx[2

√
εx + εx]

≤1

2
+

1

4
Ep[2
√
qpmax + qpmax] ≤

1

2
+

1

2

√
qpDmax + qpDmax.

Here, the inequalities are due to Equation (10) and Equation (11), Equation (12)
and Jensen's inequality, and another Jensen's inequality, respectively. ut

6 A matching attack

We now describe an attack matching the bound presented in Theorem 6. For sim-
plicity, we restrict our attention to the case where just one point is (potentially)
reprogrammed.

Our distinguisher makes q queries to O, the oracle before the potential re-
programming, and q queries to O′, the oracle after the potential reprogram-
ming. In our attack, we �x an arbitrary cyclic permutation σ on [2n], and for
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the �xed reprogrammed point x∗, we de�ne S = {x∗, σ−1(x∗), ..., σ−q+1(x∗)},
S = {0, 1}n \ S, Π0 = 1

2

(
|S〉+ |S〉

) (
〈S|+ 〈S|

)
and Π1 = I −Π0.

9 The distin-
guisher D is de�ned in Fig. 13.

Before potential reprogramming:
01 Prepare registers XY in 1√

2n

∑
x∈[2n] |x, 0〉XY

02 Query O using registers XY
03 for i = 0, ..., q − 2:
04 Apply σ on register X
05 Query O using registers XY

After potential reprogramming:
06 Query O′ using using registers XY
07 for i = q − 2, ..., 0:
08 Apply σ−1 on register X
09 Query O′ using registers XY
10 Measure X according to {Π0, Π1}
11 Output b if the state projects onto Πb.

Fig. 13. Distinguisher for a single reprogrammed point.

Theorem 7. For every 1 ≤ q < 2n−3, the attack described in Figure 13 can
be implemented in quantum polynomial-time. Performing q queries each before
and after the potential reprogramming, it detects the reprogramming of a random
oracle O : {0, 1}n → {0, 1}m at a single point with probability at least Ω(

√
q
2n ).

Proof (sketch). We can analyze the state of the distinguisher before its mea-
surement. If the oracle is not reprogrammed, then its state is

1√
2n

∑
x

|x〉 |0〉 ,

whereas if the reprogramming happens, its state is∑
x∈S
|x〉 |O(x∗)⊕ O′(x∗)〉+

∑
x∈S

|x〉 |0〉 ,

where O(x∗) ⊕ O′(x∗) is a uniformly random value. The advantage follows by
calculating the probability that these states project onto Π0.

For the e�ciency of our distinguisher, we can use the tools provided in [2]
to e�ciently implement Π0 and Π1, which are the only non-trivial operations of
the attack.

Due to space restrictions, we refer to the full version , where we give the full
proof of Theorem 7 and discuss its extension to multiple reprogrammed points.
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