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Abstract. For Key Encapsulation Mechanism (KEM) deployed in a
multi-user setting, an adversary may corrupt some users to learn their
secret keys, and obtain some encapsulated keys due to careless key man-
agements of users. To resist such attacks, we formalize Enhanced secu-
rity against Chosen Plaintext/Ciphertext Attack (ECPA/ECCA), which
ask the pseudorandomness of unrevealed encapsulated keys under uncor-
rupted users. This enhanced security for KEM serves well for the security
of a class of Authenticated Key Exchange protocols built from KEM.

In this paper, we study the achievability of tight ECPA and ECCA
security for KEM in the multi-user setting, and present an impossibility
result and an optimal security loss factor that can be obtained. The exist-
ing meta-reduction technique due to Bader et al. (EUROCRYPT 2016)
rules out some KEMs, but many well-known KEMs, e.g., Cramer-Shoup
KEM (SIAM J. Comput. 2003), Kurosawa-Desmedt KEM (CRYPTO
2004), run out. To solve this problem, we develop a new technique tool
named rank of KEM and a new secret key partitioning strategy for
meta-reduction. With this new tool and new strategy, we prove that
KEM schemes with polynomially-bounded ranks have no tight ECPA
and ECCA security from non-interactive complexity assumptions, and
the security loss is at least linear in the number n of users. This im-
possibility result covers lots of well-known KEMs, including the Cramer-
Shoup KEM, Kurosawa-Desmedt KEM and many others. Moreover, we
show that the linear security loss is optimal by presenting concrete KEMs
with security loss ©@(n). This is justified by a non-trivial security reduc-
tion with linear loss factor from ECPA /ECCA security to the traditional
multi-challenge CPA/CCA security.

1 Introduction

The security of a cryptographic primitive is generally formalized by setting up
a reasonable security model and defining a proper security notion. The security
model formalizes resources obtained by an adversary .4 and also the attacks im-
plemented by A in the real-life settings. For a primitive IT (or a computational
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problem P), its security model is described by an experiment (game) Exp; in
which the environment (challenger) and an adversary interact with each other.
The environment (challenger) in Exp;; provides the resources with which A im-
plements attacks, then environment detects whether A wins. Here A wins in
Exp;; means that the aim of its attacks is achieved. Without any resources for
help, there also exists a threshold winning probability threg,, , for any adversary.
Then A’s attacking advantage is given by €4 := | Pr[A wins] —threg,, |. We call
(ta, €a)-A successfully attacks IT if A’s running time is t 4 and advantage is € 4.
Parameters t 4 and €4 are measured by security parameter \. If for all proba-
bilistic polynomial-time (PPT) adversaries, their advantages are all negligible in
the security parameter A, then IT is (asymptotically) secure.

Security Reduction and Tightness. The security proof of primitive IT
generally proceeds with a reduction algorithm R, which transforms a (t4,€)-
adversary A against IT to an algorithm (tg,er)-R* against a computational
problem P (or another cryptographic primitive). Generally, we only consider
simple black-box reduction [2], where R has oracle access to A by choosing the
inputs for A, running the adversary sequentially and observing its outputs (but
not the codes or internal states of A). Note that the working effort for A to win
the security game is measured by the work factor ¢ 4/€ 4 [3], which captures the
expected running time of A to break the security. The quotient of R’s work-
ing factor and A’s working factor is defined as the security loss factor ¢z, i.e.,
Ir = ?7% . %. If £ is a polynomial in the security parameter A, then the security
of IT is successfully reduced to the hardness of P. This implies that IT is secure
as long as P is computationally hard. On the other hand, a large loss factor /%
will lead to a gap between II’s security level and P’s hardness. To fill the gap, IT
has to choose a large security parameter to make P hard enough, and this might
make IT less efficient. Therefore, the smaller the security loss % is, the better
the security reduction. If /x is a constant, the reduction is called a tight one. If
{x is an a priori fixed polynomial in A, then the reduction is called almost tight
(or linear-preserving according to [33]). Such reductions (tight or almost tight)
are desirable, since the loss factor is independent of adversarial behavior.

In cryptography, most of long-standing hard problem assumptions are non-
interactive ones including the Decision Diffie-Hellman (DDH) assumption, the
Factoring assumption, the Learning with Error (LWE) assumption, the existence
of one-way function assumption, etc. If the security of a primitive can be (almost)
tightly reduced to a Non-Interactive Complexity Assumption (NICA) [2], we call
the primitive has (almost) tight security.

(Almost) tight security proofs for cryptographic schemes are always prefer-
able. But the first question to be answered is whether (almost) tight reductions
exist for the schemes.

KEM and Its Traditional Security. Key Encapsulation Mechanism (KEM)
KEM = (Gen, Encap, Decap) is an important public-key primitive. Its key gener-
ation algorithm Gen is able to generate a pair of public key pk and secret key
sk. With the public key pk, the encapsulation algorithm Encap can output an
encapsulation ¢ and an encapsulated key K. With the secret key sk, the de-



capsulation algorithm Decap can recover the encapsulated key K from c¢. KEM
found wide applications in theoretic community and real world. For example,
public-key encryption (PKE) schemes can always be constructed in a KEM +
DEM (Data Encapsulation Mechanism) style [10], which include the well-known
ElGamal scheme [12], Cramer-Shoup (CS) scheme [8, 9, 10], Kurosawa-Desmedt
(KD) scheme [28], etc. Meanwhile, KEM usually serves as an essential building
block in key exchange protocols. For example, the Diffie-Hellman key exchange
protocol [11] can be regarded as exchanging pk = g%, ¢ = g” and establishing
K = g%, with (pk = g%, sk = a) < Gen and (c = ¢°, K = g%) < Encap(pk). In
[1, 31, 24, 17], the authenticated key exchange (AKE) protocols are built from
KEM and signature schemes. Due to the importance of KEM, NIST included
KEM in their calling list for standards of post-quantum algorithms.

Traditionally, the security of KEM is defined in a single-user setting. In
the single-user and multi-challenge Chosen-Plaintext Attack (mCPA) security
model, the adversary sees the public key pk of KEM, and the environment in-
vokes Encap multiple times to obtain (¢;, K;) < Encap(pk). The mCPA security
of KEM asks the pseudorandomness of {K;} given pk and {c¢;} to adversaries.
Multi-challenge Chosen-Ciphertext Attack (mCCA) security of KEM can be
similarly defined, except that the adversary additionally has access to a decap-
sulation oracle which provides decapsulation services for any ¢ other than {¢;}.

Multi-User Security for KEM. We note that the traditional mCPA (mCCA)
security notion in the single user setting does not cover the attacks in our real-
life deployment of KEM. In the era of Internet, cryptographic schemes should
presume to be deployed in multi-user systems. Moreover, in reality, we can never
rule out the possibility that the secret keys of some users are stolen by hackers,
or leaked to adversaries due to careless key management.

As for KEM, the practical attacks, including corruption of users’ secret keys
and revealing of some encapsulated keys, have to be considered in the security
model. Concretely, in a system of n users with (pk;, sk;) < Gen, 1 < i < n,
the adversary may corrupt a subset I of users of its choice and obtain their
secret keys {sk;};cr. For any uncorrupted user j ¢ I, the adversary is able to
see all the encapsulations {c;;}1<¢t<q under pk; from a public channel, where
(¢jt,Kj+) < Encap(pk;), 1 <t < Q. The adversary may reveal some encap-
sulated keys {Kj ,}rer for a subset R C {1,...,Q}. The security of KEM asks
pseudorandomness of the unrevealed keys {K;};¢r.1¢R-

Such a security notion also meets the security requirement for KEM used as a
building block in many applications. For example, in the KEM+DEM framework
for constructing PKE [10], if an adversary sees a pair of plaintext & ciphertext of
PKE, then the involved encapsulated key of KEM might be uniquely determined
by the adversary [12] or partially leaked to the adversary [10, 28]. Another ex-
ample is AKE schemes built from KEM, where KEM’s public/secret keys serve
as (part of) AKE’s long-term public/secret keys and KEM’s encapsulated keys
are used to derive AKE’s session keys [6, 24]. The security model of AKE (like
the CK [5], CK+ [27], eCK [29] models) allows corruption of long-term secret



keys and revealing of session keys, which in turn requires the underlying KEM
supporting corruptions and key reveals.

In conclusion, the proper security for KEM in the multi-user setting should
allow adversaries to implement corruptions & key reveals and ask the pseudo-
randomness of the unrevealed encapsulated keys under public keys of uncor-
rupted users. We name such notion Enhanced security, including Enhanced CPA
(ECPA) security and Enhanced CCA (ECCA) security. Obviously, ECPA (resp.,
ECCA) security is stronger and more desirable than the traditional mCPA (resp.,
mCCA) security. There are two natural questions to be answered:

(1) Do the well-known KEM schemes have tight ECPA security (or ECCA
security)? For example, the ElGamal-KEM [12], CS-KEM [8, 9, 10] and
KD-KEM [28] are among the most efficient KEMs. The GHKW-KEM [14]
and HLLG-KEM [19] are core building blocks in achieving (almost) tightly
mCCA security for PKE. The Naor-Yung paradigm [35] is a generic approach
to CCA-secure PKE, which further results in Naor-Yung type CCA-secure
KEM (NY-KEM) by encrypting a uniformly random encapsulated key. We
would like to investigate whether they achieve tight ECPA (or ECCA) secu-
rity.

(2) How to identify those KEMs incapable of achieving tight ECPA or tight
ECCA security?

Impossibility Results on Security Tightness of KEM. It is highly de-
sirable to identify those KEMs for which it is impossible to reduce the ECPA
(ECCA) security to any non-interactive complexity assumption (NICA) tightly.

In [2], Bader et al. made use of meta-reduction [7] to prove impossibility of
tight security for some KEMs, namely, (almost) tight security reduction from
multi-user mCPA (mCCA) security to NICA does not exist for a class of KEM
schemes. These KEM schemes are characterized by the properties of “secret
key checkability” and “secret key uniqueness/re-randomizability”. “Secret key
checkability” means that there exists an efficient algorithm checking whether
(pk, sk) is a valid public/secret key pair output by Gen; “Secret key uniqueness”
means that there is at most one valid secret key sk for each pk; “secret key re-
randomizability” means that given a valid pair (pk, sk), there exists an efficient
algorithm randomly choosing another secret key sk’ from the set of secret keys
that validly match pk.

Clearly, ECPA (resp., ECCA) security tightly implies multi-user mCPA (resp.,
mCCA) security, so all KEM schemes that satisfy “secret key checkability” and
“secret key uniqueness/re-randomizability” do not have (almost) tight enhanced
security. Recall that the ElGamal KEM [12] has public key pk = ¢g* and se-
cret key a, which obviously satisfies “secret key checkability” and “secret key
uniqueness”. This rules out the (almost) tight ECPA security of ElGamal KEM.

However, lots of other KEM schemes, including the CS-KEM [8, 9, 10]
and KD-KEM [28], have neither “secret key uniqueness” nor “secret key re-
randomizability”. For example, for the CCA-secure CS-KEM [8, 9, 10], its public

Z1 22

key pk contains h = ¢5'g5* where (21,22) € (Z,)? is part of secret key sk. For



a fixed pk = (h,...), the set of valid secret keys is {(z],25,...) | h = gfiggé}.
There are at least p valid secret keys, hence “secret key uniqueness” does not
hold. Any two secret keys with distinct (z1,22) and (21, 24) can determine the
value of log,, go = (21 — 21)(25 — z2)~' mod p, hence solving the discrete loga-
rithm problem. So the CS-KEM does not satisfy the property of “secret key re-
randomizability”, unless the discrete logarithm problem is easy to solve. There-
fore, determining whether tightness impossibility holds for such KEM schemes
needs new techniques.

Our Contribution. We work on impossibility of tight reduction on KEM,
and show that for certain KEM schemes, there exists no (almost) tight security
reduction from the ECPA (ECCA) security to non-interactive complexity as-
sumptions (NICA). We also present the optimal tightness bound of security loss
factor and identify those KEM schemes that can achieve the optimal tightness
bound. Our contribution is detailed as follows.

— We develop a useful tool named rank of KEM to identify a class of KEM
schemes for which impossibility of (almost) tight reduction holds. More pre-
cisely, we proved that as long as the rank of a KEM scheme is polynomially
bounded (in the security parameter \), the incurred security loss factor of
KEM is £2(n) when the enhanced security of KEM is reduced to any NICA.
Here n denotes the number of users.

— We compute the ranks or provide upper bounds of ranks for the well-known
KEM schemes including the ElGamal-KEM [12], CS-KEM [8, 9, 10], KD-
KEM [28], GHKW-KEM [14], HLLG-KEM [19], and many instantiations of
NY-KEM [35]. Their polynomially-bounded ranks indicate that these KEMs
suffer from a security loss factor £2(n).

— On the other hand, we proved that any tightly mCPA (resp., mCCA) secure
KEM is able to achieve ECPA (resp., ECCA) security with loss factor O(n).
As a result, the ElGamal-KEM [12], CS-KEM (8, 9, 10] and KD-KEM [28]
all have ECPA security with security loss factor ©(n) when reduced to the
DDH assumption. Similarly, the HLLG-KEM [19] has ECCA security with
security loss factor @(n) based on the matrix DDH (MDDH) assumption
[13] (which corresponds to the standard DDH, k-Linear assumptions under
different parameters). This suggests that the optimal security loss factor for
ECPA (ECCA) is ©(n) and achievable.

We highlight that our impossibility result is the first that does not impose
any requirement on the (pk, sk) relation (like checkability [2, 20], uniqueness, or
re-randomizability [7, 26, 22, 2, 32]), nor limited to deterministic primitives [33].

1.1 Technique Overview

The Meta-Reduction Paradigm. Our impossibility result about KEM is
built upon a line of research on using “meta-reductions” [4, 7, 26, 22, 2, 36,
33]. To the best of our knowledge, up to now all known black-box separations



using the meta-reduction paradigm only apply to primitives that either embody
some form of uniqueness or re-randomizability [7, 2] or are deterministic ones
like pseudorandom function (PRF) or message authentication code (MAC) with
deterministic tagging [33].

The high-level idea of the meta-reduction paradigm for a primitive works as
follows. Let R be any reduction algorithm from the security of the primitive to
any NICA. Firstly, we construct a hypothetical (inefficient) adversary A* that
breaks the security of the primitive with advantage ¢4~ > 1 — . Here a means
the failure probability of A*. Let €.+ be the advantage with which R4" breaks
the NICA via black-box access to A*. Secondly, we construct an efficient meta-
reduction algorithm B, which “emulates” A* while running R. Suppose that B
emulates R4 perfectly except with probability at most &, then B’s advantage
ep against NICA satisfies |eg — ega+| < 0. Obviously, the running time tga- is
lower-bounded by ¢ 4+. Consequently, the loss factor of reduction R is

« toAx 1—
> _far IR > a
ER = epax tax — eg+o

By the NICA assumption, ez is negligibly small for any efficient B. So
ER = Q(l_Ta)v (1)

which suggests that the failure probability « of A* and the failure probability &
of B are the key factors for the lower bound of loss factor /5.

Let us take [2] and [33] as examples, both of which rule out (almost) tight
(i.e., linear-preserving) reductions for the multi-user security of some primitives.
Let n denote the number of users.

— In [33], @ = 1/poly(A) for some polynomial poly. If MAC is deterministic,
then § = 1/y/n.! Therefore, the security reduction for such MACs loses a
factor of 2(y/n).

Note that the construction of .A* and meta-reduction B in [33] are tailored
for deterministic primitives like PRF, deterministic MAC, deterministic sig-
nature, etc.

— In [2], & = 0. If KEM satisfies the properties of “secret key checkability”
and “secret key uniqueness/re-randomizability”, then 6 = 1/n. Therefore,
the security reduction for such KEMs loses a factor of £2(n).

Note that in [2] the secret keys are partitioned according to an efficient
algorithm SKCheck(-,-) which checks the relation between pk and sk. For
each pk, let SKpr be the set of all secret keys corresponding to pk, i.e,
SKpi := {sk’ | SKCheck(pk, sk’) = 1}. “Secret key uniqueness” means that
there is unique sk in SIKCp,. “Secret key re-randomizability” requires that
there is another efficient algorithm for sampling sk’ from SK,x, uniformly at
random, given a pair of (pk, sk). The construction of A* and B in [2] works
so that 6 = 1/n when (pk, sk) relation has checkability and uniqueness/re-
randomizability. Such a condition is satisfied by the ElGamal-KEM [12], but

! Their results apply to more general reductions supporting rewinding and concur-
rency, based on bounded-round interactive complexity assumptions.



lots of other KEMs run out, including the CS-KEM [8, 9, 10], KD-KEM
[28], GHKW-KEM [14], HLLG-KEM [19], etc. Therefore, we have to resort
to new techniques to identity whether these KEMs have (almost) tight ECPA
(ECCA) security or not.

New Partitioning Technique: Decapsulation Equivalence of Secret Keys.
In this paper, we take full advantage of the resources provided to adversary in the
ECPA (ECCA) game, and provide a novel technique of partitioning secret keys.
We do not impose any requirement on the (pk,sk) relation (like checkability,
uniqueness, or re-randomizability), and the secret keys are no longer partitioned
according to public keys like [2] does. Our new strategy is partitioning secret
keys according to their functionality when they are used to decapsulate a set of
ciphertexts X.

We define a decapsulation equivalence relation on the secret key space SK
w.r.t. a subset of ciphertexts X C CT. Any two secret keys sk, sk’ € SK are
decapsulation-equivalent w.r.t. X" if they result in the same decapsulated key for
each ciphertext in X'. In formula,

sk~ysk! <= Vece X, Decap(sk,c) = Decap(sk’,c).
Then the equivalence relation parameterized by ciphertext set X is

EquivSK(X) := {(sk, sk’) € SK? | Ve € X, Decap(sk, ¢) = Decap(sk’, c)}.

Our Meta-Reduction. With the new partitioning of secret keys, we are able
to present our new meta reduction. Here we give a high-level overview of the hy-
pothetical adversary A* and meta-reduction algorithm B in our meta-reduction.
Define [n] :={1,2,--- ,n} and [n\ 7] :={1,2,--- ,n}\ {i}.

A high-level overview of A* is presented in Fig. 1. Note that by the perfect
correctness of KEM, the real secret key sk;+ of user i* also belongs to the set
shown in (2), so the real secret key sk;+ and the sk* chosen by A* have the
same decapsulation functionality when they are used to decapsulate the set of
ciphertexts {c;« j }jc[q\j;-]- Consequently, by the equivalence relation we defined,
we have

(Sk*, Ski*) S EqUiVSK({Ci»«)]_7 s 7Ci*7Q} \ {Ci*Ji* })

Observe that A* will have advantage 1 if EquivSK({c;» 1, , ¢i» o} \{¢ci= j,;» }) C
EquivSK({¢i« j,. }), i.e., all the secret keys that have the same decapsulation
results on the @ — 1 ciphertexts also result in the same decapsulation result on
one more ciphertext ¢;- ;... Define

c1,c, j 5 [Q]

o= max o ( Pr [EquivSK({c1, -+ ,co} \ {¢;}) € EquivSK({cj})]> . (3)

Then A* has advantage e 4+ > 1 — a.
Now we construct a meta-reduction B that emulates A* efficiently while
running R as the challenger. Note that all steps of A* are efficient except step



Hypothetical A*

e STEP 1 (SETUP): A* receives public keys {pk1,- -, pk,} of n users, which
are generated by (pk;, sk;) < Gen.

e STEP 2 (ENCAPSULATION): A* issues () encapsulation queries per user,
and obtains n@Q encapsulations {c;;}icm)je[q), Where (cij, Kij) <
Encap(pk;).

e STEP 3 (KEY REVEAL): A* reveals @) — 1 encapsulated keys per user ran-
domly, and obtains n(Q — 1) encapsulated keys {K; ;}icin) je[Q\ji]> Where
J1,J2,+ , jn < [Q] are the indices of unrevealed keys.

e STEP 4 (CORRUPTION & CHECK): A* corrupts all users except one, and
obtains n — 1 secret keys {sk;}icn\i+], Where i* <—s [n] is the index of the
uncorrupted user.

Then A* checks whether the decapsulation relation Decap(sk;,c; ;) =
K; j holds for each i € [n\*] and j € [@\ ji], and aborts if the check fails.

o STEP 5 (CHALLENGE & OUTPUT): A* obtains a challenge K* w.r.t. ¢;« j..,
which is either the real key K;- ;.. encapsulated in ¢;- ;.. or a random key.
By brute-force search, A* picks a random sk* from the set

{sk € SK | Decap(sk,c;- ;) = K;= j, Vj € [Q\ ji=]}- (2)

Finally, A* outputs 1 if and only if K* = Decap(sk*, ¢; j,. ) holds.

Fig. 1. High-level overview of the hypothetical adversary A" in our meta-reduction.

5. So B can emulate steps 1-4 of A* honestly. Then B adds a rewinding step 4.5
which rewinds the corruption procedure n—1 times. With the help of information
obtained from the rewindings, B derives a secret key to emulate A* with an
efficient step 5’, which is different from the step 5 of A*. A high-level overview
of B is presented in Fig. 2.

In step 5’, as long as there exists a rewinding in which R responds with a
corrupted secret key skzgi) such that (4) holds, then B will not abort. Since 7* is
randomly chosen from [n], by a similar argument as [2, 20], we can bound the
the probability that B aborts by 1/n. If (4) holds, then the skgi) obtained by B
also belongs to the set defined in (2), from which A chooses its sk*, thus

(k9 sk*) € EquivSK({ci-1, -+ > cin.o} \ {civ .. })-

In this case, B will perfectly emulate A* as long as EquivSK({c;« 1,--- ,¢ci= o} \
{ci* j,» }) C EquivSK({¢;- j,. }), which happens with probability at least 1 — «
according to the definition of « in (3). Taking into account the probability that
B aborts, we know that B perfectly emulates A* for R except with probability
at most « + 1/n. Therefore,

leg — €ga+| <d=a+1/n. (5)



Meta-Reduction B

e STEPS 1-4: Bruns R as the challenger and emulates A* honestly. Suppose
that in step 4, the index of the uncorrupted user is i*.

e STEP 4.5 (REWINDING): B rewinds the corruption procedure n — 1 times.
In the ¢-th rewind (v € [n\ i*]), B corrupts all users except user ¢ and
obtains the corrupted secret keys {sk‘iL }ie[n\L] from R, where Sk‘EL) denotes
the corrupted secret key of user ¢ obtained in the ¢-th rewind.

e STEP 5’ (CHALLENGE & OUTPUT): B runs R to obtain the challenge K*,
but has a different strategy for the output bit.

More precisely, B checks whether it ever obtained a corrupted skz(i) of
user ¢* in one of the n — 1 rewindings, such that

Decap(skii%cﬁJ) = Ki*,j7 for VJ € [Q\]ﬁ] (4)

If B finds such a sk§1)7 then B uses skgi) to test whether K* =
Decap(sk(L)7 Ci* j.« ), and returns 1 to R if and only if the equation holds.

3%

Fig. 2. High-level overview of the meta-reduction algorithm B in our meta-reduction.

By plugging (5) into (1), we obtain a lower bound of the security loss factor
in our meta-reduction:
ER = Q(l_To{) = Q(a{k_l(}n)’
where « is defined in (3).
Observe that as long as & = O(1/n), the loss factor is £g = £2(n), at least

linear in the number n of users. Next, we identify a class of KEMs with a =
O(1/n) with a new technique tool called rank of KEM.

New Technique Tool: Rank of KEM. We define the rank of a KEM scheme
KEM, denoted by Rankkgm, as the cardinality of the largest independent subset
X’ C CT such that EquivSK(X") = EquivSK(CT). Here we explain the intuitions
behind this new notion and the meaning of independent set.

— EquivSK(X”) = EquivSK(CT) indicates that, all the secret keys that have the
same decapsulation functionality on X’ also have the same decapsulation
functionality on the whole ciphertext space CT. Intuitively, this means that
X' “determines” the decapsulation functionality of secret keys on the whole
ciphertext space CT .

— We require X’ to be an independent set in the sense that every ciphertext c
in X contributes to EquivSK(&X”), i.e., EquivSK(X" \ {c}) # EquivSK(X").

Intuitively, the relation between X’ and CT is analogous to the relation between
a basis and a linear space, and the rank of KEM is analogous to the size of (the
largest) basis (i.e., the dimension of linear space).



However, we note that in general the decapsulation algorithm Decap of KEM
is not a linear function, especially for CCA-secure KEMs. So the rank of KEM is
different from the dimension of CT even if CT is indeed a linear space. Moreover,
we highlight that our notion of rank for KEM is more general and purely defined
based on the equivalence relation “EquivSK” on secret keys, and we in fact do
not require any algebraic structure from C7T.

Bounding the Security Loss with KEM’s Rank. The notion of rank for
KEM is a useful tool for analyzing the failure probability « defined in (3) in our
meta-reduction. Let us name a ciphertext ¢ a bad one in X if EquivSK(X'\ {c}) &
EquivSK({c}). We prove an important core lemma (see Lemma 3 in Subsect. 4.3).
The core lemma shows that the number of bad ciphertexts in any ciphertext
subset X' is upper bounded by Rankkgm. As a result, we have

RankKEM

Pro [EquivSK(X \ {c}) Z EquivSK({c})] < —x (6)

Combining (6) and (3), we have

RankKEM
« _—.
-Q

Note that @ is the number of encapsulation queries made by A* for each user.
As long as Rankggm is bounded by an a priori fixed polynomial (in the security
paramter \), we can always choose @ such that o« < Rankkgm/@Q < 1/n. Then
the security loss factor is (g = 2(152) = Q(ai_l‘/ln) = 2(n).

Consequently, with our new technique tool, rank of KEM, we identify a
class of KEMs for which impossibility of (almost) tight reduction holds. Namely,
any KEM with polynomially-bounded rank has no (almost) tight (i.e., linear-
preserving) reduction from its ECPA (ECCA) security to any NICA.

A careful computation of ranks for many well-known KEM schemes (includ-
ing the ElGamal-KEM [12], CS-KEM [8, 9, 10], KD-KEM [28], GHKW-KEM
[14], HLLG-KEM [19] and many instantiations of NY-KEM [35]) shows that our
impossibility result applies to these KEM schemes. See Subsect. 5.2 and the full
version [18] for more details.

1.2 Application of Our Impossibility Result in AKE

Authenticated Key Exchange (AKE) is one of the most widely deployed proto-
cols on Internet and it allows two parties to establish a session key over public
channels. Most of AKE constructions make use of KEM explicitly or implicitly,
for instance, the well-known Signed Diffie-Hellman Protocol, modular AKE con-
structions in [1, 38, 31, 24, 17]. Therefore, the security of AKE is closely related
to the security of KEM. Defining a proper security for KEM can directly serve
the security proof of AKE.

The well-known security notions of AKE are defined with the CK model [5],
eCK model [29] , or CK+ model [27], all of which consider both passive attacks
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and active attacks in the multi-user setting. Passive attacks allow the adversary
to see the messages over public channel, while active attacks not only allow the
adversary to modify, drop, replay, or inject messages on the public channel, but
also allow the adversary to corrupt user’s long-term secret key in AKE and reveal
session keys of some AKE protocol instances. The security of AKE requires the
pseudorandomness of session keys between two users, if the session keys are not
revealed and the two users’ long-term secret keys are not corrupted.

Let us consider the case that the public and secret keys (pkkem, skkem) of
KEM serve as part of a user’s long-term public key pkake = (pkkem, ) and
secret key skake = (skkem, - - - ) of AKE. Furthermore, the session key of AKE is
derived from the encapsulated key of KEM. As a result, the corruption of skake
requires the security of the underlying KEM to support corruption of skkgwm,
and the reveal of session keys in AKE asks the underlying KEM to support
reveal of encapsulated keys. Therefore, the ECPA (ECCA) security of KEM is
exactly the right security notion needed by AKE in this case. Combined with
our impossibility result, any KEM with polynomially-bounded rank cannot be
tightly secure, hence such construction of AKE cannot be tightly secure as well.

Therefore, we have the following rules for constructing tightly secure AKE:
either (i) the secret key of KEM does not appear in the long-term secret key of
AKE, like [1, 31, 17]; or (ii) the tight security proof of AKE relies on the Random
Oracle model, like [16, 24, 37]; or (iii) AKE avoids the usage of KEM with
polynomially-bounded rank. Up to now, most of the well-known efficient KEM
schemes with tight mCPA-security in the multi-user setting have polynomially-
bounded rank. Hence rule (iii) eliminates the possibility of constructing tightly
AKE with aforementioned KEMs if KEM’s secret keys are used as AKE’s long-
term keys.

1.3 Related Works

Meta-reduction paradigm was proposed in [4] and used to show black-box impos-
sibility results. Later, Coron [7] made use of meta-reductions to prove the impos-
sibility of tight reductions for certain digital signature schemes and showed the
lower bounds on security loss. This technique was further extended in [26, 2, 32].

Hofheinz et al. [22] showed that any black-box security proof for a signature
scheme with re-randomizable signatures must have a reduction loss of at least
@, the number of signature queries from the adversary.

Lewko and Waters [30] used the technique in [22] to identify certain condi-
tions for hierarchical identity-based encryption (HIBE) under which HIBE has
an exponential loss.

Bader et al. [2] developed a new meta-reduction technique to obtain a bun-
dle of impossibility results. Their results rule out tight reductions from non-
interactive complexity assumptions (NICA) for certain class of public-key en-
cryption (PKE), KEM and digital signatures with multi-user security allowing
secret key corruptions. This class of public-key primitives is characterized by
secret key’s checkable relation with public key and property of secret key unique-
ness or re-randomizibility.
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Jager et al. [25] considered symmetric encryption schemes in multi-user set-
ting in which adversaries can adaptively corrupt encryption keys. They ruled
out linear-preserving black-box reductions from adaptive multi-user security to
single-user security for any authenticated encryption scheme with a strong “key
uniqueness” property.

Very recently, Morgan et al. [33] studied black-box reductions to “standard”
assumptions for message authentication code (MAC). Their black-box reduction
is a general one which allows reduction algorithm to concurrently run or rewind
adversary, and the complexity assumption is extended from NICA to any interac-
tive assumption with pre-defined bounded number of interactions. They showed
that linear-preserving security reduction does not exist for adaptive multi-user
secure deterministic stateless MACs. Their results also hold for PRFs and de-
terministic stateless signatures. However, the meta-reduction paradigm in [33]
only applies to deterministic primitives.

2 Preliminaries

2.1 Notations

Let A € N denote the security parameter throughout the paper. Let () denote the
empty set. If x is defined by y or the value of y is assigned to z, we write x := y.
For n € N, define [n] := {1, 2,...,n}, and for i € [n], define [n\ ¢] := [n]\ {i}. For
aset {z1,...,x,} and i € [n], define {x1,...,xn \ z;} = {x1, ..., 20} \ {z:}. For a
set X', denote by #X the cardinality of X. Denote by x <—s X the procedure of
sampling = from set X uniformly at random. If D is distribution, x <—s D means
that x is sampled according to D. All our algorithms are probabilistic unless
stated otherwise. We use y <—s A(x) to define the random variable y obtained
by executing algorithm A on input z. We use y € A(x) to indicate that y
lies in the support of A(x). If A is deterministic we write y < A(x). We also
use y « A(z;r) to make explicit the random coins r used in the probabilistic
computation. Denote by ¢4 the running time of A.

2.2 Key Encapsulation Mechanisms

Definition 1 (KEM). A key encapsulation mechanism (KEM) scheme KEM =
(Setup, Gen, Encap, Decap) consists of four algorithms:

— Setup: The setup algorithm outputs public parameters pp, which determine
public key & secret key spaces P x SKC, an encapsulation key space K, and
a ciphertext space CT .

— Gen(pp): Taking pp as input, the key generation algorithm outputs a pair of
public key and secret key (pk, sk) € PK x SK.

— Encap(pk): Taking pk as input, the encapsulation algorithm outputs a pair
of ciphertext c € CT and encapsulated key K € K.

— Decap(sk,c): Taking as input sk and c, the deterministic decapsulation al-
gorithm outputs K € KU {L}.
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We require that for all pp € Setup, (pk,sk) € Gen(pp), (¢, K) € Encap(pk), it
holds that Decap(sk,c) = K.

We recall the traditional IND-CPA /CCA security notions for KEMs in the single-
user and multi-challenge setting, denoted by IND-mCPA /IND-mCCA for short.

Definition 2 (IND-mCPA /IND-mCCA Security). We say that an ad-
versary A (ta, €4)-breaks the IND-mCPA (resp., IND-mCCA) security of KEM,
if it runs in time t 4, and Advge" P (A) == 2- | Pr[Exppa®(A) = 1] — 3 >ea
(resp., Adviggine2(A) := 2. | Pr[Expam < (A) = 1] — 3| > ea), where the exper-
iments are defined in Fig. 3.

Expier ™ (4), Explipe () : Orncl):

(¢, K) s Encap(pk)
EncList := EncList U {c}
Ko :=K; K1 +s K
Return (¢, Kp)

pp s Setup

(pk, sk) <s Gen(pp)

EncList := () /Records the encapsulation queries
b <+s {0,1} //challenge bit

B s AT Sl (pp, k) Obge(c) :
If ¢ ¢ EncList: Return K’ < Decap(sk,c)

U . - . .
If b’ = b: Return 1; Else: Return 0 Flse: Return |

Fig. 3. The IND-mCPA security experiment Expite"?*(A) and the IND-mCCA secu-
rity experiment Expiggar(A) of KEM, where in the latter the adversary has also access

to a decapsulation oracle Opgcl(+).

2.3 Non-Interactive Assumptions
We recall the definition of non-interactive complexity assumptions (NICA).

Definition 3 (NICA [2]). A non-interactive complexity assumption (NICA)
N = (T,V,U) consists of three algorithms. The instance generation algorithm
T outputs a problem instance x and a witness w. U is a PPT algorithm, which
takes x as input and outputs a candidate solution s. The verification algorithm
V takes as input (x,w) and a candidate solution s. If V(z,w,s) = 1, then we
say that s is a correct solution to the challenge x.

We say that an adversary B (tg,ep)-breaks an NICA N = (T,V,U), if it
runs in time tg, and Adviy(B) := | Pr[Exp}™(B) = 1] — Pr[Expy™(U) = 1]| >
ep, where the experiment Exph(Z) (Z € {B,U}) runs (x,w) +s T, executes
s +s Z(x), and outputs V(z,w, s).

Intuitively, U is an algorithm which implements a suitable “trivial” attack strat-
nica

egy for N, and Pr[Expy~(U) = 1] is the winning probability of trivial attacks.
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3 Enhanced Security Notions for KEMs

In this section, we introduce Enhanced CPA/CCA security notions for KEM
in the Multi-User and Multi-Challenge (MUMC) setting, called MUMC-ECPA/
MUMC-ECCA, which allow user corruptions and encapsulated key reveals.

Definition 4 (MUMC-ECPA /ECCA Security). We say that an adversary
A (ta,ea,n, Qe, Qr)-breaks the MUMC-ECPA (resp., MUMC-ECCA) security of
KEM, if it runs in time t 4, and Advigen 57 o (A) = 2| PrExpRemn o0, (A) =
1= 3| = ea (resp., Adviennan.o, (A) == 2+ | PrExpREmron ., (A) = 1] = 3| =
€4 ), where the experiments are defined in Fig. J and the scalar 2 is added so
that the advantages are between 0 and 1.

Ogne(i): At most Q. times in total
Bl o, (), EXOREISSS, o, (A) S D
pp s Setup EncList := EncList U {(i, ¢, K)}
For i € [n]: (pks, ski) <= Gen(pp) Return ¢ //Only c¢ is returned
EncList := () //Records the encapsulation queries
RevList := () //Records the reveal queries Obge(i, C/) :
CorrList := () //Records the corruption queries W ¢ EncList:
TestList := () //Records the test queries Return K’ « Decap(ski, ¢')
B +s{0,1} //Single challenge bit Else: Return L
PKList := {pki}ze[n]
ev (7, €):
B g 4O O0me() O () ComOO1ea () (1 by iy %K) it
If 8/ = B: Return 1; Else: Return 0 A (i,c) ¢ TestList:
RevList := RevList U {(,¢)}
Orese (2, €): /At most Q; times in total Return K
If (i,¢, K) € EncList for some K A (i,c) ¢ RevList U TestList Else: Return L
A i ¢ CorrList:
TestList := TestList U {(4,c)} Oconn(1):
Ko =K; Ky +s K If (4,-) ¢ TestList:
Return K CorrList := CorrList U {4}
Else: Return | Return sk;
Else: Return L

Fig.4. The MUMC-ECPA security experiment Expgey, 6. o,(A) and the

MUMC-ECCA security experiment Expgemno..q,(A) of KEM, where in the latter
the adversary has also access to a decapsulation oracle Opgc(+, -). In both experiments,

A is allowed to query Ogxe at most Q. times and query Orgsr at most Q¢ times.

In the MUMC-ECPA and MUMC-ECCA security experiments defined in
Fig. 4, the adversary A is allowed to make several kinds of oracle queries.

— Encapsulation query. Through Ogyc(i) query, A obtains an encapsulation
¢ under pk;. We note that the corresponding encapsulated key K is not
given out along with ¢ through Opyc, different from the IND-mCPA /mCCA
experiment (cf. Fig. 3). In contrast, the key K encapsulated in ¢ can be later
revealed by Key Reveal query or tested by Test query.
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— Key Reveal query. Upon a Key Reveal query Oggy (i, ¢), if ¢ is an output
of Opxe(i), the key K encapsulated in c is returned to A.

— SBG-style Test query. Upon a Test query Orggr(4,¢), if ¢ is an output
of Opxc(i), the real key Ky = K encapsulated in ¢ or a random key K is
returned to A, depending on the challenge bit 8. We note that this is defined
in the Single-Bit-Guess (SBG) style [6, 24], which is desirable due to its well
composability with symmetric cryptographic primitives like DEM. Such an
SBG-style security of KEM also serves well as a building block for the SBG-
style security of more sophisticated primitives or protocols like AKE.

— Decapsulation query. A decapsulation oracle Opgc(i,c’) is provided in

the MUMC-ECCA security experiment to decapsulate ciphertexts ¢’ that

are not returned by Opyc(i).

Corruption query. Via Ocorr(?) query, A can corrupt a user and obtain

its secret key sk;.

Finally, we stress that some trivial attacks are forbidden. For example, (1) A is
not allowed to both corrupt some user and test encapsulated keys of this user;
(2) A is not allowed to reveal an encapsulated key and test the same key; (3) A
is not allowed to test an encapsulated key twice due to the SBG-style definition
we adopt.

The MUMC-ECPA (MUMC-ECCA) security is more reasonable than the
mCPA (mCCA) notion (cf. Definition 2), since it captures the practical attacks,
like corrupting users’ secret keys, revealing users’ encapsulated keys, in the multi-
user and multi-challenge setting.

We also define the enhanced security notions in the Multi-User and Single-
Challenge (MUSC) setting, called MUSC-ECPA/MUSC-ECCA, which allow at
most one Orggr query in total.

Definition 5 (MUSC-ECPA /ECCA Security). We say that an adver-
sary A (ta,€ea,n, Qc)-breaks the MUSC-ECPA (resp., MUSC-ECCA) security
of KEM, if it (ta,€a,m, Qe, 1)-breaks the MUMC-ECPA (resp., MUMC-ECCA)
security, and we denote the corresponding advantage function by Advygey =% (A)
(resp.. AQVRES 25 (A).

4 Decap-Equivalence of Secret Keys & Rank of KEMs

In this section, we study the equivalence of secret keys for KEM schemes when
decapsulating a set of ciphertexts, and define a new notion called rank for KEMs.
This will be our main technique tool in the establishment of the impossibility
result later in Sect. 5.

“Two-Step” Decapsulation. Generally, the decapsulation algorithm Decap(sk,
¢) of KEM schemes can be decomposed into two parts according to their function-
ality: an (optional) verification part Decap,, (sk, ¢) checking the well-formedness
of ciphertext, and a key-derivation part Decap,4(sk, c) deriving a decapsulated
key K € K from the ciphertext. If Decap,,¢, (sk, c) = 1, then K < Decapy4(sk, c)
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is invoked and Decap(sk, ¢) will output K. If Decap,,, (sk, ¢) = 0, then Decap(sk, c)
will output a fixed symbol like L indicating the mal-formedness of c.

We note that some KEM schemes (like CPA-secure KEMs) do not have
Decap,,, and Decap(sk,c) = Decap,y(sk,c). Nevertheless, Decapyy(sk,c) con-
tributes the core of Decap(sk,¢) in all KEM schemes. Clearly, if Decap(sk,c) =
K € K, it must hold that Decap,y(sk,c) = K.

4.1 Decap-Equivalence of Secret Keys

For KEM schemes, we study the decapsulation equivalence of secret keys when
they are used to decapsulate a set X of ciphertexts. Since Decap, is the essential
part of the decapsulation algorithm, the decapsulation equivalence is defined
with Decap,q4, as shown below.

Definition 6 (X-Decap-Equivalence of Secret Keys). Let KEM be a KEM
scheme with ciphertext space CT and secret key space SKC. We define a relation
EquivSK(X) on SK, parameterized by a set of ciphertexts X C CT, as follows:

EquivSK(X) := {(sk, sk’) € SK? | Ve € X, Decapyy(sk, c) = Decap,q(sk’,c)}.
We also define EquivSK(0) := SK? for the empty set (.

Clearly, EquivSK(X') defines an equivalence relation on SK. We show useful prop-
erties of EquivSK in the following lemma.

Lemma 1 (Properties of EquivSK). For all X, CCT,
(1) EquivSK(X UY) = EquivSK(X) N EquivSK(Y).
(2) X €Y = EquivSK(X) 2 EquivSK(D).

Proof. Note that (2) follows from (1) directly. It suffices to prove (1). By Defi-
nition 6, for any (sk, sk’) € SK?,

(sk,sk’) € EquivSK(X U Y)
<= Vc € X UY,Decapyy(sk,c) = Decapyy(sk’, c)
<= Vc € X,Decapyy(sk,c) = Decap,q4(sk’, c)
A Ve € Y, Decap,y(sk, c) = Decap,q4(sk’, c)
< (sk,sk') € EquivSK(X) A (sk,sk’) € EquivSK())
< (sk,sk’) € EquivSK(X') N EquivSK(Y). O

We also define independence of a set X C CT as follows. If ¢ € X but
EquivSK(X \ {c}) = EquivSK(X), then the element ¢, compared to X \ {c}, does
not contribute to EquivSK(X'). In this case we call ¢ a dependent element in X.
Otherwise, if EquivSK(X \ {¢}) 2 EquivSK(X'), we call ¢ an independent element
in X. For set X', we call X an independent set, if every ¢ € X is an independent
element in X. Below we present the formal definition.
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Definition 7 (Independent Set for Decap-Equivalence). Let X CCT be
a set of ciphertexts. X is called an independent set, if for all c € X, it holds that

EquivSK(X \ {c}) 2 EquivSK(X).

In particular, we define the empty set () as an independent set.

4.2 Rank of KEMs

For set X', there may exist many independent subsets X’ such that X/ C X and
EquivSK(X”) = EquivSK(X). We define the rank of X’ as the cardinality of the
largest subset.

Definition 8 (Rank of Set & Rank of KEM for Decap-Equivalence).
Let X CCT be a set of ciphertexts. The rank of X is defined as

Rank(X) := max{#X’| X’ C X AEquivSK(X") = EquivSK(X) A X" is independent }.

In particular, the rank of KEM scheme KEM 1is defined as Rankkgm :=
Rank(CT), where CT is the ciphertext space of KEM.

Obviously, we have Rank(X) < #X and Rankkgm = Rank(CT) < #CT.

Here, we demonstrate that Rank is well-defined. Namely, there always ex-
ists an independent subset X’ C X such that EquivSK(X’) = EquivSK(X).
We find such an X’ by iteration. In the first step, we set X’ := X. Clearly,
EquivSK(X”) = EquivSK(X). If X’ is independent, then we are done. Otherwise
X’ is not independent, then 3 ¢ € X’ such that EquivSK(X’\{c}) = EquivSK(X").
So, we remove ¢ from &7, i.e., X’ < X"\ {c}. Then EquivSK(X”) = EquivSK(X)
still holds, while #X” is reduced by 1. If X’ is independent, then we are done.
Otherwise, we repeat the above procedures until #X’ = 0. Since X is a finite
set, we can always stop with an independent X’ after finite steps, possibly with
X’ = (which is also independent by definition). Therefore, we can always find
an X’ such that EquivSK(X”’) = EquivSK(X') and X' is independent.

We show useful properties of Rank in the following lemma.
Lemma 2 (Properties of Rank). For all X,Y CCT,

(1) X CY = Rank(X) < Rank()).

(2) X CY and Y is an independent set = X is an independent set.

(3) If X is an independent set, then Rank(X) = #X.

Proof. To show (1), it suffices to prove Rank(X) < Rank(X U {c}) for a single
element ¢ € Y\ X, then (1) follows by induction. Suppose X’ is the largest

independent subset such that X’ C X and EquivSK(X’) = EquivSK(X). By
definition, Rank(X) = #X”. We consider two cases.
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— In the case EquivSK(X) = EquivSK(X U {c}), X’ is also an independent
subset such that X’ C X U {c} and EquivSK(X’) = EquivSK(X U {c}), so
Rank(X U {c}) > #X".

— In the case EquivSK(X) 2 EquivSK(X U {c}), X’ U {c} is an independent
subset such that X' U{c} C X U{c} and EquivSK(X’'U{c}) = EquivSK(X’)N
EquivSK(c) = EquivSK(X) N EquivSK(c) = EquivSK(X U {c}), so Rank(X U
{ch) > #(X' U{eh) = #47 + 1.

In either case, we have Rank(X) = #X’ < Rank(X U {c}). This proves (1).

Next, we prove (2). Since Y is an independent set, by definition, for every
c € Y, EquivSK(Y\{c}) 2 EquivSK(Y). Observe that EquivSK(Y) = EquivSK(Y\
{c}) N EquivSK(c), so it implies that EquivSK() \ {¢}) € EquivSK(c). Then for
every ¢ € X, since X C Y, by Lemma 1, it holds EquivSK(Y\ {c}) C EquivSK(X'\
{c}). Combining EquivSK(Y \ {c}) C EquivSK(X \ {c}) with EquivSK(Y\ {c}) £
EquivSK(c), we get that EquivSK(X \ {c}) € EquivSK(c), and consequently,
EquivSK(X '\ {c}) 2 EquivSK(X) = EquivSK(X'\ {c}) NEquivSK(c). Therefore, X
is also an independent set.

For (3), when X is an independent set, X" itself is the largest independent
subset of X' such that EquivSK(X) = EquivSK(X), so Rank(X) = #X. O

Lastly, we stress that we do not require any algebraic structure from the
secret key space SKC or the ciphertext space C7. The notions (like independent
set, set rank and rank of KEMSs) are purely defined based on the equivalence
relation “EquivSK” on secret keys.

4.3 Core Lemma

In this subsection, we develop a core lemma, which is crucial in the establishment
of the impossibility result later in Sect. 5.

For the ease of notation, by EquivSK(cy, ..., cg) we denote EquivSK({c1, ...,cg}),
and by EquivSK(ci, ..., cq \ ¢;) we denote EquivSK({c1, ...,co} \ {ci}).

Lemma 3 (Core Lemma). Let KEM be a KEM scheme with ciphertext space
CT. For any ciphertexts c1,...,cq € CT with @ € N,

#{ i €[Q] | EquivSK(cy, ...,cq \ ¢;) € EquivSK(c;) } < Rankkem.  (7)

Proof. Denote by BadIndex the set in the left-hand side of (7) and denote by d
the rank of KEM (i.e., Rankkem = d).

If @ < d, the lemma trivially holds. Now, we consider the case @ > d + 1.
Suppose towards a contradiction that #Badlndex > d + 1, which means that
BadlIndex contains at least d + 1 distinct indices, say 41, ..., %q+1-

We claim that {c;,,...,¢i,,,} is an independent set. To prove this claim,
it suffices to show EquivSK(c;,,...,ci ., \ ¢) 2 EquivSK(c;,, ..., ¢i,,,) for any
i € {i1,...,%q+1}. Since {i1,...,44+1} C Badlndex, we have

EquivSK(cy, ...,cq \ &) € EquivSK(¢;) (8)
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for each i € {i1, ..., ¢+1}. We also have EquivSK(c, ..., cq \ ¢;) C EquivSK(¢;, , ...,
Cigyr \ Gi) by Lemma 1, then by combining it with (8), we get that

EquivSK(ci, s ..y Cigyy \ i) € EquivSK(c;). 9)
(9) in turn implies that

EquivSK(ci,, ...y Cigyy \ i) 2 EquivSK(c;,, ..., ¢iyy, \ i) N EquivSK(c;)
= EquivSK(cj, , .oy Cigyy )

This shows the independence of set {c;,,...,¢i ., }-

Since {¢;,, ..., ¢iy,, } is an independent subset of CT, by Lemma 2, we have
Rankkem = Rank(CT) > Rank({c;,,...,ci,., }) = d + 1, which contradicts with
Rankkem = d. So it must hold that #BadIlndex < d and Lemma 3 follows. O

5 Impossibility of Tight Enhanced Security for KEMs

In this section, we present an impossibility result on the tight enhanced security
for a class of KEMs whose ranks are polynomially bounded. In Subsect. 5.1,
we give the main theorem of our impossibility result. Then in Subsect. 5.2, we
compute ranks for some well-known KEM schemes, and apply our impossibility
result to these KEMs. The applications indicate that for these KEMs there
exists no (almost) tight (i.e., linear-preserving) black-box reduction from their
enhanced security to any non-interactive complexity assumption.

5.1 Impossibility of Tight Enhanced Security for KEMs

As in [2, 20], we will only consider simple reductions, since most reductions in
cryptography are simple ones. We recall the definition of simple reduction.

Definition 9 (Simple Reduction [2, 20, 33]). We call an algorithm R a
(tr,€r, €A, M, Qc)-reduction from breaking an NICA N = (T,U,V) to breaking
the MUSC-ECPA security of KEM, if R turns an adversary A that (t a4, €4,n, Q.)-
breaks the MUSC-ECPA security of KEM (c¢f. Definition 5) into an algorithm B
that (tr,€er)-breaks N (cf. Definition 3).

We call R simple, if R has only black-box access to A and executes A only

once (and in particular without rewinding).

The security loss of R is defined by g := %-%. If U is a small constant,
R is called a fully tight reduction; if ¢ is an a priori fized polynomial in the
security parameter X\, R is called an almost tight reduction or a linear preserving

reduction.

In the following theorem, we show the impossibility of tight MUSC-ECPA
security which is defined in the multi-user and single-challenge setting.
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Theorem 1 (Impossibility of Tight MUSC-ECPA Security). Let N =
(T, U, V) be a non-interactive complexity assumption, and let KEM be an MUSC-
ECPA secure KEM scheme with rank Rankkem = d. Then any simple (tr, er, €A,
n, Q.)-reduction R from breaking N to breaking the MUSC-ECPA security of
KEM has to lose a factor that is at least linear in the number n of users, assum-
ing N is hard and Q. > 3dn(n +1).

Proof of Theorem 1. We prove the impossibility result by meta-reduction.
Following the meta-reduction routine [22, 30, 2], we first describe a hypothetical
and inefficient adversary 4*, then we show how to construct an algorithm B
simulating A* efficiently while running the reduction R.

THE HYPOTHETICAL ADVERSARY A* . Let Q) := Q./n. The hypothetical adver-
sary A* attacks the MUSC-ECPA security of KEM (cf. Definition 5) as follows.

— Setup. A” receives (pp, PKList) with PKList = {pk; }ic[n]-
A* will execute the following procedures, and in particular make the
queries therein, in order.
— Preparation. For each user i € [n],

(1) A* makes Opyc(7) query @ times: in the j-th query (j € [Q)]), it receives
¢ ; from Ogpye(i);

(2) A* picks an index j; s [@Q] uniformly at random, and for each j €
@\ 7i], it queries Ogrgy (i, ¢; ;) and receives K; ;.

— Corruption. A* picks a user index ¢* +—s [n] uniformly at random, and for
each i € [n\ i*], it queries Ocogrr(?) and receives sk;.

— Check. For cach i € [n\ i*], A* checks whether Decap,y(ski,c; ;) = K;
holds for all j € [@Q \ j;]- It aborts immediately if one of these checks fails.

— Test. A* queries Orggr(i*, ¢+ 5,. ) and receives a challenge K*.

— Output.

(1) (Inefficient step) A* picks a secret key sk* uniformly at random from the
set {sk | Vj € [Q\Ji~], Decapyqy(sk, c;- ;) = K~ j}, which is an equivalence
class of EquivSK(c;= 1, ,¢ix.0 \ Ci* .. )-

(2) Using the above sk*, A* computes K := Decap,q(sk*, ¢;» j,. ). f K = K*,
it outputs 8’ = 1; otherwise it outputs 8’ = 0.

Note that A* makes nQ(= Q.) Oprnc queries in total and makes at most one
Orgsr query.

ANALYSIS OF A*'S ADVANTAGE. Let sk;« denote the secret key of user ¢*
chosen by the experiment. By the perfect correctness of KEM, it holds that
Decapyy(skix,cix j) = Decap(ski«,c;+ j) = K;» ; for each j € [@Q \ j;+]. Conse-
quently,

Decapyy(skix, ci+ ;) = Ki= j = Decap,q(sk™, c;» ;)

for each j € [@Q \ ji;«], where sk* is the secret key chosen by A*. It implies that

(ski~, sk™) € EquivSK(c= 1, ,Ci=,Q \ Ci* j,u )-
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Let bad denote the event that EquivSK(c;»= 1, - -, ¢+ 0 \Ci j,. ) € EquivSK(c;- 5. ).
By Lemma 3 (Core Lemma) and the uniformity of j;» over [@Q], we have Pr[bad] <
d/Q =nd/Q.. Let 8 denote the single challenge bit in the experiment.

e In the case 8 = 0, the K* output by Orggr is the real key encapsulated in
¢i» j.. - By the perfect correctness of KEM, it holds that Decap,y(ski«, ¢ j,. ) =
Decap(ski«, ¢;= j,.) = K*. If bad does not occur,

(sk;=, sk™) € EquivSK(c« 1, -+ , .0 \ ¢i* j.» ) € EquivSK(e;» .. ),

thus K = Decapyy(sk*, ¢+ j,.) = Decapyy(ski,ci= j,.) = K*. It implies
Pr[’=1| 8 =0 A-bad] =1, and consequently,

Pr[f' =1| 8 =0] > Pr[-bad] - Pr[#' = 1| § =0 A —bad]
= Pr[—bad] -1 =1 —Prbad] > 1 — nd/Qe.

e In the case § = 1, the K* output by Orggr is a random key uniformly
chosen from K, so K = K* holds with probability exactly 1/#K. It implies

Pr[f = 1] B =1] = 1/#K.
Overall, the advantage of A* in the MUSC-ECPA security experiment is

ear =2 |Pr[ =] — | =|Pr[f'=1| =0 -Pr[f =1| B =1]| (10)

Z 1 7’nd/Qe - 1/#’C
THE META-REDUCTION B. Next, we construct an efficient algorithm B, which
runs reduction R as a subroutine and attempts to break the NICA N. B will
play the role of the hypothetical adversary A* to interact with R. For the sake
of efficiently emulating A*, B will rewind R to learn more information from the
its responses. More precisely, given an instance = of N, where (z,w) <—s T, B
works as follows.

— Setup. B runs R(z) to obtain (pp, PKList) where PKList = {pk;}icr). B
initializes two arrays of n entries, SK[-] and SK*[-], by 0.
B plays the role of adversary, executes the following procedures and makes
the queries to R in order.
— Preparation. For each user i € [n],
(1) B makes Opyc(7) query @ times: in the j-th Ogyc(i) query (j € [Q)), it
receives ¢; ; from R;
(2) B picks an index j; <—s [Q] uniformly at random, and for each j € [@Q\ j;],
it queries Ogpy (i, ¢;,;) and receives K; ; from R.
Let the state after this preparation step be stprep.
B picks a user index i* <—s [n] uniformly at random.
— Rewinding. Next, B will rewind R n times, all starting from state stprep.
In the ¢-th rewind (¢ € [n]), B proceeds as follows:
(1) B rewinds R to the state stprep. For each ¢ € [n\ ¢], B queries Ocorn(2)

and receives skfb) from R.
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(2) For each i € [n\ ¢], B checks whether or not Decapkd(sk‘y),ci,j) =K, ;
holds for all j € [@Q \ ji], and if so, it sets SKi] := skEL). Ife=14% B
additionally sets SK*[i] := sky*)

(3) Let the state at the moment be stgﬁind.
rewind (i.e., ¢ < ¢+ 1).

~ Check. For each i € [n\ i*], B checks whether or not SK*[i] # 0 (i.e.,

Decapkd(sky*),ci,j) = K; ; holds for all j € [@\ j;]). It aborts immediately
if one of these check fails, and sets a flag checkfail; := true.

— Test. B rewinds R back to the state stl(ri;zind.

and receives a challenge K* from R.

— Output.

(1) B checks whether or not SK[i*] # 0 (i.e., SK[i*] = skz(i*) for some
£ st Decapkd(skl(i*),ci*,j) = K- ; for all j € [Q )\ ji+]). It aborts
if the check fails, and sets a flag checkfaily := true.

(2) Using SK[i*], B computes K := Decap,q(SK[i*], ¢+ j,. ). If K = K*, it
outputs 3’ =1 to R; otherwise it outputs 5’ =0 to R.

Finally, B receives a solution s from R, and outputs s to its own challenger.

If « < n, B goes to the next

B queries Orygr(1*, ¢ix j,.)

B’S RUNNING TIME. B essentially runs R one complete run plus (n — 1) incom-
plete runs. Moreover it executes Decap, 4 at most n(n—1)(Q —1)+1 times. Thus
the total running time of B is

tg <n-tg + an : tDecap =n-tr +nQ. - tDecapa
where {pecap denotes the running time of the Decap algorithm of KEM.

ANALYSIS OF B’S ADVANTAGE. Denote by bad the event that EquivSK(¢;« 1, - - ,
Civ,.0 \ Ci* j,» ) € EquivSK(e; ;..). We first show that in the case of checkfail; v
(—checkfaila A —bad), B simulates the hypothetical adversary A* perfectly.

o If checkfail; occurs, B aborts, and A* would also abort in the check step
since Decapkd(sky*)mi,j) # K, ; for some i € [n\ i*] and some j € [Q\ ji]. .

o If —checkfail; A —checkfaila A —bad, B obtains a secret key SK[i*] such that
Decap,(SK[i*], ¢« j) = K;-; for each j € [@Q \ j;-]. Since A*’s sk* also
satisfies Decapyq(sk*, ¢;~ j) = K« j for each j € [Q \ ji+], it implies that

(SK[i*], sk™) € EquivSK(c 1, -+, Ci=.Q \ Ci* j;u )-
Since bad does not occur,
(SK[Z*], Sk*> S EqUiVSK(Ci*Vl, G Q \ Ci*vji*) - EqUiVSK(Ci*Ji* )

Consequently, the K = Decap,4(SK[i*], ¢;+ ;.. ) computed by B is identical to
the K = Decap,q(sk*, ¢;» ;,. ) computed by A*, so the simulation is perfect.
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Therefore, B simulates A* perfectly for R when checkfail; V (—checkfaily A —bad),
and by the difference lemma, we have

< Pr[—checkfail; A (checkfaily Vv bad)]
< Pr[—checkfail; A checkfailp] + Pr[bad].

|EB — ERA*

By Lemma 3 (Core Lemma) and the uniformity of j;» over [@], we have
Pr[bad] < d/Q = dn/Q.. Next we bound the probability Pr[—checkfail; Acheckfails].
Note that checkfaily can only occur if the event F : 3i € [n], SK[i] = {) occurs.
As i* is chosen uniformly at random from [n] and the view of R before the
Test query is independent of i*, we have ¢ € [n\ i*] with probability 1 — 1/n.
In this case checkfail; occurs and thus Pr[checkfail;| E] > 1 — 1/n. Now since
checkfaily = E it holds that Pr[—checkfail; A checkfaily] < Pr[—checkfail; A E] =
Pr[—checkfail;| E] - Pr[E] < Pr[—checkfail;| E] = 1 — Pr|checkfail;| E] < 1/n.
Overall, it holds that |eg — ega| < 1/n+ dn/Q., thus,

erar < eg+1/n+dn/Q.. (11)

BOUNDING THE SECURITY LOSS. Assuming that no adversary B is able to
(tn, en)-break the NICA N with txy =t < n-tr + nQe - tpecap, We must have
eg < en. By combining (10) and (11), the security loss of reduction R is

ca trar 1—dn/Qe—1/#lC.1> 1 —dn/Q. —1/#K
epar  tar T eg+1/n+dn/Q. T env+1/n+dn/Q.
>n-(1—ney —dn(n+1)/Q. — 1/#K),

lr >

where the last inequality holds by inspection, namely, n - (1 — nexy — dn(n +
1)/Qc —1/#K) - (ex +1/n+dn/Q.) =1 —dn/Q. — 1/#K — (nex +n?d/Q.) -
(nexy +dn(n +1)/Qc + 1/#K) < 1 —dn/Q. — 1/#K. Thus, any reduction R
from breaking N to breaking the MUSC-ECPA security of KEM loses at least a
factor of

{=n-(1—ney —dn(n+1)/Q. — 1/#K),

where n denotes the number of users, ey represents the hardness of NICA N, d is
the rank of KEM, Q. is the number of Ogy¢ queries allowed in the MUSC-ECPA
experiment, and #/X denotes the size of the encapsulated key space K.

Assuming that N is hard and Q. > 3dn(n + 1), we compute the security
loss factor £ in two cases as examples. In the first case, we only make very weak
assumptions, and in the second case, we make mild but still far more realistic
assumptions.

e Weak case (in the concrete setting). In the case that ey < 1/(12n),
Qe > 3dn(n+1) and #K > 2, we have £ > n/12.

e Mild case (in the asymptotic setting). In the case that ey < 1/(An),
Qe > Mdn(n+ 1) and #K > A, where X is the security parameter, we have
=n(1-3/A)=n(1l-0(l1))=n.
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In either case, the security loss £ is at least linear in n. This completes the proof
of Theorem 1. ]

Observe that MUSC-ECPA is tightly implied by all of the MUSC-ECCA
(multi-user and single-challenge FCCA), MUMC-ECPA (multi-user and maulti-
challenge ECPA) and MUMC-ECCA (multi-user and multi-challenge ECCA)
securities. Hence the impossibility of tight MUSC-ECPA security shown in Theo-
rem 1 directly yields the impossibility of tight MUSC-ECCA, tight MUMC-ECPA
and tight MUMC-ECCA, as well. We conclude these in the following corollary.

Corollary 1 (Impossibility of Tight MUSC-ECCA, MUMC-ECPA &
MUMC-ECCA). Let N = (T,U,V) be a non-interactive complexity assump-
tion, and let KEM be an MUSC-ECCA (resp., MUMC-ECPA, MUMC-ECCA)
secure KEM with rank Rankkem = d. Then any simple (tg, er, €4, n, Q¢)-reduction
R from breaking N to breaking the MUSC-ECCA (resp., MUMC-ECPA, MUMC-
ECCA) security of KEM has to lose a factor that is at least linear in the number
n of users, assuming N is hard and Q¢ > 3dn(n + 1).

Remark 1. Following [2], our impossibility results can be naturally generalized
to reductions that may execute the adversary algorithm several times sequen-
tially.

5.2 Applications of Our Impossibility Result to Well-Known KEMs

In the last two decades, many PKE schemes [12, 8, 9, 10, 28, 14, 15, 19] (to name
a few) were proposed, explicitly or implicitly, in the KEM + DEM paradigm [10]
and their securities are proved in the standard model. All the KEMs inherent
in these PKEs have their own charm. For example, the ElGamal-KEM [12], CS-
KEM [8, 9, 10] and KD-KEM [28] are among the most efficient KEMs. The
GHKW-KEM [14] and HLLG-KEM [19] are core building blocks in achieving
(almost) tightly IND-mCCA security for PKE. The NY-KEM [35] is a generic
approach to CCA-secure PKE/KEM from CPA-secure PKE, which in turn can
be built upon CPA-secure KEM. Note that these KEMs (except the ElGamal-
KEM) have neither secret key uniqueness nor re-randomizibility, so the impos-
sibility results in existing works [2] do not apply to them.

Next, we will compute the ranks for these KEMs and apply our impossibility
result on them. The computation results show that the ranks of these KEM are
either small constants or upper bounded by small polynomials in A.

— The CPA-secure ElGamal-KEM [12] has rank 1 (cf. the full version [18]).

— The CCA-secure CS-KEM in [8] has rank 1 (cf. the full version [18]) and
another version in [9, 10] has rank 2 (see next).

— The CCCA (constrained CCA) secure KD-KEM [28] has rank at most 4 (cf.
the full version [18]).
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— The PCA (plaintext check attacks) secure GHKW-KEM used in the tightly
IND-mCCA secure GHKW-PKE [14] has rank at most 6k, with k the pa-
rameter of the MDDH assumptions [13] (e.g., MDDH corresponds to the
DDH assumption when k& = 1 and includes k-Linear assumptions for a gen-
eral k > 2) (cf. the full version [18]).

— The tightly mCCA-secure HLLG-KEM [19] has rank at most 2k, with k the
parameter of the MDDH assumptions (cf. the full version [18]).

— The CCA-secure NY-KEM ([35] has polynomially-bounded rank, as long as
the underlying CPA-secure KEM does (cf. the full version [18]). Thus many
concrete instantiations of NY-KEM have polynomially-bounded rank, e.g.,
the NY-KEMs whose underlying CPA-secure KEMs are instantiated with
the KEMs shown above (such as ElGamal).

Our impossibility result works well on these KEMs. Their polynomially-bounded
ranks indicate that the MUSC-ECPA (or even MUSC-ECCA, MUMC-ECPA,
MUMC-ECCA) security of these KEM schemes suffer from a security loss factor
2(n) with n the number of users, when reducing to non-interactive complexity
assumptions.

Due to space limitations, here we show how to compute rank for the CS-KEM
[9, 10], and put the rank computations of other KEMs in the full version [18].

Rank Computation for Cramer-Shoup’s CCA-secure KEM [9, 10]. Let
us first recall the construction of the CS-KEM in [9, 10].

Let (G,p,g1,92) be a group of prime order p and with random generators
g1, 92. Let H be a hash function from G? to Z,.

x1 T2 Y1 Y2

— The public key is pk := (91,92, ¢,d, h) where ¢ := ¢7'¢5%, d := ¢{"g3> and
h = g7'g5? for uniformly chosen x1,z2,y1, Y2, 21, 22 <—s Zp, and the secret
key is sk := (1, z2, Y1, Y2, 21, 22)-

— Encap(pk) samples r <—s Z, uniformly, computes u1 := g¢j, ug := g5, @ :=
H(uy,uz), v:=c"d™, K :=h", and outputs ¢ := (u,us,v) and K.

— Decap(sk,c = (u1,ug,v)) outputs K := ui'uZ? if uf* 91452742 = ¢ holds,
where o := H(u1,us2), and outputs L otherwise.

The secret key space is SK = Zg, the ciphertext space is CT = G?, and the
key-derivation part Decap,4(sk,c) outputs K := uj'u3?.

We show that the CS-KEM in [9, 10] has rank 2. For a ciphertext ¢ =
(u1,ug,v) € CT, we can always write u; = g;* and up = g1 with r1,ry € Z,. We
compute EquivSK(c): for any sk = (21, x2, y1, Y2, 21, 22), sk’ = (2], 25, Y1, v, 21, 25)
€ SK, (sk,sk’) € EquivSK(c) <= Decapyy(sk,c) = Decapyy(sk’,c) —
ui'uy? = uituy? = r1-21+712 29 =712} + 7o 2. So, EquivSK(e) = {(sk =
(cory21,22), 8K = (- ,21,25)) | mi- 214+ re-za=11-2] +re- b}

Consequently, we have the following facts.

(1) EquivSK(CT) = Necer EquivSK(c) = {(sk = (--- , 21, 22),8k" = (--- , 21, 25)) |
Nrirsez, 71 21t 12- 20 = 11221 + 120 25} = {(sh = (- ,21,22), k" =
(- 2,2)) [ 21 =21 A ze = 2}
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e 1)
(2) Fo(r)any two ciphertexts ) = ( 1) = g, ,ugl) =g 71J(1)),(:(2) = ( (2) =
2
g1 uf) 2 v(2)), if (7“%1)7 rél)) € Z2 is linearly independent of (7"%2), 7“52))
1 ,.(1)
e.g., (rgl), (1 )) = (1,0) and (r:(LQ), (2)) = (0, 1), the matrix (:im :32>> is in-
vertible, thus

EquivSK (M, ¢?)) = EquivsSK (M) n EquwSK( ))

= (-, 21,20), 8k = (--+,21,25)) 7 @) () @)
/\7“1 c21 Ty 22 =T z+r

{(sk -
, (1> (1) () 2
(sk=(--,21,2),sk = (- ,21,2)) (2) (2) ) (2) (2) ( 2)
{(sk = (-

=(-,21,22),8K = (- ,21,25)) | 21 = 21 A 22 = 24} = EquivSK(CT).

z+7" 277‘<) z—&—r“ 2
(2) !

Clearly, we have both EquivSK(c™), ¢(?)) C EquivSK (™) and EquivSK(c(D), ¢?)
C EquivSK(c®), thus {¢), ¢} is an independent set.

e e
(3) For any three ciphertexts c¢(!) = (ugl) g, ,uél) =g, , (1)) 2 =
9 NORNC r(® 3 RONN NG
(Ug) = gl (2) = gl 7’()(2))76(3) = ( g) = 911 7U§) = gl2 7U(3)),
since the hnear space Zz has dimension 2, the three vectors (ril),rél)),
(r gz),rg)), (rq & (3)) in Z2 must be linearly dependent. Say (rl‘j),ré‘i)) =

(a- ril) +b- r?),a rél) +b- rf)) for some coefficients a,b € Z,. Then we

have EquivSK(c(V), ¢(2)) C EquivSK(c(?’)), as shown below.
For any (sk = ( L 21, 29), 8k = (-+- 2}, 25)) € EquivSK(c), @) it

holds r£1)~21—|—r£1)- (1) 21 —H’(l) -zh and r( ) zl—|—r(2) 2y = 7"52) zl—|—r(2) -2h,
thus
rf’) z1 + 7“(3) zo = (a- r:(Ll) +b- r:(LZ)) ~z1+ (a- rél) +b- 7“52)) - 29
=q- (7“9) -2 +T§1) z0) +b-(ry (2) -2 —|—ré2) - 22)
a0 0 )

= (a- 7“1 ) 4. r(2))~zl+(a rél)—i—b-réz)) 22—r§3) zl—l—r(3) 25,

so (sk, sk') € EquivSK(c®).

The fact that EquivSK(c(!), ¢2)) C EquivSK(c®)) implies EquivSK (¢, ¢(2),
c®)) = EquivSK(c), ¢?) N EquivSK(c®) = EquivSK(c, ¢)). Therefore,
{c(l)7 @, 0(3)} is not independent for any three ciphertexts ¢, ¢ ¢®),

Overall, the largest independent subset X C C7 such that EquivSK(X) =
EquivSK(CT) has two ciphertexts. So, the CS-KEM in [9, 10] has rank 2.

6 Enhancedly Secure KEM with Optimal Tightness

In this section, we present KEMs with enhanced security, where the security
reduction has a loss factor @(n) with n the number of users. Combining with
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the impossibility result shown in Sect. 5, the enhanced security of these KEMs
are optimal regarding tightness.

More precisely, we will prove that, any IND-mCPA/mCCA secure KEM is
itself MUMC-ECPA/ECCA secure, with security reduction losing a factor of
O(n). Therefore, to obtain MUMC-ECPA/ECCA secure KEMs with optimal
security reduction (i.e., security loss = ©(n)), it suffices to construct tightly
IND-mCPA /mCCA secure KEMs (i.e., the security loss = ©(1)). Luckily, there
were already a handful of such KEMs.

— The ElGamal public-key encryption (PKE) [12] is tightly IND-mCPA secure
based on the DDH assumption with security loss ©(1) [34].

— In 2012, Hotheinz and Jager [21] presented the first tightly IND-mCCA se-
cure PKE based on (matrix) DDH assumptions [13], with security loss ©(1).

— Recent works [14, 15, 19] proposed efficient IND-mCCA secure PKE schemes
based on (matrix) DDH assumptions [13], with security loss O(X).

Note that PKE can be used as KEM naturally by encrypting a random key
K. These yield (almost) tightly IND-mCPA/mCCA secure KEMs with security
loss ©(1) (resp., O(A)). Combining with our new result, the KEMs derived from
[12, 21, 14, 15, 19] achieve MUMC-ECPA/ECCA security based on the stan-
dard (matrix) DDH assumptions with security loss O(n) [12, 21] (resp., O(An)
[14, 15, 19]), thus the tightness of their MUMC-ECPA /ECCA security is optimal
(resp., almost optimal).

The Non-Triviality of Our Reduction. We stress that our reduction from
MUMC-ECPA /ECCA security to IND-mCPA/mCCA security is non-trivial. A
straightforward reduction works as follows. An IND-mCPA/mCCA adversary
B simulates the MUMC-ECPA/ECCA experiment for A by guessing the set of
corrupted users, generating the public keys and secret keys of the corrupted users
itself, and embedding the public keys in the IND-mCPA /mCCA experiment into
(one of) the uncorrupted users.

Note that guessing the set of corrupted users will incur two problems in the
security reduction.

— Firstly, it will incur an exponential loss factor, since there are 2" possibilities
of corrupted users in total, which is exponentially large when n > A.

— Moreover, it is hard for B to answer key reveal queries w.r.t. uncorrupted
users for A, since the IND-mCPA /mCCA experiment does not provide a key
reveal oracle Ogpy.

We addressed the above two problems and provide a new reduction which
loses only a linear factor O(n). Our reduction goes with n hybrids. In the n-th
hybrid (n € [n]), we change the encapsulated keys in Orger w.r.t. user 7 from
real keys K to random keys Kj.

— One user at a time. To avoid an exponential loss factor, our reduction
focuses on only a single user at a time. In the n-th hybrid, our reduction
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embeds the public key in the IND-mCPA /mCCA experiment into the public
key of user 7. There are two cases. If A never corrupts user n, B can sim-
ulate the MUMC-ECPA/ECCA experiment perfectly for A. So the change
of Orggr for user 7 is unnoticeable to A by the IND-mCPA /mCCA security.
If A asks to corrupt user n, B aborts immediately. Note that in the latter
case, A is not allowed to query Orygr for user 1 when user 7 is (going to be)
corrupted. So the change of Orygr for user 7 is conceptual.

— Key reveal with random keys. To handle key reveal queries for user 7,
we borrow the ideas from [31]. If A never corrupts user 1, B can output a
random key for key reveal queries since A never sees the secret key of user
7. If A asks to corrupt user 1, B can also output a random key for key reveal
queries before the corruption and aborts immediately when the corruption
happens.

With only n hybrids, we change all encapsulated keys in Opggr to random. This
shows the indistinguishability of § = 0 and 8 = 1 in the MUMC-ECPA /ECCA
experiment. Overall, our reduction only loses a linear factor O(n) from MUMC-
ECPA/ECCA to the IND-mCPA/mCCA security.

Formally, we have the following theorem, with proof appeared in the full
version [18] due to space limitations.

Theorem 2 (IND-mCPA/mCCA “Y) MUMC-ECPA /ECCA for KEM).
Let KEM be an IND-mCPA (resp., IND-mCCA) secure KEM scheme. Then
KEM is MUMC-ECPA (resp., MUMC-ECCA) secure.

Concretely, for any adversary A that (t 4, €4, n, Qec, Qt)-breaks the MUMC-ECPA
(resp., MUMC-ECCA) security of KEM and makes at most Qiotal times of
queries in total, there exists an algorithm B that (tp,ep)-breaks the IND-mCPA
(resp., IND-mCCA) security of KEM, with

tg <ta+ (n+ Qrotal) - tkem  and  ep > €4/ (2n),

where tkem s a parameter depending only on the algorithms of KEM and is
independent of t 4.
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